You've already forked FFmpeg
							
							
				mirror of
				https://github.com/FFmpeg/FFmpeg.git
				synced 2025-10-30 23:18:11 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			1486 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1486 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2013 Clément Bœsch
 | |
|  * Copyright (c) 2018 Paul B Mahol
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * 3D Lookup table filter
 | |
|  */
 | |
| 
 | |
| #include "libavutil/opt.h"
 | |
| #include "libavutil/file.h"
 | |
| #include "libavutil/intreadwrite.h"
 | |
| #include "libavutil/avassert.h"
 | |
| #include "libavutil/pixdesc.h"
 | |
| #include "libavutil/avstring.h"
 | |
| #include "avfilter.h"
 | |
| #include "drawutils.h"
 | |
| #include "formats.h"
 | |
| #include "framesync.h"
 | |
| #include "internal.h"
 | |
| #include "video.h"
 | |
| 
 | |
| #define R 0
 | |
| #define G 1
 | |
| #define B 2
 | |
| #define A 3
 | |
| 
 | |
| enum interp_mode {
 | |
|     INTERPOLATE_NEAREST,
 | |
|     INTERPOLATE_TRILINEAR,
 | |
|     INTERPOLATE_TETRAHEDRAL,
 | |
|     NB_INTERP_MODE
 | |
| };
 | |
| 
 | |
| struct rgbvec {
 | |
|     float r, g, b;
 | |
| };
 | |
| 
 | |
| /* 3D LUT don't often go up to level 32, but it is common to have a Hald CLUT
 | |
|  * of 512x512 (64x64x64) */
 | |
| #define MAX_LEVEL 64
 | |
| 
 | |
| typedef struct LUT3DContext {
 | |
|     const AVClass *class;
 | |
|     int interpolation;          ///<interp_mode
 | |
|     char *file;
 | |
|     uint8_t rgba_map[4];
 | |
|     int step;
 | |
|     avfilter_action_func *interp;
 | |
|     struct rgbvec lut[MAX_LEVEL][MAX_LEVEL][MAX_LEVEL];
 | |
|     int lutsize;
 | |
| #if CONFIG_HALDCLUT_FILTER
 | |
|     uint8_t clut_rgba_map[4];
 | |
|     int clut_step;
 | |
|     int clut_bits;
 | |
|     int clut_planar;
 | |
|     int clut_width;
 | |
|     FFFrameSync fs;
 | |
| #endif
 | |
| } LUT3DContext;
 | |
| 
 | |
| typedef struct ThreadData {
 | |
|     AVFrame *in, *out;
 | |
| } ThreadData;
 | |
| 
 | |
| #define OFFSET(x) offsetof(LUT3DContext, x)
 | |
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
 | |
| #define COMMON_OPTIONS \
 | |
|     { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, FLAGS, "interp_mode" }, \
 | |
|         { "nearest",     "use values from the nearest defined points",            0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST},     INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
 | |
|         { "trilinear",   "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR},   INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
 | |
|         { "tetrahedral", "interpolate values using a tetrahedron",                0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
 | |
|     { NULL }
 | |
| 
 | |
| static inline float lerpf(float v0, float v1, float f)
 | |
| {
 | |
|     return v0 + (v1 - v0) * f;
 | |
| }
 | |
| 
 | |
| static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
 | |
| {
 | |
|     struct rgbvec v = {
 | |
|         lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f)
 | |
|     };
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| #define NEAR(x) ((int)((x) + .5))
 | |
| #define PREV(x) ((int)(x))
 | |
| #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
 | |
| 
 | |
| /**
 | |
|  * Get the nearest defined point
 | |
|  */
 | |
| static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d,
 | |
|                                            const struct rgbvec *s)
 | |
| {
 | |
|     return lut3d->lut[NEAR(s->r)][NEAR(s->g)][NEAR(s->b)];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Interpolate using the 8 vertices of a cube
 | |
|  * @see https://en.wikipedia.org/wiki/Trilinear_interpolation
 | |
|  */
 | |
| static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d,
 | |
|                                              const struct rgbvec *s)
 | |
| {
 | |
|     const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
 | |
|     const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
 | |
|     const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
 | |
|     const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
 | |
|     const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
 | |
|     const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
 | |
|     const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
 | |
|     const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
 | |
|     const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
 | |
|     const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
 | |
|     const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
 | |
|     const struct rgbvec c00  = lerp(&c000, &c100, d.r);
 | |
|     const struct rgbvec c10  = lerp(&c010, &c110, d.r);
 | |
|     const struct rgbvec c01  = lerp(&c001, &c101, d.r);
 | |
|     const struct rgbvec c11  = lerp(&c011, &c111, d.r);
 | |
|     const struct rgbvec c0   = lerp(&c00,  &c10,  d.g);
 | |
|     const struct rgbvec c1   = lerp(&c01,  &c11,  d.g);
 | |
|     const struct rgbvec c    = lerp(&c0,   &c1,   d.b);
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Tetrahedral interpolation. Based on code found in Truelight Software Library paper.
 | |
|  * @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf
 | |
|  */
 | |
| static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d,
 | |
|                                                const struct rgbvec *s)
 | |
| {
 | |
|     const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
 | |
|     const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
 | |
|     const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
 | |
|     const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
 | |
|     const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
 | |
|     struct rgbvec c;
 | |
|     if (d.r > d.g) {
 | |
|         if (d.g > d.b) {
 | |
|             const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
 | |
|             const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
 | |
|             c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r;
 | |
|             c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g;
 | |
|             c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b;
 | |
|         } else if (d.r > d.b) {
 | |
|             const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
 | |
|             const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
 | |
|             c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r;
 | |
|             c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g;
 | |
|             c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b;
 | |
|         } else {
 | |
|             const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
 | |
|             const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
 | |
|             c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r;
 | |
|             c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g;
 | |
|             c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b;
 | |
|         }
 | |
|     } else {
 | |
|         if (d.b > d.g) {
 | |
|             const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
 | |
|             const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
 | |
|             c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r;
 | |
|             c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g;
 | |
|             c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b;
 | |
|         } else if (d.b > d.r) {
 | |
|             const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
 | |
|             const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
 | |
|             c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r;
 | |
|             c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g;
 | |
|             c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b;
 | |
|         } else {
 | |
|             const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
 | |
|             const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
 | |
|             c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r;
 | |
|             c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g;
 | |
|             c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b;
 | |
|         }
 | |
|     }
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)                                                  \
 | |
| static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
 | |
| {                                                                                                      \
 | |
|     int x, y;                                                                                          \
 | |
|     const LUT3DContext *lut3d = ctx->priv;                                                             \
 | |
|     const ThreadData *td = arg;                                                                        \
 | |
|     const AVFrame *in  = td->in;                                                                       \
 | |
|     const AVFrame *out = td->out;                                                                      \
 | |
|     const int direct = out == in;                                                                      \
 | |
|     const int slice_start = (in->height *  jobnr   ) / nb_jobs;                                        \
 | |
|     const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;                                        \
 | |
|     uint8_t *grow = out->data[0] + slice_start * out->linesize[0];                                     \
 | |
|     uint8_t *brow = out->data[1] + slice_start * out->linesize[1];                                     \
 | |
|     uint8_t *rrow = out->data[2] + slice_start * out->linesize[2];                                     \
 | |
|     uint8_t *arow = out->data[3] + slice_start * out->linesize[3];                                     \
 | |
|     const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0];                              \
 | |
|     const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1];                              \
 | |
|     const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2];                              \
 | |
|     const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3];                              \
 | |
|     const float scale = (1. / ((1<<depth) - 1)) * (lut3d->lutsize - 1);                                \
 | |
|                                                                                                        \
 | |
|     for (y = slice_start; y < slice_end; y++) {                                                        \
 | |
|         uint##nbits##_t *dstg = (uint##nbits##_t *)grow;                                               \
 | |
|         uint##nbits##_t *dstb = (uint##nbits##_t *)brow;                                               \
 | |
|         uint##nbits##_t *dstr = (uint##nbits##_t *)rrow;                                               \
 | |
|         uint##nbits##_t *dsta = (uint##nbits##_t *)arow;                                               \
 | |
|         const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow;                                \
 | |
|         const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow;                                \
 | |
|         const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow;                                \
 | |
|         const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow;                                \
 | |
|         for (x = 0; x < in->width; x++) {                                                              \
 | |
|             const struct rgbvec scaled_rgb = {srcr[x] * scale,                                         \
 | |
|                                               srcg[x] * scale,                                         \
 | |
|                                               srcb[x] * scale};                                        \
 | |
|             struct rgbvec vec = interp_##name(lut3d, &scaled_rgb);                                     \
 | |
|             dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth);                          \
 | |
|             dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth);                          \
 | |
|             dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth);                          \
 | |
|             if (!direct && in->linesize[3])                                                            \
 | |
|                 dsta[x] = srca[x];                                                                     \
 | |
|         }                                                                                              \
 | |
|         grow += out->linesize[0];                                                                      \
 | |
|         brow += out->linesize[1];                                                                      \
 | |
|         rrow += out->linesize[2];                                                                      \
 | |
|         arow += out->linesize[3];                                                                      \
 | |
|         srcgrow += in->linesize[0];                                                                    \
 | |
|         srcbrow += in->linesize[1];                                                                    \
 | |
|         srcrrow += in->linesize[2];                                                                    \
 | |
|         srcarow += in->linesize[3];                                                                    \
 | |
|     }                                                                                                  \
 | |
|     return 0;                                                                                          \
 | |
| }
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR(nearest,     8, 8)
 | |
| DEFINE_INTERP_FUNC_PLANAR(trilinear,   8, 8)
 | |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 8, 8)
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR(nearest,     16, 9)
 | |
| DEFINE_INTERP_FUNC_PLANAR(trilinear,   16, 9)
 | |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 9)
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR(nearest,     16, 10)
 | |
| DEFINE_INTERP_FUNC_PLANAR(trilinear,   16, 10)
 | |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 10)
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR(nearest,     16, 12)
 | |
| DEFINE_INTERP_FUNC_PLANAR(trilinear,   16, 12)
 | |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 12)
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR(nearest,     16, 14)
 | |
| DEFINE_INTERP_FUNC_PLANAR(trilinear,   16, 14)
 | |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 14)
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR(nearest,     16, 16)
 | |
| DEFINE_INTERP_FUNC_PLANAR(trilinear,   16, 16)
 | |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 16)
 | |
| 
 | |
| #define DEFINE_INTERP_FUNC(name, nbits)                                                             \
 | |
| static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)         \
 | |
| {                                                                                                   \
 | |
|     int x, y;                                                                                       \
 | |
|     const LUT3DContext *lut3d = ctx->priv;                                                          \
 | |
|     const ThreadData *td = arg;                                                                     \
 | |
|     const AVFrame *in  = td->in;                                                                    \
 | |
|     const AVFrame *out = td->out;                                                                   \
 | |
|     const int direct = out == in;                                                                   \
 | |
|     const int step = lut3d->step;                                                                   \
 | |
|     const uint8_t r = lut3d->rgba_map[R];                                                           \
 | |
|     const uint8_t g = lut3d->rgba_map[G];                                                           \
 | |
|     const uint8_t b = lut3d->rgba_map[B];                                                           \
 | |
|     const uint8_t a = lut3d->rgba_map[A];                                                           \
 | |
|     const int slice_start = (in->height *  jobnr   ) / nb_jobs;                                     \
 | |
|     const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;                                     \
 | |
|     uint8_t       *dstrow = out->data[0] + slice_start * out->linesize[0];                          \
 | |
|     const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0];                          \
 | |
|     const float scale = (1. / ((1<<nbits) - 1)) * (lut3d->lutsize - 1);                             \
 | |
|                                                                                                     \
 | |
|     for (y = slice_start; y < slice_end; y++) {                                                     \
 | |
|         uint##nbits##_t *dst = (uint##nbits##_t *)dstrow;                                           \
 | |
|         const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow;                               \
 | |
|         for (x = 0; x < in->width * step; x += step) {                                              \
 | |
|             const struct rgbvec scaled_rgb = {src[x + r] * scale,                                   \
 | |
|                                               src[x + g] * scale,                                   \
 | |
|                                               src[x + b] * scale};                                  \
 | |
|             struct rgbvec vec = interp_##name(lut3d, &scaled_rgb);                                  \
 | |
|             dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1));                      \
 | |
|             dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1));                      \
 | |
|             dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1));                      \
 | |
|             if (!direct && step == 4)                                                               \
 | |
|                 dst[x + a] = src[x + a];                                                            \
 | |
|         }                                                                                           \
 | |
|         dstrow += out->linesize[0];                                                                 \
 | |
|         srcrow += in ->linesize[0];                                                                 \
 | |
|     }                                                                                               \
 | |
|     return 0;                                                                                       \
 | |
| }
 | |
| 
 | |
| DEFINE_INTERP_FUNC(nearest,     8)
 | |
| DEFINE_INTERP_FUNC(trilinear,   8)
 | |
| DEFINE_INTERP_FUNC(tetrahedral, 8)
 | |
| 
 | |
| DEFINE_INTERP_FUNC(nearest,     16)
 | |
| DEFINE_INTERP_FUNC(trilinear,   16)
 | |
| DEFINE_INTERP_FUNC(tetrahedral, 16)
 | |
| 
 | |
| #define MAX_LINE_SIZE 512
 | |
| 
 | |
| static int skip_line(const char *p)
 | |
| {
 | |
|     while (*p && av_isspace(*p))
 | |
|         p++;
 | |
|     return !*p || *p == '#';
 | |
| }
 | |
| 
 | |
| #define NEXT_LINE(loop_cond) do {                           \
 | |
|     if (!fgets(line, sizeof(line), f)) {                    \
 | |
|         av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n");      \
 | |
|         return AVERROR_INVALIDDATA;                         \
 | |
|     }                                                       \
 | |
| } while (loop_cond)
 | |
| 
 | |
| /* Basically r g and b float values on each line, with a facultative 3DLUTSIZE
 | |
|  * directive; seems to be generated by Davinci */
 | |
| static int parse_dat(AVFilterContext *ctx, FILE *f)
 | |
| {
 | |
|     LUT3DContext *lut3d = ctx->priv;
 | |
|     char line[MAX_LINE_SIZE];
 | |
|     int i, j, k, size;
 | |
| 
 | |
|     lut3d->lutsize = size = 33;
 | |
| 
 | |
|     NEXT_LINE(skip_line(line));
 | |
|     if (!strncmp(line, "3DLUTSIZE ", 10)) {
 | |
|         size = strtol(line + 10, NULL, 0);
 | |
|         if (size < 2 || size > MAX_LEVEL) {
 | |
|             av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
|         lut3d->lutsize = size;
 | |
|         NEXT_LINE(skip_line(line));
 | |
|     }
 | |
|     for (k = 0; k < size; k++) {
 | |
|         for (j = 0; j < size; j++) {
 | |
|             for (i = 0; i < size; i++) {
 | |
|                 struct rgbvec *vec = &lut3d->lut[k][j][i];
 | |
|                 if (k != 0 || j != 0 || i != 0)
 | |
|                     NEXT_LINE(skip_line(line));
 | |
|                 if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Iridas format */
 | |
| static int parse_cube(AVFilterContext *ctx, FILE *f)
 | |
| {
 | |
|     LUT3DContext *lut3d = ctx->priv;
 | |
|     char line[MAX_LINE_SIZE];
 | |
|     float min[3] = {0.0, 0.0, 0.0};
 | |
|     float max[3] = {1.0, 1.0, 1.0};
 | |
| 
 | |
|     while (fgets(line, sizeof(line), f)) {
 | |
|         if (!strncmp(line, "LUT_3D_SIZE", 11)) {
 | |
|             int i, j, k;
 | |
|             const int size = strtol(line + 12, NULL, 0);
 | |
| 
 | |
|             if (size < 2 || size > MAX_LEVEL) {
 | |
|                 av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
 | |
|                 return AVERROR(EINVAL);
 | |
|             }
 | |
|             lut3d->lutsize = size;
 | |
|             for (k = 0; k < size; k++) {
 | |
|                 for (j = 0; j < size; j++) {
 | |
|                     for (i = 0; i < size; i++) {
 | |
|                         struct rgbvec *vec = &lut3d->lut[i][j][k];
 | |
| 
 | |
|                         do {
 | |
| try_again:
 | |
|                             NEXT_LINE(0);
 | |
|                             if (!strncmp(line, "DOMAIN_", 7)) {
 | |
|                                 float *vals = NULL;
 | |
|                                 if      (!strncmp(line + 7, "MIN ", 4)) vals = min;
 | |
|                                 else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
 | |
|                                 if (!vals)
 | |
|                                     return AVERROR_INVALIDDATA;
 | |
|                                 av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
 | |
|                                 av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
 | |
|                                        min[0], min[1], min[2], max[0], max[1], max[2]);
 | |
|                                 goto try_again;
 | |
|                             } else if (!strncmp(line, "TITLE", 5)) {
 | |
|                                 goto try_again;
 | |
|                             }
 | |
|                         } while (skip_line(line));
 | |
|                         if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
 | |
|                             return AVERROR_INVALIDDATA;
 | |
|                         vec->r *= max[0] - min[0];
 | |
|                         vec->g *= max[1] - min[1];
 | |
|                         vec->b *= max[2] - min[2];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Assume 17x17x17 LUT with a 16-bit depth
 | |
|  * FIXME: it seems there are various 3dl formats */
 | |
| static int parse_3dl(AVFilterContext *ctx, FILE *f)
 | |
| {
 | |
|     char line[MAX_LINE_SIZE];
 | |
|     LUT3DContext *lut3d = ctx->priv;
 | |
|     int i, j, k;
 | |
|     const int size = 17;
 | |
|     const float scale = 16*16*16;
 | |
| 
 | |
|     lut3d->lutsize = size;
 | |
|     NEXT_LINE(skip_line(line));
 | |
|     for (k = 0; k < size; k++) {
 | |
|         for (j = 0; j < size; j++) {
 | |
|             for (i = 0; i < size; i++) {
 | |
|                 int r, g, b;
 | |
|                 struct rgbvec *vec = &lut3d->lut[k][j][i];
 | |
| 
 | |
|                 NEXT_LINE(skip_line(line));
 | |
|                 if (av_sscanf(line, "%d %d %d", &r, &g, &b) != 3)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 vec->r = r / scale;
 | |
|                 vec->g = g / scale;
 | |
|                 vec->b = b / scale;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Pandora format */
 | |
| static int parse_m3d(AVFilterContext *ctx, FILE *f)
 | |
| {
 | |
|     LUT3DContext *lut3d = ctx->priv;
 | |
|     float scale;
 | |
|     int i, j, k, size, in = -1, out = -1;
 | |
|     char line[MAX_LINE_SIZE];
 | |
|     uint8_t rgb_map[3] = {0, 1, 2};
 | |
| 
 | |
|     while (fgets(line, sizeof(line), f)) {
 | |
|         if      (!strncmp(line, "in",  2)) in  = strtol(line + 2, NULL, 0);
 | |
|         else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0);
 | |
|         else if (!strncmp(line, "values", 6)) {
 | |
|             const char *p = line + 6;
 | |
| #define SET_COLOR(id) do {                  \
 | |
|     while (av_isspace(*p))                  \
 | |
|         p++;                                \
 | |
|     switch (*p) {                           \
 | |
|     case 'r': rgb_map[id] = 0; break;       \
 | |
|     case 'g': rgb_map[id] = 1; break;       \
 | |
|     case 'b': rgb_map[id] = 2; break;       \
 | |
|     }                                       \
 | |
|     while (*p && !av_isspace(*p))           \
 | |
|         p++;                                \
 | |
| } while (0)
 | |
|             SET_COLOR(0);
 | |
|             SET_COLOR(1);
 | |
|             SET_COLOR(2);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (in == -1 || out == -1) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     if (in < 2 || out < 2 ||
 | |
|         in  > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL ||
 | |
|         out > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     for (size = 1; size*size*size < in; size++);
 | |
|     lut3d->lutsize = size;
 | |
|     scale = 1. / (out - 1);
 | |
| 
 | |
|     for (k = 0; k < size; k++) {
 | |
|         for (j = 0; j < size; j++) {
 | |
|             for (i = 0; i < size; i++) {
 | |
|                 struct rgbvec *vec = &lut3d->lut[k][j][i];
 | |
|                 float val[3];
 | |
| 
 | |
|                 NEXT_LINE(0);
 | |
|                 if (av_sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 vec->r = val[rgb_map[0]] * scale;
 | |
|                 vec->g = val[rgb_map[1]] * scale;
 | |
|                 vec->b = val[rgb_map[2]] * scale;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void set_identity_matrix(LUT3DContext *lut3d, int size)
 | |
| {
 | |
|     int i, j, k;
 | |
|     const float c = 1. / (size - 1);
 | |
| 
 | |
|     lut3d->lutsize = size;
 | |
|     for (k = 0; k < size; k++) {
 | |
|         for (j = 0; j < size; j++) {
 | |
|             for (i = 0; i < size; i++) {
 | |
|                 struct rgbvec *vec = &lut3d->lut[k][j][i];
 | |
|                 vec->r = k * c;
 | |
|                 vec->g = j * c;
 | |
|                 vec->b = i * c;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int query_formats(AVFilterContext *ctx)
 | |
| {
 | |
|     static const enum AVPixelFormat pix_fmts[] = {
 | |
|         AV_PIX_FMT_RGB24,  AV_PIX_FMT_BGR24,
 | |
|         AV_PIX_FMT_RGBA,   AV_PIX_FMT_BGRA,
 | |
|         AV_PIX_FMT_ARGB,   AV_PIX_FMT_ABGR,
 | |
|         AV_PIX_FMT_0RGB,   AV_PIX_FMT_0BGR,
 | |
|         AV_PIX_FMT_RGB0,   AV_PIX_FMT_BGR0,
 | |
|         AV_PIX_FMT_RGB48,  AV_PIX_FMT_BGR48,
 | |
|         AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
 | |
|         AV_PIX_FMT_GBRP,   AV_PIX_FMT_GBRAP,
 | |
|         AV_PIX_FMT_GBRP9,
 | |
|         AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10,
 | |
|         AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12,
 | |
|         AV_PIX_FMT_GBRP14,
 | |
|         AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16,
 | |
|         AV_PIX_FMT_NONE
 | |
|     };
 | |
|     AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
 | |
|     if (!fmts_list)
 | |
|         return AVERROR(ENOMEM);
 | |
|     return ff_set_common_formats(ctx, fmts_list);
 | |
| }
 | |
| 
 | |
| static int config_input(AVFilterLink *inlink)
 | |
| {
 | |
|     int depth, is16bit = 0, planar = 0;
 | |
|     LUT3DContext *lut3d = inlink->dst->priv;
 | |
|     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
 | |
| 
 | |
|     depth = desc->comp[0].depth;
 | |
| 
 | |
|     switch (inlink->format) {
 | |
|     case AV_PIX_FMT_RGB48:
 | |
|     case AV_PIX_FMT_BGR48:
 | |
|     case AV_PIX_FMT_RGBA64:
 | |
|     case AV_PIX_FMT_BGRA64:
 | |
|         is16bit = 1;
 | |
|         break;
 | |
|     case AV_PIX_FMT_GBRP9:
 | |
|     case AV_PIX_FMT_GBRP10:
 | |
|     case AV_PIX_FMT_GBRP12:
 | |
|     case AV_PIX_FMT_GBRP14:
 | |
|     case AV_PIX_FMT_GBRP16:
 | |
|     case AV_PIX_FMT_GBRAP10:
 | |
|     case AV_PIX_FMT_GBRAP12:
 | |
|     case AV_PIX_FMT_GBRAP16:
 | |
|         is16bit = 1;
 | |
|     case AV_PIX_FMT_GBRP:
 | |
|     case AV_PIX_FMT_GBRAP:
 | |
|         planar = 1;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     ff_fill_rgba_map(lut3d->rgba_map, inlink->format);
 | |
|     lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
 | |
| 
 | |
| #define SET_FUNC(name) do {                                     \
 | |
|     if (planar) {                                               \
 | |
|         switch (depth) {                                        \
 | |
|         case  8: lut3d->interp = interp_8_##name##_p8;   break; \
 | |
|         case  9: lut3d->interp = interp_16_##name##_p9;  break; \
 | |
|         case 10: lut3d->interp = interp_16_##name##_p10; break; \
 | |
|         case 12: lut3d->interp = interp_16_##name##_p12; break; \
 | |
|         case 14: lut3d->interp = interp_16_##name##_p14; break; \
 | |
|         case 16: lut3d->interp = interp_16_##name##_p16; break; \
 | |
|         }                                                       \
 | |
|     } else if (is16bit) { lut3d->interp = interp_16_##name;     \
 | |
|     } else {       lut3d->interp = interp_8_##name; }           \
 | |
| } while (0)
 | |
| 
 | |
|     switch (lut3d->interpolation) {
 | |
|     case INTERPOLATE_NEAREST:     SET_FUNC(nearest);        break;
 | |
|     case INTERPOLATE_TRILINEAR:   SET_FUNC(trilinear);      break;
 | |
|     case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral);    break;
 | |
|     default:
 | |
|         av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static AVFrame *apply_lut(AVFilterLink *inlink, AVFrame *in)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     LUT3DContext *lut3d = ctx->priv;
 | |
|     AVFilterLink *outlink = inlink->dst->outputs[0];
 | |
|     AVFrame *out;
 | |
|     ThreadData td;
 | |
| 
 | |
|     if (av_frame_is_writable(in)) {
 | |
|         out = in;
 | |
|     } else {
 | |
|         out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
 | |
|         if (!out) {
 | |
|             av_frame_free(&in);
 | |
|             return NULL;
 | |
|         }
 | |
|         av_frame_copy_props(out, in);
 | |
|     }
 | |
| 
 | |
|     td.in  = in;
 | |
|     td.out = out;
 | |
|     ctx->internal->execute(ctx, lut3d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
 | |
| 
 | |
|     if (out != in)
 | |
|         av_frame_free(&in);
 | |
| 
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 | |
| {
 | |
|     AVFilterLink *outlink = inlink->dst->outputs[0];
 | |
|     AVFrame *out = apply_lut(inlink, in);
 | |
|     if (!out)
 | |
|         return AVERROR(ENOMEM);
 | |
|     return ff_filter_frame(outlink, out);
 | |
| }
 | |
| 
 | |
| #if CONFIG_LUT3D_FILTER
 | |
| static const AVOption lut3d_options[] = {
 | |
|     { "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
 | |
|     COMMON_OPTIONS
 | |
| };
 | |
| 
 | |
| AVFILTER_DEFINE_CLASS(lut3d);
 | |
| 
 | |
| static av_cold int lut3d_init(AVFilterContext *ctx)
 | |
| {
 | |
|     int ret;
 | |
|     FILE *f;
 | |
|     const char *ext;
 | |
|     LUT3DContext *lut3d = ctx->priv;
 | |
| 
 | |
|     if (!lut3d->file) {
 | |
|         set_identity_matrix(lut3d, 32);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     f = fopen(lut3d->file, "r");
 | |
|     if (!f) {
 | |
|         ret = AVERROR(errno);
 | |
|         av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ext = strrchr(lut3d->file, '.');
 | |
|     if (!ext) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
 | |
|         ret = AVERROR_INVALIDDATA;
 | |
|         goto end;
 | |
|     }
 | |
|     ext++;
 | |
| 
 | |
|     if (!av_strcasecmp(ext, "dat")) {
 | |
|         ret = parse_dat(ctx, f);
 | |
|     } else if (!av_strcasecmp(ext, "3dl")) {
 | |
|         ret = parse_3dl(ctx, f);
 | |
|     } else if (!av_strcasecmp(ext, "cube")) {
 | |
|         ret = parse_cube(ctx, f);
 | |
|     } else if (!av_strcasecmp(ext, "m3d")) {
 | |
|         ret = parse_m3d(ctx, f);
 | |
|     } else {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
 | |
|         ret = AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if (!ret && !lut3d->lutsize) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n");
 | |
|         ret = AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
| end:
 | |
|     fclose(f);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static const AVFilterPad lut3d_inputs[] = {
 | |
|     {
 | |
|         .name         = "default",
 | |
|         .type         = AVMEDIA_TYPE_VIDEO,
 | |
|         .filter_frame = filter_frame,
 | |
|         .config_props = config_input,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| static const AVFilterPad lut3d_outputs[] = {
 | |
|     {
 | |
|         .name = "default",
 | |
|         .type = AVMEDIA_TYPE_VIDEO,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFilter ff_vf_lut3d = {
 | |
|     .name          = "lut3d",
 | |
|     .description   = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."),
 | |
|     .priv_size     = sizeof(LUT3DContext),
 | |
|     .init          = lut3d_init,
 | |
|     .query_formats = query_formats,
 | |
|     .inputs        = lut3d_inputs,
 | |
|     .outputs       = lut3d_outputs,
 | |
|     .priv_class    = &lut3d_class,
 | |
|     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_HALDCLUT_FILTER
 | |
| 
 | |
| static void update_clut_packed(LUT3DContext *lut3d, const AVFrame *frame)
 | |
| {
 | |
|     const uint8_t *data = frame->data[0];
 | |
|     const int linesize  = frame->linesize[0];
 | |
|     const int w = lut3d->clut_width;
 | |
|     const int step = lut3d->clut_step;
 | |
|     const uint8_t *rgba_map = lut3d->clut_rgba_map;
 | |
|     const int level = lut3d->lutsize;
 | |
| 
 | |
| #define LOAD_CLUT(nbits) do {                                           \
 | |
|     int i, j, k, x = 0, y = 0;                                          \
 | |
|                                                                         \
 | |
|     for (k = 0; k < level; k++) {                                       \
 | |
|         for (j = 0; j < level; j++) {                                   \
 | |
|             for (i = 0; i < level; i++) {                               \
 | |
|                 const uint##nbits##_t *src = (const uint##nbits##_t *)  \
 | |
|                     (data + y*linesize + x*step);                       \
 | |
|                 struct rgbvec *vec = &lut3d->lut[i][j][k];              \
 | |
|                 vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1);  \
 | |
|                 vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1);  \
 | |
|                 vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1);  \
 | |
|                 if (++x == w) {                                         \
 | |
|                     x = 0;                                              \
 | |
|                     y++;                                                \
 | |
|                 }                                                       \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|     }                                                                   \
 | |
| } while (0)
 | |
| 
 | |
|     switch (lut3d->clut_bits) {
 | |
|     case  8: LOAD_CLUT(8);  break;
 | |
|     case 16: LOAD_CLUT(16); break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void update_clut_planar(LUT3DContext *lut3d, const AVFrame *frame)
 | |
| {
 | |
|     const uint8_t *datag = frame->data[0];
 | |
|     const uint8_t *datab = frame->data[1];
 | |
|     const uint8_t *datar = frame->data[2];
 | |
|     const int glinesize  = frame->linesize[0];
 | |
|     const int blinesize  = frame->linesize[1];
 | |
|     const int rlinesize  = frame->linesize[2];
 | |
|     const int w = lut3d->clut_width;
 | |
|     const int level = lut3d->lutsize;
 | |
| 
 | |
| #define LOAD_CLUT_PLANAR(nbits, depth) do {                             \
 | |
|     int i, j, k, x = 0, y = 0;                                          \
 | |
|                                                                         \
 | |
|     for (k = 0; k < level; k++) {                                       \
 | |
|         for (j = 0; j < level; j++) {                                   \
 | |
|             for (i = 0; i < level; i++) {                               \
 | |
|                 const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \
 | |
|                     (datag + y*glinesize);                              \
 | |
|                 const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \
 | |
|                     (datab + y*blinesize);                              \
 | |
|                 const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
 | |
|                     (datar + y*rlinesize);                              \
 | |
|                 struct rgbvec *vec = &lut3d->lut[i][j][k];              \
 | |
|                 vec->r = gsrc[x] / (float)((1<<(depth)) - 1);           \
 | |
|                 vec->g = bsrc[x] / (float)((1<<(depth)) - 1);           \
 | |
|                 vec->b = rsrc[x] / (float)((1<<(depth)) - 1);           \
 | |
|                 if (++x == w) {                                         \
 | |
|                     x = 0;                                              \
 | |
|                     y++;                                                \
 | |
|                 }                                                       \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|     }                                                                   \
 | |
| } while (0)
 | |
| 
 | |
|     switch (lut3d->clut_bits) {
 | |
|     case  8: LOAD_CLUT_PLANAR(8, 8);   break;
 | |
|     case  9: LOAD_CLUT_PLANAR(16, 9);  break;
 | |
|     case 10: LOAD_CLUT_PLANAR(16, 10); break;
 | |
|     case 12: LOAD_CLUT_PLANAR(16, 12); break;
 | |
|     case 14: LOAD_CLUT_PLANAR(16, 14); break;
 | |
|     case 16: LOAD_CLUT_PLANAR(16, 16); break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int config_output(AVFilterLink *outlink)
 | |
| {
 | |
|     AVFilterContext *ctx = outlink->src;
 | |
|     LUT3DContext *lut3d = ctx->priv;
 | |
|     int ret;
 | |
| 
 | |
|     ret = ff_framesync_init_dualinput(&lut3d->fs, ctx);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
|     outlink->w = ctx->inputs[0]->w;
 | |
|     outlink->h = ctx->inputs[0]->h;
 | |
|     outlink->time_base = ctx->inputs[0]->time_base;
 | |
|     if ((ret = ff_framesync_configure(&lut3d->fs)) < 0)
 | |
|         return ret;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int activate(AVFilterContext *ctx)
 | |
| {
 | |
|     LUT3DContext *s = ctx->priv;
 | |
|     return ff_framesync_activate(&s->fs);
 | |
| }
 | |
| 
 | |
| static int config_clut(AVFilterLink *inlink)
 | |
| {
 | |
|     int size, level, w, h;
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     LUT3DContext *lut3d = ctx->priv;
 | |
|     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
 | |
| 
 | |
|     av_assert0(desc);
 | |
| 
 | |
|     lut3d->clut_bits = desc->comp[0].depth;
 | |
|     lut3d->clut_planar = av_pix_fmt_count_planes(inlink->format) > 1;
 | |
| 
 | |
|     lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3;
 | |
|     ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format);
 | |
| 
 | |
|     if (inlink->w > inlink->h)
 | |
|         av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the "
 | |
|                "Hald CLUT will be ignored\n", inlink->w - inlink->h);
 | |
|     else if (inlink->w < inlink->h)
 | |
|         av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the "
 | |
|                "Hald CLUT will be ignored\n", inlink->h - inlink->w);
 | |
|     lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h);
 | |
| 
 | |
|     for (level = 1; level*level*level < w; level++);
 | |
|     size = level*level*level;
 | |
|     if (size != w) {
 | |
|         av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     av_assert0(w == h && w == size);
 | |
|     level *= level;
 | |
|     if (level > MAX_LEVEL) {
 | |
|         const int max_clut_level = sqrt(MAX_LEVEL);
 | |
|         const int max_clut_size  = max_clut_level*max_clut_level*max_clut_level;
 | |
|         av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT "
 | |
|                "(maximum level is %d, or %dx%d CLUT)\n",
 | |
|                max_clut_level, max_clut_size, max_clut_size);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     lut3d->lutsize = level;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int update_apply_clut(FFFrameSync *fs)
 | |
| {
 | |
|     AVFilterContext *ctx = fs->parent;
 | |
|     LUT3DContext *lut3d = ctx->priv;
 | |
|     AVFilterLink *inlink = ctx->inputs[0];
 | |
|     AVFrame *master, *second, *out;
 | |
|     int ret;
 | |
| 
 | |
|     ret = ff_framesync_dualinput_get(fs, &master, &second);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
|     if (!second)
 | |
|         return ff_filter_frame(ctx->outputs[0], master);
 | |
|     if (lut3d->clut_planar)
 | |
|         update_clut_planar(ctx->priv, second);
 | |
|     else
 | |
|         update_clut_packed(ctx->priv, second);
 | |
|     out = apply_lut(inlink, master);
 | |
|     return ff_filter_frame(ctx->outputs[0], out);
 | |
| }
 | |
| 
 | |
| static av_cold int haldclut_init(AVFilterContext *ctx)
 | |
| {
 | |
|     LUT3DContext *lut3d = ctx->priv;
 | |
|     lut3d->fs.on_event = update_apply_clut;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold void haldclut_uninit(AVFilterContext *ctx)
 | |
| {
 | |
|     LUT3DContext *lut3d = ctx->priv;
 | |
|     ff_framesync_uninit(&lut3d->fs);
 | |
| }
 | |
| 
 | |
| static const AVOption haldclut_options[] = {
 | |
|     COMMON_OPTIONS
 | |
| };
 | |
| 
 | |
| FRAMESYNC_DEFINE_CLASS(haldclut, LUT3DContext, fs);
 | |
| 
 | |
| static const AVFilterPad haldclut_inputs[] = {
 | |
|     {
 | |
|         .name         = "main",
 | |
|         .type         = AVMEDIA_TYPE_VIDEO,
 | |
|         .config_props = config_input,
 | |
|     },{
 | |
|         .name         = "clut",
 | |
|         .type         = AVMEDIA_TYPE_VIDEO,
 | |
|         .config_props = config_clut,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| static const AVFilterPad haldclut_outputs[] = {
 | |
|     {
 | |
|         .name          = "default",
 | |
|         .type          = AVMEDIA_TYPE_VIDEO,
 | |
|         .config_props  = config_output,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFilter ff_vf_haldclut = {
 | |
|     .name          = "haldclut",
 | |
|     .description   = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."),
 | |
|     .priv_size     = sizeof(LUT3DContext),
 | |
|     .preinit       = haldclut_framesync_preinit,
 | |
|     .init          = haldclut_init,
 | |
|     .uninit        = haldclut_uninit,
 | |
|     .query_formats = query_formats,
 | |
|     .activate      = activate,
 | |
|     .inputs        = haldclut_inputs,
 | |
|     .outputs       = haldclut_outputs,
 | |
|     .priv_class    = &haldclut_class,
 | |
|     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_LUT1D_FILTER
 | |
| 
 | |
| enum interp_1d_mode {
 | |
|     INTERPOLATE_1D_NEAREST,
 | |
|     INTERPOLATE_1D_LINEAR,
 | |
|     INTERPOLATE_1D_CUBIC,
 | |
|     INTERPOLATE_1D_COSINE,
 | |
|     INTERPOLATE_1D_SPLINE,
 | |
|     NB_INTERP_1D_MODE
 | |
| };
 | |
| 
 | |
| #define MAX_1D_LEVEL 65536
 | |
| 
 | |
| typedef struct LUT1DContext {
 | |
|     const AVClass *class;
 | |
|     char *file;
 | |
|     int interpolation;          ///<interp_1d_mode
 | |
|     uint8_t rgba_map[4];
 | |
|     int step;
 | |
|     float lut[3][MAX_1D_LEVEL];
 | |
|     int lutsize;
 | |
|     avfilter_action_func *interp;
 | |
| } LUT1DContext;
 | |
| 
 | |
| #undef OFFSET
 | |
| #define OFFSET(x) offsetof(LUT1DContext, x)
 | |
| 
 | |
| static void set_identity_matrix_1d(LUT1DContext *lut1d, int size)
 | |
| {
 | |
|     const float c = 1. / (size - 1);
 | |
|     int i;
 | |
| 
 | |
|     lut1d->lutsize = size;
 | |
|     for (i = 0; i < size; i++) {
 | |
|         lut1d->lut[0][i] = i * c;
 | |
|         lut1d->lut[1][i] = i * c;
 | |
|         lut1d->lut[2][i] = i * c;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int parse_cube_1d(AVFilterContext *ctx, FILE *f)
 | |
| {
 | |
|     LUT1DContext *lut1d = ctx->priv;
 | |
|     char line[MAX_LINE_SIZE];
 | |
|     float min[3] = {0.0, 0.0, 0.0};
 | |
|     float max[3] = {1.0, 1.0, 1.0};
 | |
| 
 | |
|     while (fgets(line, sizeof(line), f)) {
 | |
|         if (!strncmp(line, "LUT_1D_SIZE", 11)) {
 | |
|             const int size = strtol(line + 12, NULL, 0);
 | |
|             int i;
 | |
| 
 | |
|             if (size < 2 || size > MAX_1D_LEVEL) {
 | |
|                 av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
 | |
|                 return AVERROR(EINVAL);
 | |
|             }
 | |
|             lut1d->lutsize = size;
 | |
|             for (i = 0; i < size; i++) {
 | |
|                 do {
 | |
| try_again:
 | |
|                     NEXT_LINE(0);
 | |
|                     if (!strncmp(line, "DOMAIN_", 7)) {
 | |
|                         float *vals = NULL;
 | |
|                         if      (!strncmp(line + 7, "MIN ", 4)) vals = min;
 | |
|                         else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
 | |
|                         if (!vals)
 | |
|                             return AVERROR_INVALIDDATA;
 | |
|                         av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
 | |
|                         av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
 | |
|                                min[0], min[1], min[2], max[0], max[1], max[2]);
 | |
|                         goto try_again;
 | |
|                     } else if (!strncmp(line, "LUT_1D_INPUT_RANGE ", 19)) {
 | |
|                         av_sscanf(line + 19, "%f %f", min, max);
 | |
|                         min[1] = min[2] = min[0];
 | |
|                         max[1] = max[2] = max[0];
 | |
|                         goto try_again;
 | |
|                     } else if (!strncmp(line, "TITLE", 5)) {
 | |
|                         goto try_again;
 | |
|                     }
 | |
|                 } while (skip_line(line));
 | |
|                 if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 lut1d->lut[0][i] *= max[0] - min[0];
 | |
|                 lut1d->lut[1][i] *= max[1] - min[1];
 | |
|                 lut1d->lut[2][i] *= max[2] - min[2];
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const AVOption lut1d_options[] = {
 | |
|     { "file", "set 1D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
 | |
|     { "interp", "select interpolation mode", OFFSET(interpolation),    AV_OPT_TYPE_INT, {.i64=INTERPOLATE_1D_LINEAR}, 0, NB_INTERP_1D_MODE-1, FLAGS, "interp_mode" },
 | |
|         { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST},   INT_MIN, INT_MAX, FLAGS, "interp_mode" },
 | |
|         { "linear",  "use values from the linear interpolation",   0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR},    INT_MIN, INT_MAX, FLAGS, "interp_mode" },
 | |
|         { "cosine",  "use values from the cosine interpolation",   0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE},    INT_MIN, INT_MAX, FLAGS, "interp_mode" },
 | |
|         { "cubic",   "use values from the cubic interpolation",    0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC},     INT_MIN, INT_MAX, FLAGS, "interp_mode" },
 | |
|         { "spline",  "use values from the spline interpolation",   0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE},    INT_MIN, INT_MAX, FLAGS, "interp_mode" },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFILTER_DEFINE_CLASS(lut1d);
 | |
| 
 | |
| static inline float interp_1d_nearest(const LUT1DContext *lut1d,
 | |
|                                       int idx, const float s)
 | |
| {
 | |
|     return lut1d->lut[idx][NEAR(s)];
 | |
| }
 | |
| 
 | |
| #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1))
 | |
| 
 | |
| static inline float interp_1d_linear(const LUT1DContext *lut1d,
 | |
|                                      int idx, const float s)
 | |
| {
 | |
|     const int prev = PREV(s);
 | |
|     const int next = NEXT1D(s);
 | |
|     const float d = s - prev;
 | |
|     const float p = lut1d->lut[idx][prev];
 | |
|     const float n = lut1d->lut[idx][next];
 | |
| 
 | |
|     return lerpf(p, n, d);
 | |
| }
 | |
| 
 | |
| static inline float interp_1d_cosine(const LUT1DContext *lut1d,
 | |
|                                      int idx, const float s)
 | |
| {
 | |
|     const int prev = PREV(s);
 | |
|     const int next = NEXT1D(s);
 | |
|     const float d = s - prev;
 | |
|     const float p = lut1d->lut[idx][prev];
 | |
|     const float n = lut1d->lut[idx][next];
 | |
|     const float m = (1.f - cosf(d * M_PI)) * .5f;
 | |
| 
 | |
|     return lerpf(p, n, m);
 | |
| }
 | |
| 
 | |
| static inline float interp_1d_cubic(const LUT1DContext *lut1d,
 | |
|                                     int idx, const float s)
 | |
| {
 | |
|     const int prev = PREV(s);
 | |
|     const int next = NEXT1D(s);
 | |
|     const float mu = s - prev;
 | |
|     float a0, a1, a2, a3, mu2;
 | |
| 
 | |
|     float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
 | |
|     float y1 = lut1d->lut[idx][prev];
 | |
|     float y2 = lut1d->lut[idx][next];
 | |
|     float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
 | |
| 
 | |
| 
 | |
|     mu2 = mu * mu;
 | |
|     a0 = y3 - y2 - y0 + y1;
 | |
|     a1 = y0 - y1 - a0;
 | |
|     a2 = y2 - y0;
 | |
|     a3 = y1;
 | |
| 
 | |
|     return a0 * mu * mu2 + a1 * mu2 + a2 * mu + a3;
 | |
| }
 | |
| 
 | |
| static inline float interp_1d_spline(const LUT1DContext *lut1d,
 | |
|                                      int idx, const float s)
 | |
| {
 | |
|     const int prev = PREV(s);
 | |
|     const int next = NEXT1D(s);
 | |
|     const float x = s - prev;
 | |
|     float c0, c1, c2, c3;
 | |
| 
 | |
|     float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
 | |
|     float y1 = lut1d->lut[idx][prev];
 | |
|     float y2 = lut1d->lut[idx][next];
 | |
|     float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
 | |
| 
 | |
|     c0 = y1;
 | |
|     c1 = .5f * (y2 - y0);
 | |
|     c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
 | |
|     c3 = .5f * (y3 - y0) + 1.5f * (y1 - y2);
 | |
| 
 | |
|     return ((c3 * x + c2) * x + c1) * x + c0;
 | |
| }
 | |
| 
 | |
| #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth)                     \
 | |
| static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx,       \
 | |
|                                                  void *arg, int jobnr,       \
 | |
|                                                  int nb_jobs)                \
 | |
| {                                                                            \
 | |
|     int x, y;                                                                \
 | |
|     const LUT1DContext *lut1d = ctx->priv;                                   \
 | |
|     const ThreadData *td = arg;                                              \
 | |
|     const AVFrame *in  = td->in;                                             \
 | |
|     const AVFrame *out = td->out;                                            \
 | |
|     const int direct = out == in;                                            \
 | |
|     const int slice_start = (in->height *  jobnr   ) / nb_jobs;              \
 | |
|     const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;              \
 | |
|     uint8_t *grow = out->data[0] + slice_start * out->linesize[0];           \
 | |
|     uint8_t *brow = out->data[1] + slice_start * out->linesize[1];           \
 | |
|     uint8_t *rrow = out->data[2] + slice_start * out->linesize[2];           \
 | |
|     uint8_t *arow = out->data[3] + slice_start * out->linesize[3];           \
 | |
|     const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0];    \
 | |
|     const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1];    \
 | |
|     const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2];    \
 | |
|     const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3];    \
 | |
|     const float factor = (1 << depth) - 1;                                   \
 | |
|     const float scale = (1. / factor) * (lut1d->lutsize - 1);                \
 | |
|                                                                              \
 | |
|     for (y = slice_start; y < slice_end; y++) {                              \
 | |
|         uint##nbits##_t *dstg = (uint##nbits##_t *)grow;                     \
 | |
|         uint##nbits##_t *dstb = (uint##nbits##_t *)brow;                     \
 | |
|         uint##nbits##_t *dstr = (uint##nbits##_t *)rrow;                     \
 | |
|         uint##nbits##_t *dsta = (uint##nbits##_t *)arow;                     \
 | |
|         const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow;      \
 | |
|         const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow;      \
 | |
|         const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow;      \
 | |
|         const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow;      \
 | |
|         for (x = 0; x < in->width; x++) {                                    \
 | |
|             float r = srcr[x] * scale;                                       \
 | |
|             float g = srcg[x] * scale;                                       \
 | |
|             float b = srcb[x] * scale;                                       \
 | |
|             r = interp_1d_##name(lut1d, 0, r);                               \
 | |
|             g = interp_1d_##name(lut1d, 1, g);                               \
 | |
|             b = interp_1d_##name(lut1d, 2, b);                               \
 | |
|             dstr[x] = av_clip_uintp2(r * factor, depth);                     \
 | |
|             dstg[x] = av_clip_uintp2(g * factor, depth);                     \
 | |
|             dstb[x] = av_clip_uintp2(b * factor, depth);                     \
 | |
|             if (!direct && in->linesize[3])                                  \
 | |
|                 dsta[x] = srca[x];                                           \
 | |
|         }                                                                    \
 | |
|         grow += out->linesize[0];                                            \
 | |
|         brow += out->linesize[1];                                            \
 | |
|         rrow += out->linesize[2];                                            \
 | |
|         arow += out->linesize[3];                                            \
 | |
|         srcgrow += in->linesize[0];                                          \
 | |
|         srcbrow += in->linesize[1];                                          \
 | |
|         srcrrow += in->linesize[2];                                          \
 | |
|         srcarow += in->linesize[3];                                          \
 | |
|     }                                                                        \
 | |
|     return 0;                                                                \
 | |
| }
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     8, 8)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear,      8, 8)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      8, 8)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       8, 8)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline,      8, 8)
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     16, 9)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear,      16, 9)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      16, 9)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       16, 9)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline,      16, 9)
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     16, 10)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear,      16, 10)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      16, 10)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       16, 10)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline,      16, 10)
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     16, 12)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear,      16, 12)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      16, 12)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       16, 12)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline,      16, 12)
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     16, 14)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear,      16, 14)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      16, 14)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       16, 14)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline,      16, 14)
 | |
| 
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest,     16, 16)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear,      16, 16)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine,      16, 16)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic,       16, 16)
 | |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline,      16, 16)
 | |
| 
 | |
| #define DEFINE_INTERP_FUNC_1D(name, nbits)                                   \
 | |
| static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg,       \
 | |
|                                       int jobnr, int nb_jobs)                \
 | |
| {                                                                            \
 | |
|     int x, y;                                                                \
 | |
|     const LUT1DContext *lut1d = ctx->priv;                                   \
 | |
|     const ThreadData *td = arg;                                              \
 | |
|     const AVFrame *in  = td->in;                                             \
 | |
|     const AVFrame *out = td->out;                                            \
 | |
|     const int direct = out == in;                                            \
 | |
|     const int step = lut1d->step;                                            \
 | |
|     const uint8_t r = lut1d->rgba_map[R];                                    \
 | |
|     const uint8_t g = lut1d->rgba_map[G];                                    \
 | |
|     const uint8_t b = lut1d->rgba_map[B];                                    \
 | |
|     const uint8_t a = lut1d->rgba_map[A];                                    \
 | |
|     const int slice_start = (in->height *  jobnr   ) / nb_jobs;              \
 | |
|     const int slice_end   = (in->height * (jobnr+1)) / nb_jobs;              \
 | |
|     uint8_t       *dstrow = out->data[0] + slice_start * out->linesize[0];   \
 | |
|     const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0];   \
 | |
|     const float factor = (1 << nbits) - 1;                                   \
 | |
|     const float scale = (1. / factor) * (lut1d->lutsize - 1);                \
 | |
|                                                                              \
 | |
|     for (y = slice_start; y < slice_end; y++) {                              \
 | |
|         uint##nbits##_t *dst = (uint##nbits##_t *)dstrow;                    \
 | |
|         const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow;        \
 | |
|         for (x = 0; x < in->width * step; x += step) {                       \
 | |
|             float rr = src[x + r] * scale;                                   \
 | |
|             float gg = src[x + g] * scale;                                   \
 | |
|             float bb = src[x + b] * scale;                                   \
 | |
|             rr = interp_1d_##name(lut1d, 0, rr);                             \
 | |
|             gg = interp_1d_##name(lut1d, 1, gg);                             \
 | |
|             bb = interp_1d_##name(lut1d, 2, bb);                             \
 | |
|             dst[x + r] = av_clip_uint##nbits(rr * factor);                   \
 | |
|             dst[x + g] = av_clip_uint##nbits(gg * factor);                   \
 | |
|             dst[x + b] = av_clip_uint##nbits(bb * factor);                   \
 | |
|             if (!direct && step == 4)                                        \
 | |
|                 dst[x + a] = src[x + a];                                     \
 | |
|         }                                                                    \
 | |
|         dstrow += out->linesize[0];                                          \
 | |
|         srcrow += in ->linesize[0];                                          \
 | |
|     }                                                                        \
 | |
|     return 0;                                                                \
 | |
| }
 | |
| 
 | |
| DEFINE_INTERP_FUNC_1D(nearest,     8)
 | |
| DEFINE_INTERP_FUNC_1D(linear,      8)
 | |
| DEFINE_INTERP_FUNC_1D(cosine,      8)
 | |
| DEFINE_INTERP_FUNC_1D(cubic,       8)
 | |
| DEFINE_INTERP_FUNC_1D(spline,      8)
 | |
| 
 | |
| DEFINE_INTERP_FUNC_1D(nearest,     16)
 | |
| DEFINE_INTERP_FUNC_1D(linear,      16)
 | |
| DEFINE_INTERP_FUNC_1D(cosine,      16)
 | |
| DEFINE_INTERP_FUNC_1D(cubic,       16)
 | |
| DEFINE_INTERP_FUNC_1D(spline,      16)
 | |
| 
 | |
| static int config_input_1d(AVFilterLink *inlink)
 | |
| {
 | |
|     int depth, is16bit = 0, planar = 0;
 | |
|     LUT1DContext *lut1d = inlink->dst->priv;
 | |
|     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
 | |
| 
 | |
|     depth = desc->comp[0].depth;
 | |
| 
 | |
|     switch (inlink->format) {
 | |
|     case AV_PIX_FMT_RGB48:
 | |
|     case AV_PIX_FMT_BGR48:
 | |
|     case AV_PIX_FMT_RGBA64:
 | |
|     case AV_PIX_FMT_BGRA64:
 | |
|         is16bit = 1;
 | |
|         break;
 | |
|     case AV_PIX_FMT_GBRP9:
 | |
|     case AV_PIX_FMT_GBRP10:
 | |
|     case AV_PIX_FMT_GBRP12:
 | |
|     case AV_PIX_FMT_GBRP14:
 | |
|     case AV_PIX_FMT_GBRP16:
 | |
|     case AV_PIX_FMT_GBRAP10:
 | |
|     case AV_PIX_FMT_GBRAP12:
 | |
|     case AV_PIX_FMT_GBRAP16:
 | |
|         is16bit = 1;
 | |
|     case AV_PIX_FMT_GBRP:
 | |
|     case AV_PIX_FMT_GBRAP:
 | |
|         planar = 1;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     ff_fill_rgba_map(lut1d->rgba_map, inlink->format);
 | |
|     lut1d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
 | |
| 
 | |
| #define SET_FUNC_1D(name) do {                                     \
 | |
|     if (planar) {                                                  \
 | |
|         switch (depth) {                                           \
 | |
|         case  8: lut1d->interp = interp_1d_8_##name##_p8;   break; \
 | |
|         case  9: lut1d->interp = interp_1d_16_##name##_p9;  break; \
 | |
|         case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \
 | |
|         case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \
 | |
|         case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \
 | |
|         case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \
 | |
|         }                                                          \
 | |
|     } else if (is16bit) { lut1d->interp = interp_1d_16_##name;     \
 | |
|     } else {              lut1d->interp = interp_1d_8_##name; }    \
 | |
| } while (0)
 | |
| 
 | |
|     switch (lut1d->interpolation) {
 | |
|     case INTERPOLATE_1D_NEAREST:     SET_FUNC_1D(nearest);  break;
 | |
|     case INTERPOLATE_1D_LINEAR:      SET_FUNC_1D(linear);   break;
 | |
|     case INTERPOLATE_1D_COSINE:      SET_FUNC_1D(cosine);   break;
 | |
|     case INTERPOLATE_1D_CUBIC:       SET_FUNC_1D(cubic);    break;
 | |
|     case INTERPOLATE_1D_SPLINE:      SET_FUNC_1D(spline);   break;
 | |
|     default:
 | |
|         av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int lut1d_init(AVFilterContext *ctx)
 | |
| {
 | |
|     int ret;
 | |
|     FILE *f;
 | |
|     const char *ext;
 | |
|     LUT1DContext *lut1d = ctx->priv;
 | |
| 
 | |
|     if (!lut1d->file) {
 | |
|         set_identity_matrix_1d(lut1d, 32);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     f = fopen(lut1d->file, "r");
 | |
|     if (!f) {
 | |
|         ret = AVERROR(errno);
 | |
|         av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut1d->file, av_err2str(ret));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ext = strrchr(lut1d->file, '.');
 | |
|     if (!ext) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
 | |
|         ret = AVERROR_INVALIDDATA;
 | |
|         goto end;
 | |
|     }
 | |
|     ext++;
 | |
| 
 | |
|     if (!av_strcasecmp(ext, "cube") || !av_strcasecmp(ext, "1dlut")) {
 | |
|         ret = parse_cube_1d(ctx, f);
 | |
|     } else {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
 | |
|         ret = AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if (!ret && !lut1d->lutsize) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "1D LUT is empty\n");
 | |
|         ret = AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
| end:
 | |
|     fclose(f);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static AVFrame *apply_1d_lut(AVFilterLink *inlink, AVFrame *in)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     LUT1DContext *lut1d = ctx->priv;
 | |
|     AVFilterLink *outlink = inlink->dst->outputs[0];
 | |
|     AVFrame *out;
 | |
|     ThreadData td;
 | |
| 
 | |
|     if (av_frame_is_writable(in)) {
 | |
|         out = in;
 | |
|     } else {
 | |
|         out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
 | |
|         if (!out) {
 | |
|             av_frame_free(&in);
 | |
|             return NULL;
 | |
|         }
 | |
|         av_frame_copy_props(out, in);
 | |
|     }
 | |
| 
 | |
|     td.in  = in;
 | |
|     td.out = out;
 | |
|     ctx->internal->execute(ctx, lut1d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
 | |
| 
 | |
|     if (out != in)
 | |
|         av_frame_free(&in);
 | |
| 
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| static int filter_frame_1d(AVFilterLink *inlink, AVFrame *in)
 | |
| {
 | |
|     AVFilterLink *outlink = inlink->dst->outputs[0];
 | |
|     AVFrame *out = apply_1d_lut(inlink, in);
 | |
|     if (!out)
 | |
|         return AVERROR(ENOMEM);
 | |
|     return ff_filter_frame(outlink, out);
 | |
| }
 | |
| 
 | |
| static const AVFilterPad lut1d_inputs[] = {
 | |
|     {
 | |
|         .name         = "default",
 | |
|         .type         = AVMEDIA_TYPE_VIDEO,
 | |
|         .filter_frame = filter_frame_1d,
 | |
|         .config_props = config_input_1d,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| static const AVFilterPad lut1d_outputs[] = {
 | |
|     {
 | |
|         .name = "default",
 | |
|         .type = AVMEDIA_TYPE_VIDEO,
 | |
|     },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFilter ff_vf_lut1d = {
 | |
|     .name          = "lut1d",
 | |
|     .description   = NULL_IF_CONFIG_SMALL("Adjust colors using a 1D LUT."),
 | |
|     .priv_size     = sizeof(LUT1DContext),
 | |
|     .init          = lut1d_init,
 | |
|     .query_formats = query_formats,
 | |
|     .inputs        = lut1d_inputs,
 | |
|     .outputs       = lut1d_outputs,
 | |
|     .priv_class    = &lut1d_class,
 | |
|     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
 | |
| };
 | |
| #endif
 |