1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/rasc.c

813 lines
24 KiB
C

/*
* RemotelyAnywhere Screen Capture decoder
*
* Copyright (c) 2018 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "libavutil/avassert.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "bytestream.h"
#include "internal.h"
#include <zlib.h>
#define KBND MKTAG('K', 'B', 'N', 'D')
#define FINT MKTAG('F', 'I', 'N', 'T')
#define INIT MKTAG('I', 'N', 'I', 'T')
#define BNDL MKTAG('B', 'N', 'D', 'L')
#define KFRM MKTAG('K', 'F', 'R', 'M')
#define DLTA MKTAG('D', 'L', 'T', 'A')
#define MOUS MKTAG('M', 'O', 'U', 'S')
#define MPOS MKTAG('M', 'P', 'O', 'S')
#define MOVE MKTAG('M', 'O', 'V', 'E')
#define EMPT MKTAG('E', 'M', 'P', 'T')
typedef struct RASCContext {
AVClass *class;
int skip_cursor;
GetByteContext gb;
uint8_t *delta;
int delta_size;
uint8_t *cursor;
int cursor_size;
unsigned cursor_w;
unsigned cursor_h;
unsigned cursor_x;
unsigned cursor_y;
int stride;
int bpp;
z_stream zstream;
AVFrame *frame;
AVFrame *frame1;
AVFrame *frame2;
} RASCContext;
static void clear_plane(AVCodecContext *avctx, AVFrame *frame)
{
RASCContext *s = avctx->priv_data;
uint8_t *dst = frame->data[0];
for (int y = 0; y < avctx->height; y++) {
memset(dst, 0, avctx->width * s->bpp);
dst += frame->linesize[0];
}
}
static void copy_plane(AVCodecContext *avctx, AVFrame *src, AVFrame *dst)
{
RASCContext *s = avctx->priv_data;
uint8_t *srcp = src->data[0];
uint8_t *dstp = dst->data[0];
for (int y = 0; y < avctx->height; y++) {
memcpy(dstp, srcp, s->stride);
srcp += src->linesize[0];
dstp += dst->linesize[0];
}
}
static int init_frames(AVCodecContext *avctx)
{
RASCContext *s = avctx->priv_data;
int ret;
av_frame_unref(s->frame1);
if ((ret = ff_get_buffer(avctx, s->frame1, 0)) < 0)
return ret;
av_frame_unref(s->frame2);
if ((ret = ff_get_buffer(avctx, s->frame2, 0)) < 0)
return ret;
clear_plane(avctx, s->frame2);
clear_plane(avctx, s->frame1);
return 0;
}
static int decode_fint(AVCodecContext *avctx,
AVPacket *avpkt, unsigned size)
{
RASCContext *s = avctx->priv_data;
GetByteContext *gb = &s->gb;
unsigned w, h, fmt;
int ret;
if (bytestream2_peek_le32(gb) != 0x65) {
if (!s->frame2->data[0] || !s->frame1->data[0])
return AVERROR_INVALIDDATA;
clear_plane(avctx, s->frame2);
clear_plane(avctx, s->frame1);
return 0;
}
bytestream2_skip(gb, 8);
w = bytestream2_get_le32(gb);
h = bytestream2_get_le32(gb);
bytestream2_skip(gb, 30);
fmt = bytestream2_get_le16(gb);
bytestream2_skip(gb, 24);
switch (fmt) {
case 8: s->stride = FFALIGN(w, 4);
s->bpp = 1;
fmt = AV_PIX_FMT_PAL8; break;
case 16: s->stride = w * 2;
s->bpp = 2;
fmt = AV_PIX_FMT_RGB555LE; break;
case 32: s->stride = w * 4;
s->bpp = 4;
fmt = AV_PIX_FMT_BGR0; break;
default: return AVERROR_INVALIDDATA;
}
ret = ff_set_dimensions(avctx, w, h);
if (ret < 0)
return ret;
avctx->width = w;
avctx->height = h;
avctx->pix_fmt = fmt;
ret = init_frames(avctx);
if (ret < 0)
return ret;
if (avctx->pix_fmt == AV_PIX_FMT_PAL8) {
uint32_t *pal = (uint32_t *)s->frame2->data[1];
for (int i = 0; i < 256; i++)
pal[i] = bytestream2_get_le32(gb) | 0xFF000000u;
}
return 0;
}
static int decode_zlib(AVCodecContext *avctx, AVPacket *avpkt,
unsigned size, unsigned uncompressed_size)
{
RASCContext *s = avctx->priv_data;
GetByteContext *gb = &s->gb;
int zret;
zret = inflateReset(&s->zstream);
if (zret != Z_OK) {
av_log(avctx, AV_LOG_ERROR, "Inflate reset error: %d\n", zret);
return AVERROR_EXTERNAL;
}
av_fast_padded_malloc(&s->delta, &s->delta_size, uncompressed_size);
if (!s->delta)
return AVERROR(ENOMEM);
s->zstream.next_in = avpkt->data + bytestream2_tell(gb);
s->zstream.avail_in = FFMIN(size, bytestream2_get_bytes_left(gb));
s->zstream.next_out = s->delta;
s->zstream.avail_out = s->delta_size;
zret = inflate(&s->zstream, Z_FINISH);
if (zret != Z_STREAM_END) {
av_log(avctx, AV_LOG_ERROR,
"Inflate failed with return code: %d.\n", zret);
return AVERROR_INVALIDDATA;
}
return 0;
}
static int decode_move(AVCodecContext *avctx,
AVPacket *avpkt, unsigned size)
{
RASCContext *s = avctx->priv_data;
GetByteContext *gb = &s->gb;
GetByteContext mc;
unsigned pos, compression, nb_moves;
unsigned uncompressed_size;
int ret;
pos = bytestream2_tell(gb);
bytestream2_skip(gb, 8);
nb_moves = bytestream2_get_le32(gb);
bytestream2_skip(gb, 8);
compression = bytestream2_get_le32(gb);
if (nb_moves > INT32_MAX / 16)
return AVERROR_INVALIDDATA;
uncompressed_size = 16 * nb_moves;
if (compression == 1) {
ret = decode_zlib(avctx, avpkt,
size - (bytestream2_tell(gb) - pos),
uncompressed_size);
if (ret < 0)
return ret;
bytestream2_init(&mc, s->delta, uncompressed_size);
} else if (compression == 0) {
bytestream2_init(&mc, avpkt->data + bytestream2_tell(gb),
bytestream2_get_bytes_left(gb));
} else if (compression == 2) {
avpriv_request_sample(avctx, "compression %d", compression);
return AVERROR_PATCHWELCOME;
} else {
return AVERROR_INVALIDDATA;
}
if (bytestream2_get_bytes_left(&mc) < uncompressed_size)
return AVERROR_INVALIDDATA;
for (int i = 0; i < nb_moves; i++) {
int type, start_x, start_y, end_x, end_y, mov_x, mov_y;
uint8_t *e2, *b1, *b2;
int w, h;
type = bytestream2_get_le16(&mc);
start_x = bytestream2_get_le16(&mc);
start_y = bytestream2_get_le16(&mc);
end_x = bytestream2_get_le16(&mc);
end_y = bytestream2_get_le16(&mc);
mov_x = bytestream2_get_le16(&mc);
mov_y = bytestream2_get_le16(&mc);
bytestream2_skip(&mc, 2);
if (start_x >= avctx->width || start_y >= avctx->height ||
end_x >= avctx->width || end_y >= avctx->height ||
mov_x >= avctx->width || mov_y >= avctx->height) {
continue;
}
if (start_x >= end_x || start_y >= end_y)
continue;
w = end_x - start_x;
h = end_y - start_y;
if (mov_x + w > avctx->width || mov_y + h > avctx->height)
continue;
if (!s->frame2->data[0] || !s->frame1->data[0])
return AVERROR_INVALIDDATA;
b1 = s->frame1->data[0] + s->frame1->linesize[0] * (start_y + h) + start_x * s->bpp;
b2 = s->frame2->data[0] + s->frame2->linesize[0] * (start_y + h) + start_x * s->bpp;
e2 = s->frame2->data[0] + s->frame2->linesize[0] * (mov_y + h) + mov_x * s->bpp;
if (type == 2) {
for (int j = 0; j < h; j++) {
memcpy(b1, b2, w * s->bpp);
b1 -= s->frame1->linesize[0];
b2 -= s->frame2->linesize[0];
}
} else if (type == 1) {
for (int j = 0; j < h; j++) {
memset(b2, 0, w * s->bpp);
b2 -= s->frame2->linesize[0];
}
} else if (type == 0) {
uint8_t *buffer;
av_fast_padded_malloc(&s->delta, &s->delta_size, w * h * s->bpp);
buffer = s->delta;
if (!buffer)
return AVERROR(ENOMEM);
for (int j = 0; j < h; j++) {
memcpy(buffer + j * w * s->bpp, e2, w * s->bpp);
e2 -= s->frame2->linesize[0];
}
for (int j = 0; j < h; j++) {
memcpy(b2, buffer + j * w * s->bpp, w * s->bpp);
b2 -= s->frame2->linesize[0];
}
} else {
return AVERROR_INVALIDDATA;
}
}
bytestream2_skip(gb, size - (bytestream2_tell(gb) - pos));
return 0;
}
#define NEXT_LINE \
if (cx >= w * s->bpp) { \
cx = 0; \
cy--; \
b1 -= s->frame1->linesize[0]; \
b2 -= s->frame2->linesize[0]; \
} \
len--;
static int decode_dlta(AVCodecContext *avctx,
AVPacket *avpkt, unsigned size)
{
RASCContext *s = avctx->priv_data;
GetByteContext *gb = &s->gb;
GetByteContext dc;
unsigned uncompressed_size, pos;
unsigned x, y, w, h;
int ret, cx, cy, compression;
uint8_t *b1, *b2;
pos = bytestream2_tell(gb);
bytestream2_skip(gb, 12);
uncompressed_size = bytestream2_get_le32(gb);
x = bytestream2_get_le32(gb);
y = bytestream2_get_le32(gb);
w = bytestream2_get_le32(gb);
h = bytestream2_get_le32(gb);
if (x >= avctx->width || y >= avctx->height ||
w > avctx->width || h > avctx->height)
return AVERROR_INVALIDDATA;
if (x + w > avctx->width || y + h > avctx->height)
return AVERROR_INVALIDDATA;
bytestream2_skip(gb, 4);
compression = bytestream2_get_le32(gb);
if (compression == 1) {
ret = decode_zlib(avctx, avpkt, size, uncompressed_size);
if (ret < 0)
return ret;
bytestream2_init(&dc, s->delta, uncompressed_size);
} else if (compression == 0) {
if (bytestream2_get_bytes_left(gb) < uncompressed_size)
return AVERROR_INVALIDDATA;
bytestream2_init(&dc, avpkt->data + bytestream2_tell(gb),
uncompressed_size);
} else if (compression == 2) {
avpriv_request_sample(avctx, "compression %d", compression);
return AVERROR_PATCHWELCOME;
} else {
return AVERROR_INVALIDDATA;
}
if (!s->frame2->data[0] || !s->frame1->data[0])
return AVERROR_INVALIDDATA;
b1 = s->frame1->data[0] + s->frame1->linesize[0] * (y + h - 1) + x * s->bpp;
b2 = s->frame2->data[0] + s->frame2->linesize[0] * (y + h - 1) + x * s->bpp;
cx = 0, cy = h;
while (bytestream2_get_bytes_left(&dc) > 0) {
int type = bytestream2_get_byte(&dc);
int len = bytestream2_get_byte(&dc);
unsigned fill;
switch (type) {
case 1:
while (len > 0 && cy > 0) {
cx++;
NEXT_LINE
}
break;
case 2:
while (len > 0 && cy > 0) {
int v0 = b1[cx];
int v1 = b2[cx];
b2[cx] = v0;
b1[cx] = v1;
cx++;
NEXT_LINE
}
break;
case 3:
while (len > 0 && cy > 0) {
fill = bytestream2_get_byte(&dc);
b1[cx] = b2[cx];
b2[cx] = fill;
cx++;
NEXT_LINE
}
break;
case 4:
fill = bytestream2_get_byte(&dc);
while (len > 0 && cy > 0) {
AV_WL32(b1 + cx, AV_RL32(b2 + cx));
AV_WL32(b2 + cx, fill);
cx++;
NEXT_LINE
}
break;
case 7:
fill = bytestream2_get_le32(&dc);
while (len > 0 && cy > 0) {
AV_WL32(b1 + cx, AV_RL32(b2 + cx));
AV_WL32(b2 + cx, fill);
cx += 4;
NEXT_LINE
}
break;
case 10:
while (len > 0 && cy > 0) {
cx += 4;
NEXT_LINE
}
break;
case 12:
while (len > 0 && cy > 0) {
unsigned v0, v1;
v0 = AV_RL32(b2 + cx);
v1 = AV_RL32(b1 + cx);
AV_WL32(b2 + cx, v1);
AV_WL32(b1 + cx, v0);
cx += 4;
NEXT_LINE
}
break;
case 13:
while (len > 0 && cy > 0) {
fill = bytestream2_get_le32(&dc);
AV_WL32(b1 + cx, AV_RL32(b2 + cx));
AV_WL32(b2 + cx, fill);
cx += 4;
NEXT_LINE
}
break;
default:
avpriv_request_sample(avctx, "runlen %d", type);
return AVERROR_INVALIDDATA;
}
}
bytestream2_skip(gb, size - (bytestream2_tell(gb) - pos));
return 0;
}
static int decode_kfrm(AVCodecContext *avctx,
AVPacket *avpkt, unsigned size)
{
RASCContext *s = avctx->priv_data;
GetByteContext *gb = &s->gb;
uint8_t *dst;
unsigned pos;
int zret, ret;
pos = bytestream2_tell(gb);
if (bytestream2_peek_le32(gb) == 0x65) {
ret = decode_fint(avctx, avpkt, size);
if (ret < 0)
return ret;
}
if (!s->frame2->data[0])
return AVERROR_INVALIDDATA;
zret = inflateReset(&s->zstream);
if (zret != Z_OK) {
av_log(avctx, AV_LOG_ERROR, "Inflate reset error: %d\n", zret);
return AVERROR_EXTERNAL;
}
s->zstream.next_in = avpkt->data + bytestream2_tell(gb);
s->zstream.avail_in = bytestream2_get_bytes_left(gb);
dst = s->frame2->data[0] + (avctx->height - 1) * s->frame2->linesize[0];
for (int i = 0; i < avctx->height; i++) {
s->zstream.next_out = dst;
s->zstream.avail_out = s->stride;
zret = inflate(&s->zstream, Z_SYNC_FLUSH);
if (zret != Z_OK && zret != Z_STREAM_END) {
av_log(avctx, AV_LOG_ERROR,
"Inflate failed with return code: %d.\n", zret);
return AVERROR_INVALIDDATA;
}
dst -= s->frame2->linesize[0];
}
dst = s->frame1->data[0] + (avctx->height - 1) * s->frame1->linesize[0];
for (int i = 0; i < avctx->height; i++) {
s->zstream.next_out = dst;
s->zstream.avail_out = s->stride;
zret = inflate(&s->zstream, Z_SYNC_FLUSH);
if (zret != Z_OK && zret != Z_STREAM_END) {
av_log(avctx, AV_LOG_ERROR,
"Inflate failed with return code: %d.\n", zret);
return AVERROR_INVALIDDATA;
}
dst -= s->frame1->linesize[0];
}
bytestream2_skip(gb, size - (bytestream2_tell(gb) - pos));
return 0;
}
static int decode_mous(AVCodecContext *avctx,
AVPacket *avpkt, unsigned size)
{
RASCContext *s = avctx->priv_data;
GetByteContext *gb = &s->gb;
unsigned w, h, pos, uncompressed_size;
int ret;
pos = bytestream2_tell(gb);
bytestream2_skip(gb, 8);
w = bytestream2_get_le32(gb);
h = bytestream2_get_le32(gb);
bytestream2_skip(gb, 12);
uncompressed_size = bytestream2_get_le32(gb);
if (w > avctx->width || h > avctx->height)
return AVERROR_INVALIDDATA;
if (uncompressed_size != 3 * w * h)
return AVERROR_INVALIDDATA;
av_fast_padded_malloc(&s->cursor, &s->cursor_size, uncompressed_size);
if (!s->cursor)
return AVERROR(ENOMEM);
ret = decode_zlib(avctx, avpkt,
size - (bytestream2_tell(gb) - pos),
uncompressed_size);
if (ret < 0)
return ret;
memcpy(s->cursor, s->delta, uncompressed_size);
bytestream2_skip(gb, size - (bytestream2_tell(gb) - pos));
s->cursor_w = w;
s->cursor_h = h;
return 0;
}
static int decode_mpos(AVCodecContext *avctx,
AVPacket *avpkt, unsigned size)
{
RASCContext *s = avctx->priv_data;
GetByteContext *gb = &s->gb;
unsigned pos;
pos = bytestream2_tell(gb);
bytestream2_skip(gb, 8);
s->cursor_x = bytestream2_get_le32(gb);
s->cursor_y = bytestream2_get_le32(gb);
bytestream2_skip(gb, size - (bytestream2_tell(gb) - pos));
return 0;
}
static void draw_cursor(AVCodecContext *avctx)
{
RASCContext *s = avctx->priv_data;
uint8_t *dst, *pal;
if (!s->cursor)
return;
if (s->cursor_x >= avctx->width || s->cursor_y >= avctx->height)
return;
if (s->cursor_x + s->cursor_w > avctx->width ||
s->cursor_y + s->cursor_h > avctx->height)
return;
if (avctx->pix_fmt == AV_PIX_FMT_PAL8) {
pal = s->frame->data[1];
for (int i = 0; i < s->cursor_h; i++) {
for (int j = 0; j < s->cursor_w; j++) {
int cr = s->cursor[3 * s->cursor_w * (s->cursor_h - i - 1) + 3 * j + 0];
int cg = s->cursor[3 * s->cursor_w * (s->cursor_h - i - 1) + 3 * j + 1];
int cb = s->cursor[3 * s->cursor_w * (s->cursor_h - i - 1) + 3 * j + 2];
int best = INT_MAX;
int index = 0;
int dist;
if (cr == s->cursor[0] && cg == s->cursor[1] && cb == s->cursor[2])
continue;
dst = s->frame->data[0] + s->frame->linesize[0] * (s->cursor_y + i) + (s->cursor_x + j);
for (int k = 0; k < 256; k++) {
int pr = pal[k * 4 + 0];
int pg = pal[k * 4 + 1];
int pb = pal[k * 4 + 2];
dist = FFABS(cr - pr) + FFABS(cg - pg) + FFABS(cb - pb);
if (dist < best) {
best = dist;
index = k;
}
}
dst[0] = index;
}
}
} else if (avctx->pix_fmt == AV_PIX_FMT_RGB555LE) {
for (int i = 0; i < s->cursor_h; i++) {
for (int j = 0; j < s->cursor_w; j++) {
int cr = s->cursor[3 * s->cursor_w * (s->cursor_h - i - 1) + 3 * j + 0];
int cg = s->cursor[3 * s->cursor_w * (s->cursor_h - i - 1) + 3 * j + 1];
int cb = s->cursor[3 * s->cursor_w * (s->cursor_h - i - 1) + 3 * j + 2];
if (cr == s->cursor[0] && cg == s->cursor[1] && cb == s->cursor[2])
continue;
cr >>= 3; cg >>=3; cb >>= 3;
dst = s->frame->data[0] + s->frame->linesize[0] * (s->cursor_y + i) + 2 * (s->cursor_x + j);
AV_WL16(dst, cr | cg << 5 | cb << 10);
}
}
} else if (avctx->pix_fmt == AV_PIX_FMT_BGR0) {
for (int i = 0; i < s->cursor_h; i++) {
for (int j = 0; j < s->cursor_w; j++) {
int cr = s->cursor[3 * s->cursor_w * (s->cursor_h - i - 1) + 3 * j + 0];
int cg = s->cursor[3 * s->cursor_w * (s->cursor_h - i - 1) + 3 * j + 1];
int cb = s->cursor[3 * s->cursor_w * (s->cursor_h - i - 1) + 3 * j + 2];
if (cr == s->cursor[0] && cg == s->cursor[1] && cb == s->cursor[2])
continue;
dst = s->frame->data[0] + s->frame->linesize[0] * (s->cursor_y + i) + 4 * (s->cursor_x + j);
dst[0] = cb;
dst[1] = cg;
dst[2] = cr;
}
}
}
}
static int decode_frame(AVCodecContext *avctx,
void *data, int *got_frame,
AVPacket *avpkt)
{
RASCContext *s = avctx->priv_data;
GetByteContext *gb = &s->gb;
int ret, intra = 0;
AVFrame *frame = data;
bytestream2_init(gb, avpkt->data, avpkt->size);
if (bytestream2_peek_le32(gb) == EMPT)
return avpkt->size;
s->frame = frame;
while (bytestream2_get_bytes_left(gb) > 0) {
unsigned type, size = 0;
type = bytestream2_get_le32(gb);
if (type == KBND || type == BNDL) {
intra = type == KBND;
type = bytestream2_get_le32(gb);
}
size = bytestream2_get_le32(gb);
if (bytestream2_get_bytes_left(gb) < size)
return AVERROR_INVALIDDATA;
switch (type) {
case FINT:
case INIT:
ret = decode_fint(avctx, avpkt, size);
break;
case KFRM:
ret = decode_kfrm(avctx, avpkt, size);
break;
case DLTA:
ret = decode_dlta(avctx, avpkt, size);
break;
case MOVE:
ret = decode_move(avctx, avpkt, size);
break;
case MOUS:
ret = decode_mous(avctx, avpkt, size);
break;
case MPOS:
ret = decode_mpos(avctx, avpkt, size);
break;
default:
bytestream2_skip(gb, size);
}
if (ret < 0)
return ret;
}
if ((ret = ff_get_buffer(avctx, s->frame, 0)) < 0)
return ret;
if (!s->frame2->data[0] || !s->frame1->data[0])
return AVERROR_INVALIDDATA;
copy_plane(avctx, s->frame2, s->frame);
if (avctx->pix_fmt == AV_PIX_FMT_PAL8)
memcpy(s->frame->data[1], s->frame2->data[1], 1024);
if (!s->skip_cursor)
draw_cursor(avctx);
s->frame->key_frame = intra;
s->frame->pict_type = intra ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
*got_frame = 1;
return avpkt->size;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
RASCContext *s = avctx->priv_data;
int zret;
s->zstream.zalloc = Z_NULL;
s->zstream.zfree = Z_NULL;
s->zstream.opaque = Z_NULL;
zret = inflateInit(&s->zstream);
if (zret != Z_OK) {
av_log(avctx, AV_LOG_ERROR, "Inflate init error: %d\n", zret);
return AVERROR_EXTERNAL;
}
s->frame1 = av_frame_alloc();
s->frame2 = av_frame_alloc();
if (!s->frame1 || !s->frame2)
return AVERROR(ENOMEM);
return 0;
}
static av_cold int decode_close(AVCodecContext *avctx)
{
RASCContext *s = avctx->priv_data;
av_freep(&s->cursor);
s->cursor_size = 0;
av_freep(&s->delta);
s->delta_size = 0;
av_frame_free(&s->frame1);
av_frame_free(&s->frame2);
inflateEnd(&s->zstream);
return 0;
}
static void decode_flush(AVCodecContext *avctx)
{
RASCContext *s = avctx->priv_data;
clear_plane(avctx, s->frame1);
clear_plane(avctx, s->frame2);
}
static const AVOption options[] = {
{ "skip_cursor", "skip the cursor", offsetof(RASCContext, skip_cursor), AV_OPT_TYPE_BOOL, {.i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM },
{ NULL },
};
static const AVClass rasc_decoder_class = {
.class_name = "rasc decoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_rasc_decoder = {
.name = "rasc",
.long_name = NULL_IF_CONFIG_SMALL("RemotelyAnywhere Screen Capture"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_RASC,
.priv_data_size = sizeof(RASCContext),
.init = decode_init,
.close = decode_close,
.decode = decode_frame,
.flush = decode_flush,
.capabilities = AV_CODEC_CAP_DR1,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
FF_CODEC_CAP_INIT_CLEANUP,
.priv_class = &rasc_decoder_class,
};