1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/vf_w3fdif.c
Andreas Rheinhardt fcc1340bb2 avfilter/vf_w3fdif: Use formats list instead of query function
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-10-05 18:58:25 +02:00

619 lines
22 KiB
C

/*
* Copyright (C) 2012 British Broadcasting Corporation, All Rights Reserved
* Author of de-interlace algorithm: Jim Easterbrook for BBC R&D
* Based on the process described by Martin Weston for BBC R&D
* Author of FFmpeg filter: Mark Himsley for BBC Broadcast Systems Development
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include "w3fdif.h"
typedef struct W3FDIFContext {
const AVClass *class;
int filter; ///< 0 is simple, 1 is more complex
int mode; ///< 0 is frame, 1 is field
int parity; ///< frame field parity
int deint; ///< which frames to deinterlace
int linesize[4]; ///< bytes of pixel data per line for each plane
int planeheight[4]; ///< height of each plane
int field; ///< which field are we on, 0 or 1
int eof;
int nb_planes;
AVFrame *prev, *cur, *next; ///< previous, current, next frames
int32_t **work_line; ///< lines we are calculating
int nb_threads;
int max;
W3FDIFDSPContext dsp;
} W3FDIFContext;
#define OFFSET(x) offsetof(W3FDIFContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
#define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, unit }
static const AVOption w3fdif_options[] = {
{ "filter", "specify the filter", OFFSET(filter), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "filter" },
CONST("simple", NULL, 0, "filter"),
CONST("complex", NULL, 1, "filter"),
{ "mode", "specify the interlacing mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "mode"},
CONST("frame", "send one frame for each frame", 0, "mode"),
CONST("field", "send one frame for each field", 1, "mode"),
{ "parity", "specify the assumed picture field parity", OFFSET(parity), AV_OPT_TYPE_INT, {.i64=-1}, -1, 1, FLAGS, "parity" },
CONST("tff", "assume top field first", 0, "parity"),
CONST("bff", "assume bottom field first", 1, "parity"),
CONST("auto", "auto detect parity", -1, "parity"),
{ "deint", "specify which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "deint" },
CONST("all", "deinterlace all frames", 0, "deint"),
CONST("interlaced", "only deinterlace frames marked as interlaced", 1, "deint"),
{ NULL }
};
AVFILTER_DEFINE_CLASS(w3fdif);
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
static void filter_simple_low(int32_t *work_line,
uint8_t *in_lines_cur[2],
const int16_t *coef, int linesize)
{
int i;
for (i = 0; i < linesize; i++) {
*work_line = *in_lines_cur[0]++ * coef[0];
*work_line++ += *in_lines_cur[1]++ * coef[1];
}
}
static void filter_complex_low(int32_t *work_line,
uint8_t *in_lines_cur[4],
const int16_t *coef, int linesize)
{
int i;
for (i = 0; i < linesize; i++) {
*work_line = *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line++ += *in_lines_cur[3]++ * coef[3];
}
}
static void filter_simple_high(int32_t *work_line,
uint8_t *in_lines_cur[3],
uint8_t *in_lines_adj[3],
const int16_t *coef, int linesize)
{
int i;
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_adj[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_adj[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line++ += *in_lines_adj[2]++ * coef[2];
}
}
static void filter_complex_high(int32_t *work_line,
uint8_t *in_lines_cur[5],
uint8_t *in_lines_adj[5],
const int16_t *coef, int linesize)
{
int i;
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_adj[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_adj[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line += *in_lines_adj[2]++ * coef[2];
*work_line += *in_lines_cur[3]++ * coef[3];
*work_line += *in_lines_adj[3]++ * coef[3];
*work_line += *in_lines_cur[4]++ * coef[4];
*work_line++ += *in_lines_adj[4]++ * coef[4];
}
}
static void filter_scale(uint8_t *out_pixel, const int32_t *work_pixel, int linesize, int max)
{
int j;
for (j = 0; j < linesize; j++, out_pixel++, work_pixel++)
*out_pixel = av_clip(*work_pixel, 0, 255 * 256 * 128) >> 15;
}
static void filter16_simple_low(int32_t *work_line,
uint8_t *in_lines_cur8[2],
const int16_t *coef, int linesize)
{
uint16_t *in_lines_cur[2] = { (uint16_t *)in_lines_cur8[0], (uint16_t *)in_lines_cur8[1] };
int i;
linesize /= 2;
for (i = 0; i < linesize; i++) {
*work_line = *in_lines_cur[0]++ * coef[0];
*work_line++ += *in_lines_cur[1]++ * coef[1];
}
}
static void filter16_complex_low(int32_t *work_line,
uint8_t *in_lines_cur8[4],
const int16_t *coef, int linesize)
{
uint16_t *in_lines_cur[4] = { (uint16_t *)in_lines_cur8[0],
(uint16_t *)in_lines_cur8[1],
(uint16_t *)in_lines_cur8[2],
(uint16_t *)in_lines_cur8[3] };
int i;
linesize /= 2;
for (i = 0; i < linesize; i++) {
*work_line = *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line++ += *in_lines_cur[3]++ * coef[3];
}
}
static void filter16_simple_high(int32_t *work_line,
uint8_t *in_lines_cur8[3],
uint8_t *in_lines_adj8[3],
const int16_t *coef, int linesize)
{
uint16_t *in_lines_cur[3] = { (uint16_t *)in_lines_cur8[0],
(uint16_t *)in_lines_cur8[1],
(uint16_t *)in_lines_cur8[2] };
uint16_t *in_lines_adj[3] = { (uint16_t *)in_lines_adj8[0],
(uint16_t *)in_lines_adj8[1],
(uint16_t *)in_lines_adj8[2] };
int i;
linesize /= 2;
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_adj[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_adj[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line++ += *in_lines_adj[2]++ * coef[2];
}
}
static void filter16_complex_high(int32_t *work_line,
uint8_t *in_lines_cur8[5],
uint8_t *in_lines_adj8[5],
const int16_t *coef, int linesize)
{
uint16_t *in_lines_cur[5] = { (uint16_t *)in_lines_cur8[0],
(uint16_t *)in_lines_cur8[1],
(uint16_t *)in_lines_cur8[2],
(uint16_t *)in_lines_cur8[3],
(uint16_t *)in_lines_cur8[4] };
uint16_t *in_lines_adj[5] = { (uint16_t *)in_lines_adj8[0],
(uint16_t *)in_lines_adj8[1],
(uint16_t *)in_lines_adj8[2],
(uint16_t *)in_lines_adj8[3],
(uint16_t *)in_lines_adj8[4] };
int i;
linesize /= 2;
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_adj[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_adj[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line += *in_lines_adj[2]++ * coef[2];
*work_line += *in_lines_cur[3]++ * coef[3];
*work_line += *in_lines_adj[3]++ * coef[3];
*work_line += *in_lines_cur[4]++ * coef[4];
*work_line++ += *in_lines_adj[4]++ * coef[4];
}
}
static void filter16_scale(uint8_t *out_pixel8, const int32_t *work_pixel, int linesize, int max)
{
uint16_t *out_pixel = (uint16_t *)out_pixel8;
int j;
linesize /= 2;
for (j = 0; j < linesize; j++, out_pixel++, work_pixel++)
*out_pixel = av_clip(*work_pixel, 0, max) >> 15;
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
W3FDIFContext *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
int ret, i, depth;
if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0)
return ret;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
if (inlink->h < 3) {
av_log(ctx, AV_LOG_ERROR, "Video of less than 3 lines is not supported\n");
return AVERROR(EINVAL);
}
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->nb_threads = ff_filter_get_nb_threads(ctx);
s->work_line = av_calloc(s->nb_threads, sizeof(*s->work_line));
if (!s->work_line)
return AVERROR(ENOMEM);
for (i = 0; i < s->nb_threads; i++) {
s->work_line[i] = av_calloc(FFALIGN(s->linesize[0], 32), sizeof(*s->work_line[0]));
if (!s->work_line[i])
return AVERROR(ENOMEM);
}
depth = desc->comp[0].depth;
s->max = ((1 << depth) - 1) * 256 * 128;
if (depth <= 8) {
s->dsp.filter_simple_low = filter_simple_low;
s->dsp.filter_complex_low = filter_complex_low;
s->dsp.filter_simple_high = filter_simple_high;
s->dsp.filter_complex_high = filter_complex_high;
s->dsp.filter_scale = filter_scale;
} else {
s->dsp.filter_simple_low = filter16_simple_low;
s->dsp.filter_complex_low = filter16_complex_low;
s->dsp.filter_simple_high = filter16_simple_high;
s->dsp.filter_complex_high = filter16_complex_high;
s->dsp.filter_scale = filter16_scale;
}
if (ARCH_X86)
ff_w3fdif_init_x86(&s->dsp, depth);
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterLink *inlink = outlink->src->inputs[0];
outlink->time_base = av_mul_q(inlink->time_base, (AVRational){1, 2});
outlink->frame_rate = av_mul_q(inlink->frame_rate, (AVRational){2, 1});
return 0;
}
/*
* Filter coefficients from PH-2071, scaled by 256 * 128.
* Each set of coefficients has a set for low-frequencies and high-frequencies.
* n_coef_lf[] and n_coef_hf[] are the number of coefs for simple and more-complex.
* It is important for later that n_coef_lf[] is even and n_coef_hf[] is odd.
* coef_lf[][] and coef_hf[][] are the coefficients for low-frequencies
* and high-frequencies for simple and more-complex mode.
*/
static const int8_t n_coef_lf[2] = { 2, 4 };
static const int16_t coef_lf[2][4] = {{ 16384, 16384, 0, 0},
{ -852, 17236, 17236, -852}};
static const int8_t n_coef_hf[2] = { 3, 5 };
static const int16_t coef_hf[2][5] = {{ -2048, 4096, -2048, 0, 0},
{ 1016, -3801, 5570, -3801, 1016}};
typedef struct ThreadData {
AVFrame *out, *cur, *adj;
} ThreadData;
static int deinterlace_plane_slice(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs, int plane)
{
W3FDIFContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *cur = td->cur;
AVFrame *adj = td->adj;
const int filter = s->filter;
uint8_t *in_line, *in_lines_cur[5], *in_lines_adj[5];
uint8_t *out_line, *out_pixel;
int32_t *work_line, *work_pixel;
uint8_t *cur_data = cur->data[plane];
uint8_t *adj_data = adj->data[plane];
uint8_t *dst_data = out->data[plane];
const int linesize = s->linesize[plane];
const int height = s->planeheight[plane];
const int cur_line_stride = cur->linesize[plane];
const int adj_line_stride = adj->linesize[plane];
const int dst_line_stride = out->linesize[plane];
const int start = (height * jobnr) / nb_jobs;
const int end = (height * (jobnr+1)) / nb_jobs;
const int max = s->max;
const int interlaced = cur->interlaced_frame;
const int tff = s->field == (s->parity == -1 ? interlaced ? cur->top_field_first : 1 :
s->parity ^ 1);
int j, y_in, y_out;
/* copy unchanged the lines of the field */
y_out = start + (tff ^ (start & 1));
in_line = cur_data + (y_out * cur_line_stride);
out_line = dst_data + (y_out * dst_line_stride);
while (y_out < end) {
memcpy(out_line, in_line, linesize);
y_out += 2;
in_line += cur_line_stride * 2;
out_line += dst_line_stride * 2;
}
/* interpolate other lines of the field */
y_out = start + ((!tff) ^ (start & 1));
out_line = dst_data + (y_out * dst_line_stride);
while (y_out < end) {
/* get low vertical frequencies from current field */
for (j = 0; j < n_coef_lf[filter]; j++) {
y_in = (y_out + 1) + (j * 2) - n_coef_lf[filter];
while (y_in < 0)
y_in += 2;
while (y_in >= height)
y_in -= 2;
in_lines_cur[j] = cur_data + (y_in * cur_line_stride);
}
work_line = s->work_line[jobnr];
switch (n_coef_lf[filter]) {
case 2:
s->dsp.filter_simple_low(work_line, in_lines_cur,
coef_lf[filter], linesize);
break;
case 4:
s->dsp.filter_complex_low(work_line, in_lines_cur,
coef_lf[filter], linesize);
}
/* get high vertical frequencies from adjacent fields */
for (j = 0; j < n_coef_hf[filter]; j++) {
y_in = (y_out + 1) + (j * 2) - n_coef_hf[filter];
while (y_in < 0)
y_in += 2;
while (y_in >= height)
y_in -= 2;
in_lines_cur[j] = cur_data + (y_in * cur_line_stride);
in_lines_adj[j] = adj_data + (y_in * adj_line_stride);
}
work_line = s->work_line[jobnr];
switch (n_coef_hf[filter]) {
case 3:
s->dsp.filter_simple_high(work_line, in_lines_cur, in_lines_adj,
coef_hf[filter], linesize);
break;
case 5:
s->dsp.filter_complex_high(work_line, in_lines_cur, in_lines_adj,
coef_hf[filter], linesize);
}
/* save scaled result to the output frame, scaling down by 256 * 128 */
work_pixel = s->work_line[jobnr];
out_pixel = out_line;
s->dsp.filter_scale(out_pixel, work_pixel, linesize, max);
/* move on to next line */
y_out += 2;
out_line += dst_line_stride * 2;
}
return 0;
}
static int deinterlace_slice(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
W3FDIFContext *s = ctx->priv;
for (int p = 0; p < s->nb_planes; p++)
deinterlace_plane_slice(ctx, arg, jobnr, nb_jobs, p);
return 0;
}
static int filter(AVFilterContext *ctx, int is_second)
{
W3FDIFContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out, *adj;
ThreadData td;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out)
return AVERROR(ENOMEM);
av_frame_copy_props(out, s->cur);
out->interlaced_frame = 0;
if (!is_second) {
if (out->pts != AV_NOPTS_VALUE)
out->pts *= 2;
} else {
int64_t cur_pts = s->cur->pts;
int64_t next_pts = s->next->pts;
if (next_pts != AV_NOPTS_VALUE && cur_pts != AV_NOPTS_VALUE) {
out->pts = cur_pts + next_pts;
} else {
out->pts = AV_NOPTS_VALUE;
}
}
adj = s->field ? s->next : s->prev;
td.out = out; td.cur = s->cur; td.adj = adj;
ff_filter_execute(ctx, deinterlace_slice, &td, NULL,
FFMIN(s->planeheight[1], s->nb_threads));
if (s->mode)
s->field = !s->field;
return ff_filter_frame(outlink, out);
}
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
{
AVFilterContext *ctx = inlink->dst;
W3FDIFContext *s = ctx->priv;
int ret;
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = s->next;
s->next = frame;
if (!s->cur) {
s->cur = av_frame_clone(s->next);
if (!s->cur)
return AVERROR(ENOMEM);
}
if ((s->deint && !s->cur->interlaced_frame) || ctx->is_disabled) {
AVFrame *out = av_frame_clone(s->cur);
if (!out)
return AVERROR(ENOMEM);
av_frame_free(&s->prev);
if (out->pts != AV_NOPTS_VALUE)
out->pts *= 2;
return ff_filter_frame(ctx->outputs[0], out);
}
if (!s->prev)
return 0;
ret = filter(ctx, 0);
if (ret < 0 || s->mode == 0)
return ret;
return filter(ctx, 1);
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
W3FDIFContext *s = ctx->priv;
int ret;
if (s->eof)
return AVERROR_EOF;
ret = ff_request_frame(ctx->inputs[0]);
if (ret == AVERROR_EOF && s->cur) {
AVFrame *next = av_frame_clone(s->next);
if (!next)
return AVERROR(ENOMEM);
next->pts = s->next->pts * 2 - s->cur->pts;
filter_frame(ctx->inputs[0], next);
s->eof = 1;
} else if (ret < 0) {
return ret;
}
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
W3FDIFContext *s = ctx->priv;
int i;
av_frame_free(&s->prev);
av_frame_free(&s->cur );
av_frame_free(&s->next);
for (i = 0; i < s->nb_threads; i++)
av_freep(&s->work_line[i]);
av_freep(&s->work_line);
}
static const AVFilterPad w3fdif_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad w3fdif_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
.request_frame = request_frame,
},
};
const AVFilter ff_vf_w3fdif = {
.name = "w3fdif",
.description = NULL_IF_CONFIG_SMALL("Apply Martin Weston three field deinterlace."),
.priv_size = sizeof(W3FDIFContext),
.priv_class = &w3fdif_class,
.uninit = uninit,
FILTER_INPUTS(w3fdif_inputs),
FILTER_OUTPUTS(w3fdif_outputs),
FILTER_PIXFMTS_ARRAY(pix_fmts),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
.process_command = ff_filter_process_command,
};