1
0
mirror of https://github.com/vcmi/vcmi.git synced 2024-11-24 08:32:34 +02:00
vcmi/lib/serializer/BinarySerializer.h
Andrey Filipenkov ff635edc0b wrap all library code into namespace if VCMI_LIB_NAMESPACE is defined
preparation for having client and server in a single process
2022-09-24 15:55:21 +03:00

396 lines
9.6 KiB
C++

/*
* BinarySerializer.h, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#pragma once
#include "CTypeList.h"
#include "../mapObjects/CArmedInstance.h"
VCMI_LIB_NAMESPACE_BEGIN
class FileStream;
class DLL_LINKAGE CSaverBase
{
protected:
IBinaryWriter * writer;
public:
CSaverBase(IBinaryWriter * w): writer(w){};
inline int write(const void * data, unsigned size)
{
return writer->write(data, size);
};
};
/// Main class for serialization of classes into binary form
/// Behaviour for various classes is following:
/// Primitives: copy memory into underlying stream (defined in CSaverBase)
/// Containers: custom overloaded method that decouples class into primitives
/// VCMI Classes: recursively serialize them via ClassName::serialize( BinarySerializer &, int version) call
class DLL_LINKAGE BinarySerializer : public CSaverBase
{
template <typename Handler>
struct VariantVisitorSaver : boost::static_visitor<>
{
Handler &h;
VariantVisitorSaver(Handler &H):h(H)
{
}
template <typename T>
void operator()(const T &t)
{
h & t;
}
};
template<typename Ser,typename T>
struct SaveIfStackInstance
{
static bool invoke(Ser &s, const T &data)
{
return false;
}
};
template<typename Ser>
struct SaveIfStackInstance<Ser, CStackInstance *>
{
static bool invoke(Ser &s, const CStackInstance* const &data)
{
assert(data->armyObj);
SlotID slot;
if(data->getNodeType() == CBonusSystemNode::COMMANDER)
slot = SlotID::COMMANDER_SLOT_PLACEHOLDER;
else
slot = data->armyObj->findStack(data);
assert(slot != SlotID());
s & data->armyObj & slot;
return true;
}
};
template <typename T> class CPointerSaver;
class CBasicPointerSaver
{
public:
virtual void savePtr(CSaverBase &ar, const void *data) const =0;
virtual ~CBasicPointerSaver(){}
template<typename T> static CBasicPointerSaver *getApplier(const T * t=nullptr)
{
return new CPointerSaver<T>();
}
};
template <typename T>
class CPointerSaver : public CBasicPointerSaver
{
public:
void savePtr(CSaverBase &ar, const void *data) const override
{
BinarySerializer &s = static_cast<BinarySerializer&>(ar);
const T *ptr = static_cast<const T*>(data);
//T is most derived known type, it's time to call actual serialize
const_cast<T*>(ptr)->serialize(s, SERIALIZATION_VERSION);
}
};
CApplier<CBasicPointerSaver> applier;
public:
std::map<const void*, ui32> savedPointers;
bool smartPointerSerialization;
bool saving;
BinarySerializer(IBinaryWriter * w): CSaverBase(w)
{
saving=true;
smartPointerSerialization = true;
}
template<typename Base, typename Derived>
void registerType(const Base * b = nullptr, const Derived * d = nullptr)
{
applier.registerType(b, d);
}
template<class T>
BinarySerializer & operator&(const T & t)
{
this->save(t);
return * this;
}
template < typename T, typename std::enable_if < std::is_same<T, bool>::value, int >::type = 0 >
void save(const T &data)
{
ui8 writ = static_cast<ui8>(data);
save(writ);
}
template < typename T, typename std::enable_if < std::is_same<T, std::vector<bool> >::value, int >::type = 0 >
void save(const T &data)
{
std::vector<ui8> convData;
std::copy(data.begin(), data.end(), std::back_inserter(convData));
save(convData);
}
template < class T, typename std::enable_if < std::is_fundamental<T>::value && !std::is_same<T, bool>::value, int >::type = 0 >
void save(const T &data)
{
// save primitive - simply dump binary data to output
this->write(&data,sizeof(data));
}
template < typename T, typename std::enable_if < std::is_enum<T>::value, int >::type = 0 >
void save(const T &data)
{
si32 writ = static_cast<si32>(data);
*this & writ;
}
template < typename T, typename std::enable_if < std::is_array<T>::value, int >::type = 0 >
void save(const T &data)
{
ui32 size = ARRAY_COUNT(data);
for(ui32 i=0; i < size; i++)
*this & data[i];
}
template < typename T, typename std::enable_if < std::is_pointer<T>::value, int >::type = 0 >
void save(const T &data)
{
//write if pointer is not nullptr
ui8 hlp = (data!=nullptr);
save(hlp);
//if pointer is nullptr then we don't need anything more...
if(!hlp)
return;
if(writer->smartVectorMembersSerialization)
{
typedef typename std::remove_const<typename std::remove_pointer<T>::type>::type TObjectType;
typedef typename VectorizedTypeFor<TObjectType>::type VType;
typedef typename VectorizedIDType<TObjectType>::type IDType;
if(const auto *info = writer->getVectorizedTypeInfo<VType, IDType>())
{
IDType id = writer->getIdFromVectorItem<VType>(*info, data);
save(id);
if(id != IDType(-1)) //vector id is enough
return;
}
}
if(writer->sendStackInstanceByIds)
{
const bool gotSaved = SaveIfStackInstance<BinarySerializer,T>::invoke(*this, data);
if(gotSaved)
return;
}
if(smartPointerSerialization)
{
// We might have an object that has multiple inheritance and store it via the non-first base pointer.
// Therefore, all pointers need to be normalized to the actual object address.
auto actualPointer = typeList.castToMostDerived(data);
std::map<const void*,ui32>::iterator i = savedPointers.find(actualPointer);
if(i != savedPointers.end())
{
//this pointer has been already serialized - write only it's id
save(i->second);
return;
}
//give id to this pointer
ui32 pid = (ui32)savedPointers.size();
savedPointers[actualPointer] = pid;
save(pid);
}
//write type identifier
ui16 tid = typeList.getTypeID(data);
save(tid);
if(!tid)
save(*data); //if type is unregistered simply write all data in a standard way
else
applier.getApplier(tid)->savePtr(*this, typeList.castToMostDerived(data)); //call serializer specific for our real type
}
template < typename T, typename std::enable_if < is_serializeable<BinarySerializer, T>::value, int >::type = 0 >
void save(const T &data)
{
const_cast<T&>(data).serialize(*this, SERIALIZATION_VERSION);
}
template <typename T>
void save(const std::shared_ptr<T> &data)
{
T *internalPtr = data.get();
save(internalPtr);
}
template <typename T>
void save(const std::shared_ptr<const T> &data)
{
const T *internalPtr = data.get();
save(internalPtr);
}
template <typename T>
void save(const std::unique_ptr<T> &data)
{
T *internalPtr = data.get();
save(internalPtr);
}
template <typename T, typename std::enable_if < !std::is_same<T, bool >::value, int >::type = 0>
void save(const std::vector<T> &data)
{
ui32 length = (ui32)data.size();
*this & length;
for(ui32 i=0;i<length;i++)
save(data[i]);
}
template <typename T, size_t N>
void save(const std::array<T, N> &data)
{
for(ui32 i=0; i < N; i++)
save(data[i]);
}
template <typename T>
void save(const std::set<T> &data)
{
std::set<T> &d = const_cast<std::set<T> &>(data);
ui32 length = (ui32)d.size();
save(length);
for(typename std::set<T>::iterator i=d.begin();i!=d.end();i++)
save(*i);
}
template <typename T, typename U>
void save(const std::unordered_set<T, U> &data)
{
std::unordered_set<T, U> &d = const_cast<std::unordered_set<T, U> &>(data);
ui32 length = (ui32)d.size();
*this & length;
for(typename std::unordered_set<T, U>::iterator i=d.begin();i!=d.end();i++)
save(*i);
}
template <typename T>
void save(const std::list<T> &data)
{
std::list<T> &d = const_cast<std::list<T> &>(data);
ui32 length = (ui32)d.size();
*this & length;
for(typename std::list<T>::iterator i=d.begin();i!=d.end();i++)
save(*i);
}
void save(const std::string &data)
{
save(ui32(data.length()));
this->write(data.c_str(),(unsigned int)data.size());
}
template <typename T1, typename T2>
void save(const std::pair<T1,T2> &data)
{
save(data.first);
save(data.second);
}
template <typename T1, typename T2>
void save(const std::map<T1,T2> &data)
{
*this & ui32(data.size());
for(typename std::map<T1,T2>::const_iterator i=data.begin();i!=data.end();i++)
{
save(i->first);
save(i->second);
}
}
template <typename T1, typename T2>
void save(const std::multimap<T1, T2> &data)
{
*this & ui32(data.size());
for(typename std::map<T1, T2>::const_iterator i = data.begin(); i != data.end(); i++)
{
save(i->first);
save(i->second);
}
}
template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
void save(const boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> &data)
{
si32 which = data.which();
save(which);
VariantVisitorSaver<BinarySerializer> visitor(*this);
boost::apply_visitor(visitor, data);
}
template <typename T>
void save(const boost::optional<T> &data)
{
if(data)
{
save((ui8)1);
save(*data);
}
else
{
save((ui8)0);
}
}
template <typename T>
void save(const boost::multi_array<T, 3> &data)
{
ui32 length = data.num_elements();
*this & length;
auto shape = data.shape();
ui32 x = shape[0], y = shape[1], z = shape[2];
*this & x & y & z;
for(ui32 i = 0; i < length; i++)
save(data.data()[i]);
}
};
class DLL_LINKAGE CSaveFile : public IBinaryWriter
{
public:
BinarySerializer serializer;
boost::filesystem::path fName;
std::unique_ptr<FileStream> sfile;
CSaveFile(const boost::filesystem::path &fname); //throws!
~CSaveFile();
int write(const void * data, unsigned size) override;
void openNextFile(const boost::filesystem::path &fname); //throws!
void clear();
void reportState(vstd::CLoggerBase * out) override;
void putMagicBytes(const std::string &text);
template<class T>
CSaveFile & operator<<(const T &t)
{
serializer & t;
return * this;
}
};
VCMI_LIB_NAMESPACE_END