1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libswresample/swresample.c
Michael Niedermayer b9df3f4f6c swr: fix 10l typo mixing in and out config.
Fixes ticket1458

Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2012-08-01 21:18:03 +02:00

790 lines
33 KiB
C

/*
* Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
*
* This file is part of libswresample
*
* libswresample is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* libswresample is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with libswresample; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/opt.h"
#include "swresample_internal.h"
#include "audioconvert.h"
#include "libavutil/avassert.h"
#include "libavutil/audioconvert.h"
#include <float.h>
#define C30DB M_SQRT2
#define C15DB 1.189207115
#define C__0DB 1.0
#define C_15DB 0.840896415
#define C_30DB M_SQRT1_2
#define C_45DB 0.594603558
#define C_60DB 0.5
#define ALIGN 32
//TODO split options array out?
#define OFFSET(x) offsetof(SwrContext,x)
#define PARAM AV_OPT_FLAG_AUDIO_PARAM
static const AVOption options[]={
{"ich" , "Input Channel Count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.dbl=2 }, 0 , SWR_CH_MAX, PARAM},
{"in_channel_count" , "Input Channel Count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.dbl=2 }, 0 , SWR_CH_MAX, PARAM},
{"och" , "Output Channel Count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.dbl=2 }, 0 , SWR_CH_MAX, PARAM},
{"out_channel_count" , "Output Channel Count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.dbl=2 }, 0 , SWR_CH_MAX, PARAM},
{"uch" , "Used Channel Count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , SWR_CH_MAX, PARAM},
{"used_channel_count" , "Used Channel Count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , SWR_CH_MAX, PARAM},
{"isr" , "Input Sample Rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , INT_MAX , PARAM},
{"in_sample_rate" , "Input Sample Rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , INT_MAX , PARAM},
{"osr" , "Output Sample Rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , INT_MAX , PARAM},
{"out_sample_rate" , "Output Sample Rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , INT_MAX , PARAM},
{"isf" , "Input Sample Format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
{"in_sample_fmt" , "Input Sample Format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
{"osf" , "Output Sample Format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
{"out_sample_fmt" , "Output Sample Format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
{"tsf" , "Internal Sample Format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_FLTP, PARAM},
{"internal_sample_fmt" , "Internal Sample Format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_INT , {.dbl=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_FLTP, PARAM},
{"icl" , "Input Channel Layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.dbl=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
{"in_channel_layout" , "Input Channel Layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.dbl=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
{"ocl" , "Output Channel Layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.dbl=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
{"out_channel_layout" , "Output Channel Layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.dbl=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
{"clev" , "Center Mix Level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
{"center_mix_level" , "Center Mix Level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
{"slev" , "Sourround Mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
{"surround_mix_level" , "Sourround Mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
{"lfe_mix_level" , "LFE Mix Level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
{"rmvol" , "Rematrix Volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
{"rematrix_volume" , "Rematrix Volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
{"flags" , NULL , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.dbl=0 }, 0 , UINT_MAX , PARAM, "flags"},
{"swr_flags" , NULL , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.dbl=0 }, 0 , UINT_MAX , PARAM, "flags"},
{"res" , "Force Resampling" , 0 , AV_OPT_TYPE_CONST, {.dbl=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
{"dither_scale" , "Dither Scale" , OFFSET(dither_scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
{"dither_method" , "Dither Method" , OFFSET(dither_method ), AV_OPT_TYPE_INT , {.dbl=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
{"rectangular" , "Rectangular Dither" , 0 , AV_OPT_TYPE_CONST, {.dbl=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
{"triangular" , "Triangular Dither" , 0 , AV_OPT_TYPE_CONST, {.dbl=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
{"triangular_hp" , "Triangular Dither With High Pass" , 0 , AV_OPT_TYPE_CONST, {.dbl=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
{"filter_size" , "Resampling Filter Size" , OFFSET(filter_size) , AV_OPT_TYPE_INT , {.dbl=16 }, 0 , INT_MAX , PARAM },
{"phase_shift" , "Resampling Phase Shift" , OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.dbl=10 }, 0 , 30 , PARAM },
{"linear_interp" , "Use Linear Interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.dbl=0 }, 0 , 1 , PARAM },
{"cutoff" , "Cutoff Frequency Ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0.8 }, 0 , 1 , PARAM },
{"min_comp" , "Minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
, OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
{"min_hard_comp" , "Minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
, OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
{"comp_duration" , "Duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
, OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
{"max_soft_comp" , "Maximum factor by which data is stretched/squeezed to make it match the timestamps."
, OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
{ "filter_type" , "Filter Type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
{ "cubic" , "Cubic" , 0 , AV_OPT_TYPE_CONST, { SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
{ "blackman_nuttall", "Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
{ "kaiser" , "Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
{ "kaiser_beta" , "Kaiser Window Beta" ,OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.dbl=9 }, 2 , 16 , PARAM },
{0}
};
static const char* context_to_name(void* ptr) {
return "SWR";
}
static const AVClass av_class = {
.class_name = "SWResampler",
.item_name = context_to_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
.log_level_offset_offset = OFFSET(log_level_offset),
.parent_log_context_offset = OFFSET(log_ctx),
.category = AV_CLASS_CATEGORY_SWRESAMPLER,
};
unsigned swresample_version(void)
{
av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
return LIBSWRESAMPLE_VERSION_INT;
}
const char *swresample_configuration(void)
{
return FFMPEG_CONFIGURATION;
}
const char *swresample_license(void)
{
#define LICENSE_PREFIX "libswresample license: "
return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
}
int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
if(!s || s->in_convert) // s needs to be allocated but not initialized
return AVERROR(EINVAL);
s->channel_map = channel_map;
return 0;
}
const AVClass *swr_get_class(void)
{
return &av_class;
}
struct SwrContext *swr_alloc(void){
SwrContext *s= av_mallocz(sizeof(SwrContext));
if(s){
s->av_class= &av_class;
av_opt_set_defaults(s);
}
return s;
}
struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
int log_offset, void *log_ctx){
if(!s) s= swr_alloc();
if(!s) return NULL;
s->log_level_offset= log_offset;
s->log_ctx= log_ctx;
av_opt_set_int(s, "ocl", out_ch_layout, 0);
av_opt_set_int(s, "osf", out_sample_fmt, 0);
av_opt_set_int(s, "osr", out_sample_rate, 0);
av_opt_set_int(s, "icl", in_ch_layout, 0);
av_opt_set_int(s, "isf", in_sample_fmt, 0);
av_opt_set_int(s, "isr", in_sample_rate, 0);
av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
av_opt_set_int(s, "uch", 0, 0);
return s;
}
static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
a->fmt = fmt;
a->bps = av_get_bytes_per_sample(fmt);
a->planar= av_sample_fmt_is_planar(fmt);
}
static void free_temp(AudioData *a){
av_free(a->data);
memset(a, 0, sizeof(*a));
}
void swr_free(SwrContext **ss){
SwrContext *s= *ss;
if(s){
free_temp(&s->postin);
free_temp(&s->midbuf);
free_temp(&s->preout);
free_temp(&s->in_buffer);
free_temp(&s->dither);
swri_audio_convert_free(&s-> in_convert);
swri_audio_convert_free(&s->out_convert);
swri_audio_convert_free(&s->full_convert);
swri_resample_free(&s->resample);
swri_rematrix_free(s);
}
av_freep(ss);
}
int swr_init(struct SwrContext *s){
s->in_buffer_index= 0;
s->in_buffer_count= 0;
s->resample_in_constraint= 0;
free_temp(&s->postin);
free_temp(&s->midbuf);
free_temp(&s->preout);
free_temp(&s->in_buffer);
free_temp(&s->dither);
swri_audio_convert_free(&s-> in_convert);
swri_audio_convert_free(&s->out_convert);
swri_audio_convert_free(&s->full_convert);
swri_rematrix_free(s);
s->flushed = 0;
if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
return AVERROR(EINVAL);
}
if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
return AVERROR(EINVAL);
}
if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
}else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
}else{
av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
}
}
if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
&&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
&&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
&&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
return AVERROR(EINVAL);
}
set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
set_audiodata_fmt(&s->out, s->out_sample_fmt);
if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
s->resample = swri_resample_init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta);
}else
swri_resample_free(&s->resample);
if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
&& s->int_sample_fmt != AV_SAMPLE_FMT_S32P
&& s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
&& s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
&& s->resample){
av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
return -1;
}
if(!s->used_ch_count)
s->used_ch_count= s->in.ch_count;
if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
s-> in_ch_layout= 0;
}
if(!s-> in_ch_layout)
s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
if(!s->out_ch_layout)
s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
s->rematrix_custom;
#define RSC 1 //FIXME finetune
if(!s-> in.ch_count)
s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
if(!s->used_ch_count)
s->used_ch_count= s->in.ch_count;
if(!s->out.ch_count)
s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
if(!s-> in.ch_count){
av_assert0(!s->in_ch_layout);
av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
return -1;
}
if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
av_log(s, AV_LOG_ERROR, "Rematrix is needed but there is not enough information to do it\n");
return -1;
}
av_assert0(s->used_ch_count);
av_assert0(s->out.ch_count);
s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
s->in_buffer= s->in;
if(!s->resample && !s->rematrix && !s->channel_map && !s->dither_method){
s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
return 0;
}
s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
s->int_sample_fmt, s->out.ch_count, NULL, 0);
s->postin= s->in;
s->preout= s->out;
s->midbuf= s->in;
if(s->channel_map){
s->postin.ch_count=
s->midbuf.ch_count= s->used_ch_count;
if(s->resample)
s->in_buffer.ch_count= s->used_ch_count;
}
if(!s->resample_first){
s->midbuf.ch_count= s->out.ch_count;
if(s->resample)
s->in_buffer.ch_count = s->out.ch_count;
}
set_audiodata_fmt(&s->postin, s->int_sample_fmt);
set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
set_audiodata_fmt(&s->preout, s->int_sample_fmt);
if(s->resample){
set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
}
s->dither = s->preout;
if(s->rematrix || s->dither_method)
return swri_rematrix_init(s);
return 0;
}
static int realloc_audio(AudioData *a, int count){
int i, countb;
AudioData old;
if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
return AVERROR(EINVAL);
if(a->count >= count)
return 0;
count*=2;
countb= FFALIGN(count*a->bps, ALIGN);
old= *a;
av_assert0(a->bps);
av_assert0(a->ch_count);
a->data= av_mallocz(countb*a->ch_count);
if(!a->data)
return AVERROR(ENOMEM);
for(i=0; i<a->ch_count; i++){
a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
}
if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
av_free(old.data);
a->count= count;
return 1;
}
static void copy(AudioData *out, AudioData *in,
int count){
av_assert0(out->planar == in->planar);
av_assert0(out->bps == in->bps);
av_assert0(out->ch_count == in->ch_count);
if(out->planar){
int ch;
for(ch=0; ch<out->ch_count; ch++)
memcpy(out->ch[ch], in->ch[ch], count*out->bps);
}else
memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
}
static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
int i;
if(!in_arg){
memset(out->ch, 0, sizeof(out->ch));
}else if(out->planar){
for(i=0; i<out->ch_count; i++)
out->ch[i]= in_arg[i];
}else{
for(i=0; i<out->ch_count; i++)
out->ch[i]= in_arg[0] + i*out->bps;
}
}
static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
int i;
if(out->planar){
for(i=0; i<out->ch_count; i++)
in_arg[i]= out->ch[i];
}else{
in_arg[0]= out->ch[0];
}
}
/**
*
* out may be equal in.
*/
static void buf_set(AudioData *out, AudioData *in, int count){
int ch;
if(in->planar){
for(ch=0; ch<out->ch_count; ch++)
out->ch[ch]= in->ch[ch] + count*out->bps;
}else{
for(ch=out->ch_count-1; ch>=0; ch--)
out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
}
}
/**
*
* @return number of samples output per channel
*/
static int resample(SwrContext *s, AudioData *out_param, int out_count,
const AudioData * in_param, int in_count){
AudioData in, out, tmp;
int ret_sum=0;
int border=0;
av_assert1(s->in_buffer.ch_count == in_param->ch_count);
av_assert1(s->in_buffer.planar == in_param->planar);
av_assert1(s->in_buffer.fmt == in_param->fmt);
tmp=out=*out_param;
in = *in_param;
do{
int ret, size, consumed;
if(!s->resample_in_constraint && s->in_buffer_count){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
ret= swri_multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
out_count -= ret;
ret_sum += ret;
buf_set(&out, &out, ret);
s->in_buffer_count -= consumed;
s->in_buffer_index += consumed;
if(!in_count)
break;
if(s->in_buffer_count <= border){
buf_set(&in, &in, -s->in_buffer_count);
in_count += s->in_buffer_count;
s->in_buffer_count=0;
s->in_buffer_index=0;
border = 0;
}
}
if(in_count && !s->in_buffer_count){
s->in_buffer_index=0;
ret= swri_multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
out_count -= ret;
ret_sum += ret;
buf_set(&out, &out, ret);
in_count -= consumed;
buf_set(&in, &in, consumed);
}
//TODO is this check sane considering the advanced copy avoidance below
size= s->in_buffer_index + s->in_buffer_count + in_count;
if( size > s->in_buffer.count
&& s->in_buffer_count + in_count <= s->in_buffer_index){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
copy(&s->in_buffer, &tmp, s->in_buffer_count);
s->in_buffer_index=0;
}else
if((ret=realloc_audio(&s->in_buffer, size)) < 0)
return ret;
if(in_count){
int count= in_count;
if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
copy(&tmp, &in, /*in_*/count);
s->in_buffer_count += count;
in_count -= count;
border += count;
buf_set(&in, &in, count);
s->resample_in_constraint= 0;
if(s->in_buffer_count != count || in_count)
continue;
}
break;
}while(1);
s->resample_in_constraint= !!out_count;
return ret_sum;
}
static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
AudioData *in , int in_count){
AudioData *postin, *midbuf, *preout;
int ret/*, in_max*/;
AudioData preout_tmp, midbuf_tmp;
if(s->full_convert){
av_assert0(!s->resample);
swri_audio_convert(s->full_convert, out, in, in_count);
return out_count;
}
// in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
// in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
if((ret=realloc_audio(&s->postin, in_count))<0)
return ret;
if(s->resample_first){
av_assert0(s->midbuf.ch_count == s->used_ch_count);
if((ret=realloc_audio(&s->midbuf, out_count))<0)
return ret;
}else{
av_assert0(s->midbuf.ch_count == s->out.ch_count);
if((ret=realloc_audio(&s->midbuf, in_count))<0)
return ret;
}
if((ret=realloc_audio(&s->preout, out_count))<0)
return ret;
postin= &s->postin;
midbuf_tmp= s->midbuf;
midbuf= &midbuf_tmp;
preout_tmp= s->preout;
preout= &preout_tmp;
if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
postin= in;
if(s->resample_first ? !s->resample : !s->rematrix)
midbuf= postin;
if(s->resample_first ? !s->rematrix : !s->resample)
preout= midbuf;
if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
if(preout==in){
out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
copy(out, in, out_count);
return out_count;
}
else if(preout==postin) preout= midbuf= postin= out;
else if(preout==midbuf) preout= midbuf= out;
else preout= out;
}
if(in != postin){
swri_audio_convert(s->in_convert, postin, in, in_count);
}
if(s->resample_first){
if(postin != midbuf)
out_count= resample(s, midbuf, out_count, postin, in_count);
if(midbuf != preout)
swri_rematrix(s, preout, midbuf, out_count, preout==out);
}else{
if(postin != midbuf)
swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
if(midbuf != preout)
out_count= resample(s, preout, out_count, midbuf, in_count);
}
if(preout != out && out_count){
if(s->dither_method){
int ch;
int dither_count= FFMAX(out_count, 1<<16);
av_assert0(preout != in);
if((ret=realloc_audio(&s->dither, dither_count))<0)
return ret;
if(ret)
for(ch=0; ch<s->dither.ch_count; ch++)
swri_get_dither(s, s->dither.ch[ch], s->dither.count, 12345678913579<<ch, s->out_sample_fmt, s->int_sample_fmt);
av_assert0(s->dither.ch_count == preout->ch_count);
if(s->dither_pos + out_count > s->dither.count)
s->dither_pos = 0;
for(ch=0; ch<preout->ch_count; ch++)
s->mix_2_1_f(preout->ch[ch], preout->ch[ch], s->dither.ch[ch] + s->dither.bps * s->dither_pos, s->native_one, 0, 0, out_count);
s->dither_pos += out_count;
}
//FIXME packed doesnt need more than 1 chan here!
swri_audio_convert(s->out_convert, out, preout, out_count);
}
return out_count;
}
int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
const uint8_t *in_arg [SWR_CH_MAX], int in_count){
AudioData * in= &s->in;
AudioData *out= &s->out;
if(s->drop_output > 0){
int ret;
AudioData tmp = s->out;
uint8_t *tmp_arg[SWR_CH_MAX];
tmp.count = 0;
tmp.data = NULL;
if((ret=realloc_audio(&tmp, s->drop_output))<0)
return ret;
reversefill_audiodata(&tmp, tmp_arg);
s->drop_output *= -1; //FIXME find a less hackish solution
ret = swr_convert(s, tmp_arg, -s->drop_output, in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
s->drop_output *= -1;
if(ret>0)
s->drop_output -= ret;
av_freep(&tmp.data);
if(s->drop_output || !out_arg)
return 0;
in_count = 0;
}
if(!in_arg){
if(s->in_buffer_count){
if (s->resample && !s->flushed) {
AudioData *a= &s->in_buffer;
int i, j, ret;
if((ret=realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
return ret;
av_assert0(a->planar);
for(i=0; i<a->ch_count; i++){
for(j=0; j<s->in_buffer_count; j++){
memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
}
}
s->in_buffer_count += (s->in_buffer_count+1)/2;
s->resample_in_constraint = 0;
s->flushed = 1;
}
}else{
return 0;
}
}else
fill_audiodata(in , (void*)in_arg);
fill_audiodata(out, out_arg);
if(s->resample){
int ret = swr_convert_internal(s, out, out_count, in, in_count);
if(ret>0 && !s->drop_output)
s->outpts += ret * (int64_t)s->in_sample_rate;
return ret;
}else{
AudioData tmp= *in;
int ret2=0;
int ret, size;
size = FFMIN(out_count, s->in_buffer_count);
if(size){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
ret= swr_convert_internal(s, out, size, &tmp, size);
if(ret<0)
return ret;
ret2= ret;
s->in_buffer_count -= ret;
s->in_buffer_index += ret;
buf_set(out, out, ret);
out_count -= ret;
if(!s->in_buffer_count)
s->in_buffer_index = 0;
}
if(in_count){
size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
if(in_count > out_count) { //FIXME move after swr_convert_internal
if( size > s->in_buffer.count
&& s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
copy(&s->in_buffer, &tmp, s->in_buffer_count);
s->in_buffer_index=0;
}else
if((ret=realloc_audio(&s->in_buffer, size)) < 0)
return ret;
}
if(out_count){
size = FFMIN(in_count, out_count);
ret= swr_convert_internal(s, out, size, in, size);
if(ret<0)
return ret;
buf_set(in, in, ret);
in_count -= ret;
ret2 += ret;
}
if(in_count){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
copy(&tmp, in, in_count);
s->in_buffer_count += in_count;
}
}
if(ret2>0 && !s->drop_output)
s->outpts += ret2 * (int64_t)s->in_sample_rate;
return ret2;
}
}
int swr_drop_output(struct SwrContext *s, int count){
s->drop_output += count;
if(s->drop_output <= 0)
return 0;
av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
return swr_convert(s, NULL, s->drop_output, NULL, 0);
}
int swr_inject_silence(struct SwrContext *s, int count){
int ret, i;
AudioData silence = s->in;
uint8_t *tmp_arg[SWR_CH_MAX];
if(count <= 0)
return 0;
silence.count = 0;
silence.data = NULL;
if((ret=realloc_audio(&silence, count))<0)
return ret;
if(silence.planar) for(i=0; i<silence.ch_count; i++) {
memset(silence.ch[i], silence.bps==1 ? 0x80 : 0, count*silence.bps);
} else
memset(silence.ch[0], silence.bps==1 ? 0x80 : 0, count*silence.bps*silence.ch_count);
reversefill_audiodata(&silence, tmp_arg);
av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
av_freep(&silence.data);
return ret;
}
int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
if(pts == INT64_MIN)
return s->outpts;
if(s->min_compensation >= FLT_MAX) {
return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
} else {
int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts;
double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
if(fabs(fdelta) > s->min_compensation) {
if(!s->outpts || fabs(fdelta) > s->min_hard_compensation){
int ret;
if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
if(ret<0){
av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
}
} else if(s->soft_compensation_duration && s->max_soft_compensation) {
int duration = s->out_sample_rate * s->soft_compensation_duration;
double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
swr_set_compensation(s, comp, duration);
}
}
return s->outpts;
}
}