1
0
mirror of https://github.com/vcmi/vcmi.git synced 2024-11-24 08:32:34 +02:00
vcmi/lib/serializer/BinaryDeserializer.h
2023-04-17 00:43:13 +03:00

582 lines
14 KiB
C++

/*
* BinaryDeserializer.h, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#pragma once
#include <boost/mpl/vector.hpp>
#include <boost/mpl/for_each.hpp>
#include "CTypeList.h"
#include "../mapObjects/CGHeroInstance.h"
#include "../../Global.h"
VCMI_LIB_NAMESPACE_BEGIN
class CStackInstance;
class FileStream;
class DLL_LINKAGE CLoaderBase
{
protected:
IBinaryReader * reader;
public:
CLoaderBase(IBinaryReader * r): reader(r){};
inline int read(void * data, unsigned size)
{
return reader->read(data, size);
};
};
/// Main class for deserialization of classes from binary form
/// Effectively revesed version of BinarySerializer
class DLL_LINKAGE BinaryDeserializer : public CLoaderBase
{
template<typename Variant, typename Source>
struct VariantLoaderHelper
{
Source & source;
std::vector<std::function<Variant()>> funcs;
template <class V>
struct mpl_types_impl;
template <class... Ts>
struct mpl_types_impl<std::variant<Ts...>> {
using type = boost::mpl::vector<Ts...>;
};
template <class V>
using mpl_types = typename mpl_types_impl<V>::type;
VariantLoaderHelper(Source & source):
source(source)
{
boost::mpl::for_each<mpl_types<Variant>>(std::ref(*this));
}
template<typename Type>
void operator()(Type)
{
funcs.push_back([&]() -> Variant
{
Type obj;
source.load(obj);
return Variant(obj);
});
}
};
template<typename Ser,typename T>
struct LoadIfStackInstance
{
static bool invoke(Ser &s, T &data)
{
return false;
}
};
template<typename Ser>
struct LoadIfStackInstance<Ser, CStackInstance *>
{
static bool invoke(Ser &s, CStackInstance* &data)
{
CArmedInstance *armedObj;
SlotID slot;
s.load(armedObj);
s.load(slot);
if(slot != SlotID::COMMANDER_SLOT_PLACEHOLDER)
{
assert(armedObj->hasStackAtSlot(slot));
data = armedObj->stacks[slot];
}
else
{
auto hero = dynamic_cast<CGHeroInstance *>(armedObj);
assert(hero);
assert(hero->commander);
data = hero->commander;
}
return true;
}
};
template <typename T, typename Enable = void>
struct ClassObjectCreator
{
static T *invoke()
{
static_assert(!std::is_abstract<T>::value, "Cannot call new upon abstract classes!");
return new T();
}
};
template<typename T>
struct ClassObjectCreator<T, typename std::enable_if<std::is_abstract<T>::value>::type>
{
static T *invoke()
{
throw std::runtime_error("Something went really wrong during deserialization. Attempted creating an object of an abstract class " + std::string(typeid(T).name()));
}
};
STRONG_INLINE ui32 readAndCheckLength()
{
ui32 length;
load(length);
//NOTE: also used for h3m's embedded in campaigns, so it may be quite large in some cases (e.g. XXL maps with multiple objects)
if(length > 1000000)
{
logGlobal->warn("Warning: very big length: %d", length);
reader->reportState(logGlobal);
};
return length;
}
template <typename T> class CPointerLoader;
class CBasicPointerLoader
{
public:
virtual const std::type_info * loadPtr(CLoaderBase &ar, void *data, ui32 pid) const =0; //data is pointer to the ACTUAL POINTER
virtual ~CBasicPointerLoader(){}
template<typename T> static CBasicPointerLoader *getApplier(const T * t=nullptr)
{
return new CPointerLoader<T>();
}
};
template <typename T> class CPointerLoader : public CBasicPointerLoader
{
public:
const std::type_info * loadPtr(CLoaderBase &ar, void *data, ui32 pid) const override //data is pointer to the ACTUAL POINTER
{
BinaryDeserializer &s = static_cast<BinaryDeserializer&>(ar);
T *&ptr = *static_cast<T**>(data);
//create new object under pointer
typedef typename std::remove_pointer<T>::type npT;
ptr = ClassObjectCreator<npT>::invoke(); //does new npT or throws for abstract classes
s.ptrAllocated(ptr, pid);
//T is most derived known type, it's time to call actual serialize
assert(s.fileVersion != 0);
ptr->serialize(s,s.fileVersion);
return &typeid(T);
}
};
CApplier<CBasicPointerLoader> applier;
int write(const void * data, unsigned size);
public:
bool reverseEndianess; //if source has different endianness than us, we reverse bytes
si32 fileVersion;
std::map<ui32, void*> loadedPointers;
std::map<ui32, const std::type_info*> loadedPointersTypes;
std::map<const void*, std::any> loadedSharedPointers;
bool smartPointerSerialization;
bool saving;
BinaryDeserializer(IBinaryReader * r): CLoaderBase(r)
{
saving = false;
fileVersion = 0;
smartPointerSerialization = true;
reverseEndianess = false;
}
template<class T>
BinaryDeserializer & operator&(T & t)
{
this->load(t);
return * this;
}
template < class T, typename std::enable_if < std::is_fundamental<T>::value && !std::is_same<T, bool>::value, int >::type = 0 >
void load(T &data)
{
unsigned length = sizeof(data);
char * dataPtr = reinterpret_cast<char *>(&data);
this->read(dataPtr,length);
if(reverseEndianess)
std::reverse(dataPtr, dataPtr + length);
}
template < typename T, typename std::enable_if < is_serializeable<BinaryDeserializer, T>::value, int >::type = 0 >
void load(T &data)
{
assert( fileVersion != 0 );
////that const cast is evil because it allows to implicitly overwrite const objects when deserializing
typedef typename std::remove_const<T>::type nonConstT;
nonConstT &hlp = const_cast<nonConstT&>(data);
hlp.serialize(*this,fileVersion);
}
template < typename T, typename std::enable_if < std::is_array<T>::value, int >::type = 0 >
void load(T &data)
{
ui32 size = std::size(data);
for(ui32 i = 0; i < size; i++)
load(data[i]);
}
template < typename T, typename std::enable_if < std::is_enum<T>::value, int >::type = 0 >
void load(T &data)
{
si32 read;
load( read );
data = static_cast<T>(read);
}
template < typename T, typename std::enable_if < std::is_same<T, bool>::value, int >::type = 0 >
void load(T &data)
{
ui8 read;
load( read );
data = static_cast<bool>(read);
}
template < typename T, typename std::enable_if < std::is_same<T, std::vector<bool> >::value, int >::type = 0 >
void load(T & data)
{
std::vector<ui8> convData;
load(convData);
convData.resize(data.size());
range::copy(convData, data.begin());
}
template <typename T, typename std::enable_if < !std::is_same<T, bool >::value, int >::type = 0>
void load(std::vector<T> &data)
{
ui32 length = readAndCheckLength();
data.resize(length);
for(ui32 i=0;i<length;i++)
load( data[i]);
}
template < typename T, typename std::enable_if < std::is_pointer<T>::value, int >::type = 0 >
void load(T &data)
{
ui8 hlp;
load( hlp );
if(!hlp)
{
data = nullptr;
return;
}
if(reader->smartVectorMembersSerialization)
{
typedef typename std::remove_const<typename std::remove_pointer<T>::type>::type TObjectType; //eg: const CGHeroInstance * => CGHeroInstance
typedef typename VectorizedTypeFor<TObjectType>::type VType; //eg: CGHeroInstance -> CGobjectInstance
typedef typename VectorizedIDType<TObjectType>::type IDType;
if(const auto *info = reader->getVectorizedTypeInfo<VType, IDType>())
{
IDType id;
load(id);
if(id != IDType(-1))
{
data = static_cast<T>(reader->getVectorItemFromId<VType, IDType>(*info, id));
return;
}
}
}
if(reader->sendStackInstanceByIds)
{
bool gotLoaded = LoadIfStackInstance<BinaryDeserializer,T>::invoke(* this, data);
if(gotLoaded)
return;
}
ui32 pid = 0xffffffff; //pointer id (or maybe rather pointee id)
if(smartPointerSerialization)
{
load( pid ); //get the id
std::map<ui32, void*>::iterator i = loadedPointers.find(pid); //lookup
if(i != loadedPointers.end())
{
// We already got this pointer
// Cast it in case we are loading it to a non-first base pointer
assert(loadedPointersTypes.count(pid));
data = reinterpret_cast<T>(typeList.castRaw(i->second, loadedPointersTypes.at(pid), &typeid(typename std::remove_const<typename std::remove_pointer<T>::type>::type)));
return;
}
}
//get type id
ui16 tid;
load( tid );
if(!tid)
{
typedef typename std::remove_pointer<T>::type npT;
typedef typename std::remove_const<npT>::type ncpT;
data = ClassObjectCreator<ncpT>::invoke();
ptrAllocated(data, pid);
load(*data);
}
else
{
auto app = applier.getApplier(tid);
if(app == nullptr)
{
logGlobal->error("load %d %d - no loader exists", tid, pid);
data = nullptr;
return;
}
auto typeInfo = app->loadPtr(*this,&data, pid);
data = reinterpret_cast<T>(typeList.castRaw((void*)data, typeInfo, &typeid(typename std::remove_const<typename std::remove_pointer<T>::type>::type)));
}
}
template <typename T>
void ptrAllocated(const T *ptr, ui32 pid)
{
if(smartPointerSerialization && pid != 0xffffffff)
{
loadedPointersTypes[pid] = &typeid(T);
loadedPointers[pid] = (void*)ptr; //add loaded pointer to our lookup map; cast is to avoid errors with const T* pt
}
}
template<typename Base, typename Derived> void registerType(const Base * b = nullptr, const Derived * d = nullptr)
{
applier.registerType(b, d);
}
template <typename T>
void load(std::shared_ptr<T> &data)
{
typedef typename std::remove_const<T>::type NonConstT;
NonConstT *internalPtr;
load(internalPtr);
void *internalPtrDerived = typeList.castToMostDerived(internalPtr);
if(internalPtr)
{
auto itr = loadedSharedPointers.find(internalPtrDerived);
if(itr != loadedSharedPointers.end())
{
// This pointers is already loaded. The "data" needs to be pointed to it,
// so their shared state is actually shared.
try
{
auto actualType = typeList.getTypeInfo(internalPtr);
auto typeWeNeedToReturn = typeList.getTypeInfo<T>();
if(*actualType == *typeWeNeedToReturn)
{
// No casting needed, just unpack already stored shared_ptr and return it
data = std::any_cast<std::shared_ptr<T>>(itr->second);
}
else
{
// We need to perform series of casts
auto ret = typeList.castShared(itr->second, actualType, typeWeNeedToReturn);
data = std::any_cast<std::shared_ptr<T>>(ret);
}
}
catch(std::exception &e)
{
logGlobal->error(e.what());
logGlobal->error("Failed to cast stored shared ptr. Real type: %s. Needed type %s. FIXME FIXME FIXME", itr->second.type().name(), typeid(std::shared_ptr<T>).name());
//TODO scenario with inheritance -> we can have stored ptr to base and load ptr to derived (or vice versa)
throw;
}
}
else
{
auto hlp = std::shared_ptr<NonConstT>(internalPtr);
data = hlp;
loadedSharedPointers[internalPtrDerived] = typeList.castSharedToMostDerived(hlp);
}
}
else
data.reset();
}
template <typename T>
void load(std::shared_ptr<const T> & data)
{
std::shared_ptr<T> nonConstData;
load(nonConstData);
data = nonConstData;
}
template <typename T>
void load(std::unique_ptr<T> &data)
{
T *internalPtr;
load( internalPtr );
data.reset(internalPtr);
}
template <typename T, size_t N>
void load(std::array<T, N> &data)
{
for(ui32 i = 0; i < N; i++)
load( data[i] );
}
template <typename T>
void load(std::set<T> &data)
{
ui32 length = readAndCheckLength();
data.clear();
T ins;
for(ui32 i=0;i<length;i++)
{
load( ins );
data.insert(ins);
}
}
template <typename T, typename U>
void load(std::unordered_set<T, U> &data)
{
ui32 length = readAndCheckLength();
data.clear();
T ins;
for(ui32 i=0;i<length;i++)
{
load(ins);
data.insert(ins);
}
}
template <typename T>
void load(std::list<T> &data)
{
ui32 length = readAndCheckLength();
data.clear();
T ins;
for(ui32 i=0;i<length;i++)
{
load(ins);
data.push_back(ins);
}
}
template <typename T1, typename T2>
void load(std::pair<T1,T2> &data)
{
load(data.first);
load(data.second);
}
template <typename T1, typename T2>
void load(std::map<T1,T2> &data)
{
ui32 length = readAndCheckLength();
data.clear();
T1 key;
T2 value;
for(ui32 i=0;i<length;i++)
{
load(key);
load(value);
data.insert(std::pair<T1, T2>(std::move(key), std::move(value)));
}
}
template <typename T1, typename T2>
void load(std::multimap<T1, T2> &data)
{
ui32 length = readAndCheckLength();
data.clear();
T1 key;
T2 value;
for(ui32 i = 0; i < length; i++)
{
load(key);
load(value);
data.insert(std::pair<T1, T2>(std::move(key), std::move(value)));
}
}
void load(std::string &data)
{
ui32 length = readAndCheckLength();
data.resize(length);
this->read((void*)data.c_str(),length);
}
template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
void load(std::variant<BOOST_VARIANT_ENUM_PARAMS(T)> &data)
{
typedef std::variant<BOOST_VARIANT_ENUM_PARAMS(T)> TVariant;
VariantLoaderHelper<TVariant, BinaryDeserializer> loader(*this);
si32 which;
load( which );
assert(which < loader.funcs.size());
data = loader.funcs.at(which)();
}
template<typename T>
void load(std::optional<T> & data)
{
ui8 present;
load( present );
if(present)
{
//TODO: replace with emplace once we start request Boost 1.56+, see PR360
T t;
load(t);
data = std::make_optional(std::move(t));
}
else
{
data = std::optional<T>();
}
}
template <typename T>
void load(boost::multi_array<T, 3> & data)
{
ui32 length = readAndCheckLength();
ui32 x, y, z;
load(x);
load(y);
load(z);
data.resize(boost::extents[x][y][z]);
assert(length == data.num_elements()); //x*y*z should be equal to number of elements
for(ui32 i = 0; i < length; i++)
load(data.data()[i]);
}
};
class DLL_LINKAGE CLoadFile : public IBinaryReader
{
public:
BinaryDeserializer serializer;
std::string fName;
std::unique_ptr<FileStream> sfile;
CLoadFile(const boost::filesystem::path & fname, int minimalVersion = SERIALIZATION_VERSION); //throws!
virtual ~CLoadFile();
int read(void * data, unsigned size) override; //throws!
void openNextFile(const boost::filesystem::path & fname, int minimalVersion); //throws!
void clear();
void reportState(vstd::CLoggerBase * out) override;
void checkMagicBytes(const std::string & text);
template<class T>
CLoadFile & operator>>(T &t)
{
serializer & t;
return * this;
}
};
VCMI_LIB_NAMESPACE_END