1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavfilter/avf_showspectrum.c

1897 lines
75 KiB
C

/*
* Copyright (c) 2012-2013 Clément Bœsch
* Copyright (c) 2013 Rudolf Polzer <divverent@xonotic.org>
* Copyright (c) 2015 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* audio to spectrum (video) transmedia filter, based on ffplay rdft showmode
* (by Michael Niedermayer) and lavfi/avf_showwaves (by Stefano Sabatini).
*/
#include "config_components.h"
#include <float.h>
#include <math.h>
#include "libavutil/tx.h"
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/channel_layout.h"
#include "libavutil/cpu.h"
#include "libavutil/opt.h"
#include "libavutil/parseutils.h"
#include "libavutil/xga_font_data.h"
#include "audio.h"
#include "video.h"
#include "avfilter.h"
#include "filters.h"
#include "internal.h"
#include "window_func.h"
enum DisplayMode { COMBINED, SEPARATE, NB_MODES };
enum DataMode { D_MAGNITUDE, D_PHASE, D_UPHASE, NB_DMODES };
enum FrequencyScale { F_LINEAR, F_LOG, NB_FSCALES };
enum DisplayScale { LINEAR, SQRT, CBRT, LOG, FOURTHRT, FIFTHRT, NB_SCALES };
enum ColorMode { CHANNEL, INTENSITY, RAINBOW, MORELAND, NEBULAE, FIRE, FIERY, FRUIT, COOL, MAGMA, GREEN, VIRIDIS, PLASMA, CIVIDIS, TERRAIN, NB_CLMODES };
enum SlideMode { REPLACE, SCROLL, FULLFRAME, RSCROLL, LREPLACE, NB_SLIDES };
enum Orientation { VERTICAL, HORIZONTAL, NB_ORIENTATIONS };
#define DEFAULT_LENGTH 300
typedef struct ShowSpectrumContext {
const AVClass *class;
int w, h;
char *rate_str;
AVRational auto_frame_rate;
AVRational frame_rate;
AVFrame *outpicref;
AVFrame *in_frame;
int nb_display_channels;
int orientation;
int channel_width;
int channel_height;
int sliding; ///< 1 if sliding mode, 0 otherwise
int mode; ///< channel display mode
int color_mode; ///< display color scheme
int scale;
int fscale;
float saturation; ///< color saturation multiplier
float rotation; ///< color rotation
int start, stop; ///< zoom mode
int data;
int xpos; ///< x position (current column)
AVTXContext **fft; ///< Fast Fourier Transform context
AVTXContext **ifft; ///< Inverse Fast Fourier Transform context
av_tx_fn tx_fn;
av_tx_fn itx_fn;
int fft_size; ///< number of coeffs (FFT window size)
AVComplexFloat **fft_in; ///< input FFT coeffs
AVComplexFloat **fft_data; ///< bins holder for each (displayed) channels
AVComplexFloat **fft_scratch;///< scratch buffers
float *window_func_lut; ///< Window function LUT
float **magnitudes;
float **phases;
int win_func;
int win_size;
int buf_size;
double win_scale;
float overlap;
float gain;
int hop_size;
float *combine_buffer; ///< color combining buffer (4 * h items)
float **color_buffer; ///< color buffer (4 * h * ch items)
int64_t pts;
int64_t old_pts;
int64_t in_pts;
int old_len;
int single_pic;
int legend;
int start_x, start_y;
float drange, limit;
float dmin, dmax;
uint64_t samples;
int (*plot_channel)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
int eof;
float opacity_factor;
AVFrame **frames;
unsigned int nb_frames;
unsigned int frames_size;
} ShowSpectrumContext;
#define OFFSET(x) offsetof(ShowSpectrumContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption showspectrum_options[] = {
{ "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
{ "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
{ "slide", "set sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_SLIDES-1, FLAGS, "slide" },
{ "replace", "replace old columns with new", 0, AV_OPT_TYPE_CONST, {.i64=REPLACE}, 0, 0, FLAGS, "slide" },
{ "scroll", "scroll from right to left", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL}, 0, 0, FLAGS, "slide" },
{ "fullframe", "return full frames", 0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, FLAGS, "slide" },
{ "rscroll", "scroll from left to right", 0, AV_OPT_TYPE_CONST, {.i64=RSCROLL}, 0, 0, FLAGS, "slide" },
{ "lreplace", "replace from right to left", 0, AV_OPT_TYPE_CONST, {.i64=LREPLACE}, 0, 0, FLAGS, "slide" },
{ "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, COMBINED, NB_MODES-1, FLAGS, "mode" },
{ "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
{ "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
{ "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=CHANNEL}, CHANNEL, NB_CLMODES-1, FLAGS, "color" },
{ "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, "color" },
{ "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
{ "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, "color" },
{ "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, "color" },
{ "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, "color" },
{ "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, "color" },
{ "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, "color" },
{ "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, "color" },
{ "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, "color" },
{ "magma", "magma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MAGMA}, 0, 0, FLAGS, "color" },
{ "green", "green based coloring", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, FLAGS, "color" },
{ "viridis", "viridis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS}, 0, 0, FLAGS, "color" },
{ "plasma", "plasma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=PLASMA}, 0, 0, FLAGS, "color" },
{ "cividis", "cividis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS}, 0, 0, FLAGS, "color" },
{ "terrain", "terrain based coloring", 0, AV_OPT_TYPE_CONST, {.i64=TERRAIN}, 0, 0, FLAGS, "color" },
{ "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=SQRT}, LINEAR, NB_SCALES-1, FLAGS, "scale" },
{ "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
{ "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, "scale" },
{ "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, "scale" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" },
{ "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
{ "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" },
{ "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
{ "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, "fscale" },
{ "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
WIN_FUNC_OPTION("win_func", OFFSET(win_func), FLAGS, WFUNC_HANNING),
{ "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
{ "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, "orientation" },
{ "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
{ "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl = 0}, 0, 1, FLAGS },
{ "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
{ "data", "set data mode", OFFSET(data), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_DMODES-1, FLAGS, "data" },
{ "magnitude", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_MAGNITUDE}, 0, 0, FLAGS, "data" },
{ "phase", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_PHASE}, 0, 0, FLAGS, "data" },
{ "uphase", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_UPHASE}, 0, 0, FLAGS, "data" },
{ "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
{ "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
{ "stop", "stop frequency", OFFSET(stop), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
{ "fps", "set video rate", OFFSET(rate_str), AV_OPT_TYPE_STRING, {.str = "auto"}, 0, 0, FLAGS },
{ "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
{ "drange", "set dynamic range in dBFS", OFFSET(drange), AV_OPT_TYPE_FLOAT, {.dbl = 120}, 10, 200, FLAGS },
{ "limit", "set upper limit in dBFS", OFFSET(limit), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -100, 100, FLAGS },
{ "opacity", "set opacity strength", OFFSET(opacity_factor), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 10, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(showspectrum);
static const struct ColorTable {
float a, y, u, v;
} color_table[][8] = {
[INTENSITY] = {
{ 0, 0, 0, 0 },
{ 0.13, .03587126228984074, .1573300977624594, -.02548747583751842 },
{ 0.30, .18572281794568020, .1772436246393981, .17475554840414750 },
{ 0.60, .28184980583656130, -.1593064119945782, .47132074554608920 },
{ 0.73, .65830621175547810, -.3716070802232764, .24352759331252930 },
{ 0.78, .76318535758242900, -.4307467689263783, .16866496622310430 },
{ 0.91, .95336363636363640, -.2045454545454546, .03313636363636363 },
{ 1, 1, 0, 0 }},
[RAINBOW] = {
{ 0, 0, 0, 0 },
{ 0.13, 44/256., (189-128)/256., (138-128)/256. },
{ 0.25, 29/256., (186-128)/256., (119-128)/256. },
{ 0.38, 119/256., (194-128)/256., (53-128)/256. },
{ 0.60, 111/256., (73-128)/256., (59-128)/256. },
{ 0.73, 205/256., (19-128)/256., (149-128)/256. },
{ 0.86, 135/256., (83-128)/256., (200-128)/256. },
{ 1, 73/256., (95-128)/256., (225-128)/256. }},
[MORELAND] = {
{ 0, 44/256., (181-128)/256., (112-128)/256. },
{ 0.13, 126/256., (177-128)/256., (106-128)/256. },
{ 0.25, 164/256., (163-128)/256., (109-128)/256. },
{ 0.38, 200/256., (140-128)/256., (120-128)/256. },
{ 0.60, 201/256., (117-128)/256., (141-128)/256. },
{ 0.73, 177/256., (103-128)/256., (165-128)/256. },
{ 0.86, 136/256., (100-128)/256., (183-128)/256. },
{ 1, 68/256., (117-128)/256., (203-128)/256. }},
[NEBULAE] = {
{ 0, 10/256., (134-128)/256., (132-128)/256. },
{ 0.23, 21/256., (137-128)/256., (130-128)/256. },
{ 0.45, 35/256., (134-128)/256., (134-128)/256. },
{ 0.57, 51/256., (130-128)/256., (139-128)/256. },
{ 0.67, 104/256., (116-128)/256., (162-128)/256. },
{ 0.77, 120/256., (105-128)/256., (188-128)/256. },
{ 0.87, 140/256., (105-128)/256., (188-128)/256. },
{ 1, 1, 0, 0 }},
[FIRE] = {
{ 0, 0, 0, 0 },
{ 0.23, 44/256., (132-128)/256., (127-128)/256. },
{ 0.45, 62/256., (116-128)/256., (140-128)/256. },
{ 0.57, 75/256., (105-128)/256., (152-128)/256. },
{ 0.67, 95/256., (91-128)/256., (166-128)/256. },
{ 0.77, 126/256., (74-128)/256., (172-128)/256. },
{ 0.87, 164/256., (73-128)/256., (162-128)/256. },
{ 1, 1, 0, 0 }},
[FIERY] = {
{ 0, 0, 0, 0 },
{ 0.23, 36/256., (116-128)/256., (163-128)/256. },
{ 0.45, 52/256., (102-128)/256., (200-128)/256. },
{ 0.57, 116/256., (84-128)/256., (196-128)/256. },
{ 0.67, 157/256., (67-128)/256., (181-128)/256. },
{ 0.77, 193/256., (40-128)/256., (155-128)/256. },
{ 0.87, 221/256., (101-128)/256., (134-128)/256. },
{ 1, 1, 0, 0 }},
[FRUIT] = {
{ 0, 0, 0, 0 },
{ 0.20, 29/256., (136-128)/256., (119-128)/256. },
{ 0.30, 60/256., (119-128)/256., (90-128)/256. },
{ 0.40, 85/256., (91-128)/256., (85-128)/256. },
{ 0.50, 116/256., (70-128)/256., (105-128)/256. },
{ 0.60, 151/256., (50-128)/256., (146-128)/256. },
{ 0.70, 191/256., (63-128)/256., (178-128)/256. },
{ 1, 98/256., (80-128)/256., (221-128)/256. }},
[COOL] = {
{ 0, 0, 0, 0 },
{ .15, 0, .5, -.5 },
{ 1, 1, -.5, .5 }},
[MAGMA] = {
{ 0, 0, 0, 0 },
{ 0.10, 23/256., (175-128)/256., (120-128)/256. },
{ 0.23, 43/256., (158-128)/256., (144-128)/256. },
{ 0.35, 85/256., (138-128)/256., (179-128)/256. },
{ 0.48, 96/256., (128-128)/256., (189-128)/256. },
{ 0.64, 128/256., (103-128)/256., (214-128)/256. },
{ 0.92, 205/256., (80-128)/256., (152-128)/256. },
{ 1, 1, 0, 0 }},
[GREEN] = {
{ 0, 0, 0, 0 },
{ .75, .5, 0, -.5 },
{ 1, 1, 0, 0 }},
[VIRIDIS] = {
{ 0, 0, 0, 0 },
{ 0.10, 0x39/255., (0x9D -128)/255., (0x8F -128)/255. },
{ 0.23, 0x5C/255., (0x9A -128)/255., (0x68 -128)/255. },
{ 0.35, 0x69/255., (0x93 -128)/255., (0x57 -128)/255. },
{ 0.48, 0x76/255., (0x88 -128)/255., (0x4B -128)/255. },
{ 0.64, 0x8A/255., (0x72 -128)/255., (0x4F -128)/255. },
{ 0.80, 0xA3/255., (0x50 -128)/255., (0x66 -128)/255. },
{ 1, 0xCC/255., (0x2F -128)/255., (0x87 -128)/255. }},
[PLASMA] = {
{ 0, 0, 0, 0 },
{ 0.10, 0x27/255., (0xC2 -128)/255., (0x82 -128)/255. },
{ 0.58, 0x5B/255., (0x9A -128)/255., (0xAE -128)/255. },
{ 0.70, 0x89/255., (0x44 -128)/255., (0xAB -128)/255. },
{ 0.80, 0xB4/255., (0x2B -128)/255., (0x9E -128)/255. },
{ 0.91, 0xD2/255., (0x38 -128)/255., (0x92 -128)/255. },
{ 1, 1, 0, 0. }},
[CIVIDIS] = {
{ 0, 0, 0, 0 },
{ 0.20, 0x28/255., (0x98 -128)/255., (0x6F -128)/255. },
{ 0.50, 0x48/255., (0x95 -128)/255., (0x74 -128)/255. },
{ 0.63, 0x69/255., (0x84 -128)/255., (0x7F -128)/255. },
{ 0.76, 0x89/255., (0x75 -128)/255., (0x84 -128)/255. },
{ 0.90, 0xCE/255., (0x35 -128)/255., (0x95 -128)/255. },
{ 1, 1, 0, 0. }},
[TERRAIN] = {
{ 0, 0, 0, 0 },
{ 0.15, 0, .5, 0 },
{ 0.60, 1, -.5, -.5 },
{ 0.85, 1, -.5, .5 },
{ 1, 1, 0, 0 }},
};
static av_cold void uninit(AVFilterContext *ctx)
{
ShowSpectrumContext *s = ctx->priv;
int i;
av_freep(&s->combine_buffer);
if (s->fft) {
for (i = 0; i < s->nb_display_channels; i++)
av_tx_uninit(&s->fft[i]);
}
av_freep(&s->fft);
if (s->ifft) {
for (i = 0; i < s->nb_display_channels; i++)
av_tx_uninit(&s->ifft[i]);
}
av_freep(&s->ifft);
if (s->fft_data) {
for (i = 0; i < s->nb_display_channels; i++)
av_freep(&s->fft_data[i]);
}
av_freep(&s->fft_data);
if (s->fft_in) {
for (i = 0; i < s->nb_display_channels; i++)
av_freep(&s->fft_in[i]);
}
av_freep(&s->fft_in);
if (s->fft_scratch) {
for (i = 0; i < s->nb_display_channels; i++)
av_freep(&s->fft_scratch[i]);
}
av_freep(&s->fft_scratch);
if (s->color_buffer) {
for (i = 0; i < s->nb_display_channels; i++)
av_freep(&s->color_buffer[i]);
}
av_freep(&s->color_buffer);
av_freep(&s->window_func_lut);
if (s->magnitudes) {
for (i = 0; i < s->nb_display_channels; i++)
av_freep(&s->magnitudes[i]);
}
av_freep(&s->magnitudes);
av_frame_free(&s->outpicref);
av_frame_free(&s->in_frame);
if (s->phases) {
for (i = 0; i < s->nb_display_channels; i++)
av_freep(&s->phases[i]);
}
av_freep(&s->phases);
while (s->nb_frames > 0) {
av_frame_free(&s->frames[s->nb_frames - 1]);
s->nb_frames--;
}
av_freep(&s->frames);
}
static int query_formats(AVFilterContext *ctx)
{
AVFilterFormats *formats = NULL;
AVFilterChannelLayouts *layouts = NULL;
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE };
static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE };
int ret;
/* set input audio formats */
formats = ff_make_format_list(sample_fmts);
if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0)
return ret;
layouts = ff_all_channel_counts();
if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0)
return ret;
formats = ff_all_samplerates();
if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0)
return ret;
/* set output video format */
formats = ff_make_format_list(pix_fmts);
if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
return ret;
return 0;
}
static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ShowSpectrumContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
const float *window_func_lut = s->window_func_lut;
AVFrame *fin = arg;
const int ch = jobnr;
int n;
/* fill FFT input with the number of samples available */
const float *p = (float *)fin->extended_data[ch];
float *in_frame = (float *)s->in_frame->extended_data[ch];
memmove(in_frame, in_frame + s->hop_size, (s->fft_size - s->hop_size) * sizeof(float));
memcpy(in_frame + s->fft_size - s->hop_size, p, fin->nb_samples * sizeof(float));
for (int i = fin->nb_samples; i < s->hop_size; i++)
in_frame[i + s->fft_size - s->hop_size] = 0.f;
if (s->stop) {
float theta, phi, psi, a, b, S, c;
AVComplexFloat *f = s->fft_in[ch];
AVComplexFloat *g = s->fft_data[ch];
AVComplexFloat *h = s->fft_scratch[ch];
int L = s->buf_size;
int N = s->win_size;
int M = s->win_size / 2;
for (n = 0; n < s->win_size; n++) {
s->fft_data[ch][n].re = in_frame[n] * window_func_lut[n];
s->fft_data[ch][n].im = 0;
}
phi = 2.f * M_PI * (s->stop - s->start) / (float)inlink->sample_rate / (M - 1);
theta = 2.f * M_PI * s->start / (float)inlink->sample_rate;
for (int n = 0; n < M; n++) {
h[n].re = cosf(n * n / 2.f * phi);
h[n].im = sinf(n * n / 2.f * phi);
}
for (int n = M; n < L; n++) {
h[n].re = 0.f;
h[n].im = 0.f;
}
for (int n = L - N; n < L; n++) {
h[n].re = cosf((L - n) * (L - n) / 2.f * phi);
h[n].im = sinf((L - n) * (L - n) / 2.f * phi);
}
for (int n = N; n < L; n++) {
g[n].re = 0.f;
g[n].im = 0.f;
}
for (int n = 0; n < N; n++) {
psi = n * theta + n * n / 2.f * phi;
c = cosf(psi);
S = -sinf(psi);
a = c * g[n].re - S * g[n].im;
b = S * g[n].re + c * g[n].im;
g[n].re = a;
g[n].im = b;
}
memcpy(f, h, s->buf_size * sizeof(*f));
s->tx_fn(s->fft[ch], h, f, sizeof(AVComplexFloat));
memcpy(f, g, s->buf_size * sizeof(*f));
s->tx_fn(s->fft[ch], g, f, sizeof(AVComplexFloat));
for (int n = 0; n < L; n++) {
c = g[n].re;
S = g[n].im;
a = c * h[n].re - S * h[n].im;
b = S * h[n].re + c * h[n].im;
g[n].re = a / L;
g[n].im = b / L;
}
memcpy(f, g, s->buf_size * sizeof(*f));
s->itx_fn(s->ifft[ch], g, f, sizeof(AVComplexFloat));
for (int k = 0; k < M; k++) {
psi = k * k / 2.f * phi;
c = cosf(psi);
S = -sinf(psi);
a = c * g[k].re - S * g[k].im;
b = S * g[k].re + c * g[k].im;
s->fft_data[ch][k].re = a;
s->fft_data[ch][k].im = b;
}
} else {
for (n = 0; n < s->win_size; n++) {
s->fft_in[ch][n].re = in_frame[n] * window_func_lut[n];
s->fft_in[ch][n].im = 0;
}
/* run FFT on each samples set */
s->tx_fn(s->fft[ch], s->fft_data[ch], s->fft_in[ch], sizeof(AVComplexFloat));
}
return 0;
}
static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o)
{
const uint8_t *font;
int font_height;
font = avpriv_cga_font, font_height = 8;
for (int i = 0; txt[i]; i++) {
int char_y, mask;
if (o) {
for (char_y = font_height - 1; char_y >= 0; char_y--) {
uint8_t *p = pic->data[0] + (y + i * 10) * pic->linesize[0] + x;
for (mask = 0x80; mask; mask >>= 1) {
if (font[txt[i] * font_height + font_height - 1 - char_y] & mask)
p[char_y] = ~p[char_y];
p += pic->linesize[0];
}
}
} else {
uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8);
for (char_y = 0; char_y < font_height; char_y++) {
for (mask = 0x80; mask; mask >>= 1) {
if (font[txt[i] * font_height + char_y] & mask)
*p = ~(*p);
p++;
}
p += pic->linesize[0] - 8;
}
}
}
for (int i = 0; txt[i] && pic->data[3]; i++) {
int char_y, mask;
if (o) {
for (char_y = font_height - 1; char_y >= 0; char_y--) {
uint8_t *p = pic->data[3] + (y + i * 10) * pic->linesize[3] + x;
for (mask = 0x80; mask; mask >>= 1) {
for (int k = 0; k < 8; k++)
p[k] = 255;
p += pic->linesize[3];
}
}
} else {
uint8_t *p = pic->data[3] + y*pic->linesize[3] + (x + i*8);
for (char_y = 0; char_y < font_height; char_y++) {
for (mask = 0x80; mask; mask >>= 1)
*p++ = 255;
p += pic->linesize[3] - 8;
}
}
}
}
static void color_range(ShowSpectrumContext *s, int ch,
float *yf, float *uf, float *vf)
{
switch (s->mode) {
case COMBINED:
// reduce range by channel count
*yf = 256.0f / s->nb_display_channels;
switch (s->color_mode) {
case RAINBOW:
case MORELAND:
case NEBULAE:
case FIRE:
case FIERY:
case FRUIT:
case COOL:
case GREEN:
case VIRIDIS:
case PLASMA:
case CIVIDIS:
case TERRAIN:
case MAGMA:
case INTENSITY:
*uf = *yf;
*vf = *yf;
break;
case CHANNEL:
/* adjust saturation for mixed UV coloring */
/* this factor is correct for infinite channels, an approximation otherwise */
*uf = *yf * M_PI;
*vf = *yf * M_PI;
break;
default:
av_assert0(0);
}
break;
case SEPARATE:
// full range
*yf = 256.0f;
*uf = 256.0f;
*vf = 256.0f;
break;
default:
av_assert0(0);
}
if (s->color_mode == CHANNEL) {
if (s->nb_display_channels > 1) {
*uf *= 0.5f * sinf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
*vf *= 0.5f * cosf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
} else {
*uf *= 0.5f * sinf(M_PI * s->rotation);
*vf *= 0.5f * cosf(M_PI * s->rotation + M_PI_2);
}
} else {
*uf += *uf * sinf(M_PI * s->rotation);
*vf += *vf * cosf(M_PI * s->rotation + M_PI_2);
}
*uf *= s->saturation;
*vf *= s->saturation;
}
static void pick_color(ShowSpectrumContext *s,
float yf, float uf, float vf,
float a, float *out)
{
const float af = s->opacity_factor * 255.f;
if (s->color_mode > CHANNEL) {
const int cm = s->color_mode;
float y, u, v;
int i;
for (i = 1; i < FF_ARRAY_ELEMS(color_table[cm]) - 1; i++)
if (color_table[cm][i].a >= a)
break;
// i now is the first item >= the color
// now we know to interpolate between item i - 1 and i
if (a <= color_table[cm][i - 1].a) {
y = color_table[cm][i - 1].y;
u = color_table[cm][i - 1].u;
v = color_table[cm][i - 1].v;
} else if (a >= color_table[cm][i].a) {
y = color_table[cm][i].y;
u = color_table[cm][i].u;
v = color_table[cm][i].v;
} else {
float start = color_table[cm][i - 1].a;
float end = color_table[cm][i].a;
float lerpfrac = (a - start) / (end - start);
y = color_table[cm][i - 1].y * (1.0f - lerpfrac)
+ color_table[cm][i].y * lerpfrac;
u = color_table[cm][i - 1].u * (1.0f - lerpfrac)
+ color_table[cm][i].u * lerpfrac;
v = color_table[cm][i - 1].v * (1.0f - lerpfrac)
+ color_table[cm][i].v * lerpfrac;
}
out[0] = y * yf;
out[1] = u * uf;
out[2] = v * vf;
out[3] = a * af;
} else {
out[0] = a * yf;
out[1] = a * uf;
out[2] = a * vf;
out[3] = a * af;
}
}
static char *get_time(AVFilterContext *ctx, float seconds, int x)
{
char *units;
if (x == 0)
units = av_asprintf("0");
else if (log10(seconds) > 6)
units = av_asprintf("%.2fh", seconds / (60 * 60));
else if (log10(seconds) > 3)
units = av_asprintf("%.2fm", seconds / 60);
else
units = av_asprintf("%.2fs", seconds);
return units;
}
static float log_scale(const float bin,
const float bmin, const float bmax,
const float min, const float max)
{
return exp2f(((bin - bmin) / (bmax - bmin)) * (log2f(max) - log2f(min)) + log2f(min));
}
static float get_hz(const float bin, const float bmax,
const float min, const float max,
int fscale)
{
switch (fscale) {
case F_LINEAR:
return min + (bin / bmax) * (max - min);
case F_LOG:
return min + log_scale(bin, 0, bmax, 20.f, max - min);
default:
return 0.f;
}
}
static float inv_log_scale(float bin,
float bmin, float bmax,
float min, float max)
{
return (min * exp2f((bin * (log2f(max) - log2f(20.f))) / bmax) + min) * bmax / max;
}
static float bin_pos(const int bin, const int num_bins, const float min, const float max)
{
return inv_log_scale(bin, 0.f, num_bins, 20.f, max - min);
}
static float get_scale(AVFilterContext *ctx, int scale, float a)
{
ShowSpectrumContext *s = ctx->priv;
const float dmin = s->dmin;
const float dmax = s->dmax;
a = av_clipf(a, dmin, dmax);
if (scale != LOG)
a = (a - dmin) / (dmax - dmin);
switch (scale) {
case LINEAR:
break;
case SQRT:
a = sqrtf(a);
break;
case CBRT:
a = cbrtf(a);
break;
case FOURTHRT:
a = sqrtf(sqrtf(a));
break;
case FIFTHRT:
a = powf(a, 0.2f);
break;
case LOG:
a = (s->drange - s->limit + log10f(a) * 20.f) / s->drange;
break;
default:
av_assert0(0);
}
return a;
}
static float get_iscale(AVFilterContext *ctx, int scale, float a)
{
ShowSpectrumContext *s = ctx->priv;
const float dmin = s->dmin;
const float dmax = s->dmax;
switch (scale) {
case LINEAR:
break;
case SQRT:
a = a * a;
break;
case CBRT:
a = a * a * a;
break;
case FOURTHRT:
a = a * a * a * a;
break;
case FIFTHRT:
a = a * a * a * a * a;
break;
case LOG:
a = expf(M_LN10 * (a * s->drange - s->drange + s->limit) / 20.f);
break;
default:
av_assert0(0);
}
if (scale != LOG)
a = a * (dmax - dmin) + dmin;
return a;
}
static int draw_legend(AVFilterContext *ctx, uint64_t samples)
{
ShowSpectrumContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
int ch, y, x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
int multi = (s->mode == SEPARATE && s->color_mode == CHANNEL);
float spp = samples / (float)sz;
char *text;
uint8_t *dst;
char chlayout_str[128];
av_channel_layout_describe(&inlink->ch_layout, chlayout_str, sizeof(chlayout_str));
text = av_asprintf("%d Hz | %s", inlink->sample_rate, chlayout_str);
if (!text)
return AVERROR(ENOMEM);
drawtext(s->outpicref, 2, outlink->h - 10, "CREATED BY LIBAVFILTER", 0);
drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, outlink->h - 10, text, 0);
av_freep(&text);
if (s->stop) {
text = av_asprintf("Zoom: %d Hz - %d Hz", s->start, s->stop);
if (!text)
return AVERROR(ENOMEM);
drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, 3, text, 0);
av_freep(&text);
}
dst = s->outpicref->data[0] + (s->start_y - 1) * s->outpicref->linesize[0] + s->start_x - 1;
for (x = 0; x < s->w + 1; x++)
dst[x] = 200;
dst = s->outpicref->data[0] + (s->start_y + s->h) * s->outpicref->linesize[0] + s->start_x - 1;
for (x = 0; x < s->w + 1; x++)
dst[x] = 200;
for (y = 0; y < s->h + 2; y++) {
dst = s->outpicref->data[0] + (y + s->start_y - 1) * s->outpicref->linesize[0];
dst[s->start_x - 1] = 200;
dst[s->start_x + s->w] = 200;
}
if (s->orientation == VERTICAL) {
int h = s->mode == SEPARATE ? s->h / s->nb_display_channels : s->h;
int hh = s->mode == SEPARATE ? -(s->h % s->nb_display_channels) + 1 : 1;
for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
for (y = 0; y < h; y += 20) {
dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
dst[s->start_x - 2] = 200;
dst[s->start_x + s->w + 1] = 200;
}
for (y = 0; y < h; y += 40) {
dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
dst[s->start_x - 3] = 200;
dst[s->start_x + s->w + 2] = 200;
}
dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x;
for (x = 0; x < s->w; x+=40)
dst[x] = 200;
dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x;
for (x = 0; x < s->w; x+=80)
dst[x] = 200;
dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x;
for (x = 0; x < s->w; x+=40) {
dst[x] = 200;
}
dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x;
for (x = 0; x < s->w; x+=80) {
dst[x] = 200;
}
for (y = 0; y < h; y += 40) {
float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
float hertz = get_hz(y, h, s->start, s->start + range, s->fscale);
char *units;
if (hertz == 0)
units = av_asprintf("DC");
else
units = av_asprintf("%.2f", hertz);
if (!units)
return AVERROR(ENOMEM);
drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, h * (ch + 1) + s->start_y - y - 4 - hh, units, 0);
av_free(units);
}
}
for (x = 0; x < s->w && s->single_pic; x+=80) {
float seconds = x * spp / inlink->sample_rate;
char *units = get_time(ctx, seconds, x);
if (!units)
return AVERROR(ENOMEM);
drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->h + s->start_y + 6, units, 0);
drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->start_y - 12, units, 0);
av_free(units);
}
drawtext(s->outpicref, outlink->w / 2 - 4 * 4, outlink->h - s->start_y / 2, "TIME", 0);
drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 14 * 4, "FREQUENCY (Hz)", 1);
} else {
int w = s->mode == SEPARATE ? s->w / s->nb_display_channels : s->w;
for (y = 0; y < s->h; y += 20) {
dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
dst[s->start_x - 2] = 200;
dst[s->start_x + s->w + 1] = 200;
}
for (y = 0; y < s->h; y += 40) {
dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
dst[s->start_x - 3] = 200;
dst[s->start_x + s->w + 2] = 200;
}
for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
for (x = 0; x < w; x+=40)
dst[x] = 200;
dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x + w * ch;
for (x = 0; x < w; x+=80)
dst[x] = 200;
dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x + w * ch;
for (x = 0; x < w; x+=40) {
dst[x] = 200;
}
dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
for (x = 0; x < w; x+=80) {
dst[x] = 200;
}
for (x = 0; x < w - 79; x += 80) {
float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
float hertz = get_hz(x, w, s->start, s->start + range, s->fscale);
char *units;
if (hertz == 0)
units = av_asprintf("DC");
else
units = av_asprintf("%.2f", hertz);
if (!units)
return AVERROR(ENOMEM);
drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->start_y - 12, units, 0);
drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->h + s->start_y + 6, units, 0);
av_free(units);
}
}
for (y = 0; y < s->h && s->single_pic; y+=40) {
float seconds = y * spp / inlink->sample_rate;
char *units = get_time(ctx, seconds, x);
if (!units)
return AVERROR(ENOMEM);
drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, s->start_y + y - 4, units, 0);
av_free(units);
}
drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 4 * 4, "TIME", 1);
drawtext(s->outpicref, outlink->w / 2 - 14 * 4, outlink->h - s->start_y / 2, "FREQUENCY (Hz)", 0);
}
for (ch = 0; ch < (multi ? s->nb_display_channels : 1); ch++) {
int h = multi ? s->h / s->nb_display_channels : s->h;
for (y = 0; y < h; y++) {
float out[4] = { 0., 127.5, 127.5, 0.f};
int chn;
for (chn = 0; chn < (s->mode == SEPARATE ? 1 : s->nb_display_channels); chn++) {
float yf, uf, vf;
int channel = (multi) ? s->nb_display_channels - ch - 1 : chn;
float lout[4];
color_range(s, channel, &yf, &uf, &vf);
pick_color(s, yf, uf, vf, y / (float)h, lout);
out[0] += lout[0];
out[1] += lout[1];
out[2] += lout[2];
out[3] += lout[3];
}
memset(s->outpicref->data[0]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[0] + s->w + s->start_x + 20, av_clip_uint8(out[0]), 10);
memset(s->outpicref->data[1]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[1] + s->w + s->start_x + 20, av_clip_uint8(out[1]), 10);
memset(s->outpicref->data[2]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[2] + s->w + s->start_x + 20, av_clip_uint8(out[2]), 10);
if (s->outpicref->data[3])
memset(s->outpicref->data[3]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[3] + s->w + s->start_x + 20, av_clip_uint8(out[3]), 10);
}
for (y = 0; ch == 0 && y < h + 5; y += 25) {
static const char *log_fmt = "%.0f";
static const char *lin_fmt = "%.3f";
const float a = av_clipf(1.f - y / (float)(h - 1), 0.f, 1.f);
const float value = s->scale == LOG ? log10f(get_iscale(ctx, s->scale, a)) * 20.f : get_iscale(ctx, s->scale, a);
char *text;
text = av_asprintf(s->scale == LOG ? log_fmt : lin_fmt, value);
if (!text)
continue;
drawtext(s->outpicref, s->w + s->start_x + 35, s->start_y + y - 3, text, 0);
av_free(text);
}
}
if (s->scale == LOG)
drawtext(s->outpicref, s->w + s->start_x + 22, s->start_y + s->h + 20, "dBFS", 0);
return 0;
}
static float get_value(AVFilterContext *ctx, int ch, int y)
{
ShowSpectrumContext *s = ctx->priv;
float *magnitudes = s->magnitudes[ch];
float *phases = s->phases[ch];
float a;
switch (s->data) {
case D_MAGNITUDE:
/* get magnitude */
a = magnitudes[y];
break;
case D_UPHASE:
case D_PHASE:
/* get phase */
a = phases[y];
break;
default:
av_assert0(0);
}
return av_clipf(get_scale(ctx, s->scale, a), 0.f, 1.f);
}
static int plot_channel_lin(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ShowSpectrumContext *s = ctx->priv;
const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
const int ch = jobnr;
float yf, uf, vf;
int y;
/* decide color range */
color_range(s, ch, &yf, &uf, &vf);
/* draw the channel */
for (y = 0; y < h; y++) {
int row = (s->mode == COMBINED) ? y : ch * h + y;
float *out = &s->color_buffer[ch][4 * row];
float a = get_value(ctx, ch, y);
pick_color(s, yf, uf, vf, a, out);
}
return 0;
}
static int plot_channel_log(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ShowSpectrumContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
const int ch = jobnr;
float yf, uf, vf;
/* decide color range */
color_range(s, ch, &yf, &uf, &vf);
/* draw the channel */
for (int yy = 0; yy < h; yy++) {
float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
float pos = bin_pos(yy, h, s->start, s->start + range);
float delta = pos - floorf(pos);
float a0, a1;
a0 = get_value(ctx, ch, av_clip(pos, 0, h-1));
a1 = get_value(ctx, ch, av_clip(pos+1, 0, h-1));
{
int row = (s->mode == COMBINED) ? yy : ch * h + yy;
float *out = &s->color_buffer[ch][4 * row];
pick_color(s, yf, uf, vf, delta * a1 + (1.f - delta) * a0, out);
}
}
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = ctx->inputs[0];
ShowSpectrumContext *s = ctx->priv;
int i, fft_size, h, w, ret;
float overlap;
s->old_pts = AV_NOPTS_VALUE;
s->dmax = expf(s->limit * M_LN10 / 20.f);
s->dmin = expf((s->limit - s->drange) * M_LN10 / 20.f);
switch (s->fscale) {
case F_LINEAR: s->plot_channel = plot_channel_lin; break;
case F_LOG: s->plot_channel = plot_channel_log; break;
default: return AVERROR_BUG;
}
s->stop = FFMIN(s->stop, inlink->sample_rate / 2);
if ((s->stop || s->start) && s->stop <= s->start) {
av_log(ctx, AV_LOG_ERROR, "Stop frequency should be greater than start.\n");
return AVERROR(EINVAL);
}
if (!strcmp(ctx->filter->name, "showspectrumpic"))
s->single_pic = 1;
outlink->w = s->w;
outlink->h = s->h;
outlink->sample_aspect_ratio = (AVRational){1,1};
if (s->legend) {
s->start_x = (log10(inlink->sample_rate) + 1) * 25;
s->start_y = 64;
outlink->w += s->start_x * 2;
outlink->h += s->start_y * 2;
}
h = (s->mode == COMBINED || s->orientation == HORIZONTAL) ? s->h : s->h / inlink->ch_layout.nb_channels;
w = (s->mode == COMBINED || s->orientation == VERTICAL) ? s->w : s->w / inlink->ch_layout.nb_channels;
s->channel_height = h;
s->channel_width = w;
if (s->orientation == VERTICAL) {
/* FFT window size (precision) according to the requested output frame height */
fft_size = h * 2;
} else {
/* FFT window size (precision) according to the requested output frame width */
fft_size = w * 2;
}
s->win_size = fft_size;
s->buf_size = FFALIGN(s->win_size << (!!s->stop), av_cpu_max_align());
if (!s->fft) {
s->fft = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft));
if (!s->fft)
return AVERROR(ENOMEM);
}
if (s->stop) {
if (!s->ifft) {
s->ifft = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->ifft));
if (!s->ifft)
return AVERROR(ENOMEM);
}
}
/* (re-)configuration if the video output changed (or first init) */
if (fft_size != s->fft_size) {
AVFrame *outpicref;
s->fft_size = fft_size;
/* FFT buffers: x2 for each (display) channel buffer.
* Note: we use free and malloc instead of a realloc-like function to
* make sure the buffer is aligned in memory for the FFT functions. */
for (i = 0; i < s->nb_display_channels; i++) {
if (s->stop) {
av_tx_uninit(&s->ifft[i]);
av_freep(&s->fft_scratch[i]);
}
av_tx_uninit(&s->fft[i]);
av_freep(&s->fft_in[i]);
av_freep(&s->fft_data[i]);
}
av_freep(&s->fft_data);
s->nb_display_channels = inlink->ch_layout.nb_channels;
for (i = 0; i < s->nb_display_channels; i++) {
float scale = 1.f;
ret = av_tx_init(&s->fft[i], &s->tx_fn, AV_TX_FLOAT_FFT, 0, fft_size << (!!s->stop), &scale, 0);
if (s->stop) {
ret = av_tx_init(&s->ifft[i], &s->itx_fn, AV_TX_FLOAT_FFT, 1, fft_size << (!!s->stop), &scale, 0);
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR, "Unable to create Inverse FFT context. "
"The window size might be too high.\n");
return ret;
}
}
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
"The window size might be too high.\n");
return ret;
}
}
s->magnitudes = av_calloc(s->nb_display_channels, sizeof(*s->magnitudes));
if (!s->magnitudes)
return AVERROR(ENOMEM);
for (i = 0; i < s->nb_display_channels; i++) {
s->magnitudes[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->magnitudes));
if (!s->magnitudes[i])
return AVERROR(ENOMEM);
}
s->phases = av_calloc(s->nb_display_channels, sizeof(*s->phases));
if (!s->phases)
return AVERROR(ENOMEM);
for (i = 0; i < s->nb_display_channels; i++) {
s->phases[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->phases));
if (!s->phases[i])
return AVERROR(ENOMEM);
}
av_freep(&s->color_buffer);
s->color_buffer = av_calloc(s->nb_display_channels, sizeof(*s->color_buffer));
if (!s->color_buffer)
return AVERROR(ENOMEM);
for (i = 0; i < s->nb_display_channels; i++) {
s->color_buffer[i] = av_calloc(s->orientation == VERTICAL ? s->h * 4 : s->w * 4, sizeof(**s->color_buffer));
if (!s->color_buffer[i])
return AVERROR(ENOMEM);
}
s->fft_in = av_calloc(s->nb_display_channels, sizeof(*s->fft_in));
if (!s->fft_in)
return AVERROR(ENOMEM);
s->fft_data = av_calloc(s->nb_display_channels, sizeof(*s->fft_data));
if (!s->fft_data)
return AVERROR(ENOMEM);
s->fft_scratch = av_calloc(s->nb_display_channels, sizeof(*s->fft_scratch));
if (!s->fft_scratch)
return AVERROR(ENOMEM);
for (i = 0; i < s->nb_display_channels; i++) {
s->fft_in[i] = av_calloc(s->buf_size, sizeof(**s->fft_in));
if (!s->fft_in[i])
return AVERROR(ENOMEM);
s->fft_data[i] = av_calloc(s->buf_size, sizeof(**s->fft_data));
if (!s->fft_data[i])
return AVERROR(ENOMEM);
s->fft_scratch[i] = av_calloc(s->buf_size, sizeof(**s->fft_scratch));
if (!s->fft_scratch[i])
return AVERROR(ENOMEM);
}
/* pre-calc windowing function */
s->window_func_lut =
av_realloc_f(s->window_func_lut, s->win_size,
sizeof(*s->window_func_lut));
if (!s->window_func_lut)
return AVERROR(ENOMEM);
generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
if (s->overlap == 1)
s->overlap = overlap;
s->hop_size = (1.f - s->overlap) * s->win_size;
if (s->hop_size < 1) {
av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap);
return AVERROR(EINVAL);
}
for (s->win_scale = 0, i = 0; i < s->win_size; i++) {
s->win_scale += s->window_func_lut[i] * s->window_func_lut[i];
}
s->win_scale = 1.f / sqrtf(s->win_scale);
/* prepare the initial picref buffer (black frame) */
av_frame_free(&s->outpicref);
s->outpicref = outpicref =
ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!outpicref)
return AVERROR(ENOMEM);
outpicref->sample_aspect_ratio = (AVRational){1,1};
for (i = 0; i < outlink->h; i++) {
memset(outpicref->data[0] + i * outpicref->linesize[0], 0, outlink->w);
memset(outpicref->data[1] + i * outpicref->linesize[1], 128, outlink->w);
memset(outpicref->data[2] + i * outpicref->linesize[2], 128, outlink->w);
if (outpicref->data[3])
memset(outpicref->data[3] + i * outpicref->linesize[3], 0, outlink->w);
}
outpicref->color_range = AVCOL_RANGE_JPEG;
if (!s->single_pic && s->legend)
draw_legend(ctx, 0);
}
if ((s->orientation == VERTICAL && s->xpos >= s->w) ||
(s->orientation == HORIZONTAL && s->xpos >= s->h))
s->xpos = 0;
if (s->sliding == LREPLACE) {
if (s->orientation == VERTICAL)
s->xpos = s->w - 1;
if (s->orientation == HORIZONTAL)
s->xpos = s->h - 1;
}
s->auto_frame_rate = av_make_q(inlink->sample_rate, s->hop_size);
if (s->orientation == VERTICAL && s->sliding == FULLFRAME)
s->auto_frame_rate = av_mul_q(s->auto_frame_rate, av_make_q(1, s->w));
if (s->orientation == HORIZONTAL && s->sliding == FULLFRAME)
s->auto_frame_rate = av_mul_q(s->auto_frame_rate, av_make_q(1, s->h));
if (!s->single_pic && strcmp(s->rate_str, "auto")) {
int ret = av_parse_video_rate(&s->frame_rate, s->rate_str);
if (ret < 0)
return ret;
} else if (s->single_pic) {
s->frame_rate = av_make_q(1, 1);
} else {
s->frame_rate = s->auto_frame_rate;
}
outlink->frame_rate = s->frame_rate;
outlink->time_base = av_inv_q(outlink->frame_rate);
if (s->orientation == VERTICAL) {
s->combine_buffer =
av_realloc_f(s->combine_buffer, s->h * 4,
sizeof(*s->combine_buffer));
} else {
s->combine_buffer =
av_realloc_f(s->combine_buffer, s->w * 4,
sizeof(*s->combine_buffer));
}
if (!s->combine_buffer)
return AVERROR(ENOMEM);
av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d FFT window size:%d\n",
s->w, s->h, s->win_size);
s->in_frame = ff_get_audio_buffer(inlink, s->win_size);
if (!s->in_frame)
return AVERROR(ENOMEM);
s->frames = av_fast_realloc(NULL, &s->frames_size,
DEFAULT_LENGTH * sizeof(*(s->frames)));
if (!s->frames)
return AVERROR(ENOMEM);
return 0;
}
#define RE(y, ch) s->fft_data[ch][y].re
#define IM(y, ch) s->fft_data[ch][y].im
#define MAGNITUDE(y, ch) hypotf(RE(y, ch), IM(y, ch))
#define PHASE(y, ch) atan2f(IM(y, ch), RE(y, ch))
static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ShowSpectrumContext *s = ctx->priv;
const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
int y, h = s->orientation == VERTICAL ? s->h : s->w;
const float f = s->gain * w;
const int ch = jobnr;
float *magnitudes = s->magnitudes[ch];
for (y = 0; y < h; y++)
magnitudes[y] = MAGNITUDE(y, ch) * f;
return 0;
}
static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ShowSpectrumContext *s = ctx->priv;
const int h = s->orientation == VERTICAL ? s->h : s->w;
const int ch = jobnr;
float *phases = s->phases[ch];
int y;
for (y = 0; y < h; y++)
phases[y] = (PHASE(y, ch) / M_PI + 1) / 2;
return 0;
}
static void unwrap(float *x, int N, float tol, float *mi, float *ma)
{
const float rng = 2.f * M_PI;
float prev_p = 0.f;
float max = -FLT_MAX;
float min = FLT_MAX;
for (int i = 0; i < N; i++) {
const float d = x[FFMIN(i + 1, N)] - x[i];
const float p = ceilf(fabsf(d) / rng) * rng * (((d < tol) > 0.f) - ((d > -tol) > 0.f));
x[i] += p + prev_p;
prev_p += p;
max = fmaxf(x[i], max);
min = fminf(x[i], min);
}
*mi = min;
*ma = max;
}
static int calc_channel_uphases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ShowSpectrumContext *s = ctx->priv;
const int h = s->orientation == VERTICAL ? s->h : s->w;
const int ch = jobnr;
float *phases = s->phases[ch];
float min, max, scale;
int y;
for (y = 0; y < h; y++)
phases[y] = PHASE(y, ch);
unwrap(phases, h, M_PI, &min, &max);
scale = 1.f / (max - min + FLT_MIN);
for (y = 0; y < h; y++)
phases[y] = fabsf((phases[y] - min) * scale);
return 0;
}
static void acalc_magnitudes(ShowSpectrumContext *s)
{
const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
const float f = s->gain * w;
for (ch = 0; ch < s->nb_display_channels; ch++) {
float *magnitudes = s->magnitudes[ch];
for (y = 0; y < h; y++)
magnitudes[y] += MAGNITUDE(y, ch) * f;
}
}
static void scale_magnitudes(ShowSpectrumContext *s, float scale)
{
int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
for (ch = 0; ch < s->nb_display_channels; ch++) {
float *magnitudes = s->magnitudes[ch];
for (y = 0; y < h; y++)
magnitudes[y] *= scale;
}
}
static void clear_combine_buffer(ShowSpectrumContext *s, int size)
{
int y;
for (y = 0; y < size; y++) {
s->combine_buffer[4 * y ] = 0;
s->combine_buffer[4 * y + 1] = 127.5;
s->combine_buffer[4 * y + 2] = 127.5;
s->combine_buffer[4 * y + 3] = 0;
}
}
static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
ShowSpectrumContext *s = ctx->priv;
AVFrame *outpicref = s->outpicref;
int ret, plane, x, y, z = s->orientation == VERTICAL ? s->h : s->w;
const int alpha = outpicref->data[3] != NULL;
/* fill a new spectrum column */
/* initialize buffer for combining to black */
clear_combine_buffer(s, z);
ff_filter_execute(ctx, s->plot_channel, NULL, NULL, s->nb_display_channels);
for (y = 0; y < z * 4; y++) {
for (x = 0; x < s->nb_display_channels; x++) {
s->combine_buffer[y] += s->color_buffer[x][y];
}
}
ret = ff_inlink_make_frame_writable(outlink, &s->outpicref);
if (ret < 0)
return ret;
outpicref = s->outpicref;
/* copy to output */
if (s->orientation == VERTICAL) {
if (s->sliding == SCROLL) {
for (plane = 0; plane < 3 + alpha; plane++) {
for (y = 0; y < s->h; y++) {
uint8_t *p = outpicref->data[plane] + s->start_x +
(y + s->start_y) * outpicref->linesize[plane];
memmove(p, p + 1, s->w - 1);
}
}
s->xpos = s->w - 1;
} else if (s->sliding == RSCROLL) {
for (plane = 0; plane < 3 + alpha; plane++) {
for (y = 0; y < s->h; y++) {
uint8_t *p = outpicref->data[plane] + s->start_x +
(y + s->start_y) * outpicref->linesize[plane];
memmove(p + 1, p, s->w - 1);
}
}
s->xpos = 0;
}
for (plane = 0; plane < 3; plane++) {
uint8_t *p = outpicref->data[plane] + s->start_x +
(outlink->h - 1 - s->start_y) * outpicref->linesize[plane] +
s->xpos;
for (y = 0; y < s->h; y++) {
*p = lrintf(av_clipf(s->combine_buffer[4 * y + plane], 0, 255));
p -= outpicref->linesize[plane];
}
}
if (alpha) {
uint8_t *p = outpicref->data[3] + s->start_x +
(outlink->h - 1 - s->start_y) * outpicref->linesize[3] +
s->xpos;
for (y = 0; y < s->h; y++) {
*p = lrintf(av_clipf(s->combine_buffer[4 * y + 3], 0, 255));
p -= outpicref->linesize[3];
}
}
} else {
if (s->sliding == SCROLL) {
for (plane = 0; plane < 3 + alpha; plane++) {
for (y = 1; y < s->h; y++) {
memmove(outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x,
s->w);
}
}
s->xpos = s->h - 1;
} else if (s->sliding == RSCROLL) {
for (plane = 0; plane < 3 + alpha; plane++) {
for (y = s->h - 1; y >= 1; y--) {
memmove(outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x,
outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
s->w);
}
}
s->xpos = 0;
}
for (plane = 0; plane < 3; plane++) {
uint8_t *p = outpicref->data[plane] + s->start_x +
(s->xpos + s->start_y) * outpicref->linesize[plane];
for (x = 0; x < s->w; x++) {
*p = lrintf(av_clipf(s->combine_buffer[4 * x + plane], 0, 255));
p++;
}
}
if (alpha) {
uint8_t *p = outpicref->data[3] + s->start_x +
(s->xpos + s->start_y) * outpicref->linesize[3];
for (x = 0; x < s->w; x++) {
*p = lrintf(av_clipf(s->combine_buffer[4 * x + 3], 0, 255));
p++;
}
}
}
if (s->sliding != FULLFRAME || s->xpos == 0)
s->pts = outpicref->pts = av_rescale_q(s->in_pts, inlink->time_base, outlink->time_base);
if (s->sliding == LREPLACE) {
s->xpos--;
if (s->orientation == VERTICAL && s->xpos < 0)
s->xpos = s->w - 1;
if (s->orientation == HORIZONTAL && s->xpos < 0)
s->xpos = s->h - 1;
} else {
s->xpos++;
if (s->orientation == VERTICAL && s->xpos >= s->w)
s->xpos = 0;
if (s->orientation == HORIZONTAL && s->xpos >= s->h)
s->xpos = 0;
}
if (!s->single_pic && (s->sliding != FULLFRAME || s->xpos == 0)) {
if (s->old_pts < outpicref->pts || s->sliding == FULLFRAME ||
(s->eof && ff_inlink_queued_samples(inlink) <= s->hop_size)) {
AVFrame *clone;
if (s->legend) {
char *units = get_time(ctx, insamples->pts /(float)inlink->sample_rate, x);
if (!units)
return AVERROR(ENOMEM);
if (s->orientation == VERTICAL) {
for (y = 0; y < 10; y++) {
memset(s->outpicref->data[0] + outlink->w / 2 - 4 * s->old_len +
(outlink->h - s->start_y / 2 - 20 + y) * s->outpicref->linesize[0], 0, 10 * s->old_len);
}
drawtext(s->outpicref,
outlink->w / 2 - 4 * strlen(units),
outlink->h - s->start_y / 2 - 20,
units, 0);
} else {
for (y = 0; y < 10 * s->old_len; y++) {
memset(s->outpicref->data[0] + s->start_x / 7 + 20 +
(outlink->h / 2 - 4 * s->old_len + y) * s->outpicref->linesize[0], 0, 10);
}
drawtext(s->outpicref,
s->start_x / 7 + 20,
outlink->h / 2 - 4 * strlen(units),
units, 1);
}
s->old_len = strlen(units);
av_free(units);
}
s->old_pts = outpicref->pts;
clone = av_frame_clone(s->outpicref);
if (!clone)
return AVERROR(ENOMEM);
ret = ff_filter_frame(outlink, clone);
if (ret < 0)
return ret;
return 0;
}
}
return 1;
}
#if CONFIG_SHOWSPECTRUM_FILTER
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
ShowSpectrumContext *s = ctx->priv;
int ret, status;
int64_t pts;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
if (s->outpicref && ff_inlink_queued_samples(inlink) > 0) {
AVFrame *fin;
ret = ff_inlink_consume_samples(inlink, s->hop_size, s->hop_size, &fin);
if (ret < 0)
return ret;
if (ret > 0) {
ff_filter_execute(ctx, run_channel_fft, fin, NULL, s->nb_display_channels);
if (s->data == D_MAGNITUDE)
ff_filter_execute(ctx, calc_channel_magnitudes, NULL, NULL, s->nb_display_channels);
if (s->data == D_PHASE)
ff_filter_execute(ctx, calc_channel_phases, NULL, NULL, s->nb_display_channels);
if (s->data == D_UPHASE)
ff_filter_execute(ctx, calc_channel_uphases, NULL, NULL, s->nb_display_channels);
if (s->sliding != FULLFRAME || s->xpos == 0)
s->in_pts = fin->pts;
ret = plot_spectrum_column(inlink, fin);
av_frame_free(&fin);
if (ret <= 0)
return ret;
}
}
if (s->eof && s->sliding == FULLFRAME &&
s->xpos > 0 && s->outpicref) {
if (s->orientation == VERTICAL) {
for (int i = 0; i < outlink->h; i++) {
memset(s->outpicref->data[0] + i * s->outpicref->linesize[0] + s->xpos, 0, outlink->w - s->xpos);
memset(s->outpicref->data[1] + i * s->outpicref->linesize[1] + s->xpos, 128, outlink->w - s->xpos);
memset(s->outpicref->data[2] + i * s->outpicref->linesize[2] + s->xpos, 128, outlink->w - s->xpos);
if (s->outpicref->data[3])
memset(s->outpicref->data[3] + i * s->outpicref->linesize[3] + s->xpos, 0, outlink->w - s->xpos);
}
} else {
for (int i = s->xpos; i < outlink->h; i++) {
memset(s->outpicref->data[0] + i * s->outpicref->linesize[0], 0, outlink->w);
memset(s->outpicref->data[1] + i * s->outpicref->linesize[1], 128, outlink->w);
memset(s->outpicref->data[2] + i * s->outpicref->linesize[2], 128, outlink->w);
if (s->outpicref->data[3])
memset(s->outpicref->data[3] + i * s->outpicref->linesize[3], 0, outlink->w);
}
}
s->outpicref->pts = av_rescale_q(s->in_pts, inlink->time_base, outlink->time_base);
pts = s->outpicref->pts;
ret = ff_filter_frame(outlink, s->outpicref);
s->outpicref = NULL;
ff_outlink_set_status(outlink, AVERROR_EOF, pts);
return 0;
}
if (!s->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) {
s->eof = status == AVERROR_EOF;
ff_filter_set_ready(ctx, 100);
return 0;
}
if (s->eof) {
ff_outlink_set_status(outlink, AVERROR_EOF, s->pts);
return 0;
}
if (ff_inlink_queued_samples(inlink) >= s->hop_size) {
ff_filter_set_ready(ctx, 10);
return 0;
}
if (ff_outlink_frame_wanted(outlink)) {
ff_inlink_request_frame(inlink);
return 0;
}
return FFERROR_NOT_READY;
}
static const AVFilterPad showspectrum_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
},
};
static const AVFilterPad showspectrum_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_avf_showspectrum = {
.name = "showspectrum",
.description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output."),
.uninit = uninit,
.priv_size = sizeof(ShowSpectrumContext),
FILTER_INPUTS(showspectrum_inputs),
FILTER_OUTPUTS(showspectrum_outputs),
FILTER_QUERY_FUNC(query_formats),
.activate = activate,
.priv_class = &showspectrum_class,
.flags = AVFILTER_FLAG_SLICE_THREADS,
};
#endif // CONFIG_SHOWSPECTRUM_FILTER
#if CONFIG_SHOWSPECTRUMPIC_FILTER
static const AVOption showspectrumpic_options[] = {
{ "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
{ "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
{ "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_MODES-1, FLAGS, "mode" },
{ "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
{ "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
{ "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=INTENSITY}, 0, NB_CLMODES-1, FLAGS, "color" },
{ "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, "color" },
{ "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
{ "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, "color" },
{ "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, "color" },
{ "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, "color" },
{ "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, "color" },
{ "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, "color" },
{ "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, "color" },
{ "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, "color" },
{ "magma", "magma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MAGMA}, 0, 0, FLAGS, "color" },
{ "green", "green based coloring", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, FLAGS, "color" },
{ "viridis", "viridis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS}, 0, 0, FLAGS, "color" },
{ "plasma", "plasma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=PLASMA}, 0, 0, FLAGS, "color" },
{ "cividis", "cividis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS}, 0, 0, FLAGS, "color" },
{ "terrain", "terrain based coloring", 0, AV_OPT_TYPE_CONST, {.i64=TERRAIN}, 0, 0, FLAGS, "color" },
{ "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=LOG}, 0, NB_SCALES-1, FLAGS, "scale" },
{ "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
{ "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, "scale" },
{ "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, "scale" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" },
{ "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
{ "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" },
{ "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
{ "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, "fscale" },
{ "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
WIN_FUNC_OPTION("win_func", OFFSET(win_func), FLAGS, WFUNC_HANNING),
{ "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
{ "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, "orientation" },
{ "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
{ "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
{ "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
{ "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
{ "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
{ "stop", "stop frequency", OFFSET(stop), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
{ "drange", "set dynamic range in dBFS", OFFSET(drange), AV_OPT_TYPE_FLOAT, {.dbl = 120}, 10, 200, FLAGS },
{ "limit", "set upper limit in dBFS", OFFSET(limit), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -100, 100, FLAGS },
{ "opacity", "set opacity strength", OFFSET(opacity_factor), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 10, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(showspectrumpic);
static int showspectrumpic_request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
ShowSpectrumContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
int ret;
ret = ff_request_frame(inlink);
if (ret == AVERROR_EOF && s->outpicref && s->samples > 0) {
int consumed = 0;
int x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
unsigned int nb_frame = 0;
int ch, spf, spb;
int src_offset = 0;
AVFrame *fin;
spf = s->win_size * (s->samples / ((s->win_size * sz) * ceil(s->samples / (float)(s->win_size * sz))));
spf = FFMAX(1, spf);
s->hop_size = spf;
spb = (s->samples / (spf * sz)) * spf;
fin = ff_get_audio_buffer(inlink, spf);
if (!fin)
return AVERROR(ENOMEM);
while (x < sz) {
int acc_samples = 0;
int dst_offset = 0;
while (nb_frame <= s->nb_frames) {
AVFrame *cur_frame = s->frames[nb_frame];
int cur_frame_samples = cur_frame->nb_samples;
int nb_samples = 0;
if (acc_samples < spf) {
nb_samples = FFMIN(spf - acc_samples, cur_frame_samples - src_offset);
acc_samples += nb_samples;
av_samples_copy(fin->extended_data, cur_frame->extended_data,
dst_offset, src_offset, nb_samples,
cur_frame->ch_layout.nb_channels, AV_SAMPLE_FMT_FLTP);
}
src_offset += nb_samples;
dst_offset += nb_samples;
if (cur_frame_samples <= src_offset) {
av_frame_free(&s->frames[nb_frame]);
nb_frame++;
src_offset = 0;
}
if (acc_samples == spf)
break;
}
ff_filter_execute(ctx, run_channel_fft, fin, NULL, s->nb_display_channels);
acalc_magnitudes(s);
consumed += spf;
if (consumed >= spb) {
int h = s->orientation == VERTICAL ? s->h : s->w;
scale_magnitudes(s, 1.f / (consumed / spf));
plot_spectrum_column(inlink, fin);
consumed = 0;
x++;
for (ch = 0; ch < s->nb_display_channels; ch++)
memset(s->magnitudes[ch], 0, h * sizeof(float));
}
}
av_frame_free(&fin);
s->outpicref->pts = 0;
if (s->legend)
draw_legend(ctx, s->samples);
ret = ff_filter_frame(outlink, s->outpicref);
s->outpicref = NULL;
}
return ret;
}
static int showspectrumpic_filter_frame(AVFilterLink *inlink, AVFrame *insamples)
{
AVFilterContext *ctx = inlink->dst;
ShowSpectrumContext *s = ctx->priv;
void *ptr;
if (s->nb_frames + 1ULL > s->frames_size / sizeof(*(s->frames))) {
ptr = av_fast_realloc(s->frames, &s->frames_size, s->frames_size * 2);
if (!ptr)
return AVERROR(ENOMEM);
s->frames = ptr;
}
s->frames[s->nb_frames] = insamples;
s->samples += insamples->nb_samples;
s->nb_frames++;
return 0;
}
static const AVFilterPad showspectrumpic_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = showspectrumpic_filter_frame,
},
};
static const AVFilterPad showspectrumpic_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
.request_frame = showspectrumpic_request_frame,
},
};
const AVFilter ff_avf_showspectrumpic = {
.name = "showspectrumpic",
.description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output single picture."),
.uninit = uninit,
.priv_size = sizeof(ShowSpectrumContext),
FILTER_INPUTS(showspectrumpic_inputs),
FILTER_OUTPUTS(showspectrumpic_outputs),
FILTER_QUERY_FUNC(query_formats),
.priv_class = &showspectrumpic_class,
.flags = AVFILTER_FLAG_SLICE_THREADS,
};
#endif // CONFIG_SHOWSPECTRUMPIC_FILTER