1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavfilter/vf_fftfilt.c
2021-10-14 20:26:23 +02:00

562 lines
19 KiB
C

/*
* Copyright (c) 2015 Arwa Arif <arwaarif1994@gmail.com>
* Copyright (c) 2017 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License,
* or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* FFT domain filtering.
*/
#include "libavfilter/internal.h"
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavcodec/avfft.h"
#include "libavutil/eval.h"
#define MAX_THREADS 32
#define MAX_PLANES 4
enum EvalMode {
EVAL_MODE_INIT,
EVAL_MODE_FRAME,
EVAL_MODE_NB
};
typedef struct FFTFILTContext {
const AVClass *class;
int eval_mode;
int depth;
int nb_planes;
int nb_threads;
int planewidth[MAX_PLANES];
int planeheight[MAX_PLANES];
RDFTContext *hrdft[MAX_THREADS][MAX_PLANES];
RDFTContext *vrdft[MAX_THREADS][MAX_PLANES];
RDFTContext *ihrdft[MAX_THREADS][MAX_PLANES];
RDFTContext *ivrdft[MAX_THREADS][MAX_PLANES];
int rdft_hbits[MAX_PLANES];
int rdft_vbits[MAX_PLANES];
size_t rdft_hlen[MAX_PLANES];
size_t rdft_vlen[MAX_PLANES];
FFTSample *rdft_hdata[MAX_PLANES];
FFTSample *rdft_vdata[MAX_PLANES];
int dc[MAX_PLANES];
char *weight_str[MAX_PLANES];
AVExpr *weight_expr[MAX_PLANES];
double *weight[MAX_PLANES];
int (*rdft_horizontal)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
int (*irdft_horizontal)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} FFTFILTContext;
static const char *const var_names[] = { "X", "Y", "W", "H", "N", "WS", "HS", NULL };
enum { VAR_X, VAR_Y, VAR_W, VAR_H, VAR_N, VAR_WS, VAR_HS, VAR_VARS_NB };
enum { Y = 0, U, V };
#define OFFSET(x) offsetof(FFTFILTContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption fftfilt_options[] = {
{ "dc_Y", "adjust gain in Y plane", OFFSET(dc[Y]), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1000, FLAGS },
{ "dc_U", "adjust gain in U plane", OFFSET(dc[U]), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1000, FLAGS },
{ "dc_V", "adjust gain in V plane", OFFSET(dc[V]), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1000, FLAGS },
{ "weight_Y", "set luminance expression in Y plane", OFFSET(weight_str[Y]), AV_OPT_TYPE_STRING, {.str = "1"}, 0, 0, FLAGS },
{ "weight_U", "set chrominance expression in U plane", OFFSET(weight_str[U]), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS },
{ "weight_V", "set chrominance expression in V plane", OFFSET(weight_str[V]), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS },
{ "eval", "specify when to evaluate expressions", OFFSET(eval_mode), AV_OPT_TYPE_INT, {.i64 = EVAL_MODE_INIT}, 0, EVAL_MODE_NB-1, FLAGS, "eval" },
{ "init", "eval expressions once during initialization", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_INIT}, .flags = FLAGS, .unit = "eval" },
{ "frame", "eval expressions per-frame", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_FRAME}, .flags = FLAGS, .unit = "eval" },
{NULL},
};
AVFILTER_DEFINE_CLASS(fftfilt);
static inline double lum(void *priv, double x, double y, int plane)
{
FFTFILTContext *s = priv;
return s->rdft_vdata[plane][(int)x * s->rdft_vlen[plane] + (int)y];
}
static double weight_Y(void *priv, double x, double y) { return lum(priv, x, y, Y); }
static double weight_U(void *priv, double x, double y) { return lum(priv, x, y, U); }
static double weight_V(void *priv, double x, double y) { return lum(priv, x, y, V); }
static void copy_rev(FFTSample *dest, int w, int w2)
{
int i;
for (i = w; i < w + (w2-w)/2; i++)
dest[i] = dest[2*w - i - 1];
for (; i < w2; i++)
dest[i] = dest[w2 - i];
}
static int rdft_horizontal8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
FFTFILTContext *s = ctx->priv;
AVFrame *in = arg;
for (int plane = 0; plane < s->nb_planes; plane++) {
const int w = s->planewidth[plane];
const int h = s->planeheight[plane];
const int slice_start = (h * jobnr) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
for (int i = slice_start; i < slice_end; i++) {
const uint8_t *src = in->data[plane] + i * in->linesize[plane];
float *hdata = s->rdft_hdata[plane] + i * s->rdft_hlen[plane];
for (int j = 0; j < w; j++)
hdata[j] = src[j];
copy_rev(s->rdft_hdata[plane] + i * s->rdft_hlen[plane], w, s->rdft_hlen[plane]);
}
for (int i = slice_start; i < slice_end; i++)
av_rdft_calc(s->hrdft[jobnr][plane], s->rdft_hdata[plane] + i * s->rdft_hlen[plane]);
}
return 0;
}
static int rdft_horizontal16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
FFTFILTContext *s = ctx->priv;
AVFrame *in = arg;
for (int plane = 0; plane < s->nb_planes; plane++) {
const int w = s->planewidth[plane];
const int h = s->planeheight[plane];
const int slice_start = (h * jobnr) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
for (int i = slice_start; i < slice_end; i++) {
const uint16_t *src = (const uint16_t *)(in->data[plane] + i * in->linesize[plane]);
float *hdata = s->rdft_hdata[plane] + i * s->rdft_hlen[plane];
for (int j = 0; j < w; j++)
hdata[j] = src[j];
copy_rev(s->rdft_hdata[plane] + i * s->rdft_hlen[plane], w, s->rdft_hlen[plane]);
}
for (int i = slice_start; i < slice_end; i++)
av_rdft_calc(s->hrdft[jobnr][plane], s->rdft_hdata[plane] + i * s->rdft_hlen[plane]);
}
return 0;
}
static int irdft_horizontal8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
FFTFILTContext *s = ctx->priv;
AVFrame *out = arg;
for (int plane = 0; plane < s->nb_planes; plane++) {
const int w = s->planewidth[plane];
const int h = s->planeheight[plane];
const int slice_start = (h * jobnr) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
for (int i = slice_start; i < slice_end; i++)
av_rdft_calc(s->ihrdft[jobnr][plane], s->rdft_hdata[plane] + i * s->rdft_hlen[plane]);
for (int i = slice_start; i < slice_end; i++) {
const float scale = 4.f / (s->rdft_hlen[plane] * s->rdft_vlen[plane]);
const float *src = s->rdft_hdata[plane] + i * s->rdft_hlen[plane];
uint8_t *dst = out->data[plane] + i * out->linesize[plane];
for (int j = 0; j < w; j++)
dst[j] = av_clip_uint8(lrintf(src[j] * scale));
}
}
return 0;
}
static int irdft_horizontal16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
FFTFILTContext *s = ctx->priv;
AVFrame *out = arg;
for (int plane = 0; plane < s->nb_planes; plane++) {
int max = (1 << s->depth) - 1;
const int w = s->planewidth[plane];
const int h = s->planeheight[plane];
const int slice_start = (h * jobnr) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
for (int i = slice_start; i < slice_end; i++)
av_rdft_calc(s->ihrdft[jobnr][plane], s->rdft_hdata[plane] + i * s->rdft_hlen[plane]);
for (int i = slice_start; i < slice_end; i++) {
const float scale = 4.f / (s->rdft_hlen[plane] * s->rdft_vlen[plane]);
const float *src = s->rdft_hdata[plane] + i * s->rdft_hlen[plane];
uint16_t *dst = (uint16_t *)(out->data[plane] + i * out->linesize[plane]);
for (int j = 0; j < w; j++)
dst[j] = av_clip(lrintf(src[j] * scale), 0, max);
}
}
return 0;
}
static av_cold int initialize(AVFilterContext *ctx)
{
FFTFILTContext *s = ctx->priv;
int ret = 0, plane;
if (!s->dc[U] && !s->dc[V]) {
s->dc[U] = s->dc[Y];
s->dc[V] = s->dc[Y];
} else {
if (!s->dc[U]) s->dc[U] = s->dc[V];
if (!s->dc[V]) s->dc[V] = s->dc[U];
}
if (!s->weight_str[U] && !s->weight_str[V]) {
s->weight_str[U] = av_strdup(s->weight_str[Y]);
s->weight_str[V] = av_strdup(s->weight_str[Y]);
} else {
if (!s->weight_str[U]) s->weight_str[U] = av_strdup(s->weight_str[V]);
if (!s->weight_str[V]) s->weight_str[V] = av_strdup(s->weight_str[U]);
}
for (plane = 0; plane < 3; plane++) {
static double (*p[])(void *, double, double) = { weight_Y, weight_U, weight_V };
const char *const func2_names[] = {"weight_Y", "weight_U", "weight_V", NULL };
double (*func2[])(void *, double, double) = { weight_Y, weight_U, weight_V, p[plane], NULL };
ret = av_expr_parse(&s->weight_expr[plane], s->weight_str[plane], var_names,
NULL, NULL, func2_names, func2, 0, ctx);
if (ret < 0)
break;
}
return ret;
}
static void do_eval(FFTFILTContext *s, AVFilterLink *inlink, int plane)
{
double values[VAR_VARS_NB];
int i, j;
values[VAR_N] = inlink->frame_count_out;
values[VAR_W] = s->planewidth[plane];
values[VAR_H] = s->planeheight[plane];
values[VAR_WS] = s->rdft_hlen[plane];
values[VAR_HS] = s->rdft_vlen[plane];
for (i = 0; i < s->rdft_hlen[plane]; i++) {
values[VAR_X] = i;
for (j = 0; j < s->rdft_vlen[plane]; j++) {
values[VAR_Y] = j;
s->weight[plane][i * s->rdft_vlen[plane] + j] =
av_expr_eval(s->weight_expr[plane], values, s);
}
}
}
static int config_props(AVFilterLink *inlink)
{
FFTFILTContext *s = inlink->dst->priv;
const AVPixFmtDescriptor *desc;
int i, plane;
desc = av_pix_fmt_desc_get(inlink->format);
s->depth = desc->comp[0].depth;
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->nb_threads = FFMIN(32, ff_filter_get_nb_threads(inlink->dst));
for (i = 0; i < desc->nb_components; i++) {
int w = s->planewidth[i];
int h = s->planeheight[i];
/* RDFT - Array initialization for Horizontal pass*/
s->rdft_hlen[i] = 1 << (32 - ff_clz(w));
s->rdft_hbits[i] = av_log2(s->rdft_hlen[i]);
if (!(s->rdft_hdata[i] = av_malloc_array(h, s->rdft_hlen[i] * sizeof(FFTSample))))
return AVERROR(ENOMEM);
for (int j = 0; j < s->nb_threads; j++) {
if (!(s->hrdft[j][i] = av_rdft_init(s->rdft_hbits[i], DFT_R2C)))
return AVERROR(ENOMEM);
if (!(s->ihrdft[j][i] = av_rdft_init(s->rdft_hbits[i], IDFT_C2R)))
return AVERROR(ENOMEM);
}
/* RDFT - Array initialization for Vertical pass*/
s->rdft_vlen[i] = 1 << (32 - ff_clz(h));
s->rdft_vbits[i] = av_log2(s->rdft_vlen[i]);
if (!(s->rdft_vdata[i] = av_malloc_array(s->rdft_hlen[i], s->rdft_vlen[i] * sizeof(FFTSample))))
return AVERROR(ENOMEM);
for (int j = 0; j < s->nb_threads; j++) {
if (!(s->vrdft[j][i] = av_rdft_init(s->rdft_vbits[i], DFT_R2C)))
return AVERROR(ENOMEM);
if (!(s->ivrdft[j][i] = av_rdft_init(s->rdft_vbits[i], IDFT_C2R)))
return AVERROR(ENOMEM);
}
}
/*Luminance value - Array initialization*/
for (plane = 0; plane < 3; plane++) {
if(!(s->weight[plane] = av_malloc_array(s->rdft_hlen[plane], s->rdft_vlen[plane] * sizeof(double))))
return AVERROR(ENOMEM);
if (s->eval_mode == EVAL_MODE_INIT)
do_eval(s, inlink, plane);
}
if (s->depth <= 8) {
s->rdft_horizontal = rdft_horizontal8;
s->irdft_horizontal = irdft_horizontal8;
} else if (s->depth > 8) {
s->rdft_horizontal = rdft_horizontal16;
s->irdft_horizontal = irdft_horizontal16;
} else {
return AVERROR_BUG;
}
return 0;
}
static int multiply_data(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
FFTFILTContext *s = ctx->priv;
for (int plane = 0; plane < s->nb_planes; plane++) {
const int height = s->rdft_hlen[plane];
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr+1)) / nb_jobs;
/*Change user defined parameters*/
for (int i = slice_start; i < slice_end; i++) {
const double *weight = s->weight[plane] + i * s->rdft_vlen[plane];
float *vdata = s->rdft_vdata[plane] + i * s->rdft_vlen[plane];
for (int j = 0; j < s->rdft_vlen[plane]; j++)
vdata[j] *= weight[j];
}
}
return 0;
}
static int copy_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
FFTFILTContext *s = ctx->priv;
for (int plane = 0; plane < s->nb_planes; plane++) {
const int hlen = s->rdft_hlen[plane];
const int vlen = s->rdft_vlen[plane];
const int slice_start = (hlen * jobnr) / nb_jobs;
const int slice_end = (hlen * (jobnr+1)) / nb_jobs;
const int h = s->planeheight[plane];
FFTSample *hdata = s->rdft_hdata[plane];
FFTSample *vdata = s->rdft_vdata[plane];
for (int i = slice_start; i < slice_end; i++) {
for (int j = 0; j < h; j++)
vdata[i * vlen + j] = hdata[j * hlen + i];
copy_rev(vdata + i * vlen, h, vlen);
}
}
return 0;
}
static int rdft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
FFTFILTContext *s = ctx->priv;
for (int plane = 0; plane < s->nb_planes; plane++) {
const int height = s->rdft_hlen[plane];
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr+1)) / nb_jobs;
for (int i = slice_start; i < slice_end; i++)
av_rdft_calc(s->vrdft[jobnr][plane], s->rdft_vdata[plane] + i * s->rdft_vlen[plane]);
}
return 0;
}
static int irdft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
FFTFILTContext *s = ctx->priv;
for (int plane = 0; plane < s->nb_planes; plane++) {
const int height = s->rdft_hlen[plane];
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr+1)) / nb_jobs;
for (int i = slice_start; i < slice_end; i++)
av_rdft_calc(s->ivrdft[jobnr][plane], s->rdft_vdata[plane] + i * s->rdft_vlen[plane]);
}
return 0;
}
static int copy_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
FFTFILTContext *s = ctx->priv;
for (int plane = 0; plane < s->nb_planes; plane++) {
const int hlen = s->rdft_hlen[plane];
const int vlen = s->rdft_vlen[plane];
const int slice_start = (hlen * jobnr) / nb_jobs;
const int slice_end = (hlen * (jobnr+1)) / nb_jobs;
const int h = s->planeheight[plane];
FFTSample *hdata = s->rdft_hdata[plane];
FFTSample *vdata = s->rdft_vdata[plane];
for (int i = slice_start; i < slice_end; i++)
for (int j = 0; j < h; j++)
hdata[j * hlen + i] = vdata[i * vlen + j];
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = inlink->dst->outputs[0];
FFTFILTContext *s = ctx->priv;
AVFrame *out;
out = ff_get_video_buffer(outlink, inlink->w, inlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
for (int plane = 0; plane < s->nb_planes; plane++) {
if (s->eval_mode == EVAL_MODE_FRAME)
do_eval(s, inlink, plane);
}
ff_filter_execute(ctx, s->rdft_horizontal, in, NULL,
FFMIN(s->planeheight[1], s->nb_threads));
ff_filter_execute(ctx, copy_vertical, NULL, NULL,
FFMIN(s->planeheight[1], s->nb_threads));
ff_filter_execute(ctx, rdft_vertical, NULL, NULL,
FFMIN(s->planeheight[1], s->nb_threads));
ff_filter_execute(ctx, multiply_data, NULL, NULL,
FFMIN(s->planeheight[1], s->nb_threads));
for (int plane = 0; plane < s->nb_planes; plane++)
s->rdft_vdata[plane][0] += s->rdft_hlen[plane] * s->rdft_vlen[plane] * s->dc[plane];
ff_filter_execute(ctx, irdft_vertical, NULL, NULL,
FFMIN(s->planeheight[1], s->nb_threads));
ff_filter_execute(ctx, copy_horizontal, NULL, NULL,
FFMIN(s->planeheight[1], s->nb_threads));
ff_filter_execute(ctx, s->irdft_horizontal, out, NULL,
FFMIN(s->planeheight[1], s->nb_threads));
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext *ctx)
{
FFTFILTContext *s = ctx->priv;
int i;
for (i = 0; i < MAX_PLANES; i++) {
av_free(s->rdft_hdata[i]);
av_free(s->rdft_vdata[i]);
av_expr_free(s->weight_expr[i]);
av_free(s->weight[i]);
for (int j = 0; j < s->nb_threads; j++) {
av_rdft_end(s->hrdft[j][i]);
av_rdft_end(s->ihrdft[j][i]);
av_rdft_end(s->vrdft[j][i]);
av_rdft_end(s->ivrdft[j][i]);
}
}
}
static const enum AVPixelFormat pixel_fmts_fftfilt[] = {
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV420P14,
AV_PIX_FMT_YUV420P16,
AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10,
AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV422P14,
AV_PIX_FMT_YUV422P16,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_NONE
};
static const AVFilterPad fftfilt_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_props,
.filter_frame = filter_frame,
},
};
static const AVFilterPad fftfilt_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
};
const AVFilter ff_vf_fftfilt = {
.name = "fftfilt",
.description = NULL_IF_CONFIG_SMALL("Apply arbitrary expressions to pixels in frequency domain."),
.priv_size = sizeof(FFTFILTContext),
.priv_class = &fftfilt_class,
FILTER_INPUTS(fftfilt_inputs),
FILTER_OUTPUTS(fftfilt_outputs),
FILTER_PIXFMTS_ARRAY(pixel_fmts_fftfilt),
.init = initialize,
.uninit = uninit,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};