1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/vf_lut.c
Andreas Rheinhardt b4f5201967 avfilter: Replace query_formats callback with union of list and callback
If one looks at the many query_formats callbacks in existence,
one will immediately recognize that there is one type of default
callback for video and a slightly different default callback for
audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);"
for video with a filter-specific pix_fmts list. For audio, it is
the same with a filter-specific sample_fmts list together with
ff_set_common_all_samplerates() and ff_set_common_all_channel_counts().

This commit allows to remove the boilerplate query_formats callbacks
by replacing said callback with a union consisting the old callback
and pointers for pixel and sample format arrays. For the not uncommon
case in which these lists only contain a single entry (besides the
sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also
added to the union to store them directly in the AVFilter,
thereby avoiding a relocation.

The state of said union will be contained in a new, dedicated AVFilter
field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t
in order to create a hole for this new field; this is no problem, as
the maximum of all the nb_inputs is four; for nb_outputs it is only
two).

The state's default value coincides with the earlier default of
query_formats being unset, namely that the filter accepts all formats
(and also sample rates and channel counts/layouts for audio)
provided that these properties agree coincide for all inputs and
outputs.

By using different union members for audio and video filters
the type-unsafety of using the same functions for audio and video
lists will furthermore be more confined to formats.c than before.

When the new fields are used, they will also avoid allocations:
Currently something nearly equivalent to ff_default_query_formats()
is called after every successful call to a query_formats callback;
yet in the common case that the newly allocated AVFilterFormats
are not used at all (namely if there are no free links) these newly
allocated AVFilterFormats are freed again without ever being used.
Filters no longer using the callback will not exhibit this any more.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-10-05 17:48:25 +02:00

672 lines
22 KiB
C

/*
* Copyright (c) 2011 Stefano Sabatini
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Compute a look-up table for binding the input value to the output
* value, and apply it to input video.
*/
#include "libavutil/attributes.h"
#include "libavutil/bswap.h"
#include "libavutil/common.h"
#include "libavutil/eval.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "drawutils.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
static const char *const var_names[] = {
"w", ///< width of the input video
"h", ///< height of the input video
"val", ///< input value for the pixel
"maxval", ///< max value for the pixel
"minval", ///< min value for the pixel
"negval", ///< negated value
"clipval",
NULL
};
enum var_name {
VAR_W,
VAR_H,
VAR_VAL,
VAR_MAXVAL,
VAR_MINVAL,
VAR_NEGVAL,
VAR_CLIPVAL,
VAR_VARS_NB
};
typedef struct LutContext {
const AVClass *class;
uint16_t lut[4][256 * 256]; ///< lookup table for each component
char *comp_expr_str[4];
AVExpr *comp_expr[4];
int hsub, vsub;
double var_values[VAR_VARS_NB];
int is_rgb, is_yuv;
int is_planar;
int is_16bit;
int step;
int negate_alpha; /* only used by negate */
} LutContext;
#define Y 0
#define U 1
#define V 2
#define R 0
#define G 1
#define B 2
#define A 3
#define OFFSET(x) offsetof(LutContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption options[] = {
{ "c0", "set component #0 expression", OFFSET(comp_expr_str[0]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
{ "c1", "set component #1 expression", OFFSET(comp_expr_str[1]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
{ "c2", "set component #2 expression", OFFSET(comp_expr_str[2]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
{ "c3", "set component #3 expression", OFFSET(comp_expr_str[3]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
{ "y", "set Y expression", OFFSET(comp_expr_str[Y]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
{ "u", "set U expression", OFFSET(comp_expr_str[U]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
{ "v", "set V expression", OFFSET(comp_expr_str[V]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
{ "r", "set R expression", OFFSET(comp_expr_str[R]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
{ "g", "set G expression", OFFSET(comp_expr_str[G]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
{ "b", "set B expression", OFFSET(comp_expr_str[B]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
{ "a", "set A expression", OFFSET(comp_expr_str[A]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS },
{ NULL }
};
static av_cold void uninit(AVFilterContext *ctx)
{
LutContext *s = ctx->priv;
int i;
for (i = 0; i < 4; i++) {
av_expr_free(s->comp_expr[i]);
s->comp_expr[i] = NULL;
av_freep(&s->comp_expr_str[i]);
}
}
#define YUV_FORMATS \
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, \
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P, \
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, \
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, \
AV_PIX_FMT_YUVJ440P, \
AV_PIX_FMT_YUV444P9LE, AV_PIX_FMT_YUV422P9LE, AV_PIX_FMT_YUV420P9LE, \
AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUV422P10LE, AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUV440P10LE, \
AV_PIX_FMT_YUV444P12LE, AV_PIX_FMT_YUV422P12LE, AV_PIX_FMT_YUV420P12LE, AV_PIX_FMT_YUV440P12LE, \
AV_PIX_FMT_YUV444P14LE, AV_PIX_FMT_YUV422P14LE, AV_PIX_FMT_YUV420P14LE, \
AV_PIX_FMT_YUV444P16LE, AV_PIX_FMT_YUV422P16LE, AV_PIX_FMT_YUV420P16LE, \
AV_PIX_FMT_YUVA444P16LE, AV_PIX_FMT_YUVA422P16LE, AV_PIX_FMT_YUVA420P16LE
#define RGB_FORMATS \
AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, \
AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, \
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, \
AV_PIX_FMT_RGB48LE, AV_PIX_FMT_RGBA64LE, \
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, \
AV_PIX_FMT_GBRP9LE, AV_PIX_FMT_GBRP10LE, \
AV_PIX_FMT_GBRAP10LE, \
AV_PIX_FMT_GBRP12LE, AV_PIX_FMT_GBRP14LE, \
AV_PIX_FMT_GBRP16LE, AV_PIX_FMT_GBRAP12LE, \
AV_PIX_FMT_GBRAP16LE
#define GRAY_FORMATS \
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9LE, AV_PIX_FMT_GRAY10LE, \
AV_PIX_FMT_GRAY12LE, AV_PIX_FMT_GRAY14LE, AV_PIX_FMT_GRAY16LE
static const enum AVPixelFormat yuv_pix_fmts[] = { YUV_FORMATS, AV_PIX_FMT_NONE };
static const enum AVPixelFormat rgb_pix_fmts[] = { RGB_FORMATS, AV_PIX_FMT_NONE };
static const enum AVPixelFormat all_pix_fmts[] = { RGB_FORMATS, YUV_FORMATS, GRAY_FORMATS, AV_PIX_FMT_NONE };
static int query_formats(AVFilterContext *ctx)
{
LutContext *s = ctx->priv;
const enum AVPixelFormat *pix_fmts = s->is_rgb ? rgb_pix_fmts :
s->is_yuv ? yuv_pix_fmts :
all_pix_fmts;
return ff_set_common_formats_from_list(ctx, pix_fmts);
}
/**
* Clip value val in the minval - maxval range.
*/
static double clip(void *opaque, double val)
{
LutContext *s = opaque;
double minval = s->var_values[VAR_MINVAL];
double maxval = s->var_values[VAR_MAXVAL];
return av_clip(val, minval, maxval);
}
/**
* Compute gamma correction for value val, assuming the minval-maxval
* range, val is clipped to a value contained in the same interval.
*/
static double compute_gammaval(void *opaque, double gamma)
{
LutContext *s = opaque;
double val = s->var_values[VAR_CLIPVAL];
double minval = s->var_values[VAR_MINVAL];
double maxval = s->var_values[VAR_MAXVAL];
return pow((val-minval)/(maxval-minval), gamma) * (maxval-minval)+minval;
}
/**
* Compute ITU Rec.709 gamma correction of value val.
*/
static double compute_gammaval709(void *opaque, double gamma)
{
LutContext *s = opaque;
double val = s->var_values[VAR_CLIPVAL];
double minval = s->var_values[VAR_MINVAL];
double maxval = s->var_values[VAR_MAXVAL];
double level = (val - minval) / (maxval - minval);
level = level < 0.018 ? 4.5 * level
: 1.099 * pow(level, 1.0 / gamma) - 0.099;
return level * (maxval - minval) + minval;
}
static double (* const funcs1[])(void *, double) = {
clip,
compute_gammaval,
compute_gammaval709,
NULL
};
static const char * const funcs1_names[] = {
"clip",
"gammaval",
"gammaval709",
NULL
};
static int config_props(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
LutContext *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
uint8_t rgba_map[4]; /* component index -> RGBA color index map */
int min[4], max[4];
int val, color, ret;
s->hsub = desc->log2_chroma_w;
s->vsub = desc->log2_chroma_h;
s->var_values[VAR_W] = inlink->w;
s->var_values[VAR_H] = inlink->h;
s->is_16bit = desc->comp[0].depth > 8;
switch (inlink->format) {
case AV_PIX_FMT_YUV410P:
case AV_PIX_FMT_YUV411P:
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV440P:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUVA420P:
case AV_PIX_FMT_YUVA422P:
case AV_PIX_FMT_YUVA444P:
case AV_PIX_FMT_YUV420P9LE:
case AV_PIX_FMT_YUV422P9LE:
case AV_PIX_FMT_YUV444P9LE:
case AV_PIX_FMT_YUVA420P9LE:
case AV_PIX_FMT_YUVA422P9LE:
case AV_PIX_FMT_YUVA444P9LE:
case AV_PIX_FMT_YUV420P10LE:
case AV_PIX_FMT_YUV422P10LE:
case AV_PIX_FMT_YUV440P10LE:
case AV_PIX_FMT_YUV444P10LE:
case AV_PIX_FMT_YUVA420P10LE:
case AV_PIX_FMT_YUVA422P10LE:
case AV_PIX_FMT_YUVA444P10LE:
case AV_PIX_FMT_YUV420P12LE:
case AV_PIX_FMT_YUV422P12LE:
case AV_PIX_FMT_YUV440P12LE:
case AV_PIX_FMT_YUV444P12LE:
case AV_PIX_FMT_YUV420P14LE:
case AV_PIX_FMT_YUV422P14LE:
case AV_PIX_FMT_YUV444P14LE:
case AV_PIX_FMT_YUV420P16LE:
case AV_PIX_FMT_YUV422P16LE:
case AV_PIX_FMT_YUV444P16LE:
case AV_PIX_FMT_YUVA420P16LE:
case AV_PIX_FMT_YUVA422P16LE:
case AV_PIX_FMT_YUVA444P16LE:
min[Y] = 16 * (1 << (desc->comp[0].depth - 8));
min[U] = 16 * (1 << (desc->comp[1].depth - 8));
min[V] = 16 * (1 << (desc->comp[2].depth - 8));
min[A] = 0;
max[Y] = 235 * (1 << (desc->comp[0].depth - 8));
max[U] = 240 * (1 << (desc->comp[1].depth - 8));
max[V] = 240 * (1 << (desc->comp[2].depth - 8));
max[A] = (1 << desc->comp[0].depth) - 1;
break;
case AV_PIX_FMT_RGB48LE:
case AV_PIX_FMT_RGBA64LE:
min[0] = min[1] = min[2] = min[3] = 0;
max[0] = max[1] = max[2] = max[3] = 65535;
break;
default:
min[0] = min[1] = min[2] = min[3] = 0;
max[0] = max[1] = max[2] = max[3] = 255 * (1 << (desc->comp[0].depth - 8));
}
s->is_yuv = s->is_rgb = 0;
s->is_planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
if (ff_fmt_is_in(inlink->format, yuv_pix_fmts)) s->is_yuv = 1;
else if (ff_fmt_is_in(inlink->format, rgb_pix_fmts)) s->is_rgb = 1;
if (s->is_rgb) {
ff_fill_rgba_map(rgba_map, inlink->format);
s->step = av_get_bits_per_pixel(desc) >> 3;
if (s->is_16bit) {
s->step = s->step >> 1;
}
}
for (color = 0; color < desc->nb_components; color++) {
double res;
int comp = s->is_rgb ? rgba_map[color] : color;
/* create the parsed expression */
av_expr_free(s->comp_expr[color]);
s->comp_expr[color] = NULL;
ret = av_expr_parse(&s->comp_expr[color], s->comp_expr_str[color],
var_names, funcs1_names, funcs1, NULL, NULL, 0, ctx);
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR,
"Error when parsing the expression '%s' for the component %d and color %d.\n",
s->comp_expr_str[comp], comp, color);
return AVERROR(EINVAL);
}
/* compute the lut */
s->var_values[VAR_MAXVAL] = max[color];
s->var_values[VAR_MINVAL] = min[color];
for (val = 0; val < FF_ARRAY_ELEMS(s->lut[comp]); val++) {
s->var_values[VAR_VAL] = val;
s->var_values[VAR_CLIPVAL] = av_clip(val, min[color], max[color]);
s->var_values[VAR_NEGVAL] =
av_clip(min[color] + max[color] - s->var_values[VAR_VAL],
min[color], max[color]);
res = av_expr_eval(s->comp_expr[color], s->var_values, s);
if (isnan(res)) {
av_log(ctx, AV_LOG_ERROR,
"Error when evaluating the expression '%s' for the value %d for the component %d.\n",
s->comp_expr_str[color], val, comp);
return AVERROR(EINVAL);
}
s->lut[comp][val] = av_clip((int)res, 0, max[A]);
av_log(ctx, AV_LOG_DEBUG, "val[%d][%d] = %d\n", comp, val, s->lut[comp][val]);
}
}
return 0;
}
struct thread_data {
AVFrame *in;
AVFrame *out;
int w;
int h;
};
#define LOAD_PACKED_COMMON\
LutContext *s = ctx->priv;\
const struct thread_data *td = arg;\
\
int i, j;\
const int w = td->w;\
const int h = td->h;\
AVFrame *in = td->in;\
AVFrame *out = td->out;\
const uint16_t (*tab)[256*256] = (const uint16_t (*)[256*256])s->lut;\
const int step = s->step;\
\
const int slice_start = (h * jobnr ) / nb_jobs;\
const int slice_end = (h * (jobnr+1)) / nb_jobs;\
/* packed, 16-bit */
static int lut_packed_16bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
LOAD_PACKED_COMMON
uint16_t *inrow, *outrow, *inrow0, *outrow0;
const int in_linesize = in->linesize[0] / 2;
const int out_linesize = out->linesize[0] / 2;
inrow0 = (uint16_t *)in ->data[0];
outrow0 = (uint16_t *)out->data[0];
for (i = slice_start; i < slice_end; i++) {
inrow = inrow0 + i * in_linesize;
outrow = outrow0 + i * out_linesize;
for (j = 0; j < w; j++) {
switch (step) {
#if HAVE_BIGENDIAN
case 4: outrow[3] = av_bswap16(tab[3][av_bswap16(inrow[3])]); // Fall-through
case 3: outrow[2] = av_bswap16(tab[2][av_bswap16(inrow[2])]); // Fall-through
case 2: outrow[1] = av_bswap16(tab[1][av_bswap16(inrow[1])]); // Fall-through
default: outrow[0] = av_bswap16(tab[0][av_bswap16(inrow[0])]);
#else
case 4: outrow[3] = tab[3][inrow[3]]; // Fall-through
case 3: outrow[2] = tab[2][inrow[2]]; // Fall-through
case 2: outrow[1] = tab[1][inrow[1]]; // Fall-through
default: outrow[0] = tab[0][inrow[0]];
#endif
}
outrow += step;
inrow += step;
}
}
return 0;
}
/* packed, 8-bit */
static int lut_packed_8bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
LOAD_PACKED_COMMON
uint8_t *inrow, *outrow, *inrow0, *outrow0;
const int in_linesize = in->linesize[0];
const int out_linesize = out->linesize[0];
inrow0 = in ->data[0];
outrow0 = out->data[0];
for (i = slice_start; i < slice_end; i++) {
inrow = inrow0 + i * in_linesize;
outrow = outrow0 + i * out_linesize;
for (j = 0; j < w; j++) {
switch (step) {
case 4: outrow[3] = tab[3][inrow[3]]; // Fall-through
case 3: outrow[2] = tab[2][inrow[2]]; // Fall-through
case 2: outrow[1] = tab[1][inrow[1]]; // Fall-through
default: outrow[0] = tab[0][inrow[0]];
}
outrow += step;
inrow += step;
}
}
return 0;
}
#define LOAD_PLANAR_COMMON\
LutContext *s = ctx->priv;\
const struct thread_data *td = arg;\
int i, j, plane;\
AVFrame *in = td->in;\
AVFrame *out = td->out;\
#define PLANAR_COMMON\
int vsub = plane == 1 || plane == 2 ? s->vsub : 0;\
int hsub = plane == 1 || plane == 2 ? s->hsub : 0;\
int h = AV_CEIL_RSHIFT(td->h, vsub);\
int w = AV_CEIL_RSHIFT(td->w, hsub);\
const uint16_t *tab = s->lut[plane];\
\
const int slice_start = (h * jobnr ) / nb_jobs;\
const int slice_end = (h * (jobnr+1)) / nb_jobs;\
/* planar >8 bit depth */
static int lut_planar_16bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
LOAD_PLANAR_COMMON
uint16_t *inrow, *outrow;
for (plane = 0; plane < 4 && in->data[plane] && in->linesize[plane]; plane++) {
PLANAR_COMMON
const int in_linesize = in->linesize[plane] / 2;
const int out_linesize = out->linesize[plane] / 2;
inrow = (uint16_t *)in ->data[plane] + slice_start * in_linesize;
outrow = (uint16_t *)out->data[plane] + slice_start * out_linesize;
for (i = slice_start; i < slice_end; i++) {
for (j = 0; j < w; j++) {
#if HAVE_BIGENDIAN
outrow[j] = av_bswap16(tab[av_bswap16(inrow[j])]);
#else
outrow[j] = tab[inrow[j]];
#endif
}
inrow += in_linesize;
outrow += out_linesize;
}
}
return 0;
}
/* planar 8bit depth */
static int lut_planar_8bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
LOAD_PLANAR_COMMON
uint8_t *inrow, *outrow;
for (plane = 0; plane < 4 && in->data[plane] && in->linesize[plane]; plane++) {
PLANAR_COMMON
const int in_linesize = in->linesize[plane];
const int out_linesize = out->linesize[plane];
inrow = in ->data[plane] + slice_start * in_linesize;
outrow = out->data[plane] + slice_start * out_linesize;
for (i = slice_start; i < slice_end; i++) {
for (j = 0; j < w; j++)
outrow[j] = tab[inrow[j]];
inrow += in_linesize;
outrow += out_linesize;
}
}
return 0;
}
#define PACKED_THREAD_DATA\
struct thread_data td = {\
.in = in,\
.out = out,\
.w = inlink->w,\
.h = in->height,\
};\
#define PLANAR_THREAD_DATA\
struct thread_data td = {\
.in = in,\
.out = out,\
.w = inlink->w,\
.h = inlink->h,\
};\
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
LutContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out;
int direct = 0;
if (av_frame_is_writable(in)) {
direct = 1;
out = in;
} else {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
if (s->is_rgb && s->is_16bit && !s->is_planar) {
/* packed, 16-bit */
PACKED_THREAD_DATA
ff_filter_execute(ctx, lut_packed_16bits, &td, NULL,
FFMIN(in->height, ff_filter_get_nb_threads(ctx)));
} else if (s->is_rgb && !s->is_planar) {
/* packed 8 bits */
PACKED_THREAD_DATA
ff_filter_execute(ctx, lut_packed_8bits, &td, NULL,
FFMIN(in->height, ff_filter_get_nb_threads(ctx)));
} else if (s->is_16bit) {
/* planar >8 bit depth */
PLANAR_THREAD_DATA
ff_filter_execute(ctx, lut_planar_16bits, &td, NULL,
FFMIN(in->height, ff_filter_get_nb_threads(ctx)));
} else {
/* planar 8bit depth */
PLANAR_THREAD_DATA
ff_filter_execute(ctx, lut_planar_8bits, &td, NULL,
FFMIN(in->height, ff_filter_get_nb_threads(ctx)));
}
if (!direct)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
int ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
return config_props(ctx->inputs[0]);
}
static const AVFilterPad inputs[] = {
{ .name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_props,
},
};
static const AVFilterPad outputs[] = {
{ .name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
};
#define DEFINE_LUT_FILTER(name_, description_, priv_class_) \
const AVFilter ff_vf_##name_ = { \
.name = #name_, \
.description = NULL_IF_CONFIG_SMALL(description_), \
.priv_class = &priv_class_ ## _class, \
.priv_size = sizeof(LutContext), \
.init = name_##_init, \
.uninit = uninit, \
FILTER_INPUTS(inputs), \
FILTER_OUTPUTS(outputs), \
FILTER_QUERY_FUNC(query_formats), \
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | \
AVFILTER_FLAG_SLICE_THREADS, \
.process_command = process_command, \
}
AVFILTER_DEFINE_CLASS_EXT(lut, "lut/lutyuv/lutrgb", options);
#if CONFIG_LUT_FILTER
#define lut_init NULL
DEFINE_LUT_FILTER(lut, "Compute and apply a lookup table to the RGB/YUV input video.",
lut);
#undef lut_init
#endif
#if CONFIG_LUTYUV_FILTER
static av_cold int lutyuv_init(AVFilterContext *ctx)
{
LutContext *s = ctx->priv;
s->is_yuv = 1;
return 0;
}
DEFINE_LUT_FILTER(lutyuv, "Compute and apply a lookup table to the YUV input video.",
lut);
#endif
#if CONFIG_LUTRGB_FILTER
static av_cold int lutrgb_init(AVFilterContext *ctx)
{
LutContext *s = ctx->priv;
s->is_rgb = 1;
return 0;
}
DEFINE_LUT_FILTER(lutrgb, "Compute and apply a lookup table to the RGB input video.",
lut);
#endif
#if CONFIG_NEGATE_FILTER
static const AVOption negate_options[] = {
{ "negate_alpha", NULL, OFFSET(negate_alpha), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(negate);
static av_cold int negate_init(AVFilterContext *ctx)
{
LutContext *s = ctx->priv;
for (int i = 0; i < 4; i++) {
s->comp_expr_str[i] = av_strdup((i == 3 && !s->negate_alpha) ?
"val" : "negval");
if (!s->comp_expr_str[i])
return AVERROR(ENOMEM);
}
return 0;
}
DEFINE_LUT_FILTER(negate, "Negate input video.", negate);
#endif