1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-07 11:13:41 +02:00
FFmpeg/libavcodec/proresdec2.c
Michael Niedermayer ef6b85e9b8 avcodec/proresdec2: propagate error codes
Based-on: 44690dfa68
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2013-10-10 13:11:54 +02:00

689 lines
22 KiB
C

/*
* Copyright (c) 2010-2011 Maxim Poliakovski
* Copyright (c) 2010-2011 Elvis Presley
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Known FOURCCs: 'apch' (HQ), 'apcn' (SD), 'apcs' (LT), 'acpo' (Proxy), 'ap4h' (4444)
*/
//#define DEBUG
#define LONG_BITSTREAM_READER
#include "avcodec.h"
#include "get_bits.h"
#include "internal.h"
#include "simple_idct.h"
#include "proresdec.h"
#include "proresdata.h"
static void permute(uint8_t *dst, const uint8_t *src, const uint8_t permutation[64])
{
int i;
for (i = 0; i < 64; i++)
dst[i] = permutation[src[i]];
}
static av_cold int decode_init(AVCodecContext *avctx)
{
ProresContext *ctx = avctx->priv_data;
uint8_t idct_permutation[64];
avctx->bits_per_raw_sample = 10;
ff_dsputil_init(&ctx->dsp, avctx);
ff_proresdsp_init(&ctx->prodsp, avctx);
ff_init_scantable_permutation(idct_permutation,
ctx->prodsp.idct_permutation_type);
permute(ctx->progressive_scan, ff_prores_progressive_scan, idct_permutation);
permute(ctx->interlaced_scan, ff_prores_interlaced_scan, idct_permutation);
return 0;
}
static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
const int data_size, AVCodecContext *avctx)
{
int hdr_size, width, height, flags;
int version;
const uint8_t *ptr;
hdr_size = AV_RB16(buf);
av_dlog(avctx, "header size %d\n", hdr_size);
if (hdr_size > data_size) {
av_log(avctx, AV_LOG_ERROR, "error, wrong header size\n");
return AVERROR_INVALIDDATA;
}
version = AV_RB16(buf + 2);
av_dlog(avctx, "%.4s version %d\n", buf+4, version);
if (version > 1) {
av_log(avctx, AV_LOG_ERROR, "unsupported version: %d\n", version);
return AVERROR_PATCHWELCOME;
}
width = AV_RB16(buf + 8);
height = AV_RB16(buf + 10);
if (width != avctx->width || height != avctx->height) {
av_log(avctx, AV_LOG_ERROR, "picture resolution change: %dx%d -> %dx%d\n",
avctx->width, avctx->height, width, height);
return AVERROR_PATCHWELCOME;
}
ctx->frame_type = (buf[12] >> 2) & 3;
ctx->alpha_info = buf[17] & 0xf;
if (ctx->alpha_info > 2) {
av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info);
return AVERROR_INVALIDDATA;
}
if (avctx->skip_alpha) ctx->alpha_info = 0;
av_dlog(avctx, "frame type %d\n", ctx->frame_type);
if (ctx->frame_type == 0) {
ctx->scan = ctx->progressive_scan; // permuted
} else {
ctx->scan = ctx->interlaced_scan; // permuted
ctx->frame->interlaced_frame = 1;
ctx->frame->top_field_first = ctx->frame_type == 1;
}
if (ctx->alpha_info) {
avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUVA444P10 : AV_PIX_FMT_YUVA422P10;
} else {
avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUV444P10 : AV_PIX_FMT_YUV422P10;
}
ptr = buf + 20;
flags = buf[19];
av_dlog(avctx, "flags %x\n", flags);
if (flags & 2) {
if(buf + data_size - ptr < 64) {
av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
return AVERROR_INVALIDDATA;
}
permute(ctx->qmat_luma, ctx->prodsp.idct_permutation, ptr);
ptr += 64;
} else {
memset(ctx->qmat_luma, 4, 64);
}
if (flags & 1) {
if(buf + data_size - ptr < 64) {
av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
return AVERROR_INVALIDDATA;
}
permute(ctx->qmat_chroma, ctx->prodsp.idct_permutation, ptr);
} else {
memset(ctx->qmat_chroma, 4, 64);
}
return hdr_size;
}
static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size)
{
ProresContext *ctx = avctx->priv_data;
int i, hdr_size, slice_count;
unsigned pic_data_size;
int log2_slice_mb_width, log2_slice_mb_height;
int slice_mb_count, mb_x, mb_y;
const uint8_t *data_ptr, *index_ptr;
hdr_size = buf[0] >> 3;
if (hdr_size < 8 || hdr_size > buf_size) {
av_log(avctx, AV_LOG_ERROR, "error, wrong picture header size\n");
return AVERROR_INVALIDDATA;
}
pic_data_size = AV_RB32(buf + 1);
if (pic_data_size > buf_size) {
av_log(avctx, AV_LOG_ERROR, "error, wrong picture data size\n");
return AVERROR_INVALIDDATA;
}
log2_slice_mb_width = buf[7] >> 4;
log2_slice_mb_height = buf[7] & 0xF;
if (log2_slice_mb_width > 3 || log2_slice_mb_height) {
av_log(avctx, AV_LOG_ERROR, "unsupported slice resolution: %dx%d\n",
1 << log2_slice_mb_width, 1 << log2_slice_mb_height);
return AVERROR_INVALIDDATA;
}
ctx->mb_width = (avctx->width + 15) >> 4;
if (ctx->frame_type)
ctx->mb_height = (avctx->height + 31) >> 5;
else
ctx->mb_height = (avctx->height + 15) >> 4;
slice_count = AV_RB16(buf + 5);
if (ctx->slice_count != slice_count || !ctx->slices) {
av_freep(&ctx->slices);
ctx->slices = av_mallocz(slice_count * sizeof(*ctx->slices));
if (!ctx->slices)
return AVERROR(ENOMEM);
ctx->slice_count = slice_count;
}
if (!slice_count)
return AVERROR(EINVAL);
if (hdr_size + slice_count*2 > buf_size) {
av_log(avctx, AV_LOG_ERROR, "error, wrong slice count\n");
return AVERROR_INVALIDDATA;
}
// parse slice information
index_ptr = buf + hdr_size;
data_ptr = index_ptr + slice_count*2;
slice_mb_count = 1 << log2_slice_mb_width;
mb_x = 0;
mb_y = 0;
for (i = 0; i < slice_count; i++) {
SliceContext *slice = &ctx->slices[i];
slice->data = data_ptr;
data_ptr += AV_RB16(index_ptr + i*2);
while (ctx->mb_width - mb_x < slice_mb_count)
slice_mb_count >>= 1;
slice->mb_x = mb_x;
slice->mb_y = mb_y;
slice->mb_count = slice_mb_count;
slice->data_size = data_ptr - slice->data;
if (slice->data_size < 6) {
av_log(avctx, AV_LOG_ERROR, "error, wrong slice data size\n");
return AVERROR_INVALIDDATA;
}
mb_x += slice_mb_count;
if (mb_x == ctx->mb_width) {
slice_mb_count = 1 << log2_slice_mb_width;
mb_x = 0;
mb_y++;
}
if (data_ptr > buf + buf_size) {
av_log(avctx, AV_LOG_ERROR, "error, slice out of bounds\n");
return AVERROR_INVALIDDATA;
}
}
if (mb_x || mb_y != ctx->mb_height) {
av_log(avctx, AV_LOG_ERROR, "error wrong mb count y %d h %d\n",
mb_y, ctx->mb_height);
return AVERROR_INVALIDDATA;
}
return pic_data_size;
}
#define DECODE_CODEWORD(val, codebook) \
do { \
unsigned int rice_order, exp_order, switch_bits; \
unsigned int q, buf, bits; \
\
UPDATE_CACHE(re, gb); \
buf = GET_CACHE(re, gb); \
\
/* number of bits to switch between rice and exp golomb */ \
switch_bits = codebook & 3; \
rice_order = codebook >> 5; \
exp_order = (codebook >> 2) & 7; \
\
q = 31 - av_log2(buf); \
\
if (q > switch_bits) { /* exp golomb */ \
bits = exp_order - switch_bits + (q<<1); \
val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) + \
((switch_bits + 1) << rice_order); \
SKIP_BITS(re, gb, bits); \
} else if (rice_order) { \
SKIP_BITS(re, gb, q+1); \
val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order); \
SKIP_BITS(re, gb, rice_order); \
} else { \
val = q; \
SKIP_BITS(re, gb, q+1); \
} \
} while (0)
#define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1)))
#define FIRST_DC_CB 0xB8
static const uint8_t dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70};
static av_always_inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out,
int blocks_per_slice)
{
int16_t prev_dc;
int code, i, sign;
OPEN_READER(re, gb);
DECODE_CODEWORD(code, FIRST_DC_CB);
prev_dc = TOSIGNED(code);
out[0] = prev_dc;
out += 64; // dc coeff for the next block
code = 5;
sign = 0;
for (i = 1; i < blocks_per_slice; i++, out += 64) {
DECODE_CODEWORD(code, dc_codebook[FFMIN(code, 6U)]);
if(code) sign ^= -(code & 1);
else sign = 0;
prev_dc += (((code + 1) >> 1) ^ sign) - sign;
out[0] = prev_dc;
}
CLOSE_READER(re, gb);
}
// adaptive codebook switching lut according to previous run/level values
static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C };
static av_always_inline int decode_ac_coeffs(AVCodecContext *avctx, GetBitContext *gb,
int16_t *out, int blocks_per_slice)
{
ProresContext *ctx = avctx->priv_data;
int block_mask, sign;
unsigned pos, run, level;
int max_coeffs, i, bits_left;
int log2_block_count = av_log2(blocks_per_slice);
OPEN_READER(re, gb);
UPDATE_CACHE(re, gb); \
run = 4;
level = 2;
max_coeffs = 64 << log2_block_count;
block_mask = blocks_per_slice - 1;
for (pos = block_mask;;) {
bits_left = gb->size_in_bits - re_index;
if (!bits_left || (bits_left < 32 && !SHOW_UBITS(re, gb, bits_left)))
break;
DECODE_CODEWORD(run, run_to_cb[FFMIN(run, 15)]);
pos += run + 1;
if (pos >= max_coeffs) {
av_log(avctx, AV_LOG_ERROR, "ac tex damaged %d, %d\n", pos, max_coeffs);
return AVERROR_INVALIDDATA;
}
DECODE_CODEWORD(level, lev_to_cb[FFMIN(level, 9)]);
level += 1;
i = pos >> log2_block_count;
sign = SHOW_SBITS(re, gb, 1);
SKIP_BITS(re, gb, 1);
out[((pos & block_mask) << 6) + ctx->scan[i]] = ((level ^ sign) - sign);
}
CLOSE_READER(re, gb);
return 0;
}
static int decode_slice_luma(AVCodecContext *avctx, SliceContext *slice,
uint16_t *dst, int dst_stride,
const uint8_t *buf, unsigned buf_size,
const int16_t *qmat)
{
ProresContext *ctx = avctx->priv_data;
LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
int16_t *block;
GetBitContext gb;
int i, blocks_per_slice = slice->mb_count<<2;
int ret;
for (i = 0; i < blocks_per_slice; i++)
ctx->dsp.clear_block(blocks+(i<<6));
init_get_bits(&gb, buf, buf_size << 3);
decode_dc_coeffs(&gb, blocks, blocks_per_slice);
if ((ret = decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice)) < 0)
return ret;
block = blocks;
for (i = 0; i < slice->mb_count; i++) {
ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat);
ctx->prodsp.idct_put(dst +8, dst_stride, block+(1<<6), qmat);
ctx->prodsp.idct_put(dst+4*dst_stride , dst_stride, block+(2<<6), qmat);
ctx->prodsp.idct_put(dst+4*dst_stride+8, dst_stride, block+(3<<6), qmat);
block += 4*64;
dst += 16;
}
return 0;
}
static int decode_slice_chroma(AVCodecContext *avctx, SliceContext *slice,
uint16_t *dst, int dst_stride,
const uint8_t *buf, unsigned buf_size,
const int16_t *qmat, int log2_blocks_per_mb)
{
ProresContext *ctx = avctx->priv_data;
LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
int16_t *block;
GetBitContext gb;
int i, j, blocks_per_slice = slice->mb_count << log2_blocks_per_mb;
int ret;
for (i = 0; i < blocks_per_slice; i++)
ctx->dsp.clear_block(blocks+(i<<6));
init_get_bits(&gb, buf, buf_size << 3);
decode_dc_coeffs(&gb, blocks, blocks_per_slice);
if ((ret = decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice)) < 0)
return ret;
block = blocks;
for (i = 0; i < slice->mb_count; i++) {
for (j = 0; j < log2_blocks_per_mb; j++) {
ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat);
ctx->prodsp.idct_put(dst+4*dst_stride, dst_stride, block+(1<<6), qmat);
block += 2*64;
dst += 8;
}
}
return 0;
}
static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs,
const int num_bits)
{
const int mask = (1 << num_bits) - 1;
int i, idx, val, alpha_val;
idx = 0;
alpha_val = mask;
do {
do {
if (get_bits1(gb)) {
val = get_bits(gb, num_bits);
} else {
int sign;
val = get_bits(gb, num_bits == 16 ? 7 : 4);
sign = val & 1;
val = (val + 2) >> 1;
if (sign)
val = -val;
}
alpha_val = (alpha_val + val) & mask;
if (num_bits == 16) {
dst[idx++] = alpha_val >> 6;
} else {
dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
}
if (idx >= num_coeffs)
break;
} while (get_bits_left(gb)>0 && get_bits1(gb));
val = get_bits(gb, 4);
if (!val)
val = get_bits(gb, 11);
if (idx + val > num_coeffs)
val = num_coeffs - idx;
if (num_bits == 16) {
for (i = 0; i < val; i++)
dst[idx++] = alpha_val >> 6;
} else {
for (i = 0; i < val; i++)
dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
}
} while (idx < num_coeffs);
}
/**
* Decode alpha slice plane.
*/
static void decode_slice_alpha(ProresContext *ctx,
uint16_t *dst, int dst_stride,
const uint8_t *buf, int buf_size,
int blocks_per_slice)
{
GetBitContext gb;
int i;
LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
int16_t *block;
for (i = 0; i < blocks_per_slice<<2; i++)
ctx->dsp.clear_block(blocks+(i<<6));
init_get_bits(&gb, buf, buf_size << 3);
if (ctx->alpha_info == 2) {
unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 16);
} else {
unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 8);
}
block = blocks;
for (i = 0; i < 16; i++) {
memcpy(dst, block, 16 * blocks_per_slice * sizeof(*dst));
dst += dst_stride >> 1;
block += 16 * blocks_per_slice;
}
}
static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
{
ProresContext *ctx = avctx->priv_data;
SliceContext *slice = &ctx->slices[jobnr];
const uint8_t *buf = slice->data;
AVFrame *pic = ctx->frame;
int i, hdr_size, qscale, log2_chroma_blocks_per_mb;
int luma_stride, chroma_stride;
int y_data_size, u_data_size, v_data_size, a_data_size;
uint8_t *dest_y, *dest_u, *dest_v, *dest_a;
int16_t qmat_luma_scaled[64];
int16_t qmat_chroma_scaled[64];
int mb_x_shift;
int ret;
slice->ret = -1;
//av_log(avctx, AV_LOG_INFO, "slice %d mb width %d mb x %d y %d\n",
// jobnr, slice->mb_count, slice->mb_x, slice->mb_y);
// slice header
hdr_size = buf[0] >> 3;
qscale = av_clip(buf[1], 1, 224);
qscale = qscale > 128 ? qscale - 96 << 2: qscale;
y_data_size = AV_RB16(buf + 2);
u_data_size = AV_RB16(buf + 4);
v_data_size = slice->data_size - y_data_size - u_data_size - hdr_size;
if (hdr_size > 7) v_data_size = AV_RB16(buf + 6);
a_data_size = slice->data_size - y_data_size - u_data_size -
v_data_size - hdr_size;
if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0
|| hdr_size+y_data_size+u_data_size+v_data_size > slice->data_size){
av_log(avctx, AV_LOG_ERROR, "invalid plane data size\n");
return AVERROR_INVALIDDATA;
}
buf += hdr_size;
for (i = 0; i < 64; i++) {
qmat_luma_scaled [i] = ctx->qmat_luma [i] * qscale;
qmat_chroma_scaled[i] = ctx->qmat_chroma[i] * qscale;
}
if (ctx->frame_type == 0) {
luma_stride = pic->linesize[0];
chroma_stride = pic->linesize[1];
} else {
luma_stride = pic->linesize[0] << 1;
chroma_stride = pic->linesize[1] << 1;
}
if (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 || avctx->pix_fmt == AV_PIX_FMT_YUVA444P10) {
mb_x_shift = 5;
log2_chroma_blocks_per_mb = 2;
} else {
mb_x_shift = 4;
log2_chroma_blocks_per_mb = 1;
}
dest_y = pic->data[0] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5);
dest_u = pic->data[1] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
dest_v = pic->data[2] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
dest_a = pic->data[3] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5);
if (ctx->frame_type && ctx->first_field ^ ctx->frame->top_field_first) {
dest_y += pic->linesize[0];
dest_u += pic->linesize[1];
dest_v += pic->linesize[2];
dest_a += pic->linesize[3];
}
ret = decode_slice_luma(avctx, slice, (uint16_t*)dest_y, luma_stride,
buf, y_data_size, qmat_luma_scaled);
if (ret < 0)
return ret;
if (!(avctx->flags & CODEC_FLAG_GRAY)) {
ret = decode_slice_chroma(avctx, slice, (uint16_t*)dest_u, chroma_stride,
buf + y_data_size, u_data_size,
qmat_chroma_scaled, log2_chroma_blocks_per_mb);
if (ret < 0)
return ret;
ret = decode_slice_chroma(avctx, slice, (uint16_t*)dest_v, chroma_stride,
buf + y_data_size + u_data_size, v_data_size,
qmat_chroma_scaled, log2_chroma_blocks_per_mb);
if (ret < 0)
return ret;
}
/* decode alpha plane if available */
if (ctx->alpha_info && pic->data[3] && a_data_size)
decode_slice_alpha(ctx, (uint16_t*)dest_a, luma_stride,
buf + y_data_size + u_data_size + v_data_size,
a_data_size, slice->mb_count);
slice->ret = 0;
return 0;
}
static int decode_picture(AVCodecContext *avctx)
{
ProresContext *ctx = avctx->priv_data;
int i;
avctx->execute2(avctx, decode_slice_thread, NULL, NULL, ctx->slice_count);
for (i = 0; i < ctx->slice_count; i++)
if (ctx->slices[i].ret < 0)
return ctx->slices[i].ret;
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
AVPacket *avpkt)
{
ProresContext *ctx = avctx->priv_data;
AVFrame *frame = data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
int frame_hdr_size, pic_size, ret;
if (buf_size < 28 || AV_RL32(buf + 4) != AV_RL32("icpf")) {
av_log(avctx, AV_LOG_ERROR, "invalid frame header\n");
return AVERROR_INVALIDDATA;
}
ctx->frame = frame;
ctx->frame->pict_type = AV_PICTURE_TYPE_I;
ctx->frame->key_frame = 1;
ctx->first_field = 1;
buf += 8;
buf_size -= 8;
frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
if (frame_hdr_size < 0)
return frame_hdr_size;
buf += frame_hdr_size;
buf_size -= frame_hdr_size;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
decode_picture:
pic_size = decode_picture_header(avctx, buf, buf_size);
if (pic_size < 0) {
av_log(avctx, AV_LOG_ERROR, "error decoding picture header\n");
return pic_size;
}
if ((ret = decode_picture(avctx)) < 0) {
av_log(avctx, AV_LOG_ERROR, "error decoding picture\n");
return ret;
}
buf += pic_size;
buf_size -= pic_size;
if (ctx->frame_type && buf_size > 0 && ctx->first_field) {
ctx->first_field = 0;
goto decode_picture;
}
*got_frame = 1;
return avpkt->size;
}
static av_cold int decode_close(AVCodecContext *avctx)
{
ProresContext *ctx = avctx->priv_data;
av_freep(&ctx->slices);
return 0;
}
AVCodec ff_prores_decoder = {
.name = "prores",
.long_name = NULL_IF_CONFIG_SMALL("ProRes"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_PRORES,
.priv_data_size = sizeof(ProresContext),
.init = decode_init,
.close = decode_close,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
};