1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavcodec/cuviddec.c
Ruta Gadkari 80155795bb avcodec/cuviddec: add capability check for maximum macroblock count
Cuvid supports clips with a limit on maximum number of macroblocks.
This check was missing after cuvidGetDecoderCaps API call allowing
unsupported clips to proceed.
Added the missing check, same as the one in hwaccel nvdec implementation.

Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
2019-05-08 11:40:06 +02:00

1209 lines
40 KiB
C

/*
* Nvidia CUVID decoder
* Copyright (c) 2016 Timo Rothenpieler <timo@rothenpieler.org>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "compat/cuda/dynlink_loader.h"
#include "libavutil/buffer.h"
#include "libavutil/mathematics.h"
#include "libavutil/hwcontext.h"
#include "libavutil/hwcontext_cuda_internal.h"
#include "libavutil/cuda_check.h"
#include "libavutil/fifo.h"
#include "libavutil/log.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avcodec.h"
#include "decode.h"
#include "hwaccel.h"
#include "nvdec.h"
#include "internal.h"
#if !NVDECAPI_CHECK_VERSION(9, 0)
#define cudaVideoSurfaceFormat_YUV444 2
#define cudaVideoSurfaceFormat_YUV444_16Bit 3
#endif
typedef struct CuvidContext
{
AVClass *avclass;
CUvideodecoder cudecoder;
CUvideoparser cuparser;
char *cu_gpu;
int nb_surfaces;
int drop_second_field;
char *crop_expr;
char *resize_expr;
struct {
int left;
int top;
int right;
int bottom;
} crop;
struct {
int width;
int height;
} resize;
AVBufferRef *hwdevice;
AVBufferRef *hwframe;
AVBSFContext *bsf;
AVFifoBuffer *frame_queue;
int deint_mode;
int deint_mode_current;
int64_t prev_pts;
int progressive_sequence;
int internal_error;
int decoder_flushing;
int *key_frame;
cudaVideoCodec codec_type;
cudaVideoChromaFormat chroma_format;
CUVIDDECODECAPS caps8, caps10, caps12;
CUVIDPARSERPARAMS cuparseinfo;
CUVIDEOFORMATEX cuparse_ext;
CudaFunctions *cudl;
CuvidFunctions *cvdl;
} CuvidContext;
typedef struct CuvidParsedFrame
{
CUVIDPARSERDISPINFO dispinfo;
int second_field;
int is_deinterlacing;
} CuvidParsedFrame;
#define CHECK_CU(x) FF_CUDA_CHECK_DL(avctx, ctx->cudl, x)
static int CUDAAPI cuvid_handle_video_sequence(void *opaque, CUVIDEOFORMAT* format)
{
AVCodecContext *avctx = opaque;
CuvidContext *ctx = avctx->priv_data;
AVHWFramesContext *hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data;
CUVIDDECODECAPS *caps = NULL;
CUVIDDECODECREATEINFO cuinfo;
int surface_fmt;
int chroma_444;
int old_width = avctx->width;
int old_height = avctx->height;
enum AVPixelFormat pix_fmts[3] = { AV_PIX_FMT_CUDA,
AV_PIX_FMT_NONE, // Will be updated below
AV_PIX_FMT_NONE };
av_log(avctx, AV_LOG_TRACE, "pfnSequenceCallback, progressive_sequence=%d\n", format->progressive_sequence);
memset(&cuinfo, 0, sizeof(cuinfo));
ctx->internal_error = 0;
avctx->coded_width = cuinfo.ulWidth = format->coded_width;
avctx->coded_height = cuinfo.ulHeight = format->coded_height;
// apply cropping
cuinfo.display_area.left = format->display_area.left + ctx->crop.left;
cuinfo.display_area.top = format->display_area.top + ctx->crop.top;
cuinfo.display_area.right = format->display_area.right - ctx->crop.right;
cuinfo.display_area.bottom = format->display_area.bottom - ctx->crop.bottom;
// width and height need to be set before calling ff_get_format
if (ctx->resize_expr) {
avctx->width = ctx->resize.width;
avctx->height = ctx->resize.height;
} else {
avctx->width = cuinfo.display_area.right - cuinfo.display_area.left;
avctx->height = cuinfo.display_area.bottom - cuinfo.display_area.top;
}
// target width/height need to be multiples of two
cuinfo.ulTargetWidth = avctx->width = (avctx->width + 1) & ~1;
cuinfo.ulTargetHeight = avctx->height = (avctx->height + 1) & ~1;
// aspect ratio conversion, 1:1, depends on scaled resolution
cuinfo.target_rect.left = 0;
cuinfo.target_rect.top = 0;
cuinfo.target_rect.right = cuinfo.ulTargetWidth;
cuinfo.target_rect.bottom = cuinfo.ulTargetHeight;
chroma_444 = format->chroma_format == cudaVideoChromaFormat_444;
switch (format->bit_depth_luma_minus8) {
case 0: // 8-bit
pix_fmts[1] = chroma_444 ? AV_PIX_FMT_YUV444P : AV_PIX_FMT_NV12;
caps = &ctx->caps8;
break;
case 2: // 10-bit
pix_fmts[1] = chroma_444 ? AV_PIX_FMT_YUV444P16 : AV_PIX_FMT_P010;
caps = &ctx->caps10;
break;
case 4: // 12-bit
pix_fmts[1] = chroma_444 ? AV_PIX_FMT_YUV444P16 : AV_PIX_FMT_P016;
caps = &ctx->caps12;
break;
default:
break;
}
if (!caps || !caps->bIsSupported) {
av_log(avctx, AV_LOG_ERROR, "unsupported bit depth: %d\n",
format->bit_depth_luma_minus8 + 8);
ctx->internal_error = AVERROR(EINVAL);
return 0;
}
surface_fmt = ff_get_format(avctx, pix_fmts);
if (surface_fmt < 0) {
av_log(avctx, AV_LOG_ERROR, "ff_get_format failed: %d\n", surface_fmt);
ctx->internal_error = AVERROR(EINVAL);
return 0;
}
av_log(avctx, AV_LOG_VERBOSE, "Formats: Original: %s | HW: %s | SW: %s\n",
av_get_pix_fmt_name(avctx->pix_fmt),
av_get_pix_fmt_name(surface_fmt),
av_get_pix_fmt_name(avctx->sw_pix_fmt));
avctx->pix_fmt = surface_fmt;
// Update our hwframe ctx, as the get_format callback might have refreshed it!
if (avctx->hw_frames_ctx) {
av_buffer_unref(&ctx->hwframe);
ctx->hwframe = av_buffer_ref(avctx->hw_frames_ctx);
if (!ctx->hwframe) {
ctx->internal_error = AVERROR(ENOMEM);
return 0;
}
hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data;
}
ff_set_sar(avctx, av_div_q(
(AVRational){ format->display_aspect_ratio.x, format->display_aspect_ratio.y },
(AVRational){ avctx->width, avctx->height }));
ctx->deint_mode_current = format->progressive_sequence
? cudaVideoDeinterlaceMode_Weave
: ctx->deint_mode;
ctx->progressive_sequence = format->progressive_sequence;
if (!format->progressive_sequence && ctx->deint_mode_current == cudaVideoDeinterlaceMode_Weave)
avctx->flags |= AV_CODEC_FLAG_INTERLACED_DCT;
else
avctx->flags &= ~AV_CODEC_FLAG_INTERLACED_DCT;
if (format->video_signal_description.video_full_range_flag)
avctx->color_range = AVCOL_RANGE_JPEG;
else
avctx->color_range = AVCOL_RANGE_MPEG;
avctx->color_primaries = format->video_signal_description.color_primaries;
avctx->color_trc = format->video_signal_description.transfer_characteristics;
avctx->colorspace = format->video_signal_description.matrix_coefficients;
if (format->bitrate)
avctx->bit_rate = format->bitrate;
if (format->frame_rate.numerator && format->frame_rate.denominator) {
avctx->framerate.num = format->frame_rate.numerator;
avctx->framerate.den = format->frame_rate.denominator;
}
if (ctx->cudecoder
&& avctx->coded_width == format->coded_width
&& avctx->coded_height == format->coded_height
&& avctx->width == old_width
&& avctx->height == old_height
&& ctx->chroma_format == format->chroma_format
&& ctx->codec_type == format->codec)
return 1;
if (ctx->cudecoder) {
av_log(avctx, AV_LOG_TRACE, "Re-initializing decoder\n");
ctx->internal_error = CHECK_CU(ctx->cvdl->cuvidDestroyDecoder(ctx->cudecoder));
if (ctx->internal_error < 0)
return 0;
ctx->cudecoder = NULL;
}
if (hwframe_ctx->pool && (
hwframe_ctx->width < avctx->width ||
hwframe_ctx->height < avctx->height ||
hwframe_ctx->format != AV_PIX_FMT_CUDA ||
hwframe_ctx->sw_format != avctx->sw_pix_fmt)) {
av_log(avctx, AV_LOG_ERROR, "AVHWFramesContext is already initialized with incompatible parameters\n");
av_log(avctx, AV_LOG_DEBUG, "width: %d <-> %d\n", hwframe_ctx->width, avctx->width);
av_log(avctx, AV_LOG_DEBUG, "height: %d <-> %d\n", hwframe_ctx->height, avctx->height);
av_log(avctx, AV_LOG_DEBUG, "format: %s <-> cuda\n", av_get_pix_fmt_name(hwframe_ctx->format));
av_log(avctx, AV_LOG_DEBUG, "sw_format: %s <-> %s\n",
av_get_pix_fmt_name(hwframe_ctx->sw_format), av_get_pix_fmt_name(avctx->sw_pix_fmt));
ctx->internal_error = AVERROR(EINVAL);
return 0;
}
ctx->chroma_format = format->chroma_format;
cuinfo.CodecType = ctx->codec_type = format->codec;
cuinfo.ChromaFormat = format->chroma_format;
switch (avctx->sw_pix_fmt) {
case AV_PIX_FMT_NV12:
cuinfo.OutputFormat = cudaVideoSurfaceFormat_NV12;
break;
case AV_PIX_FMT_P010:
case AV_PIX_FMT_P016:
cuinfo.OutputFormat = cudaVideoSurfaceFormat_P016;
break;
case AV_PIX_FMT_YUV444P:
cuinfo.OutputFormat = cudaVideoSurfaceFormat_YUV444;
break;
case AV_PIX_FMT_YUV444P16:
cuinfo.OutputFormat = cudaVideoSurfaceFormat_YUV444_16Bit;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unsupported output format: %s\n",
av_get_pix_fmt_name(avctx->sw_pix_fmt));
ctx->internal_error = AVERROR(EINVAL);
return 0;
}
cuinfo.ulNumDecodeSurfaces = ctx->nb_surfaces;
cuinfo.ulNumOutputSurfaces = 1;
cuinfo.ulCreationFlags = cudaVideoCreate_PreferCUVID;
cuinfo.bitDepthMinus8 = format->bit_depth_luma_minus8;
cuinfo.DeinterlaceMode = ctx->deint_mode_current;
if (ctx->deint_mode_current != cudaVideoDeinterlaceMode_Weave && !ctx->drop_second_field)
avctx->framerate = av_mul_q(avctx->framerate, (AVRational){2, 1});
ctx->internal_error = CHECK_CU(ctx->cvdl->cuvidCreateDecoder(&ctx->cudecoder, &cuinfo));
if (ctx->internal_error < 0)
return 0;
if (!hwframe_ctx->pool) {
hwframe_ctx->format = AV_PIX_FMT_CUDA;
hwframe_ctx->sw_format = avctx->sw_pix_fmt;
hwframe_ctx->width = avctx->width;
hwframe_ctx->height = avctx->height;
if ((ctx->internal_error = av_hwframe_ctx_init(ctx->hwframe)) < 0) {
av_log(avctx, AV_LOG_ERROR, "av_hwframe_ctx_init failed\n");
return 0;
}
}
return 1;
}
static int CUDAAPI cuvid_handle_picture_decode(void *opaque, CUVIDPICPARAMS* picparams)
{
AVCodecContext *avctx = opaque;
CuvidContext *ctx = avctx->priv_data;
av_log(avctx, AV_LOG_TRACE, "pfnDecodePicture\n");
ctx->key_frame[picparams->CurrPicIdx] = picparams->intra_pic_flag;
ctx->internal_error = CHECK_CU(ctx->cvdl->cuvidDecodePicture(ctx->cudecoder, picparams));
if (ctx->internal_error < 0)
return 0;
return 1;
}
static int CUDAAPI cuvid_handle_picture_display(void *opaque, CUVIDPARSERDISPINFO* dispinfo)
{
AVCodecContext *avctx = opaque;
CuvidContext *ctx = avctx->priv_data;
CuvidParsedFrame parsed_frame = { { 0 } };
parsed_frame.dispinfo = *dispinfo;
ctx->internal_error = 0;
// For some reason, dispinfo->progressive_frame is sometimes wrong.
parsed_frame.dispinfo.progressive_frame = ctx->progressive_sequence;
if (ctx->deint_mode_current == cudaVideoDeinterlaceMode_Weave) {
av_fifo_generic_write(ctx->frame_queue, &parsed_frame, sizeof(CuvidParsedFrame), NULL);
} else {
parsed_frame.is_deinterlacing = 1;
av_fifo_generic_write(ctx->frame_queue, &parsed_frame, sizeof(CuvidParsedFrame), NULL);
if (!ctx->drop_second_field) {
parsed_frame.second_field = 1;
av_fifo_generic_write(ctx->frame_queue, &parsed_frame, sizeof(CuvidParsedFrame), NULL);
}
}
return 1;
}
static int cuvid_is_buffer_full(AVCodecContext *avctx)
{
CuvidContext *ctx = avctx->priv_data;
int delay = ctx->cuparseinfo.ulMaxDisplayDelay;
if (ctx->deint_mode != cudaVideoDeinterlaceMode_Weave && !ctx->drop_second_field)
delay *= 2;
return (av_fifo_size(ctx->frame_queue) / sizeof(CuvidParsedFrame)) + delay >= ctx->nb_surfaces;
}
static int cuvid_decode_packet(AVCodecContext *avctx, const AVPacket *avpkt)
{
CuvidContext *ctx = avctx->priv_data;
AVHWDeviceContext *device_ctx = (AVHWDeviceContext*)ctx->hwdevice->data;
AVCUDADeviceContext *device_hwctx = device_ctx->hwctx;
CUcontext dummy, cuda_ctx = device_hwctx->cuda_ctx;
CUVIDSOURCEDATAPACKET cupkt;
AVPacket filter_packet = { 0 };
AVPacket filtered_packet = { 0 };
int ret = 0, eret = 0, is_flush = ctx->decoder_flushing;
av_log(avctx, AV_LOG_TRACE, "cuvid_decode_packet\n");
if (is_flush && avpkt && avpkt->size)
return AVERROR_EOF;
if (cuvid_is_buffer_full(avctx) && avpkt && avpkt->size)
return AVERROR(EAGAIN);
if (ctx->bsf && avpkt && avpkt->size) {
if ((ret = av_packet_ref(&filter_packet, avpkt)) < 0) {
av_log(avctx, AV_LOG_ERROR, "av_packet_ref failed\n");
return ret;
}
if ((ret = av_bsf_send_packet(ctx->bsf, &filter_packet)) < 0) {
av_log(avctx, AV_LOG_ERROR, "av_bsf_send_packet failed\n");
av_packet_unref(&filter_packet);
return ret;
}
if ((ret = av_bsf_receive_packet(ctx->bsf, &filtered_packet)) < 0) {
av_log(avctx, AV_LOG_ERROR, "av_bsf_receive_packet failed\n");
return ret;
}
avpkt = &filtered_packet;
}
ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx));
if (ret < 0) {
av_packet_unref(&filtered_packet);
return ret;
}
memset(&cupkt, 0, sizeof(cupkt));
if (avpkt && avpkt->size) {
cupkt.payload_size = avpkt->size;
cupkt.payload = avpkt->data;
if (avpkt->pts != AV_NOPTS_VALUE) {
cupkt.flags = CUVID_PKT_TIMESTAMP;
if (avctx->pkt_timebase.num && avctx->pkt_timebase.den)
cupkt.timestamp = av_rescale_q(avpkt->pts, avctx->pkt_timebase, (AVRational){1, 10000000});
else
cupkt.timestamp = avpkt->pts;
}
} else {
cupkt.flags = CUVID_PKT_ENDOFSTREAM;
ctx->decoder_flushing = 1;
}
ret = CHECK_CU(ctx->cvdl->cuvidParseVideoData(ctx->cuparser, &cupkt));
av_packet_unref(&filtered_packet);
if (ret < 0)
goto error;
// cuvidParseVideoData doesn't return an error just because stuff failed...
if (ctx->internal_error) {
av_log(avctx, AV_LOG_ERROR, "cuvid decode callback error\n");
ret = ctx->internal_error;
goto error;
}
error:
eret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy));
if (eret < 0)
return eret;
else if (ret < 0)
return ret;
else if (is_flush)
return AVERROR_EOF;
else
return 0;
}
static int cuvid_output_frame(AVCodecContext *avctx, AVFrame *frame)
{
CuvidContext *ctx = avctx->priv_data;
AVHWDeviceContext *device_ctx = (AVHWDeviceContext*)ctx->hwdevice->data;
AVCUDADeviceContext *device_hwctx = device_ctx->hwctx;
CUcontext dummy, cuda_ctx = device_hwctx->cuda_ctx;
CUdeviceptr mapped_frame = 0;
int ret = 0, eret = 0;
av_log(avctx, AV_LOG_TRACE, "cuvid_output_frame\n");
if (ctx->decoder_flushing) {
ret = cuvid_decode_packet(avctx, NULL);
if (ret < 0 && ret != AVERROR_EOF)
return ret;
}
if (!cuvid_is_buffer_full(avctx)) {
AVPacket pkt = {0};
ret = ff_decode_get_packet(avctx, &pkt);
if (ret < 0 && ret != AVERROR_EOF)
return ret;
ret = cuvid_decode_packet(avctx, &pkt);
av_packet_unref(&pkt);
// cuvid_is_buffer_full() should avoid this.
if (ret == AVERROR(EAGAIN))
ret = AVERROR_EXTERNAL;
if (ret < 0 && ret != AVERROR_EOF)
return ret;
}
ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx));
if (ret < 0)
return ret;
if (av_fifo_size(ctx->frame_queue)) {
const AVPixFmtDescriptor *pixdesc;
CuvidParsedFrame parsed_frame;
CUVIDPROCPARAMS params;
unsigned int pitch = 0;
int offset = 0;
int i;
av_fifo_generic_read(ctx->frame_queue, &parsed_frame, sizeof(CuvidParsedFrame), NULL);
memset(&params, 0, sizeof(params));
params.progressive_frame = parsed_frame.dispinfo.progressive_frame;
params.second_field = parsed_frame.second_field;
params.top_field_first = parsed_frame.dispinfo.top_field_first;
ret = CHECK_CU(ctx->cvdl->cuvidMapVideoFrame(ctx->cudecoder, parsed_frame.dispinfo.picture_index, &mapped_frame, &pitch, &params));
if (ret < 0)
goto error;
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
ret = av_hwframe_get_buffer(ctx->hwframe, frame, 0);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "av_hwframe_get_buffer failed\n");
goto error;
}
ret = ff_decode_frame_props(avctx, frame);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "ff_decode_frame_props failed\n");
goto error;
}
pixdesc = av_pix_fmt_desc_get(avctx->sw_pix_fmt);
for (i = 0; i < pixdesc->nb_components; i++) {
int height = avctx->height >> (i ? pixdesc->log2_chroma_h : 0);
CUDA_MEMCPY2D cpy = {
.srcMemoryType = CU_MEMORYTYPE_DEVICE,
.dstMemoryType = CU_MEMORYTYPE_DEVICE,
.srcDevice = mapped_frame,
.dstDevice = (CUdeviceptr)frame->data[i],
.srcPitch = pitch,
.dstPitch = frame->linesize[i],
.srcY = offset,
.WidthInBytes = FFMIN(pitch, frame->linesize[i]),
.Height = height,
};
ret = CHECK_CU(ctx->cudl->cuMemcpy2DAsync(&cpy, device_hwctx->stream));
if (ret < 0)
goto error;
offset += height;
}
} else if (avctx->pix_fmt == AV_PIX_FMT_NV12 ||
avctx->pix_fmt == AV_PIX_FMT_P010 ||
avctx->pix_fmt == AV_PIX_FMT_P016 ||
avctx->pix_fmt == AV_PIX_FMT_YUV444P ||
avctx->pix_fmt == AV_PIX_FMT_YUV444P16) {
unsigned int offset = 0;
AVFrame *tmp_frame = av_frame_alloc();
if (!tmp_frame) {
av_log(avctx, AV_LOG_ERROR, "av_frame_alloc failed\n");
ret = AVERROR(ENOMEM);
goto error;
}
pixdesc = av_pix_fmt_desc_get(avctx->sw_pix_fmt);
tmp_frame->format = AV_PIX_FMT_CUDA;
tmp_frame->hw_frames_ctx = av_buffer_ref(ctx->hwframe);
tmp_frame->width = avctx->width;
tmp_frame->height = avctx->height;
/*
* Note that the following logic would not work for three plane
* YUV420 because the pitch value is different for the chroma
* planes.
*/
for (i = 0; i < pixdesc->nb_components; i++) {
tmp_frame->data[i] = (uint8_t*)mapped_frame + offset;
tmp_frame->linesize[i] = pitch;
offset += pitch * (avctx->height >> (i ? pixdesc->log2_chroma_h : 0));
}
ret = ff_get_buffer(avctx, frame, 0);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "ff_get_buffer failed\n");
av_frame_free(&tmp_frame);
goto error;
}
ret = av_hwframe_transfer_data(frame, tmp_frame, 0);
if (ret) {
av_log(avctx, AV_LOG_ERROR, "av_hwframe_transfer_data failed\n");
av_frame_free(&tmp_frame);
goto error;
}
av_frame_free(&tmp_frame);
} else {
ret = AVERROR_BUG;
goto error;
}
frame->key_frame = ctx->key_frame[parsed_frame.dispinfo.picture_index];
frame->width = avctx->width;
frame->height = avctx->height;
if (avctx->pkt_timebase.num && avctx->pkt_timebase.den)
frame->pts = av_rescale_q(parsed_frame.dispinfo.timestamp, (AVRational){1, 10000000}, avctx->pkt_timebase);
else
frame->pts = parsed_frame.dispinfo.timestamp;
if (parsed_frame.second_field) {
if (ctx->prev_pts == INT64_MIN) {
ctx->prev_pts = frame->pts;
frame->pts += (avctx->pkt_timebase.den * avctx->framerate.den) / (avctx->pkt_timebase.num * avctx->framerate.num);
} else {
int pts_diff = (frame->pts - ctx->prev_pts) / 2;
ctx->prev_pts = frame->pts;
frame->pts += pts_diff;
}
}
/* CUVIDs opaque reordering breaks the internal pkt logic.
* So set pkt_pts and clear all the other pkt_ fields.
*/
#if FF_API_PKT_PTS
FF_DISABLE_DEPRECATION_WARNINGS
frame->pkt_pts = frame->pts;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
frame->pkt_pos = -1;
frame->pkt_duration = 0;
frame->pkt_size = -1;
frame->interlaced_frame = !parsed_frame.is_deinterlacing && !parsed_frame.dispinfo.progressive_frame;
if (frame->interlaced_frame)
frame->top_field_first = parsed_frame.dispinfo.top_field_first;
} else if (ctx->decoder_flushing) {
ret = AVERROR_EOF;
} else {
ret = AVERROR(EAGAIN);
}
error:
if (mapped_frame)
eret = CHECK_CU(ctx->cvdl->cuvidUnmapVideoFrame(ctx->cudecoder, mapped_frame));
eret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy));
if (eret < 0)
return eret;
else
return ret;
}
static int cuvid_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
{
CuvidContext *ctx = avctx->priv_data;
AVFrame *frame = data;
int ret = 0;
av_log(avctx, AV_LOG_TRACE, "cuvid_decode_frame\n");
if (ctx->deint_mode_current != cudaVideoDeinterlaceMode_Weave) {
av_log(avctx, AV_LOG_ERROR, "Deinterlacing is not supported via the old API\n");
return AVERROR(EINVAL);
}
if (!ctx->decoder_flushing) {
ret = cuvid_decode_packet(avctx, avpkt);
if (ret < 0)
return ret;
}
ret = cuvid_output_frame(avctx, frame);
if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) {
*got_frame = 0;
} else if (ret < 0) {
return ret;
} else {
*got_frame = 1;
}
return 0;
}
static av_cold int cuvid_decode_end(AVCodecContext *avctx)
{
CuvidContext *ctx = avctx->priv_data;
av_fifo_freep(&ctx->frame_queue);
if (ctx->bsf)
av_bsf_free(&ctx->bsf);
if (ctx->cuparser)
ctx->cvdl->cuvidDestroyVideoParser(ctx->cuparser);
if (ctx->cudecoder)
ctx->cvdl->cuvidDestroyDecoder(ctx->cudecoder);
ctx->cudl = NULL;
av_buffer_unref(&ctx->hwframe);
av_buffer_unref(&ctx->hwdevice);
av_freep(&ctx->key_frame);
cuvid_free_functions(&ctx->cvdl);
return 0;
}
static int cuvid_test_capabilities(AVCodecContext *avctx,
const CUVIDPARSERPARAMS *cuparseinfo,
int probed_width,
int probed_height,
int bit_depth)
{
CuvidContext *ctx = avctx->priv_data;
CUVIDDECODECAPS *caps;
int res8 = 0, res10 = 0, res12 = 0;
if (!ctx->cvdl->cuvidGetDecoderCaps) {
av_log(avctx, AV_LOG_WARNING, "Used Nvidia driver is too old to perform a capability check.\n");
av_log(avctx, AV_LOG_WARNING, "The minimum required version is "
#if defined(_WIN32) || defined(__CYGWIN__)
"378.66"
#else
"378.13"
#endif
". Continuing blind.\n");
ctx->caps8.bIsSupported = ctx->caps10.bIsSupported = 1;
// 12 bit was not supported before the capability check was introduced, so disable it.
ctx->caps12.bIsSupported = 0;
return 0;
}
ctx->caps8.eCodecType = ctx->caps10.eCodecType = ctx->caps12.eCodecType
= cuparseinfo->CodecType;
ctx->caps8.eChromaFormat = ctx->caps10.eChromaFormat = ctx->caps12.eChromaFormat
= cudaVideoChromaFormat_420;
ctx->caps8.nBitDepthMinus8 = 0;
ctx->caps10.nBitDepthMinus8 = 2;
ctx->caps12.nBitDepthMinus8 = 4;
res8 = CHECK_CU(ctx->cvdl->cuvidGetDecoderCaps(&ctx->caps8));
res10 = CHECK_CU(ctx->cvdl->cuvidGetDecoderCaps(&ctx->caps10));
res12 = CHECK_CU(ctx->cvdl->cuvidGetDecoderCaps(&ctx->caps12));
av_log(avctx, AV_LOG_VERBOSE, "CUVID capabilities for %s:\n", avctx->codec->name);
av_log(avctx, AV_LOG_VERBOSE, "8 bit: supported: %d, min_width: %d, max_width: %d, min_height: %d, max_height: %d\n",
ctx->caps8.bIsSupported, ctx->caps8.nMinWidth, ctx->caps8.nMaxWidth, ctx->caps8.nMinHeight, ctx->caps8.nMaxHeight);
av_log(avctx, AV_LOG_VERBOSE, "10 bit: supported: %d, min_width: %d, max_width: %d, min_height: %d, max_height: %d\n",
ctx->caps10.bIsSupported, ctx->caps10.nMinWidth, ctx->caps10.nMaxWidth, ctx->caps10.nMinHeight, ctx->caps10.nMaxHeight);
av_log(avctx, AV_LOG_VERBOSE, "12 bit: supported: %d, min_width: %d, max_width: %d, min_height: %d, max_height: %d\n",
ctx->caps12.bIsSupported, ctx->caps12.nMinWidth, ctx->caps12.nMaxWidth, ctx->caps12.nMinHeight, ctx->caps12.nMaxHeight);
switch (bit_depth) {
case 10:
caps = &ctx->caps10;
if (res10 < 0)
return res10;
break;
case 12:
caps = &ctx->caps12;
if (res12 < 0)
return res12;
break;
default:
caps = &ctx->caps8;
if (res8 < 0)
return res8;
}
if (!ctx->caps8.bIsSupported) {
av_log(avctx, AV_LOG_ERROR, "Codec %s is not supported.\n", avctx->codec->name);
return AVERROR(EINVAL);
}
if (!caps->bIsSupported) {
av_log(avctx, AV_LOG_ERROR, "Bit depth %d is not supported.\n", bit_depth);
return AVERROR(EINVAL);
}
if (probed_width > caps->nMaxWidth || probed_width < caps->nMinWidth) {
av_log(avctx, AV_LOG_ERROR, "Video width %d not within range from %d to %d\n",
probed_width, caps->nMinWidth, caps->nMaxWidth);
return AVERROR(EINVAL);
}
if (probed_height > caps->nMaxHeight || probed_height < caps->nMinHeight) {
av_log(avctx, AV_LOG_ERROR, "Video height %d not within range from %d to %d\n",
probed_height, caps->nMinHeight, caps->nMaxHeight);
return AVERROR(EINVAL);
}
if ((probed_width * probed_height) / 256 > caps->nMaxMBCount) {
av_log(avctx, AV_LOG_ERROR, "Video macroblock count %d exceeds maximum of %d\n",
(int)(probed_width * probed_height) / 256, caps->nMaxMBCount);
return AVERROR(EINVAL);
}
return 0;
}
static av_cold int cuvid_decode_init(AVCodecContext *avctx)
{
CuvidContext *ctx = avctx->priv_data;
AVCUDADeviceContext *device_hwctx;
AVHWDeviceContext *device_ctx;
AVHWFramesContext *hwframe_ctx;
CUVIDSOURCEDATAPACKET seq_pkt;
CUcontext cuda_ctx = NULL;
CUcontext dummy;
const AVBitStreamFilter *bsf;
int ret = 0;
enum AVPixelFormat pix_fmts[3] = { AV_PIX_FMT_CUDA,
AV_PIX_FMT_NV12,
AV_PIX_FMT_NONE };
int probed_width = avctx->coded_width ? avctx->coded_width : 1280;
int probed_height = avctx->coded_height ? avctx->coded_height : 720;
int probed_bit_depth = 8;
const AVPixFmtDescriptor *probe_desc = av_pix_fmt_desc_get(avctx->pix_fmt);
if (probe_desc && probe_desc->nb_components)
probed_bit_depth = probe_desc->comp[0].depth;
// Accelerated transcoding scenarios with 'ffmpeg' require that the
// pix_fmt be set to AV_PIX_FMT_CUDA early. The sw_pix_fmt, and the
// pix_fmt for non-accelerated transcoding, do not need to be correct
// but need to be set to something. We arbitrarily pick NV12.
ret = ff_get_format(avctx, pix_fmts);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "ff_get_format failed: %d\n", ret);
return ret;
}
avctx->pix_fmt = ret;
if (ctx->resize_expr && sscanf(ctx->resize_expr, "%dx%d",
&ctx->resize.width, &ctx->resize.height) != 2) {
av_log(avctx, AV_LOG_ERROR, "Invalid resize expressions\n");
ret = AVERROR(EINVAL);
goto error;
}
if (ctx->crop_expr && sscanf(ctx->crop_expr, "%dx%dx%dx%d",
&ctx->crop.top, &ctx->crop.bottom,
&ctx->crop.left, &ctx->crop.right) != 4) {
av_log(avctx, AV_LOG_ERROR, "Invalid cropping expressions\n");
ret = AVERROR(EINVAL);
goto error;
}
ret = cuvid_load_functions(&ctx->cvdl, avctx);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed loading nvcuvid.\n");
goto error;
}
ctx->frame_queue = av_fifo_alloc(ctx->nb_surfaces * sizeof(CuvidParsedFrame));
if (!ctx->frame_queue) {
ret = AVERROR(ENOMEM);
goto error;
}
if (avctx->hw_frames_ctx) {
ctx->hwframe = av_buffer_ref(avctx->hw_frames_ctx);
if (!ctx->hwframe) {
ret = AVERROR(ENOMEM);
goto error;
}
hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data;
ctx->hwdevice = av_buffer_ref(hwframe_ctx->device_ref);
if (!ctx->hwdevice) {
ret = AVERROR(ENOMEM);
goto error;
}
} else {
if (avctx->hw_device_ctx) {
ctx->hwdevice = av_buffer_ref(avctx->hw_device_ctx);
if (!ctx->hwdevice) {
ret = AVERROR(ENOMEM);
goto error;
}
} else {
ret = av_hwdevice_ctx_create(&ctx->hwdevice, AV_HWDEVICE_TYPE_CUDA, ctx->cu_gpu, NULL, 0);
if (ret < 0)
goto error;
}
ctx->hwframe = av_hwframe_ctx_alloc(ctx->hwdevice);
if (!ctx->hwframe) {
av_log(avctx, AV_LOG_ERROR, "av_hwframe_ctx_alloc failed\n");
ret = AVERROR(ENOMEM);
goto error;
}
hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data;
}
device_ctx = hwframe_ctx->device_ctx;
device_hwctx = device_ctx->hwctx;
cuda_ctx = device_hwctx->cuda_ctx;
ctx->cudl = device_hwctx->internal->cuda_dl;
memset(&ctx->cuparseinfo, 0, sizeof(ctx->cuparseinfo));
memset(&ctx->cuparse_ext, 0, sizeof(ctx->cuparse_ext));
memset(&seq_pkt, 0, sizeof(seq_pkt));
ctx->cuparseinfo.pExtVideoInfo = &ctx->cuparse_ext;
switch (avctx->codec->id) {
#if CONFIG_H264_CUVID_DECODER
case AV_CODEC_ID_H264:
ctx->cuparseinfo.CodecType = cudaVideoCodec_H264;
break;
#endif
#if CONFIG_HEVC_CUVID_DECODER
case AV_CODEC_ID_HEVC:
ctx->cuparseinfo.CodecType = cudaVideoCodec_HEVC;
break;
#endif
#if CONFIG_MJPEG_CUVID_DECODER
case AV_CODEC_ID_MJPEG:
ctx->cuparseinfo.CodecType = cudaVideoCodec_JPEG;
break;
#endif
#if CONFIG_MPEG1_CUVID_DECODER
case AV_CODEC_ID_MPEG1VIDEO:
ctx->cuparseinfo.CodecType = cudaVideoCodec_MPEG1;
break;
#endif
#if CONFIG_MPEG2_CUVID_DECODER
case AV_CODEC_ID_MPEG2VIDEO:
ctx->cuparseinfo.CodecType = cudaVideoCodec_MPEG2;
break;
#endif
#if CONFIG_MPEG4_CUVID_DECODER
case AV_CODEC_ID_MPEG4:
ctx->cuparseinfo.CodecType = cudaVideoCodec_MPEG4;
break;
#endif
#if CONFIG_VP8_CUVID_DECODER
case AV_CODEC_ID_VP8:
ctx->cuparseinfo.CodecType = cudaVideoCodec_VP8;
break;
#endif
#if CONFIG_VP9_CUVID_DECODER
case AV_CODEC_ID_VP9:
ctx->cuparseinfo.CodecType = cudaVideoCodec_VP9;
break;
#endif
#if CONFIG_VC1_CUVID_DECODER
case AV_CODEC_ID_VC1:
ctx->cuparseinfo.CodecType = cudaVideoCodec_VC1;
break;
#endif
default:
av_log(avctx, AV_LOG_ERROR, "Invalid CUVID codec!\n");
return AVERROR_BUG;
}
if (avctx->codec->id == AV_CODEC_ID_H264 || avctx->codec->id == AV_CODEC_ID_HEVC) {
if (avctx->codec->id == AV_CODEC_ID_H264)
bsf = av_bsf_get_by_name("h264_mp4toannexb");
else
bsf = av_bsf_get_by_name("hevc_mp4toannexb");
if (!bsf) {
ret = AVERROR_BSF_NOT_FOUND;
goto error;
}
if (ret = av_bsf_alloc(bsf, &ctx->bsf)) {
goto error;
}
if (((ret = avcodec_parameters_from_context(ctx->bsf->par_in, avctx)) < 0) || ((ret = av_bsf_init(ctx->bsf)) < 0)) {
av_bsf_free(&ctx->bsf);
goto error;
}
ctx->cuparse_ext.format.seqhdr_data_length = ctx->bsf->par_out->extradata_size;
memcpy(ctx->cuparse_ext.raw_seqhdr_data,
ctx->bsf->par_out->extradata,
FFMIN(sizeof(ctx->cuparse_ext.raw_seqhdr_data), ctx->bsf->par_out->extradata_size));
} else if (avctx->extradata_size > 0) {
ctx->cuparse_ext.format.seqhdr_data_length = avctx->extradata_size;
memcpy(ctx->cuparse_ext.raw_seqhdr_data,
avctx->extradata,
FFMIN(sizeof(ctx->cuparse_ext.raw_seqhdr_data), avctx->extradata_size));
}
ctx->key_frame = av_mallocz(ctx->nb_surfaces * sizeof(int));
if (!ctx->key_frame) {
ret = AVERROR(ENOMEM);
goto error;
}
ctx->cuparseinfo.ulMaxNumDecodeSurfaces = ctx->nb_surfaces;
ctx->cuparseinfo.ulMaxDisplayDelay = 4;
ctx->cuparseinfo.pUserData = avctx;
ctx->cuparseinfo.pfnSequenceCallback = cuvid_handle_video_sequence;
ctx->cuparseinfo.pfnDecodePicture = cuvid_handle_picture_decode;
ctx->cuparseinfo.pfnDisplayPicture = cuvid_handle_picture_display;
ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx));
if (ret < 0)
goto error;
ret = cuvid_test_capabilities(avctx, &ctx->cuparseinfo,
probed_width,
probed_height,
probed_bit_depth);
if (ret < 0)
goto error;
ret = CHECK_CU(ctx->cvdl->cuvidCreateVideoParser(&ctx->cuparser, &ctx->cuparseinfo));
if (ret < 0)
goto error;
seq_pkt.payload = ctx->cuparse_ext.raw_seqhdr_data;
seq_pkt.payload_size = ctx->cuparse_ext.format.seqhdr_data_length;
if (seq_pkt.payload && seq_pkt.payload_size) {
ret = CHECK_CU(ctx->cvdl->cuvidParseVideoData(ctx->cuparser, &seq_pkt));
if (ret < 0)
goto error;
}
ret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy));
if (ret < 0)
goto error;
ctx->prev_pts = INT64_MIN;
if (!avctx->pkt_timebase.num || !avctx->pkt_timebase.den)
av_log(avctx, AV_LOG_WARNING, "Invalid pkt_timebase, passing timestamps as-is.\n");
return 0;
error:
cuvid_decode_end(avctx);
return ret;
}
static void cuvid_flush(AVCodecContext *avctx)
{
CuvidContext *ctx = avctx->priv_data;
AVHWDeviceContext *device_ctx = (AVHWDeviceContext*)ctx->hwdevice->data;
AVCUDADeviceContext *device_hwctx = device_ctx->hwctx;
CUcontext dummy, cuda_ctx = device_hwctx->cuda_ctx;
CUVIDSOURCEDATAPACKET seq_pkt = { 0 };
int ret;
ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx));
if (ret < 0)
goto error;
av_fifo_freep(&ctx->frame_queue);
ctx->frame_queue = av_fifo_alloc(ctx->nb_surfaces * sizeof(CuvidParsedFrame));
if (!ctx->frame_queue) {
av_log(avctx, AV_LOG_ERROR, "Failed to recreate frame queue on flush\n");
return;
}
if (ctx->cudecoder) {
ctx->cvdl->cuvidDestroyDecoder(ctx->cudecoder);
ctx->cudecoder = NULL;
}
if (ctx->cuparser) {
ctx->cvdl->cuvidDestroyVideoParser(ctx->cuparser);
ctx->cuparser = NULL;
}
ret = CHECK_CU(ctx->cvdl->cuvidCreateVideoParser(&ctx->cuparser, &ctx->cuparseinfo));
if (ret < 0)
goto error;
seq_pkt.payload = ctx->cuparse_ext.raw_seqhdr_data;
seq_pkt.payload_size = ctx->cuparse_ext.format.seqhdr_data_length;
if (seq_pkt.payload && seq_pkt.payload_size) {
ret = CHECK_CU(ctx->cvdl->cuvidParseVideoData(ctx->cuparser, &seq_pkt));
if (ret < 0)
goto error;
}
ret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy));
if (ret < 0)
goto error;
ctx->prev_pts = INT64_MIN;
ctx->decoder_flushing = 0;
return;
error:
av_log(avctx, AV_LOG_ERROR, "CUDA reinit on flush failed\n");
}
#define OFFSET(x) offsetof(CuvidContext, x)
#define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
static const AVOption options[] = {
{ "deint", "Set deinterlacing mode", OFFSET(deint_mode), AV_OPT_TYPE_INT, { .i64 = cudaVideoDeinterlaceMode_Weave }, cudaVideoDeinterlaceMode_Weave, cudaVideoDeinterlaceMode_Adaptive, VD, "deint" },
{ "weave", "Weave deinterlacing (do nothing)", 0, AV_OPT_TYPE_CONST, { .i64 = cudaVideoDeinterlaceMode_Weave }, 0, 0, VD, "deint" },
{ "bob", "Bob deinterlacing", 0, AV_OPT_TYPE_CONST, { .i64 = cudaVideoDeinterlaceMode_Bob }, 0, 0, VD, "deint" },
{ "adaptive", "Adaptive deinterlacing", 0, AV_OPT_TYPE_CONST, { .i64 = cudaVideoDeinterlaceMode_Adaptive }, 0, 0, VD, "deint" },
{ "gpu", "GPU to be used for decoding", OFFSET(cu_gpu), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VD },
{ "surfaces", "Maximum surfaces to be used for decoding", OFFSET(nb_surfaces), AV_OPT_TYPE_INT, { .i64 = 25 }, 0, INT_MAX, VD },
{ "drop_second_field", "Drop second field when deinterlacing", OFFSET(drop_second_field), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VD },
{ "crop", "Crop (top)x(bottom)x(left)x(right)", OFFSET(crop_expr), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VD },
{ "resize", "Resize (width)x(height)", OFFSET(resize_expr), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VD },
{ NULL }
};
static const AVCodecHWConfigInternal *cuvid_hw_configs[] = {
&(const AVCodecHWConfigInternal) {
.public = {
.pix_fmt = AV_PIX_FMT_CUDA,
.methods = AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX |
AV_CODEC_HW_CONFIG_METHOD_INTERNAL,
.device_type = AV_HWDEVICE_TYPE_CUDA
},
.hwaccel = NULL,
},
NULL
};
#define DEFINE_CUVID_CODEC(x, X) \
static const AVClass x##_cuvid_class = { \
.class_name = #x "_cuvid", \
.item_name = av_default_item_name, \
.option = options, \
.version = LIBAVUTIL_VERSION_INT, \
}; \
AVCodec ff_##x##_cuvid_decoder = { \
.name = #x "_cuvid", \
.long_name = NULL_IF_CONFIG_SMALL("Nvidia CUVID " #X " decoder"), \
.type = AVMEDIA_TYPE_VIDEO, \
.id = AV_CODEC_ID_##X, \
.priv_data_size = sizeof(CuvidContext), \
.priv_class = &x##_cuvid_class, \
.init = cuvid_decode_init, \
.close = cuvid_decode_end, \
.decode = cuvid_decode_frame, \
.receive_frame = cuvid_output_frame, \
.flush = cuvid_flush, \
.capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_AVOID_PROBING | AV_CODEC_CAP_HARDWARE, \
.pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_CUDA, \
AV_PIX_FMT_NV12, \
AV_PIX_FMT_P010, \
AV_PIX_FMT_P016, \
AV_PIX_FMT_NONE }, \
.hw_configs = cuvid_hw_configs, \
.wrapper_name = "cuvid", \
};
#if CONFIG_HEVC_CUVID_DECODER
DEFINE_CUVID_CODEC(hevc, HEVC)
#endif
#if CONFIG_H264_CUVID_DECODER
DEFINE_CUVID_CODEC(h264, H264)
#endif
#if CONFIG_MJPEG_CUVID_DECODER
DEFINE_CUVID_CODEC(mjpeg, MJPEG)
#endif
#if CONFIG_MPEG1_CUVID_DECODER
DEFINE_CUVID_CODEC(mpeg1, MPEG1VIDEO)
#endif
#if CONFIG_MPEG2_CUVID_DECODER
DEFINE_CUVID_CODEC(mpeg2, MPEG2VIDEO)
#endif
#if CONFIG_MPEG4_CUVID_DECODER
DEFINE_CUVID_CODEC(mpeg4, MPEG4)
#endif
#if CONFIG_VP8_CUVID_DECODER
DEFINE_CUVID_CODEC(vp8, VP8)
#endif
#if CONFIG_VP9_CUVID_DECODER
DEFINE_CUVID_CODEC(vp9, VP9)
#endif
#if CONFIG_VC1_CUVID_DECODER
DEFINE_CUVID_CODEC(vc1, VC1)
#endif