1
0
mirror of https://github.com/vcmi/vcmi.git synced 2025-03-21 21:17:49 +02:00
vcmi/client/renderSDL/ScalableImage.cpp

533 lines
18 KiB
C++

/*
* ScalableImage.cpp, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#include "StdInc.h"
#include "ScalableImage.h"
#include "SDLImage.h"
#include "SDL_Extensions.h"
#include "../gui/CGuiHandler.h"
#include "../render/ColorFilter.h"
#include "../render/Colors.h"
#include "../render/Graphics.h"
#include "../render/IRenderHandler.h"
#include "../render/IScreenHandler.h"
#include "../render/CanvasImage.h"
#include "../../lib/constants/EntityIdentifiers.h"
#include <SDL_surface.h>
//First 8 colors in def palette used for transparency
static constexpr std::array<SDL_Color, 8> sourcePalette = {{
{0, 255, 255, SDL_ALPHA_OPAQUE},
{255, 150, 255, SDL_ALPHA_OPAQUE},
{255, 100, 255, SDL_ALPHA_OPAQUE},
{255, 50, 255, SDL_ALPHA_OPAQUE},
{255, 0, 255, SDL_ALPHA_OPAQUE},
{255, 255, 0, SDL_ALPHA_OPAQUE},
{180, 0, 255, SDL_ALPHA_OPAQUE},
{0, 255, 0, SDL_ALPHA_OPAQUE}
}};
static constexpr std::array<ColorRGBA, 8> targetPalette = {{
{0, 0, 0, 0 }, // 0 - transparency ( used in most images )
{0, 0, 0, 64 }, // 1 - shadow border ( used in battle, adventure map def's )
{0, 0, 0, 64 }, // 2 - shadow border ( used in fog-of-war def's )
{0, 0, 0, 128}, // 3 - shadow body ( used in fog-of-war def's )
{0, 0, 0, 128}, // 4 - shadow body ( used in battle, adventure map def's )
{0, 0, 0, 0 }, // 5 - selection / owner flag ( used in battle, adventure map def's )
{0, 0, 0, 128}, // 6 - shadow body below selection ( used in battle def's )
{0, 0, 0, 64 } // 7 - shadow border below selection ( used in battle def's )
}};
static ui8 mixChannels(ui8 c1, ui8 c2, ui8 a1, ui8 a2)
{
return c1*a1 / 256 + c2*a2*(255 - a1) / 256 / 256;
}
static ColorRGBA addColors(const ColorRGBA & base, const ColorRGBA & over)
{
return ColorRGBA(
mixChannels(over.r, base.r, over.a, base.a),
mixChannels(over.g, base.g, over.a, base.a),
mixChannels(over.b, base.b, over.a, base.a),
static_cast<ui8>(over.a + base.a * (255 - over.a) / 256)
);
}
static bool colorsSimilar (const SDL_Color & lhs, const SDL_Color & rhs)
{
// it seems that H3 does not requires exact match to replace colors -> (255, 103, 255) gets interpreted as shadow
// exact logic is not clear and requires extensive testing with image editing
// potential reason is that H3 uses 16-bit color format (565 RGB bits), meaning that 3 least significant bits are lost in red and blue component
static const int threshold = 8;
int diffR = static_cast<int>(lhs.r) - rhs.r;
int diffG = static_cast<int>(lhs.g) - rhs.g;
int diffB = static_cast<int>(lhs.b) - rhs.b;
int diffA = static_cast<int>(lhs.a) - rhs.a;
return std::abs(diffR) < threshold && std::abs(diffG) < threshold && std::abs(diffB) < threshold && std::abs(diffA) < threshold;
}
ScalableImageParameters::ScalableImageParameters(const SDL_Palette * originalPalette, EImageBlitMode blitMode)
{
if (originalPalette)
{
palette = SDL_AllocPalette(originalPalette->ncolors);
SDL_SetPaletteColors(palette, originalPalette->colors, 0, originalPalette->ncolors);
preparePalette(originalPalette, blitMode);
}
}
ScalableImageParameters::~ScalableImageParameters()
{
SDL_FreePalette(palette);
}
void ScalableImageParameters::preparePalette(const SDL_Palette * originalPalette, EImageBlitMode blitMode)
{
switch(blitMode)
{
case EImageBlitMode::ONLY_SHADOW:
case EImageBlitMode::ONLY_OVERLAY:
adjustPalette(originalPalette, blitMode, ColorFilter::genAlphaShifter(0), 0);
break;
}
switch(blitMode)
{
case EImageBlitMode::SIMPLE:
case EImageBlitMode::WITH_SHADOW:
case EImageBlitMode::ONLY_SHADOW:
case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
setShadowTransparency(originalPalette, 1.0);
break;
case EImageBlitMode::ONLY_BODY:
case EImageBlitMode::ONLY_BODY_IGNORE_OVERLAY:
case EImageBlitMode::ONLY_OVERLAY:
setShadowTransparency(originalPalette, 0.0);
break;
}
switch(blitMode)
{
case EImageBlitMode::ONLY_OVERLAY:
case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
setOverlayColor(originalPalette, Colors::WHITE_TRUE);
break;
case EImageBlitMode::ONLY_SHADOW:
case EImageBlitMode::ONLY_BODY:
setOverlayColor(originalPalette, Colors::TRANSPARENCY);
break;
}
}
void ScalableImageParameters::setOverlayColor(const SDL_Palette * originalPalette, const ColorRGBA & color)
{
palette->colors[5] = CSDL_Ext::toSDL(addColors(targetPalette[5], color));
for (int i : {6,7})
{
if (colorsSimilar(originalPalette->colors[i], sourcePalette[i]))
palette->colors[i] = CSDL_Ext::toSDL(addColors(targetPalette[i], color));
}
}
void ScalableImageParameters::shiftPalette(const SDL_Palette * originalPalette, uint32_t firstColorID, uint32_t colorsToMove, uint32_t distanceToMove)
{
std::vector<SDL_Color> shifterColors(colorsToMove);
for(uint32_t i=0; i<colorsToMove; ++i)
shifterColors[(i+distanceToMove)%colorsToMove] = originalPalette->colors[firstColorID + i];
SDL_SetPaletteColors(palette, shifterColors.data(), firstColorID, colorsToMove);
}
void ScalableImageParameters::setShadowTransparency(const SDL_Palette * originalPalette, float factor)
{
ColorRGBA shadow50(0, 0, 0, 128 * factor);
ColorRGBA shadow25(0, 0, 0, 64 * factor);
std::array<SDL_Color, 5> colorsSDL = {
originalPalette->colors[0],
originalPalette->colors[1],
originalPalette->colors[2],
originalPalette->colors[3],
originalPalette->colors[4]
};
// seems to be used unconditionally
colorsSDL[0] = CSDL_Ext::toSDL(Colors::TRANSPARENCY);
colorsSDL[1] = CSDL_Ext::toSDL(shadow25);
colorsSDL[4] = CSDL_Ext::toSDL(shadow50);
// seems to be used only if color matches
if (colorsSimilar(originalPalette->colors[2], sourcePalette[2]))
colorsSDL[2] = CSDL_Ext::toSDL(shadow25);
if (colorsSimilar(originalPalette->colors[3], sourcePalette[3]))
colorsSDL[3] = CSDL_Ext::toSDL(shadow50);
SDL_SetPaletteColors(palette, colorsSDL.data(), 0, colorsSDL.size());
}
void ScalableImageParameters::adjustPalette(const SDL_Palette * originalPalette, EImageBlitMode blitMode, const ColorFilter & shifter, uint32_t colorsToSkipMask)
{
// If shadow is enabled, following colors must be skipped unconditionally
if (blitMode == EImageBlitMode::WITH_SHADOW || blitMode == EImageBlitMode::WITH_SHADOW_AND_OVERLAY)
colorsToSkipMask |= (1 << 0) + (1 << 1) + (1 << 4);
// Note: here we skip first colors in the palette that are predefined in H3 images
for(int i = 0; i < palette->ncolors; i++)
{
if (i < std::size(sourcePalette) && colorsSimilar(sourcePalette[i], originalPalette->colors[i]))
continue;
if(i < std::numeric_limits<uint32_t>::digits && ((colorsToSkipMask >> i) & 1) == 1)
continue;
palette->colors[i] = CSDL_Ext::toSDL(shifter.shiftColor(CSDL_Ext::fromSDL(originalPalette->colors[i])));
}
}
ScalableImageShared::ScalableImageShared(const SharedImageLocator & locator, const std::shared_ptr<const ISharedImage> & baseImage)
:locator(locator)
{
scaled[1].body[0] = baseImage;
assert(scaled[1].body[0] != nullptr);
loadScaledImages(GH.screenHandler().getScalingFactor(), PlayerColor::CANNOT_DETERMINE);
}
Point ScalableImageShared::dimensions() const
{
return scaled[1].body[0]->dimensions();
}
void ScalableImageShared::exportBitmap(const boost::filesystem::path & path, const ScalableImageParameters & parameters) const
{
scaled[1].body[0]->exportBitmap(path, parameters.palette);
}
bool ScalableImageShared::isTransparent(const Point & coords) const
{
return scaled[1].body[0]->isTransparent(coords);
}
Rect ScalableImageShared::contentRect() const
{
return scaled[1].body[0]->contentRect();
}
void ScalableImageShared::draw(SDL_Surface * where, const Point & dest, const Rect * src, const ScalableImageParameters & parameters, int scalingFactor)
{
const auto & getFlippedImage = [&](FlippedImages & images){
int index = 0;
if (parameters.flipVertical)
{
if (!images[index|1])
images[index|1] = images[index]->verticalFlip();
index |= 1;
}
if (parameters.flipHorizontal)
{
if (!images[index|2])
images[index|2] = images[index]->horizontalFlip();
index |= 2;
}
return images[index];
};
const auto & flipAndDraw = [&](FlippedImages & images, const ColorRGBA & colorMultiplier, uint8_t alphaValue){
getFlippedImage(images)->draw(where, parameters.palette, dest, src, colorMultiplier, alphaValue, locator.layer);
};
bool shadowLoading = scaled.at(scalingFactor).shadow.at(0) && scaled.at(scalingFactor).shadow.at(0)->isLoading();
bool bodyLoading = scaled.at(scalingFactor).body.at(0) && scaled.at(scalingFactor).body.at(0)->isLoading();
bool overlayLoading = scaled.at(scalingFactor).overlay.at(0) && scaled.at(scalingFactor).overlay.at(0)->isLoading();
bool playerLoading = parameters.player != PlayerColor::CANNOT_DETERMINE && scaled.at(scalingFactor).playerColored.at(1+parameters.player.getNum()) && scaled.at(scalingFactor).playerColored.at(1+parameters.player.getNum())->isLoading();
if (shadowLoading || bodyLoading || overlayLoading || playerLoading)
{
getFlippedImage(scaled[1].body)->scaledDraw(where, parameters.palette, dimensions() * scalingFactor, dest, src, parameters.colorMultiplier, parameters.alphaValue, locator.layer);
return;
}
if (scaled.at(scalingFactor).shadow.at(0))
flipAndDraw(scaled.at(scalingFactor).shadow, Colors::WHITE_TRUE, parameters.alphaValue);
if (parameters.player != PlayerColor::CANNOT_DETERMINE && scaled.at(scalingFactor).playerColored.at(1+parameters.player.getNum()))
{
scaled.at(scalingFactor).playerColored.at(1+parameters.player.getNum())->draw(where, parameters.palette, dest, src, Colors::WHITE_TRUE, parameters.alphaValue, locator.layer);
}
else
{
if (scaled.at(scalingFactor).body.at(0))
flipAndDraw(scaled.at(scalingFactor).body, parameters.colorMultiplier, parameters.alphaValue);
}
if (scaled.at(scalingFactor).overlay.at(0))
flipAndDraw(scaled.at(scalingFactor).overlay, parameters.ovelayColorMultiplier, static_cast<int>(parameters.alphaValue) * parameters.ovelayColorMultiplier.a / 255);
}
const SDL_Palette * ScalableImageShared::getPalette() const
{
return scaled[1].body[0]->getPalette();
}
std::shared_ptr<ScalableImageInstance> ScalableImageShared::createImageReference()
{
return std::make_shared<ScalableImageInstance>(shared_from_this(), locator.layer);
}
ScalableImageInstance::ScalableImageInstance(const std::shared_ptr<ScalableImageShared> & image, EImageBlitMode blitMode)
:image(image)
,parameters(image->getPalette(), blitMode)
,blitMode(blitMode)
{
assert(image);
}
void ScalableImageInstance::scaleTo(const Point & size, EScalingAlgorithm algorithm)
{
scaledImage = nullptr;
auto newScaledImage = GH.renderHandler().createImage(dimensions(), CanvasScalingPolicy::AUTO);
newScaledImage->getCanvas().draw(*this, Point(0, 0));
newScaledImage->scaleTo(size, algorithm);
scaledImage = newScaledImage;
}
void ScalableImageInstance::exportBitmap(const boost::filesystem::path & path) const
{
image->exportBitmap(path, parameters);
}
bool ScalableImageInstance::isTransparent(const Point & coords) const
{
return image->isTransparent(coords);
}
Rect ScalableImageInstance::contentRect() const
{
return image->contentRect();
}
Point ScalableImageInstance::dimensions() const
{
if (scaledImage)
return scaledImage->dimensions() / GH.screenHandler().getScalingFactor();
return image->dimensions();
}
void ScalableImageInstance::setAlpha(uint8_t value)
{
parameters.alphaValue = value;
}
void ScalableImageInstance::draw(SDL_Surface * where, const Point & pos, const Rect * src, int scalingFactor) const
{
if (scaledImage)
scaledImage->draw(where, pos, src, scalingFactor);
else
image->draw(where, pos, src, parameters, scalingFactor);
}
void ScalableImageInstance::setOverlayColor(const ColorRGBA & color)
{
parameters.ovelayColorMultiplier = color;
if (parameters.palette)
parameters.setOverlayColor(image->getPalette(), color);
}
void ScalableImageInstance::playerColored(const PlayerColor & player)
{
parameters.player = player;
if (parameters.palette)
parameters.playerColored(player);
image->preparePlayerColoredImage(player);
}
void ScalableImageParameters::playerColored(PlayerColor player)
{
graphics->setPlayerPalette(palette, player);
}
void ScalableImageInstance::shiftPalette(uint32_t firstColorID, uint32_t colorsToMove, uint32_t distanceToMove)
{
if (parameters.palette)
parameters.shiftPalette(image->getPalette(),firstColorID, colorsToMove, distanceToMove);
}
void ScalableImageInstance::adjustPalette(const ColorFilter & shifter, uint32_t colorsToSkipMask)
{
if (parameters.palette)
parameters.adjustPalette(image->getPalette(), blitMode, shifter, colorsToSkipMask);
}
void ScalableImageInstance::horizontalFlip()
{
parameters.flipHorizontal = !parameters.flipHorizontal;
}
void ScalableImageInstance::verticalFlip()
{
parameters.flipVertical = !parameters.flipVertical;
}
std::shared_ptr<const ISharedImage> ScalableImageShared::loadOrGenerateImage(EImageBlitMode mode, int8_t scalingFactor, PlayerColor color, ImageType upscalingSource) const
{
ImageLocator loadingLocator;
loadingLocator.image = locator.image;
loadingLocator.defFile = locator.defFile;
loadingLocator.defFrame = locator.defFrame;
loadingLocator.defGroup = locator.defGroup;
loadingLocator.layer = mode;
loadingLocator.scalingFactor = scalingFactor;
loadingLocator.playerColored = color;
// best case - requested image is already available in filesystem
auto loadedImage = GH.renderHandler().loadScaledImage(loadingLocator);
if (loadedImage)
return loadedImage;
if (scalingFactor == 1)
{
// optional images for 1x resolution - only try load them, don't attempt to generate
// this block should never be called for 'body' layer - that image is loaded unconditionally before construction
assert(mode == EImageBlitMode::ONLY_SHADOW || mode == EImageBlitMode::ONLY_OVERLAY || color != PlayerColor::CANNOT_DETERMINE);
return nullptr;
}
// alternatively, find largest pre-scaled image, load it and rescale to desired scaling
for (int8_t scaling = 4; scaling > 0; --scaling)
{
loadingLocator.scalingFactor = scaling;
auto loadedImage = GH.renderHandler().loadScaledImage(loadingLocator);
if (loadedImage)
{
if (scaling == 1)
{
if (mode == EImageBlitMode::ONLY_SHADOW || mode == EImageBlitMode::ONLY_OVERLAY || color != PlayerColor::CANNOT_DETERMINE)
{
ScalableImageParameters parameters(getPalette(), mode);
return loadedImage->scaleInteger(scalingFactor, parameters.palette, mode);
}
}
else
{
Point targetSize = scaled[1].body[0]->dimensions() * scalingFactor;
return loadedImage->scaleTo(targetSize, nullptr);
}
}
}
ScalableImageParameters parameters(getPalette(), mode);
// if all else fails - use base (presumably, indexed) image and convert it to desired form
if (color != PlayerColor::CANNOT_DETERMINE)
parameters.playerColored(color);
if (upscalingSource)
return upscalingSource->scaleInteger(scalingFactor, parameters.palette, mode);
else
return scaled[1].body[0]->scaleInteger(scalingFactor, parameters.palette, mode);
}
void ScalableImageShared::loadScaledImages(int8_t scalingFactor, PlayerColor color)
{
if (scaled[scalingFactor].body[0] == nullptr && scalingFactor != 1)
{
switch(locator.layer)
{
case EImageBlitMode::OPAQUE:
case EImageBlitMode::COLORKEY:
case EImageBlitMode::SIMPLE:
scaled[scalingFactor].body[0] = loadOrGenerateImage(locator.layer, scalingFactor, PlayerColor::CANNOT_DETERMINE, scaled[1].body[0]);
break;
case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
case EImageBlitMode::ONLY_BODY:
scaled[scalingFactor].body[0] = loadOrGenerateImage(EImageBlitMode::ONLY_BODY, scalingFactor, PlayerColor::CANNOT_DETERMINE, scaled[1].body[0]);
break;
case EImageBlitMode::WITH_SHADOW:
case EImageBlitMode::ONLY_BODY_IGNORE_OVERLAY:
scaled[scalingFactor].body[0] = loadOrGenerateImage(EImageBlitMode::ONLY_BODY_IGNORE_OVERLAY, scalingFactor, PlayerColor::CANNOT_DETERMINE, scaled[1].body[0]);
break;
}
}
if (color != PlayerColor::CANNOT_DETERMINE && scaled[scalingFactor].playerColored[1+color.getNum()] == nullptr)
{
switch(locator.layer)
{
case EImageBlitMode::OPAQUE:
case EImageBlitMode::COLORKEY:
case EImageBlitMode::SIMPLE:
scaled[scalingFactor].playerColored[1+color.getNum()] = loadOrGenerateImage(locator.layer, scalingFactor, color, scaled[1].playerColored[1+color.getNum()]);
break;
case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
case EImageBlitMode::ONLY_BODY:
scaled[scalingFactor].playerColored[1+color.getNum()] = loadOrGenerateImage(EImageBlitMode::ONLY_BODY, scalingFactor, color, scaled[1].playerColored[1+color.getNum()]);
break;
case EImageBlitMode::WITH_SHADOW:
case EImageBlitMode::ONLY_BODY_IGNORE_OVERLAY:
scaled[scalingFactor].playerColored[1+color.getNum()] = loadOrGenerateImage(EImageBlitMode::ONLY_BODY_IGNORE_OVERLAY, scalingFactor, color, scaled[1].playerColored[1+color.getNum()]);
break;
}
}
if (scaled[scalingFactor].shadow[0] == nullptr)
{
switch(locator.layer)
{
case EImageBlitMode::WITH_SHADOW:
case EImageBlitMode::ONLY_SHADOW:
case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
scaled[scalingFactor].shadow[0] = loadOrGenerateImage(EImageBlitMode::ONLY_SHADOW, scalingFactor, PlayerColor::CANNOT_DETERMINE, scaled[1].shadow[0]);
break;
default:
break;
}
}
if (scaled[scalingFactor].overlay[0] == nullptr)
{
switch(locator.layer)
{
case EImageBlitMode::ONLY_OVERLAY:
case EImageBlitMode::WITH_SHADOW_AND_OVERLAY:
scaled[scalingFactor].overlay[0] = loadOrGenerateImage(EImageBlitMode::ONLY_OVERLAY, scalingFactor, PlayerColor::CANNOT_DETERMINE, scaled[1].overlay[0]);
break;
default:
break;
}
}
}
void ScalableImageShared::preparePlayerColoredImage(PlayerColor color)
{
loadScaledImages(GH.screenHandler().getScalingFactor(), color);
}