1
0
mirror of https://github.com/vcmi/vcmi.git synced 2025-05-21 22:33:43 +02:00
vcmi/lib/serializer/BinaryDeserializer.h
2025-04-27 14:57:31 +03:00

502 lines
11 KiB
C++

/*
* BinaryDeserializer.h, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#pragma once
#include "CSerializer.h"
#include "ESerializationVersion.h"
#include "SerializerReflection.h"
VCMI_LIB_NAMESPACE_BEGIN
/// Main class for deserialization of classes from binary form
/// Effectively revesed version of BinarySerializer
class BinaryDeserializer
{
public:
using Version = ESerializationVersion;
static constexpr bool saving = false;
IGameCallback * cb = nullptr;
Version version = Version::NONE;
bool loadingGamestate = false;
bool reverseEndianness = false; //if source has different endianness than us, we reverse bytes
BinaryDeserializer(IBinaryReader * r)
: reader(r)
{
}
template<class T>
BinaryDeserializer & operator&(T & t)
{
this->load(t);
return *this;
}
void clear()
{
loadedPointers.clear();
loadedSharedPointers.clear();
loadedUniquePointers.clear();
}
bool hasFeature(Version v) const
{
return version >= v;
}
private:
static constexpr bool trackSerializedPointers = true;
std::vector<std::string> loadedStrings;
std::map<uint32_t, Serializeable *> loadedPointers;
std::set<Serializeable *> loadedUniquePointers;
std::map<const Serializeable *, std::shared_ptr<Serializeable>> loadedSharedPointers;
IBinaryReader * reader;
uint32_t readAndCheckLength()
{
uint32_t length;
load(length);
//NOTE: also used for h3m's embedded in campaigns, so it may be quite large in some cases (e.g. XXL maps with multiple objects)
if(length > 1000000)
{
logGlobal->warn("Warning: very big length: %d", length);
};
return length;
}
void read(void * data, unsigned size)
{
auto bytePtr = reinterpret_cast<std::byte *>(data);
reader->read(bytePtr, size);
if(reverseEndianness)
std::reverse(bytePtr, bytePtr + size);
};
int64_t loadEncodedInteger()
{
uint64_t valueUnsigned = 0;
uint_fast8_t offset = 0;
for(;;)
{
uint8_t byteValue;
load(byteValue);
if((byteValue & 0x80) != 0)
{
valueUnsigned |= static_cast<uint64_t>(byteValue & 0x7f) << offset;
offset += 7;
}
else
{
valueUnsigned |= static_cast<uint64_t>(byteValue & 0x3f) << offset;
bool isNegative = (byteValue & 0x40) != 0;
if(isNegative)
return -static_cast<int64_t>(valueUnsigned);
else
return valueUnsigned;
}
}
}
template<class T, typename std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
void load(T & data)
{
this->read(static_cast<void *>(&data), sizeof(data));
}
template<class T, typename std::enable_if_t<std::is_integral_v<T> && !std::is_same_v<T, bool>, int> = 0>
void load(T & data)
{
if constexpr(sizeof(T) == 1)
{
this->read(static_cast<void *>(&data), sizeof(data));
}
else
{
static_assert(!std::is_same_v<uint64_t, T>, "Serialization of unsigned 64-bit value may not work in some cases");
data = loadEncodedInteger();
}
}
template<typename T, typename std::enable_if_t<is_serializeable<BinaryDeserializer, T>::value, int> = 0>
void load(T & data)
{
////that const cast is evil because it allows to implicitly overwrite const objects when deserializing
typedef typename std::remove_const_t<T> nonConstT;
auto & hlp = const_cast<nonConstT &>(data);
hlp.serialize(*this);
}
template<typename T, typename std::enable_if_t<std::is_array_v<T>, int> = 0>
void load(T & data)
{
uint32_t size = std::size(data);
for(uint32_t i = 0; i < size; i++)
load(data[i]);
}
void load(Version & data)
{
this->read(static_cast<void *>(&data), sizeof(data));
}
template<typename T, typename std::enable_if_t<std::is_enum_v<T>, int> = 0>
void load(T & data)
{
int32_t read;
load(read);
data = static_cast<T>(read);
}
template<typename T, typename std::enable_if_t<std::is_same_v<T, bool>, int> = 0>
void load(T & data)
{
uint8_t read;
load(read);
assert(read == 0 || read == 1);
data = static_cast<bool>(read);
}
template<typename T, typename std::enable_if_t<!std::is_same_v<T, bool>, int> = 0>
void load(std::vector<T> & data)
{
uint32_t length = readAndCheckLength();
if constexpr(std::is_base_of_v<GameCallbackHolder, T>)
data.resize(length, T(cb));
else
data.resize(length);
for(uint32_t i=0;i<length;i++)
load( data[i]);
}
template <typename T, size_t N>
void load(boost::container::small_vector<T, N>& data)
{
uint32_t length = readAndCheckLength();
data.resize(length);
for (uint32_t i = 0; i < length; i++)
load(data[i]);
}
template<typename T, typename std::enable_if_t<!std::is_same_v<T, bool>, int> = 0>
void load(std::deque<T> & data)
{
uint32_t length = readAndCheckLength();
data.resize(length);
for(uint32_t i = 0; i < length; i++)
load(data[i]);
}
template<typename T>
void loadRawPointer(T & data)
{
bool isNull;
load(isNull);
if(isNull)
{
data = nullptr;
return;
}
uint32_t pid = 0xffffffff; //pointer id (or maybe rather pointee id)
if(trackSerializedPointers)
{
load(pid); //get the id
auto i = loadedPointers.find(pid); //lookup
if(i != loadedPointers.end())
{
// We already got this pointer
// Cast it in case we are loading it to a non-first base pointer
data = dynamic_cast<T>(i->second);
if (vstd::contains(loadedUniquePointers, data))
throw std::runtime_error("Attempt to deserialize duplicated unique_ptr!");
return;
}
}
//get type id
uint16_t tid;
load(tid);
typedef typename std::remove_pointer_t<T> npT;
typedef typename std::remove_const_t<npT> ncpT;
if(!tid)
{
data = ClassObjectCreator<ncpT>::invoke(cb);
ptrAllocated(data, pid);
load(*data);
}
else
{
auto * app = CSerializationApplier::getInstance().getApplier(tid);
if(app == nullptr)
{
logGlobal->error("load %d %d - no loader exists", tid, pid);
data = nullptr;
return;
}
auto createdPtr = app->createPtr(*this, cb);
auto dataNonConst = dynamic_cast<ncpT *>(createdPtr);
assert(createdPtr);
assert(dataNonConst);
data = dataNonConst;
ptrAllocated(data, pid);
app->loadPtr(*this, cb, dataNonConst);
}
}
template<typename T>
void ptrAllocated(T * ptr, uint32_t pid)
{
if(trackSerializedPointers && pid != 0xffffffff)
loadedPointers[pid] = const_cast<Serializeable*>(dynamic_cast<const Serializeable*>(ptr)); //add loaded pointer to our lookup map; cast is to avoid errors with const T* pt
}
template<typename T>
void load(std::shared_ptr<T> & data)
{
typedef typename std::remove_const_t<T> NonConstT;
NonConstT * internalPtr;
loadRawPointer(internalPtr);
const auto * internalPtrDerived = static_cast<Serializeable *>(internalPtr);
if(internalPtr)
{
auto itr = loadedSharedPointers.find(internalPtrDerived);
if(itr != loadedSharedPointers.end())
{
// This pointers is already loaded. The "data" needs to be pointed to it,
// so their shared state is actually shared.
data = std::dynamic_pointer_cast<T>(itr->second);
}
else
{
auto hlp = std::shared_ptr<NonConstT>(internalPtr);
data = hlp;
loadedSharedPointers[internalPtrDerived] = std::static_pointer_cast<Serializeable>(hlp);
}
}
else
data.reset();
}
void load(std::monostate & data)
{
// no-op
}
template<typename T>
void load(std::shared_ptr<const T> & data)
{
std::shared_ptr<T> nonConstData;
load(nonConstData);
data = nonConstData;
}
template<typename T>
void load(std::unique_ptr<T> & data)
{
T * internalPtr;
loadRawPointer(internalPtr);
data.reset(internalPtr);
loadedUniquePointers.insert(internalPtr);
}
template<typename T, size_t N>
void load(std::array<T, N> & data)
{
for(uint32_t i = 0; i < N; i++)
load(data[i]);
}
template<typename T>
void load(std::set<T> & data)
{
uint32_t length = readAndCheckLength();
data.clear();
T ins;
for(uint32_t i = 0; i < length; i++)
{
load(ins);
data.insert(ins);
}
}
template <typename T, typename U>
void load(std::unordered_set<T, U> &data)
{
uint32_t length = readAndCheckLength();
data.clear();
T ins;
for(uint32_t i = 0; i < length; i++)
{
load(ins);
data.insert(ins);
}
}
template<typename T>
void load(std::list<T> & data)
{
uint32_t length = readAndCheckLength();
data.clear();
T ins;
for(uint32_t i = 0; i < length; i++)
{
load(ins);
data.push_back(ins);
}
}
template<typename T1, typename T2>
void load(std::pair<T1, T2> & data)
{
load(data.first);
load(data.second);
}
template<typename T1, typename T2>
void load(std::unordered_map<T1, T2> & data)
{
uint32_t length = readAndCheckLength();
data.clear();
T1 key;
for(uint32_t i = 0; i < length; i++)
{
load(key);
load(data[key]);
}
}
template<typename T1, typename T2>
void load(std::map<T1, T2> & data)
{
uint32_t length = readAndCheckLength();
data.clear();
T1 key;
for(uint32_t i = 0; i < length; i++)
{
load(key);
if constexpr(std::is_base_of_v<GameCallbackHolder, T2>)
{
data.try_emplace(key, cb);
load(data.at(key));
}
else
load(data[key]);
}
}
void load(std::string & data)
{
int32_t length;
load(length);
if(length < 0)
{
int32_t stringID = -length - 1; // -1, -2 ... -> 0, 1 ...
data = loadedStrings[stringID];
}
if(length == 0)
{
data = {};
}
if(length > 0)
{
data.resize(length);
this->read(static_cast<void *>(data.data()), length);
loadedStrings.push_back(data);
}
}
template<typename... TN>
void load(std::variant<TN...> & data)
{
int32_t which;
load(which);
assert(which < sizeof...(TN));
// Create array of variants that contains all default-constructed alternatives
const std::variant<TN...> table[] = { TN{ }... };
// use appropriate alternative for result
data = table[which];
// perform actual load via std::visit dispatch
std::visit([&](auto& o) { load(o); }, data);
}
template<typename T>
void load(std::optional<T> & data)
{
uint8_t present;
load(present);
if(present)
{
//TODO: replace with emplace once we start request Boost 1.56+, see PR360
T t;
load(t);
data = std::make_optional(std::move(t));
}
else
{
data = std::optional<T>();
}
}
template<typename T>
void load(boost::multi_array<T, 3> & data)
{
uint32_t length = readAndCheckLength();
uint32_t x;
uint32_t y;
uint32_t z;
load(x);
load(y);
load(z);
data.resize(boost::extents[x][y][z]);
assert(length == data.num_elements()); //x*y*z should be equal to number of elements
for(uint32_t i = 0; i < length; i++)
load(data.data()[i]);
}
template<std::size_t T>
void load(std::bitset<T> & data)
{
static_assert(T <= 64);
if constexpr(T <= 16)
{
uint16_t read;
load(read);
data = read;
}
else if constexpr(T <= 32)
{
uint32_t read;
load(read);
data = read;
}
else if constexpr(T <= 64)
{
uint64_t read;
load(read);
data = read;
}
}
};
VCMI_LIB_NAMESPACE_END