1
0
mirror of https://github.com/IBM/fp-go.git synced 2025-11-23 22:14:53 +02:00

fix: add traversal for sequences

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
This commit is contained in:
Dr. Carsten Leue
2025-11-14 14:12:44 +01:00
parent 2c1d8196b4
commit 02d0be9dad
15 changed files with 701 additions and 41 deletions

View File

@@ -77,8 +77,7 @@ func IsNonNil[GA ~[]A, A any](as GA) bool {
func Reduce[GA ~[]A, A, B any](fa GA, f func(B, A) B, initial B) B {
current := initial
count := len(fa)
for i := 0; i < count; i++ {
for i := range len(fa) {
current = f(current, fa[i])
}
return current
@@ -86,8 +85,7 @@ func Reduce[GA ~[]A, A, B any](fa GA, f func(B, A) B, initial B) B {
func ReduceWithIndex[GA ~[]A, A, B any](fa GA, f func(int, B, A) B, initial B) B {
current := initial
count := len(fa)
for i := 0; i < count; i++ {
for i := range len(fa) {
current = f(i, current, fa[i])
}
return current

61
v2/internal/iter/iter.go Normal file
View File

@@ -0,0 +1,61 @@
package iter
import (
F "github.com/IBM/fp-go/v2/function"
)
func MonadReduceWithIndex[GA ~func(yield func(A) bool), A, B any](fa GA, f func(int, B, A) B, initial B) B {
current := initial
var i int
for a := range fa {
current = f(i, current, a)
i += 1
}
return current
}
func MonadReduce[GA ~func(yield func(A) bool), A, B any](fa GA, f func(B, A) B, initial B) B {
current := initial
for a := range fa {
current = f(current, a)
}
return current
}
// Concat concatenates two sequences, yielding all elements from left followed by all elements from right.
func Concat[GT ~func(yield func(T) bool), T any](left, right GT) GT {
return func(yield func(T) bool) {
for t := range left {
if !yield(t) {
return
}
}
for t := range right {
if !yield(t) {
return
}
}
}
}
func Of[GA ~func(yield func(A) bool), A any](a A) GA {
return func(yield func(A) bool) {
yield(a)
}
}
func MonadAppend[GA ~func(yield func(A) bool), A any](f GA, tail A) GA {
return Concat(f, Of[GA](tail))
}
func Append[GA ~func(yield func(A) bool), A any](tail A) func(GA) GA {
return F.Bind2nd(Concat[GA], Of[GA](tail))
}
func Prepend[GA ~func(yield func(A) bool), A any](head A) func(GA) GA {
return F.Bind1st(Concat[GA], Of[GA](head))
}
func Empty[GA ~func(yield func(A) bool), A any]() GA {
return func(_ func(A) bool) {}
}

View File

@@ -0,0 +1,152 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package iter
import (
F "github.com/IBM/fp-go/v2/function"
)
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
func MonadTraverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
ta GA,
f func(A) HKTB) HKTRB {
return MonadTraverseReduce(fof, fmap, fap, ta, f, MonadAppend[GB, B], Empty[GB]())
}
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
func MonadTraverseWithIndex[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
ta GA,
f func(int, A) HKTB) HKTRB {
return MonadTraverseReduceWithIndex(fof, fmap, fap, ta, f, MonadAppend[GB, B], Empty[GB]())
}
func Traverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
f func(A) HKTB) func(GA) HKTRB {
return func(ma GA) HKTRB {
return MonadTraverse(fof, fmap, fap, ma, f)
}
}
func TraverseWithIndex[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
f func(int, A) HKTB) func(GA) HKTRB {
return func(ma GA) HKTRB {
return MonadTraverseWithIndex(fof, fmap, fap, ma, f)
}
}
func MonadTraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
ta GA,
transform func(A) HKTB,
reduce func(GB, B) GB,
initial GB,
) HKTRB {
mmap := fmap(F.Curry2(reduce))
return MonadReduce(ta, func(r HKTRB, a A) HKTRB {
return F.Pipe2(
r,
mmap,
fap(transform(a)),
)
}, fof(initial))
}
func MonadTraverseReduceWithIndex[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
ta GA,
transform func(int, A) HKTB,
reduce func(GB, B) GB,
initial GB,
) HKTRB {
mmap := fmap(F.Curry2(reduce))
return MonadReduceWithIndex(ta, func(idx int, r HKTRB, a A) HKTRB {
return F.Pipe2(
r,
mmap,
fap(transform(idx, a)),
)
}, fof(initial))
}
func TraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
transform func(A) HKTB,
reduce func(GB, B) GB,
initial GB,
) func(GA) HKTRB {
return func(ta GA) HKTRB {
return MonadTraverseReduce(fof, fmap, fap, ta, transform, reduce, initial)
}
}
func TraverseReduceWithIndex[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
fap func(HKTB) func(HKTAB) HKTRB,
transform func(int, A) HKTB,
reduce func(GB, B) GB,
initial GB,
) func(GA) HKTRB {
return func(ta GA) HKTRB {
return MonadTraverseReduceWithIndex(fof, fmap, fap, ta, transform, reduce, initial)
}
}

View File

@@ -0,0 +1,9 @@
package iter
import (
I "iter"
)
type (
Seq[A any] = I.Seq[A]
)

View File

@@ -18,6 +18,7 @@ package io
import (
F "github.com/IBM/fp-go/v2/function"
INTA "github.com/IBM/fp-go/v2/internal/array"
INTI "github.com/IBM/fp-go/v2/internal/iter"
INTR "github.com/IBM/fp-go/v2/internal/record"
)
@@ -60,6 +61,16 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
)
}
func TraverseIter[A, B any](f Kleisli[A, B]) Kleisli[Seq[A], Seq[B]] {
return INTI.Traverse[Seq[A]](
Of[Seq[B]],
Map[Seq[B], func(B) Seq[B]],
Ap[Seq[B], B],
f,
)
}
// TraverseArrayWithIndex is like TraverseArray but the function also receives the index.
// Executes in parallel by default.
//

7
v2/io/types.go Normal file
View File

@@ -0,0 +1,7 @@
package io
import "iter"
type (
Seq[T any] = iter.Seq[T]
)

View File

@@ -48,6 +48,7 @@ import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/functor"
G "github.com/IBM/fp-go/v2/internal/iter"
M "github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/option"
)
@@ -58,10 +59,10 @@ import (
//
// seq := Of(42)
// // yields: 42
//
//go:inline
func Of[A any](a A) Seq[A] {
return func(yield Predicate[A]) {
yield(a)
}
return G.Of[Seq[A]](a)
}
// Of2 creates a key-value sequence containing a single key-value pair.
@@ -521,7 +522,7 @@ func From[A any](data ...A) Seq[A] {
//
//go:inline
func Empty[A any]() Seq[A] {
return func(_ Predicate[A]) {}
return G.Empty[Seq[A]]()
}
// MakeBy creates a sequence of n elements by applying a function to each index.
@@ -566,12 +567,10 @@ func Replicate[A any](n int, a A) Seq[A] {
// seq := From(1, 2, 3, 4, 5)
// sum := MonadReduce(seq, func(acc, x int) int { return acc + x }, 0)
// // returns: 15
//
//go:inline
func MonadReduce[A, B any](fa Seq[A], f func(B, A) B, initial B) B {
current := initial
for a := range fa {
current = f(current, a)
}
return current
return G.MonadReduce(fa, f, initial)
}
// Reduce returns a function that reduces a sequence to a single value.
@@ -598,14 +597,10 @@ func Reduce[A, B any](f func(B, A) B, initial B) func(Seq[A]) B {
// return acc + (i * x)
// }, 0)
// // returns: 0*10 + 1*20 + 2*30 = 80
//
//go:inline
func MonadReduceWithIndex[A, B any](fa Seq[A], f func(int, B, A) B, initial B) B {
current := initial
var i int
for a := range fa {
current = f(i, current, a)
i += 1
}
return current
return G.MonadReduceWithIndex(fa, f, initial)
}
// ReduceWithIndex returns a function that reduces with index.
@@ -831,7 +826,7 @@ func Flap[B, A any](a A) Operator[func(A) B, B] {
//
//go:inline
func Prepend[A any](head A) Operator[A, A] {
return F.Bind1st(concat[A], Of(head))
return G.Prepend[Seq[A]](head)
}
// Append returns a function that adds an element to the end of a sequence.
@@ -844,7 +839,7 @@ func Prepend[A any](head A) Operator[A, A] {
//
//go:inline
func Append[A any](tail A) Operator[A, A] {
return F.Bind2nd(concat[A], Of(tail))
return G.Append[Seq[A]](tail)
}
// MonadZip combines two sequences into a sequence of pairs.

View File

@@ -16,25 +16,10 @@
package iter
import (
G "github.com/IBM/fp-go/v2/internal/iter"
M "github.com/IBM/fp-go/v2/monoid"
)
// concat concatenates two sequences, yielding all elements from left followed by all elements from right.
func concat[T any](left, right Seq[T]) Seq[T] {
return func(yield Predicate[T]) {
for t := range left {
if !yield(t) {
return
}
}
for t := range right {
if !yield(t) {
return
}
}
}
}
// Monoid returns a Monoid instance for Seq[T].
// The monoid's concat operation concatenates sequences, and the empty value is an empty sequence.
//
@@ -48,5 +33,5 @@ func concat[T any](left, right Seq[T]) Seq[T] {
//
//go:inline
func Monoid[T any]() M.Monoid[Seq[T]] {
return M.MakeMonoid(concat[T], Empty[T]())
return M.MakeMonoid(G.Concat[Seq[T]], Empty[T]())
}

View File

@@ -21,7 +21,7 @@ import (
)
type (
Traversal[E, S, A any] T.Traversal[S, A, ET.Either[E, S], ET.Either[E, A]]
Traversal[E, S, A any] = T.Traversal[S, A, ET.Either[E, S], ET.Either[E, A]]
)
func Compose[

View File

@@ -22,7 +22,7 @@ import (
)
type (
Traversal[S, A, HKTS, HKTA any] func(func(A) HKTA) func(S) HKTS
Traversal[S, A, HKTS, HKTA any] = func(func(A) HKTA) func(S) HKTS
)
func Compose[

View File

@@ -0,0 +1,29 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package result
import (
T "github.com/IBM/fp-go/v2/optics/traversal/generic"
)
func Compose[
S, A, B any](ab Traversal[A, B]) Operator[S, A, B] {
return T.Compose[
Traversal[A, B],
Traversal[S, A],
Traversal[S, B],
](ab)
}

View File

@@ -0,0 +1,12 @@
package result
import (
T "github.com/IBM/fp-go/v2/optics/traversal/generic"
"github.com/IBM/fp-go/v2/result"
)
type (
Traversal[S, A any] = T.Traversal[S, A, Result[S], Result[A]]
Result[T any] = result.Result[T]
Operator[S, A, B any] = func(Traversal[S, A]) Traversal[S, B]
)

65
v2/option/iter.go Normal file
View File

@@ -0,0 +1,65 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package option
import (
INTI "github.com/IBM/fp-go/v2/internal/iter"
)
// TraverseIter transforms a sequence by applying a function that returns an Option to each element.
// Returns Some containing a sequence of results if all operations succeed, None if any fails.
// This function is useful for processing sequences where each element may fail validation or transformation.
//
// The traversal short-circuits on the first None encountered, making it efficient for validation pipelines.
// The resulting sequence is lazy and will only be evaluated when iterated.
//
// Example:
//
// // Parse a sequence of strings to integers
// parse := func(s string) Option[int] {
// n, err := strconv.Atoi(s)
// if err != nil { return None[int]() }
// return Some(n)
// }
//
// // Create a sequence of strings
// strings := func(yield func(string) bool) {
// for _, s := range []string{"1", "2", "3"} {
// if !yield(s) { return }
// }
// }
//
// result := TraverseIter(parse)(strings)
// // result is Some(sequence of [1, 2, 3])
//
// // With invalid input
// invalidStrings := func(yield func(string) bool) {
// for _, s := range []string{"1", "invalid", "3"} {
// if !yield(s) { return }
// }
// }
//
// result := TraverseIter(parse)(invalidStrings)
// // result is None because "invalid" cannot be parsed
func TraverseIter[A, B any](f Kleisli[A, B]) Kleisli[Seq[A], Seq[B]] {
return INTI.Traverse[Seq[A]](
Of[Seq[B]],
Map[Seq[B], func(B) Seq[B]],
Ap[Seq[B]],
f,
)
}

329
v2/option/iter_test.go Normal file
View File

@@ -0,0 +1,329 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package option
import (
"fmt"
"slices"
"strconv"
"testing"
F "github.com/IBM/fp-go/v2/function"
"github.com/stretchr/testify/assert"
)
// Helper function to create a sequence from a slice
func seqFromSlice[T any](items []T) Seq[T] {
return slices.Values(items)
}
// Helper function to collect a sequence into a slice
func collectSeq[T any](seq Seq[T]) []T {
return slices.Collect(seq)
}
func TestTraverseIter_AllSome(t *testing.T) {
// Test case where all transformations succeed
parse := func(s string) Option[int] {
n, err := strconv.Atoi(s)
if err != nil {
return None[int]()
}
return Some(n)
}
input := seqFromSlice([]string{"1", "2", "3", "4", "5"})
result := TraverseIter(parse)(input)
assert.True(t, IsSome(result), "Expected Some result when all transformations succeed")
collected := MonadFold(result, func() []int { return nil }, collectSeq[int])
expected := []int{1, 2, 3, 4, 5}
assert.Equal(t, expected, collected)
}
func TestTraverseIter_ContainsNone(t *testing.T) {
// Test case where one transformation fails
parse := func(s string) Option[int] {
n, err := strconv.Atoi(s)
if err != nil {
return None[int]()
}
return Some(n)
}
input := seqFromSlice([]string{"1", "invalid", "3"})
result := TraverseIter(parse)(input)
assert.True(t, IsNone(result), "Expected None when any transformation fails")
}
func TestTraverseIter_EmptySequence(t *testing.T) {
// Test with empty sequence
double := func(x int) Option[int] {
return Some(x * 2)
}
input := seqFromSlice([]int{})
result := TraverseIter(double)(input)
assert.True(t, IsSome(result), "Expected Some for empty sequence")
collected := MonadFold(result, func() []int { return nil }, collectSeq[int])
assert.Empty(t, collected)
}
func TestTraverseIter_SingleElement(t *testing.T) {
// Test with single element - success case
validate := func(x int) Option[int] {
if x > 0 {
return Some(x * 2)
}
return None[int]()
}
input := seqFromSlice([]int{5})
result := TraverseIter(validate)(input)
assert.True(t, IsSome(result))
collected := MonadFold(result, func() []int { return nil }, collectSeq[int])
assert.Equal(t, []int{10}, collected)
}
func TestTraverseIter_SingleElementFails(t *testing.T) {
// Test with single element - failure case
validate := func(x int) Option[int] {
if x > 0 {
return Some(x * 2)
}
return None[int]()
}
input := seqFromSlice([]int{-5})
result := TraverseIter(validate)(input)
assert.True(t, IsNone(result))
}
func TestTraverseIter_Validation(t *testing.T) {
// Test validation use case
validatePositive := func(x int) Option[int] {
if x > 0 {
return Some(x)
}
return None[int]()
}
// All positive
input1 := seqFromSlice([]int{1, 2, 3, 4})
result1 := TraverseIter(validatePositive)(input1)
assert.True(t, IsSome(result1))
// Contains negative
input2 := seqFromSlice([]int{1, -2, 3})
result2 := TraverseIter(validatePositive)(input2)
assert.True(t, IsNone(result2))
// Contains zero
input3 := seqFromSlice([]int{1, 0, 3})
result3 := TraverseIter(validatePositive)(input3)
assert.True(t, IsNone(result3))
}
func TestTraverseIter_Transformation(t *testing.T) {
// Test transformation use case
safeDivide := func(x int) Option[float64] {
if x != 0 {
return Some(100.0 / float64(x))
}
return None[float64]()
}
// All non-zero
input1 := seqFromSlice([]int{1, 2, 4, 5})
result1 := TraverseIter(safeDivide)(input1)
assert.True(t, IsSome(result1))
collected := MonadFold(result1, func() []float64 { return nil }, collectSeq[float64])
expected := []float64{100.0, 50.0, 25.0, 20.0}
assert.Equal(t, expected, collected)
// Contains zero
input2 := seqFromSlice([]int{1, 0, 4})
result2 := TraverseIter(safeDivide)(input2)
assert.True(t, IsNone(result2))
}
func TestTraverseIter_ShortCircuit(t *testing.T) {
// Test that traversal short-circuits on first None
callCount := 0
countingFunc := func(x int) Option[int] {
callCount++
if x < 0 {
return None[int]()
}
return Some(x * 2)
}
// First element fails
input := seqFromSlice([]int{-1, 2, 3, 4, 5})
result := TraverseIter(countingFunc)(input)
assert.True(t, IsNone(result))
// Should have called the function for elements until the first failure
// Note: The exact count depends on implementation details of the traverse function
assert.Greater(t, callCount, 0, "Function should be called at least once")
}
func TestTraverseIter_LazyEvaluation(t *testing.T) {
// Test that the result sequence is lazy
transform := func(x int) Option[int] {
return Some(x * 2)
}
input := seqFromSlice([]int{1, 2, 3, 4, 5})
result := TraverseIter(transform)(input)
assert.True(t, IsSome(result))
// Partially consume the sequence
callCount := 0
MonadFold(result, func() int { return 0 }, func(seq Seq[int]) int {
for val := range seq {
callCount++
_ = val
if callCount == 2 {
break
}
}
return callCount
})
assert.Equal(t, 2, callCount, "Should only evaluate consumed elements")
}
func TestTraverseIter_ComplexTransformation(t *testing.T) {
// Test with more complex transformation
type Person struct {
Name string
Age int
}
validatePerson := func(name string) Option[Person] {
if name == "" {
return None[Person]()
}
return Some(Person{Name: name, Age: len(name)})
}
input := seqFromSlice([]string{"Alice", "Bob", "Charlie"})
result := TraverseIter(validatePerson)(input)
assert.True(t, IsSome(result))
collected := MonadFold(result, func() []Person { return nil }, collectSeq[Person])
expected := []Person{
{Name: "Alice", Age: 5},
{Name: "Bob", Age: 3},
{Name: "Charlie", Age: 7},
}
assert.Equal(t, expected, collected)
}
func TestTraverseIter_WithPipeline(t *testing.T) {
// Test TraverseIter in a functional pipeline
parse := func(s string) Option[int] {
n, err := strconv.Atoi(s)
if err != nil {
return None[int]()
}
return Some(n)
}
input := seqFromSlice([]string{"1", "2", "3", "4", "5"})
result := F.Pipe2(
input,
TraverseIter(parse),
Map(collectSeq[int]),
)
collected := MonadFold(result, func() []int { return nil }, F.Identity[[]int])
expected := []int{1, 2, 3, 4, 5}
assert.Equal(t, expected, collected)
}
func TestTraverseIter_ChainedTransformations(t *testing.T) {
// Test chaining multiple transformations
parseAndValidate := func(s string) Option[int] {
n, err := strconv.Atoi(s)
if err != nil {
return None[int]()
}
if n > 0 {
return Some(n)
}
return None[int]()
}
// All valid
input1 := seqFromSlice([]string{"1", "2", "3"})
result1 := TraverseIter(parseAndValidate)(input1)
assert.True(t, IsSome(result1))
// Contains invalid number
input2 := seqFromSlice([]string{"1", "invalid", "3"})
result2 := TraverseIter(parseAndValidate)(input2)
assert.True(t, IsNone(result2))
// Contains non-positive number
input3 := seqFromSlice([]string{"1", "0", "3"})
result3 := TraverseIter(parseAndValidate)(input3)
assert.True(t, IsNone(result3))
}
// Example test demonstrating usage
func ExampleTraverseIter() {
// Parse a sequence of strings to integers
parse := func(s string) Option[int] {
n, err := strconv.Atoi(s)
if err != nil {
return None[int]()
}
return Some(n)
}
// Create a sequence of valid strings
validStrings := seqFromSlice([]string{"1", "2", "3"})
result := TraverseIter(parse)(validStrings)
if IsSome(result) {
numbers := MonadFold(result, func() []int { return nil }, collectSeq[int])
fmt.Println(numbers)
}
// Create a sequence with invalid string
invalidStrings := seqFromSlice([]string{"1", "invalid", "3"})
result2 := TraverseIter(parse)(invalidStrings)
if IsNone(result2) {
fmt.Println("Parsing failed")
}
// Output:
// [1 2 3]
// Parsing failed
}

7
v2/option/types.go Normal file
View File

@@ -0,0 +1,7 @@
package option
import "iter"
type (
Seq[T any] = iter.Seq[T]
)