mirror of
https://github.com/IBM/fp-go.git
synced 2025-12-15 23:33:46 +02:00
Compare commits
6 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
57794ccb34 | ||
|
|
404eb875d3 | ||
|
|
ed108812d6 | ||
|
|
ab868315d4 | ||
|
|
02d0be9dad | ||
|
|
2c1d8196b4 |
10
v2/README.md
10
v2/README.md
@@ -69,7 +69,7 @@ func main() {
|
||||
none := option.None[int]()
|
||||
|
||||
// Map over values
|
||||
doubled := option.Map(func(x int) int { return x * 2 })(some)
|
||||
doubled := option.Map(N.Mul(2))(some)
|
||||
fmt.Println(option.GetOrElse(0)(doubled)) // Output: 84
|
||||
|
||||
// Chain operations
|
||||
@@ -187,7 +187,7 @@ Monadic operations for `Pair` now operate on the **second argument** to align wi
|
||||
```go
|
||||
// Operations on first element
|
||||
pair := MakePair(1, "hello")
|
||||
result := Map(func(x int) int { return x * 2 })(pair) // Pair(2, "hello")
|
||||
result := Map(N.Mul(2))(pair) // Pair(2, "hello")
|
||||
```
|
||||
|
||||
**V2:**
|
||||
@@ -204,7 +204,7 @@ The `Compose` function for endomorphisms now follows **mathematical function com
|
||||
**V1:**
|
||||
```go
|
||||
// Compose executed left-to-right
|
||||
double := func(x int) int { return x * 2 }
|
||||
double := N.Mul(2)
|
||||
increment := func(x int) int { return x + 1 }
|
||||
composed := Compose(double, increment)
|
||||
result := composed(5) // (5 * 2) + 1 = 11
|
||||
@@ -213,7 +213,7 @@ result := composed(5) // (5 * 2) + 1 = 11
|
||||
**V2:**
|
||||
```go
|
||||
// Compose executes RIGHT-TO-LEFT (mathematical composition)
|
||||
double := func(x int) int { return x * 2 }
|
||||
double := N.Mul(2)
|
||||
increment := func(x int) int { return x + 1 }
|
||||
composed := Compose(double, increment)
|
||||
result := composed(5) // (5 + 1) * 2 = 12
|
||||
@@ -368,7 +368,7 @@ If you're using `Pair`, update operations to work on the second element:
|
||||
```go
|
||||
pair := MakePair(42, "data")
|
||||
// Map operates on first element
|
||||
result := Map(func(x int) int { return x * 2 })(pair)
|
||||
result := Map(N.Mul(2))(pair)
|
||||
```
|
||||
|
||||
**After (V2):**
|
||||
|
||||
@@ -17,11 +17,10 @@ package array
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
EM "github.com/IBM/fp-go/v2/endomorphism"
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
"github.com/IBM/fp-go/v2/tuple"
|
||||
)
|
||||
|
||||
@@ -50,16 +49,16 @@ func Replicate[A any](n int, a A) []A {
|
||||
// This is the monadic version of Map that takes the array as the first parameter.
|
||||
//
|
||||
//go:inline
|
||||
func MonadMap[A, B any](as []A, f func(a A) B) []B {
|
||||
func MonadMap[A, B any](as []A, f func(A) B) []B {
|
||||
return G.MonadMap[[]A, []B](as, f)
|
||||
}
|
||||
|
||||
// MonadMapRef applies a function to a pointer to each element of an array, returning a new array with the results.
|
||||
// This is useful when you need to access elements by reference without copying.
|
||||
func MonadMapRef[A, B any](as []A, f func(a *A) B) []B {
|
||||
func MonadMapRef[A, B any](as []A, f func(*A) B) []B {
|
||||
count := len(as)
|
||||
bs := make([]B, count)
|
||||
for i := count - 1; i >= 0; i-- {
|
||||
for i := range count {
|
||||
bs[i] = f(&as[i])
|
||||
}
|
||||
return bs
|
||||
@@ -68,7 +67,7 @@ func MonadMapRef[A, B any](as []A, f func(a *A) B) []B {
|
||||
// MapWithIndex applies a function to each element and its index in an array, returning a new array with the results.
|
||||
//
|
||||
//go:inline
|
||||
func MapWithIndex[A, B any](f func(int, A) B) func([]A) []B {
|
||||
func MapWithIndex[A, B any](f func(int, A) B) Operator[A, B] {
|
||||
return G.MapWithIndex[[]A, []B](f)
|
||||
}
|
||||
|
||||
@@ -77,39 +76,39 @@ func MapWithIndex[A, B any](f func(int, A) B) func([]A) []B {
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// double := array.Map(func(x int) int { return x * 2 })
|
||||
// double := array.Map(N.Mul(2))
|
||||
// result := double([]int{1, 2, 3}) // [2, 4, 6]
|
||||
//
|
||||
//go:inline
|
||||
func Map[A, B any](f func(a A) B) func([]A) []B {
|
||||
func Map[A, B any](f func(A) B) Operator[A, B] {
|
||||
return G.Map[[]A, []B](f)
|
||||
}
|
||||
|
||||
// MapRef applies a function to a pointer to each element of an array, returning a new array with the results.
|
||||
// This is the curried version that returns a function.
|
||||
func MapRef[A, B any](f func(a *A) B) func([]A) []B {
|
||||
func MapRef[A, B any](f func(*A) B) Operator[A, B] {
|
||||
return F.Bind2nd(MonadMapRef[A, B], f)
|
||||
}
|
||||
|
||||
func filterRef[A any](fa []A, pred func(a *A) bool) []A {
|
||||
var result []A
|
||||
func filterRef[A any](fa []A, pred func(*A) bool) []A {
|
||||
count := len(fa)
|
||||
for i := 0; i < count; i++ {
|
||||
a := fa[i]
|
||||
if pred(&a) {
|
||||
result = append(result, a)
|
||||
var result []A = make([]A, 0, count)
|
||||
for i := range count {
|
||||
a := &fa[i]
|
||||
if pred(a) {
|
||||
result = append(result, *a)
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
func filterMapRef[A, B any](fa []A, pred func(a *A) bool, f func(a *A) B) []B {
|
||||
var result []B
|
||||
func filterMapRef[A, B any](fa []A, pred func(*A) bool, f func(*A) B) []B {
|
||||
count := len(fa)
|
||||
for i := 0; i < count; i++ {
|
||||
a := fa[i]
|
||||
if pred(&a) {
|
||||
result = append(result, f(&a))
|
||||
var result []B = make([]B, 0, count)
|
||||
for i := range count {
|
||||
a := &fa[i]
|
||||
if pred(a) {
|
||||
result = append(result, f(a))
|
||||
}
|
||||
}
|
||||
return result
|
||||
@@ -118,19 +117,19 @@ func filterMapRef[A, B any](fa []A, pred func(a *A) bool, f func(a *A) B) []B {
|
||||
// Filter returns a new array with all elements from the original array that match a predicate
|
||||
//
|
||||
//go:inline
|
||||
func Filter[A any](pred func(A) bool) EM.Endomorphism[[]A] {
|
||||
func Filter[A any](pred func(A) bool) Operator[A, A] {
|
||||
return G.Filter[[]A](pred)
|
||||
}
|
||||
|
||||
// FilterWithIndex returns a new array with all elements from the original array that match a predicate
|
||||
//
|
||||
//go:inline
|
||||
func FilterWithIndex[A any](pred func(int, A) bool) EM.Endomorphism[[]A] {
|
||||
func FilterWithIndex[A any](pred func(int, A) bool) Operator[A, A] {
|
||||
return G.FilterWithIndex[[]A](pred)
|
||||
}
|
||||
|
||||
// FilterRef returns a new array with all elements from the original array that match a predicate operating on pointers.
|
||||
func FilterRef[A any](pred func(*A) bool) EM.Endomorphism[[]A] {
|
||||
func FilterRef[A any](pred func(*A) bool) Operator[A, A] {
|
||||
return F.Bind2nd(filterRef[A], pred)
|
||||
}
|
||||
|
||||
@@ -138,7 +137,7 @@ func FilterRef[A any](pred func(*A) bool) EM.Endomorphism[[]A] {
|
||||
// This is the monadic version that takes the array as the first parameter.
|
||||
//
|
||||
//go:inline
|
||||
func MonadFilterMap[A, B any](fa []A, f func(A) O.Option[B]) []B {
|
||||
func MonadFilterMap[A, B any](fa []A, f option.Kleisli[A, B]) []B {
|
||||
return G.MonadFilterMap[[]A, []B](fa, f)
|
||||
}
|
||||
|
||||
@@ -146,33 +145,33 @@ func MonadFilterMap[A, B any](fa []A, f func(A) O.Option[B]) []B {
|
||||
// keeping only the Some values. This is the monadic version that takes the array as the first parameter.
|
||||
//
|
||||
//go:inline
|
||||
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) O.Option[B]) []B {
|
||||
func MonadFilterMapWithIndex[A, B any](fa []A, f func(int, A) Option[B]) []B {
|
||||
return G.MonadFilterMapWithIndex[[]A, []B](fa, f)
|
||||
}
|
||||
|
||||
// FilterMap maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
|
||||
// FilterMap maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
|
||||
//
|
||||
//go:inline
|
||||
func FilterMap[A, B any](f func(A) O.Option[B]) func([]A) []B {
|
||||
func FilterMap[A, B any](f option.Kleisli[A, B]) Operator[A, B] {
|
||||
return G.FilterMap[[]A, []B](f)
|
||||
}
|
||||
|
||||
// FilterMapWithIndex maps an array with an iterating function that returns an [O.Option] and it keeps only the Some values discarding the Nones.
|
||||
// FilterMapWithIndex maps an array with an iterating function that returns an [Option] and it keeps only the Some values discarding the Nones.
|
||||
//
|
||||
//go:inline
|
||||
func FilterMapWithIndex[A, B any](f func(int, A) O.Option[B]) func([]A) []B {
|
||||
func FilterMapWithIndex[A, B any](f func(int, A) Option[B]) Operator[A, B] {
|
||||
return G.FilterMapWithIndex[[]A, []B](f)
|
||||
}
|
||||
|
||||
// FilterChain maps an array with an iterating function that returns an [O.Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
|
||||
// FilterChain maps an array with an iterating function that returns an [Option] of an array. It keeps only the Some values discarding the Nones and then flattens the result.
|
||||
//
|
||||
//go:inline
|
||||
func FilterChain[A, B any](f func(A) O.Option[[]B]) func([]A) []B {
|
||||
func FilterChain[A, B any](f option.Kleisli[A, []B]) Operator[A, B] {
|
||||
return G.FilterChain[[]A](f)
|
||||
}
|
||||
|
||||
// FilterMapRef filters an array using a predicate on pointers and maps the matching elements using a function on pointers.
|
||||
func FilterMapRef[A, B any](pred func(a *A) bool, f func(a *A) B) func([]A) []B {
|
||||
func FilterMapRef[A, B any](pred func(a *A) bool, f func(*A) B) Operator[A, B] {
|
||||
return func(fa []A) []B {
|
||||
return filterMapRef(fa, pred, f)
|
||||
}
|
||||
@@ -180,8 +179,7 @@ func FilterMapRef[A, B any](pred func(a *A) bool, f func(a *A) B) func([]A) []B
|
||||
|
||||
func reduceRef[A, B any](fa []A, f func(B, *A) B, initial B) B {
|
||||
current := initial
|
||||
count := len(fa)
|
||||
for i := 0; i < count; i++ {
|
||||
for i := range len(fa) {
|
||||
current = f(current, &fa[i])
|
||||
}
|
||||
return current
|
||||
@@ -262,6 +260,8 @@ func Empty[A any]() []A {
|
||||
}
|
||||
|
||||
// Zero returns an empty array of type A (alias for Empty).
|
||||
//
|
||||
//go:inline
|
||||
func Zero[A any]() []A {
|
||||
return Empty[A]()
|
||||
}
|
||||
@@ -277,7 +277,7 @@ func Of[A any](a A) []A {
|
||||
// This is the monadic version that takes the array as the first parameter (also known as FlatMap).
|
||||
//
|
||||
//go:inline
|
||||
func MonadChain[A, B any](fa []A, f func(a A) []B) []B {
|
||||
func MonadChain[A, B any](fa []A, f Kleisli[A, B]) []B {
|
||||
return G.MonadChain(fa, f)
|
||||
}
|
||||
|
||||
@@ -290,7 +290,7 @@ func MonadChain[A, B any](fa []A, f func(a A) []B) []B {
|
||||
// result := duplicate([]int{1, 2, 3}) // [1, 1, 2, 2, 3, 3]
|
||||
//
|
||||
//go:inline
|
||||
func Chain[A, B any](f func(A) []B) func([]A) []B {
|
||||
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
|
||||
return G.Chain[[]A](f)
|
||||
}
|
||||
|
||||
@@ -306,7 +306,7 @@ func MonadAp[B, A any](fab []func(A) B, fa []A) []B {
|
||||
// This is the curried version.
|
||||
//
|
||||
//go:inline
|
||||
func Ap[B, A any](fa []A) func([]func(A) B) []B {
|
||||
func Ap[B, A any](fa []A) Operator[func(A) B, B] {
|
||||
return G.Ap[[]B, []func(A) B](fa)
|
||||
}
|
||||
|
||||
@@ -328,7 +328,7 @@ func MatchLeft[A, B any](onEmpty func() B, onNonEmpty func(A, []A) B) func([]A)
|
||||
// Returns None if the array is empty.
|
||||
//
|
||||
//go:inline
|
||||
func Tail[A any](as []A) O.Option[[]A] {
|
||||
func Tail[A any](as []A) Option[[]A] {
|
||||
return G.Tail(as)
|
||||
}
|
||||
|
||||
@@ -336,7 +336,7 @@ func Tail[A any](as []A) O.Option[[]A] {
|
||||
// Returns None if the array is empty.
|
||||
//
|
||||
//go:inline
|
||||
func Head[A any](as []A) O.Option[A] {
|
||||
func Head[A any](as []A) Option[A] {
|
||||
return G.Head(as)
|
||||
}
|
||||
|
||||
@@ -344,7 +344,7 @@ func Head[A any](as []A) O.Option[A] {
|
||||
// Returns None if the array is empty.
|
||||
//
|
||||
//go:inline
|
||||
func First[A any](as []A) O.Option[A] {
|
||||
func First[A any](as []A) Option[A] {
|
||||
return G.First(as)
|
||||
}
|
||||
|
||||
@@ -352,12 +352,12 @@ func First[A any](as []A) O.Option[A] {
|
||||
// Returns None if the array is empty.
|
||||
//
|
||||
//go:inline
|
||||
func Last[A any](as []A) O.Option[A] {
|
||||
func Last[A any](as []A) Option[A] {
|
||||
return G.Last(as)
|
||||
}
|
||||
|
||||
// PrependAll inserts a separator before each element of an array.
|
||||
func PrependAll[A any](middle A) EM.Endomorphism[[]A] {
|
||||
func PrependAll[A any](middle A) Operator[A, A] {
|
||||
return func(as []A) []A {
|
||||
count := len(as)
|
||||
dst := count * 2
|
||||
@@ -377,7 +377,7 @@ func PrependAll[A any](middle A) EM.Endomorphism[[]A] {
|
||||
// Example:
|
||||
//
|
||||
// result := array.Intersperse(0)([]int{1, 2, 3}) // [1, 0, 2, 0, 3]
|
||||
func Intersperse[A any](middle A) EM.Endomorphism[[]A] {
|
||||
func Intersperse[A any](middle A) Operator[A, A] {
|
||||
prepend := PrependAll(middle)
|
||||
return func(as []A) []A {
|
||||
if IsEmpty(as) {
|
||||
@@ -406,7 +406,7 @@ func Flatten[A any](mma [][]A) []A {
|
||||
}
|
||||
|
||||
// Slice extracts a subarray from index low (inclusive) to high (exclusive).
|
||||
func Slice[A any](low, high int) func(as []A) []A {
|
||||
func Slice[A any](low, high int) Operator[A, A] {
|
||||
return array.Slice[[]A](low, high)
|
||||
}
|
||||
|
||||
@@ -414,7 +414,7 @@ func Slice[A any](low, high int) func(as []A) []A {
|
||||
// Returns None if the index is out of bounds.
|
||||
//
|
||||
//go:inline
|
||||
func Lookup[A any](idx int) func([]A) O.Option[A] {
|
||||
func Lookup[A any](idx int) func([]A) Option[A] {
|
||||
return G.Lookup[[]A](idx)
|
||||
}
|
||||
|
||||
@@ -422,7 +422,7 @@ func Lookup[A any](idx int) func([]A) O.Option[A] {
|
||||
// If the index is out of bounds, the element is appended.
|
||||
//
|
||||
//go:inline
|
||||
func UpsertAt[A any](a A) EM.Endomorphism[[]A] {
|
||||
func UpsertAt[A any](a A) Operator[A, A] {
|
||||
return G.UpsertAt[[]A](a)
|
||||
}
|
||||
|
||||
@@ -468,7 +468,7 @@ func ConstNil[A any]() []A {
|
||||
// SliceRight extracts a subarray from the specified start index to the end.
|
||||
//
|
||||
//go:inline
|
||||
func SliceRight[A any](start int) EM.Endomorphism[[]A] {
|
||||
func SliceRight[A any](start int) Operator[A, A] {
|
||||
return G.SliceRight[[]A](start)
|
||||
}
|
||||
|
||||
@@ -482,7 +482,7 @@ func Copy[A any](b []A) []A {
|
||||
// Clone creates a deep copy of the array using the provided endomorphism to clone the values
|
||||
//
|
||||
//go:inline
|
||||
func Clone[A any](f func(A) A) func(as []A) []A {
|
||||
func Clone[A any](f func(A) A) Operator[A, A] {
|
||||
return G.Clone[[]A](f)
|
||||
}
|
||||
|
||||
@@ -510,8 +510,8 @@ func Fold[A any](m M.Monoid[A]) func([]A) A {
|
||||
// Push adds an element to the end of an array (alias for Append).
|
||||
//
|
||||
//go:inline
|
||||
func Push[A any](a A) EM.Endomorphism[[]A] {
|
||||
return G.Push[EM.Endomorphism[[]A]](a)
|
||||
func Push[A any](a A) Operator[A, A] {
|
||||
return G.Push[Operator[A, A]](a)
|
||||
}
|
||||
|
||||
// MonadFlap applies a value to an array of functions, producing an array of results.
|
||||
@@ -526,13 +526,13 @@ func MonadFlap[B, A any](fab []func(A) B, a A) []B {
|
||||
// This is the curried version.
|
||||
//
|
||||
//go:inline
|
||||
func Flap[B, A any](a A) func([]func(A) B) []B {
|
||||
func Flap[B, A any](a A) Operator[func(A) B, B] {
|
||||
return G.Flap[func(A) B, []func(A) B, []B](a)
|
||||
}
|
||||
|
||||
// Prepend adds an element to the beginning of an array, returning a new array.
|
||||
//
|
||||
//go:inline
|
||||
func Prepend[A any](head A) EM.Endomorphism[[]A] {
|
||||
return G.Prepend[EM.Endomorphism[[]A]](head)
|
||||
func Prepend[A any](head A) Operator[A, A] {
|
||||
return G.Prepend[Operator[A, A]](head)
|
||||
}
|
||||
|
||||
@@ -56,8 +56,8 @@ func Do[S any](
|
||||
//go:inline
|
||||
func Bind[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
f func(S1) []T,
|
||||
) func([]S1) []S2 {
|
||||
f Kleisli[S1, T],
|
||||
) Operator[S1, S2] {
|
||||
return G.Bind[[]S1, []S2](setter, f)
|
||||
}
|
||||
|
||||
@@ -79,7 +79,7 @@ func Bind[S1, S2, T any](
|
||||
func Let[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
f func(S1) T,
|
||||
) func([]S1) []S2 {
|
||||
) Operator[S1, S2] {
|
||||
return G.Let[[]S1, []S2](setter, f)
|
||||
}
|
||||
|
||||
@@ -101,7 +101,7 @@ func Let[S1, S2, T any](
|
||||
func LetTo[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
b T,
|
||||
) func([]S1) []S2 {
|
||||
) Operator[S1, S2] {
|
||||
return G.LetTo[[]S1, []S2](setter, b)
|
||||
}
|
||||
|
||||
@@ -120,7 +120,7 @@ func LetTo[S1, S2, T any](
|
||||
//go:inline
|
||||
func BindTo[S1, T any](
|
||||
setter func(T) S1,
|
||||
) func([]T) []S1 {
|
||||
) Operator[T, S1] {
|
||||
return G.BindTo[[]S1, []T](setter)
|
||||
}
|
||||
|
||||
@@ -143,6 +143,6 @@ func BindTo[S1, T any](
|
||||
func ApS[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
fa []T,
|
||||
) func([]S1) []S2 {
|
||||
) Operator[S1, S2] {
|
||||
return G.ApS[[]S1, []S2](setter, fa)
|
||||
}
|
||||
|
||||
@@ -36,7 +36,7 @@
|
||||
// generated := array.MakeBy(5, func(i int) int { return i * 2 })
|
||||
//
|
||||
// // Transforming arrays
|
||||
// doubled := array.Map(func(x int) int { return x * 2 })(arr)
|
||||
// doubled := array.Map(N.Mul(2))(arr)
|
||||
// filtered := array.Filter(func(x int) bool { return x > 2 })(arr)
|
||||
//
|
||||
// // Combining arrays
|
||||
@@ -50,7 +50,7 @@
|
||||
// numbers := []int{1, 2, 3, 4, 5}
|
||||
//
|
||||
// // Map transforms each element
|
||||
// doubled := array.Map(func(x int) int { return x * 2 })(numbers)
|
||||
// doubled := array.Map(N.Mul(2))(numbers)
|
||||
// // Result: [2, 4, 6, 8, 10]
|
||||
//
|
||||
// // Filter keeps elements matching a predicate
|
||||
|
||||
@@ -17,7 +17,7 @@ package array
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
// FindFirst finds the first element which satisfies a predicate function.
|
||||
@@ -30,7 +30,7 @@ import (
|
||||
// result2 := findGreaterThan3([]int{1, 2, 3}) // None
|
||||
//
|
||||
//go:inline
|
||||
func FindFirst[A any](pred func(A) bool) func([]A) O.Option[A] {
|
||||
func FindFirst[A any](pred func(A) bool) option.Kleisli[[]A, A] {
|
||||
return G.FindFirst[[]A](pred)
|
||||
}
|
||||
|
||||
@@ -45,7 +45,7 @@ func FindFirst[A any](pred func(A) bool) func([]A) O.Option[A] {
|
||||
// result := findEvenAtEvenIndex([]int{1, 3, 4, 5}) // Some(4)
|
||||
//
|
||||
//go:inline
|
||||
func FindFirstWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
|
||||
func FindFirstWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
|
||||
return G.FindFirstWithIndex[[]A](pred)
|
||||
}
|
||||
|
||||
@@ -65,7 +65,7 @@ func FindFirstWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
|
||||
// result := parseFirst([]string{"a", "42", "b"}) // Some(42)
|
||||
//
|
||||
//go:inline
|
||||
func FindFirstMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
|
||||
func FindFirstMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
|
||||
return G.FindFirstMap[[]A](sel)
|
||||
}
|
||||
|
||||
@@ -73,7 +73,7 @@ func FindFirstMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
|
||||
// The selector receives both the index and the element.
|
||||
//
|
||||
//go:inline
|
||||
func FindFirstMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.Option[B] {
|
||||
func FindFirstMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
|
||||
return G.FindFirstMapWithIndex[[]A](sel)
|
||||
}
|
||||
|
||||
@@ -86,7 +86,7 @@ func FindFirstMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.O
|
||||
// result := findGreaterThan3([]int{1, 4, 2, 5}) // Some(5)
|
||||
//
|
||||
//go:inline
|
||||
func FindLast[A any](pred func(A) bool) func([]A) O.Option[A] {
|
||||
func FindLast[A any](pred func(A) bool) option.Kleisli[[]A, A] {
|
||||
return G.FindLast[[]A](pred)
|
||||
}
|
||||
|
||||
@@ -94,7 +94,7 @@ func FindLast[A any](pred func(A) bool) func([]A) O.Option[A] {
|
||||
// Returns Some(element) if found, None if no element matches.
|
||||
//
|
||||
//go:inline
|
||||
func FindLastWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
|
||||
func FindLastWithIndex[A any](pred func(int, A) bool) option.Kleisli[[]A, A] {
|
||||
return G.FindLastWithIndex[[]A](pred)
|
||||
}
|
||||
|
||||
@@ -102,7 +102,7 @@ func FindLastWithIndex[A any](pred func(int, A) bool) func([]A) O.Option[A] {
|
||||
// This combines finding and mapping in a single operation, searching from the end.
|
||||
//
|
||||
//go:inline
|
||||
func FindLastMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
|
||||
func FindLastMap[A, B any](sel option.Kleisli[A, B]) option.Kleisli[[]A, B] {
|
||||
return G.FindLastMap[[]A](sel)
|
||||
}
|
||||
|
||||
@@ -110,6 +110,6 @@ func FindLastMap[A, B any](sel func(A) O.Option[B]) func([]A) O.Option[B] {
|
||||
// The selector receives both the index and the element, searching from the end.
|
||||
//
|
||||
//go:inline
|
||||
func FindLastMapWithIndex[A, B any](sel func(int, A) O.Option[B]) func([]A) O.Option[B] {
|
||||
func FindLastMapWithIndex[A, B any](sel func(int, A) Option[B]) option.Kleisli[[]A, B] {
|
||||
return G.FindLastMapWithIndex[[]A](sel)
|
||||
}
|
||||
|
||||
@@ -25,8 +25,10 @@ import (
|
||||
)
|
||||
|
||||
// Of constructs a single element array
|
||||
//
|
||||
//go:inline
|
||||
func Of[GA ~[]A, A any](value A) GA {
|
||||
return GA{value}
|
||||
return array.Of[GA](value)
|
||||
}
|
||||
|
||||
func Reduce[GA ~[]A, A, B any](f func(B, A) B, initial B) func(GA) B {
|
||||
@@ -82,7 +84,7 @@ func MakeBy[AS ~[]A, F ~func(int) A, A any](n int, f F) AS {
|
||||
}
|
||||
// run the generator function across the input
|
||||
as := make(AS, n)
|
||||
for i := n - 1; i >= 0; i-- {
|
||||
for i := range n {
|
||||
as[i] = f(i)
|
||||
}
|
||||
return as
|
||||
@@ -165,10 +167,9 @@ func Size[GA ~[]A, A any](as GA) int {
|
||||
func filterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
|
||||
result := make(GB, 0, len(fa))
|
||||
for _, a := range fa {
|
||||
O.Map(func(b B) B {
|
||||
if b, ok := O.Unwrap(f(a)); ok {
|
||||
result = append(result, b)
|
||||
return b
|
||||
})(f(a))
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
||||
@@ -176,10 +177,9 @@ func filterMap[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(A) O.Option[B]) GB {
|
||||
func filterMapWithIndex[GA ~[]A, GB ~[]B, A, B any](fa GA, f func(int, A) O.Option[B]) GB {
|
||||
result := make(GB, 0, len(fa))
|
||||
for i, a := range fa {
|
||||
O.Map(func(b B) B {
|
||||
if b, ok := O.Unwrap(f(i, a)); ok {
|
||||
result = append(result, b)
|
||||
return b
|
||||
})(f(i, a))
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
@@ -42,8 +42,7 @@ func FindFirst[AS ~[]A, PRED ~func(A) bool, A any](pred PRED) func(AS) O.Option[
|
||||
func FindFirstMapWithIndex[AS ~[]A, PRED ~func(int, A) O.Option[B], A, B any](pred PRED) func(AS) O.Option[B] {
|
||||
none := O.None[B]()
|
||||
return func(as AS) O.Option[B] {
|
||||
count := len(as)
|
||||
for i := 0; i < count; i++ {
|
||||
for i := range len(as) {
|
||||
out := pred(i, as[i])
|
||||
if O.IsSome(out) {
|
||||
return out
|
||||
|
||||
34
v2/array/generic/monoid.go
Normal file
34
v2/array/generic/monoid.go
Normal file
@@ -0,0 +1,34 @@
|
||||
package generic
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
)
|
||||
|
||||
// Monoid returns a Monoid instance for arrays.
|
||||
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// m := array.Monoid[int]()
|
||||
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
|
||||
// empty := m.Empty() // []
|
||||
//
|
||||
//go:inline
|
||||
func Monoid[GT ~[]T, T any]() M.Monoid[GT] {
|
||||
return M.MakeMonoid(array.Concat[GT], Empty[GT]())
|
||||
}
|
||||
|
||||
// Semigroup returns a Semigroup instance for arrays.
|
||||
// The Semigroup combines arrays through concatenation.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// s := array.Semigroup[int]()
|
||||
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
|
||||
//
|
||||
//go:inline
|
||||
func Semigroup[GT ~[]T, T any]() S.Semigroup[GT] {
|
||||
return S.MakeSemigroup(array.Concat[GT])
|
||||
}
|
||||
@@ -26,7 +26,7 @@ import (
|
||||
func ZipWith[AS ~[]A, BS ~[]B, CS ~[]C, FCT ~func(A, B) C, A, B, C any](fa AS, fb BS, f FCT) CS {
|
||||
l := N.Min(len(fa), len(fb))
|
||||
res := make(CS, l)
|
||||
for i := l - 1; i >= 0; i-- {
|
||||
for i := range l {
|
||||
res[i] = f(fa[i], fb[i])
|
||||
}
|
||||
return res
|
||||
@@ -43,7 +43,7 @@ func Unzip[AS ~[]A, BS ~[]B, CS ~[]T.Tuple2[A, B], A, B any](cs CS) T.Tuple2[AS,
|
||||
l := len(cs)
|
||||
as := make(AS, l)
|
||||
bs := make(BS, l)
|
||||
for i := l - 1; i >= 0; i-- {
|
||||
for i := range l {
|
||||
t := cs[i]
|
||||
as[i] = t.F1
|
||||
bs[i] = t.F2
|
||||
|
||||
@@ -18,7 +18,6 @@ package array
|
||||
import (
|
||||
"testing"
|
||||
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
OR "github.com/IBM/fp-go/v2/ord"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
@@ -103,39 +102,6 @@ func TestSortByKey(t *testing.T) {
|
||||
assert.Equal(t, "Charlie", result[2].Name)
|
||||
}
|
||||
|
||||
func TestMonadTraverse(t *testing.T) {
|
||||
result := MonadTraverse(
|
||||
O.Of[[]int],
|
||||
O.Map[[]int, func(int) []int],
|
||||
O.Ap[[]int, int],
|
||||
[]int{1, 3, 5},
|
||||
func(n int) O.Option[int] {
|
||||
if n%2 == 1 {
|
||||
return O.Some(n * 2)
|
||||
}
|
||||
return O.None[int]()
|
||||
},
|
||||
)
|
||||
|
||||
assert.Equal(t, O.Some([]int{2, 6, 10}), result)
|
||||
|
||||
// Test with None case
|
||||
result2 := MonadTraverse(
|
||||
O.Of[[]int],
|
||||
O.Map[[]int, func(int) []int],
|
||||
O.Ap[[]int, int],
|
||||
[]int{1, 2, 3},
|
||||
func(n int) O.Option[int] {
|
||||
if n%2 == 1 {
|
||||
return O.Some(n * 2)
|
||||
}
|
||||
return O.None[int]()
|
||||
},
|
||||
)
|
||||
|
||||
assert.Equal(t, O.None[[]int](), result2)
|
||||
}
|
||||
|
||||
func TestUniqByKey(t *testing.T) {
|
||||
type Person struct {
|
||||
Name string
|
||||
|
||||
@@ -16,27 +16,12 @@
|
||||
package array
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/array/generic"
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
)
|
||||
|
||||
func concat[T any](left, right []T) []T {
|
||||
// some performance checks
|
||||
ll := len(left)
|
||||
if ll == 0 {
|
||||
return right
|
||||
}
|
||||
lr := len(right)
|
||||
if lr == 0 {
|
||||
return left
|
||||
}
|
||||
// need to copy
|
||||
buf := make([]T, ll+lr)
|
||||
copy(buf[copy(buf, left):], right)
|
||||
return buf
|
||||
}
|
||||
|
||||
// Monoid returns a Monoid instance for arrays.
|
||||
// The Monoid combines arrays through concatenation, with an empty array as the identity element.
|
||||
//
|
||||
@@ -45,8 +30,10 @@ func concat[T any](left, right []T) []T {
|
||||
// m := array.Monoid[int]()
|
||||
// result := m.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
|
||||
// empty := m.Empty() // []
|
||||
//
|
||||
//go:inline
|
||||
func Monoid[T any]() M.Monoid[[]T] {
|
||||
return M.MakeMonoid(concat[T], Empty[T]())
|
||||
return G.Monoid[[]T]()
|
||||
}
|
||||
|
||||
// Semigroup returns a Semigroup instance for arrays.
|
||||
@@ -56,8 +43,10 @@ func Monoid[T any]() M.Monoid[[]T] {
|
||||
//
|
||||
// s := array.Semigroup[int]()
|
||||
// result := s.Concat([]int{1, 2}, []int{3, 4}) // [1, 2, 3, 4]
|
||||
//
|
||||
//go:inline
|
||||
func Semigroup[T any]() S.Semigroup[[]T] {
|
||||
return S.MakeSemigroup(concat[T])
|
||||
return G.Semigroup[[]T]()
|
||||
}
|
||||
|
||||
func addLen[A any](count int, data []A) int {
|
||||
|
||||
@@ -16,10 +16,18 @@
|
||||
package array
|
||||
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
func MonadSequence[HKTA, HKTRA any](
|
||||
fof func(HKTA) HKTRA,
|
||||
m M.Monoid[HKTRA],
|
||||
ma []HKTA) HKTRA {
|
||||
return array.MonadSequence(fof, m.Empty(), m.Concat, ma)
|
||||
}
|
||||
|
||||
// Sequence takes an array where elements are HKT<A> (higher kinded type) and,
|
||||
// using an applicative of that HKT, returns an HKT of []A.
|
||||
//
|
||||
@@ -55,16 +63,11 @@ import (
|
||||
// option.MonadAp[[]int, int],
|
||||
// )
|
||||
// result := seq(opts) // Some([1, 2, 3])
|
||||
func Sequence[A, HKTA, HKTRA, HKTFRA any](
|
||||
_of func([]A) HKTRA,
|
||||
_map func(HKTRA, func([]A) func(A) []A) HKTFRA,
|
||||
_ap func(HKTFRA, HKTA) HKTRA,
|
||||
func Sequence[HKTA, HKTRA any](
|
||||
fof func(HKTA) HKTRA,
|
||||
m M.Monoid[HKTRA],
|
||||
) func([]HKTA) HKTRA {
|
||||
ca := F.Curry2(Append[A])
|
||||
empty := _of(Empty[A]())
|
||||
return Reduce(func(fas HKTRA, fa HKTA) HKTRA {
|
||||
return _ap(_map(fas, ca), fa)
|
||||
}, empty)
|
||||
return array.Sequence[[]HKTA](fof, m.Empty(), m.Concat)
|
||||
}
|
||||
|
||||
// ArrayOption returns a function to convert a sequence of options into an option of a sequence.
|
||||
@@ -86,10 +89,10 @@ func Sequence[A, HKTA, HKTRA, HKTFRA any](
|
||||
// option.Some(3),
|
||||
// }
|
||||
// result2 := array.ArrayOption[int]()(opts2) // None
|
||||
func ArrayOption[A any]() func([]O.Option[A]) O.Option[[]A] {
|
||||
return Sequence(
|
||||
O.Of[[]A],
|
||||
O.MonadMap[[]A, func(A) []A],
|
||||
O.MonadAp[[]A, A],
|
||||
func ArrayOption[A any](ma []Option[A]) Option[[]A] {
|
||||
return MonadSequence(
|
||||
O.Map(Of[A]),
|
||||
O.ApplicativeMonoid(Monoid[A]()),
|
||||
ma,
|
||||
)
|
||||
}
|
||||
|
||||
@@ -24,8 +24,7 @@ import (
|
||||
)
|
||||
|
||||
func TestSequenceOption(t *testing.T) {
|
||||
seq := ArrayOption[int]()
|
||||
|
||||
assert.Equal(t, O.Of([]int{1, 3}), seq([]O.Option[int]{O.Of(1), O.Of(3)}))
|
||||
assert.Equal(t, O.None[[]int](), seq([]O.Option[int]{O.Of(1), O.None[int]()}))
|
||||
assert.Equal(t, O.Of([]int{1, 3}), ArrayOption([]O.Option[int]{O.Of(1), O.Of(3)}))
|
||||
assert.Equal(t, O.None[[]int](), ArrayOption([]O.Option[int]{O.Of(1), O.None[int]()}))
|
||||
}
|
||||
|
||||
@@ -18,6 +18,7 @@ package array
|
||||
import (
|
||||
"testing"
|
||||
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
@@ -243,7 +244,7 @@ func TestSliceComposition(t *testing.T) {
|
||||
|
||||
t.Run("slice then map", func(t *testing.T) {
|
||||
sliced := Slice[int](2, 5)(data)
|
||||
mapped := Map(func(x int) int { return x * 2 })(sliced)
|
||||
mapped := Map(N.Mul(2))(sliced)
|
||||
assert.Equal(t, []int{4, 6, 8}, mapped)
|
||||
})
|
||||
|
||||
|
||||
@@ -32,7 +32,7 @@ import (
|
||||
// // Result: [1, 1, 2, 3, 4, 5, 6, 9]
|
||||
//
|
||||
//go:inline
|
||||
func Sort[T any](ord O.Ord[T]) func(ma []T) []T {
|
||||
func Sort[T any](ord O.Ord[T]) Operator[T, T] {
|
||||
return G.Sort[[]T](ord)
|
||||
}
|
||||
|
||||
@@ -62,7 +62,7 @@ func Sort[T any](ord O.Ord[T]) func(ma []T) []T {
|
||||
// // Result: [{"Bob", 25}, {"Alice", 30}, {"Charlie", 35}]
|
||||
//
|
||||
//go:inline
|
||||
func SortByKey[K, T any](ord O.Ord[K], f func(T) K) func(ma []T) []T {
|
||||
func SortByKey[K, T any](ord O.Ord[K], f func(T) K) Operator[T, T] {
|
||||
return G.SortByKey[[]T](ord, f)
|
||||
}
|
||||
|
||||
@@ -93,6 +93,6 @@ func SortByKey[K, T any](ord O.Ord[K], f func(T) K) func(ma []T) []T {
|
||||
// // Result: [{"Jones", "Bob"}, {"Smith", "Alice"}, {"Smith", "John"}]
|
||||
//
|
||||
//go:inline
|
||||
func SortBy[T any](ord []O.Ord[T]) func(ma []T) []T {
|
||||
func SortBy[T any](ord []O.Ord[T]) Operator[T, T] {
|
||||
return G.SortBy[[]T](ord)
|
||||
}
|
||||
|
||||
@@ -80,3 +80,25 @@ func MonadTraverse[A, B, HKTB, HKTAB, HKTRB any](
|
||||
|
||||
return array.MonadTraverse(fof, fmap, fap, ta, f)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func TraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
|
||||
fof func([]B) HKTRB,
|
||||
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
|
||||
fap func(HKTB) func(HKTAB) HKTRB,
|
||||
|
||||
f func(int, A) HKTB) func([]A) HKTRB {
|
||||
return array.TraverseWithIndex[[]A](fof, fmap, fap, f)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func MonadTraverseWithIndex[A, B, HKTB, HKTAB, HKTRB any](
|
||||
fof func([]B) HKTRB,
|
||||
fmap func(func([]B) func(B) []B) func(HKTRB) HKTAB,
|
||||
fap func(HKTB) func(HKTAB) HKTRB,
|
||||
|
||||
ta []A,
|
||||
f func(int, A) HKTB) HKTRB {
|
||||
|
||||
return array.MonadTraverseWithIndex(fof, fmap, fap, ta, f)
|
||||
}
|
||||
|
||||
9
v2/array/types.go
Normal file
9
v2/array/types.go
Normal file
@@ -0,0 +1,9 @@
|
||||
package array
|
||||
|
||||
import "github.com/IBM/fp-go/v2/option"
|
||||
|
||||
type (
|
||||
Kleisli[A, B any] = func(A) []B
|
||||
Operator[A, B any] = Kleisli[[]A, B]
|
||||
Option[A any] = option.Option[A]
|
||||
)
|
||||
@@ -46,6 +46,6 @@ func StrictUniq[A comparable](as []A) []A {
|
||||
// // Result: [{"Alice", 30}, {"Bob", 25}, {"Charlie", 30}]
|
||||
//
|
||||
//go:inline
|
||||
func Uniq[A any, K comparable](f func(A) K) func(as []A) []A {
|
||||
func Uniq[A any, K comparable](f func(A) K) Operator[A, A] {
|
||||
return G.Uniq[[]A](f)
|
||||
}
|
||||
|
||||
@@ -382,7 +382,7 @@ func BenchmarkToString(b *testing.B) {
|
||||
data := []byte("Hello, World!")
|
||||
|
||||
b.Run("small", func(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = ToString(data)
|
||||
}
|
||||
})
|
||||
@@ -393,7 +393,7 @@ func BenchmarkToString(b *testing.B) {
|
||||
large[i] = byte(i % 256)
|
||||
}
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = ToString(large)
|
||||
}
|
||||
})
|
||||
@@ -402,7 +402,7 @@ func BenchmarkToString(b *testing.B) {
|
||||
func BenchmarkSize(b *testing.B) {
|
||||
data := []byte("Hello, World!")
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Size(data)
|
||||
}
|
||||
}
|
||||
@@ -412,7 +412,7 @@ func BenchmarkMonoidConcat(b *testing.B) {
|
||||
c := []byte(" World")
|
||||
|
||||
b.Run("small slices", func(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Monoid.Concat(a, c)
|
||||
}
|
||||
})
|
||||
@@ -421,7 +421,7 @@ func BenchmarkMonoidConcat(b *testing.B) {
|
||||
large1 := make([]byte, 10000)
|
||||
large2 := make([]byte, 10000)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Monoid.Concat(large1, large2)
|
||||
}
|
||||
})
|
||||
@@ -436,7 +436,7 @@ func BenchmarkConcatAll(b *testing.B) {
|
||||
}
|
||||
|
||||
b.Run("few slices", func(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = ConcatAll(slices...)
|
||||
}
|
||||
})
|
||||
@@ -447,7 +447,7 @@ func BenchmarkConcatAll(b *testing.B) {
|
||||
many[i] = []byte{byte(i)}
|
||||
}
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = ConcatAll(many...)
|
||||
}
|
||||
})
|
||||
@@ -458,13 +458,13 @@ func BenchmarkOrdCompare(b *testing.B) {
|
||||
c := []byte("abd")
|
||||
|
||||
b.Run("equal", func(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Ord.Compare(a, a)
|
||||
}
|
||||
})
|
||||
|
||||
b.Run("different", func(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Ord.Compare(a, c)
|
||||
}
|
||||
})
|
||||
@@ -474,7 +474,7 @@ func BenchmarkOrdCompare(b *testing.B) {
|
||||
large2 := make([]byte, 10000)
|
||||
large2[9999] = 1
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Ord.Compare(large1, large2)
|
||||
}
|
||||
})
|
||||
|
||||
11
v2/constant/monoid.go
Normal file
11
v2/constant/monoid.go
Normal file
@@ -0,0 +1,11 @@
|
||||
package constant
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/function"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
)
|
||||
|
||||
// Monoid returns a [M.Monoid] that returns a constant value in all operations
|
||||
func Monoid[A any](a A) M.Monoid[A] {
|
||||
return M.MakeMonoid(function.Constant2[A, A](a), a)
|
||||
}
|
||||
@@ -24,6 +24,7 @@ import (
|
||||
E "github.com/IBM/fp-go/v2/either"
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
IOE "github.com/IBM/fp-go/v2/ioeither"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
)
|
||||
|
||||
var (
|
||||
@@ -37,21 +38,21 @@ var (
|
||||
// Benchmark core constructors
|
||||
func BenchmarkLeft(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = Left[int](benchErr)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkRight(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = Right(42)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkOf(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = Of(42)
|
||||
}
|
||||
}
|
||||
@@ -60,7 +61,7 @@ func BenchmarkFromEither_Right(b *testing.B) {
|
||||
either := E.Right[error](42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = FromEither(either)
|
||||
}
|
||||
}
|
||||
@@ -69,7 +70,7 @@ func BenchmarkFromEither_Left(b *testing.B) {
|
||||
either := E.Left[int](benchErr)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = FromEither(either)
|
||||
}
|
||||
}
|
||||
@@ -77,7 +78,7 @@ func BenchmarkFromEither_Left(b *testing.B) {
|
||||
func BenchmarkFromIO(b *testing.B) {
|
||||
io := func() int { return 42 }
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = FromIO(io)
|
||||
}
|
||||
}
|
||||
@@ -85,7 +86,7 @@ func BenchmarkFromIO(b *testing.B) {
|
||||
func BenchmarkFromIOEither_Right(b *testing.B) {
|
||||
ioe := IOE.Of[error](42)
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = FromIOEither(ioe)
|
||||
}
|
||||
}
|
||||
@@ -93,7 +94,7 @@ func BenchmarkFromIOEither_Right(b *testing.B) {
|
||||
func BenchmarkFromIOEither_Left(b *testing.B) {
|
||||
ioe := IOE.Left[int](benchErr)
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = FromIOEither(ioe)
|
||||
}
|
||||
}
|
||||
@@ -103,7 +104,7 @@ func BenchmarkExecute_Right(b *testing.B) {
|
||||
rioe := Right(42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
@@ -112,7 +113,7 @@ func BenchmarkExecute_Left(b *testing.B) {
|
||||
rioe := Left[int](benchErr)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
@@ -123,7 +124,7 @@ func BenchmarkExecute_WithContext(b *testing.B) {
|
||||
defer cancel()
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(ctx)()
|
||||
}
|
||||
}
|
||||
@@ -131,40 +132,40 @@ func BenchmarkExecute_WithContext(b *testing.B) {
|
||||
// Benchmark functor operations
|
||||
func BenchmarkMonadMap_Right(b *testing.B) {
|
||||
rioe := Right(42)
|
||||
mapper := func(a int) int { return a * 2 }
|
||||
mapper := N.Mul(2)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = MonadMap(rioe, mapper)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMonadMap_Left(b *testing.B) {
|
||||
rioe := Left[int](benchErr)
|
||||
mapper := func(a int) int { return a * 2 }
|
||||
mapper := N.Mul(2)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = MonadMap(rioe, mapper)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMap_Right(b *testing.B) {
|
||||
rioe := Right(42)
|
||||
mapper := Map(func(a int) int { return a * 2 })
|
||||
mapper := Map(N.Mul(2))
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = mapper(rioe)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMap_Left(b *testing.B) {
|
||||
rioe := Left[int](benchErr)
|
||||
mapper := Map(func(a int) int { return a * 2 })
|
||||
mapper := Map(N.Mul(2))
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = mapper(rioe)
|
||||
}
|
||||
}
|
||||
@@ -174,7 +175,7 @@ func BenchmarkMapTo_Right(b *testing.B) {
|
||||
mapper := MapTo[int](99)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = mapper(rioe)
|
||||
}
|
||||
}
|
||||
@@ -185,7 +186,7 @@ func BenchmarkMonadChain_Right(b *testing.B) {
|
||||
chainer := func(a int) ReaderIOResult[int] { return Right(a * 2) }
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = MonadChain(rioe, chainer)
|
||||
}
|
||||
}
|
||||
@@ -195,7 +196,7 @@ func BenchmarkMonadChain_Left(b *testing.B) {
|
||||
chainer := func(a int) ReaderIOResult[int] { return Right(a * 2) }
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = MonadChain(rioe, chainer)
|
||||
}
|
||||
}
|
||||
@@ -205,7 +206,7 @@ func BenchmarkChain_Right(b *testing.B) {
|
||||
chainer := Chain(func(a int) ReaderIOResult[int] { return Right(a * 2) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = chainer(rioe)
|
||||
}
|
||||
}
|
||||
@@ -215,7 +216,7 @@ func BenchmarkChain_Left(b *testing.B) {
|
||||
chainer := Chain(func(a int) ReaderIOResult[int] { return Right(a * 2) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = chainer(rioe)
|
||||
}
|
||||
}
|
||||
@@ -225,7 +226,7 @@ func BenchmarkChainFirst_Right(b *testing.B) {
|
||||
chainer := ChainFirst(func(a int) ReaderIOResult[string] { return Right("logged") })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = chainer(rioe)
|
||||
}
|
||||
}
|
||||
@@ -235,7 +236,7 @@ func BenchmarkChainFirst_Left(b *testing.B) {
|
||||
chainer := ChainFirst(func(a int) ReaderIOResult[string] { return Right("logged") })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = chainer(rioe)
|
||||
}
|
||||
}
|
||||
@@ -244,7 +245,7 @@ func BenchmarkFlatten_Right(b *testing.B) {
|
||||
nested := Right(Right(42))
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = Flatten(nested)
|
||||
}
|
||||
}
|
||||
@@ -253,28 +254,28 @@ func BenchmarkFlatten_Left(b *testing.B) {
|
||||
nested := Left[ReaderIOResult[int]](benchErr)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = Flatten(nested)
|
||||
}
|
||||
}
|
||||
|
||||
// Benchmark applicative operations
|
||||
func BenchmarkMonadApSeq_RightRight(b *testing.B) {
|
||||
fab := Right(func(a int) int { return a * 2 })
|
||||
fab := Right(N.Mul(2))
|
||||
fa := Right(42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = MonadApSeq(fab, fa)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMonadApSeq_RightLeft(b *testing.B) {
|
||||
fab := Right(func(a int) int { return a * 2 })
|
||||
fab := Right(N.Mul(2))
|
||||
fa := Left[int](benchErr)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = MonadApSeq(fab, fa)
|
||||
}
|
||||
}
|
||||
@@ -284,27 +285,27 @@ func BenchmarkMonadApSeq_LeftRight(b *testing.B) {
|
||||
fa := Right(42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = MonadApSeq(fab, fa)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMonadApPar_RightRight(b *testing.B) {
|
||||
fab := Right(func(a int) int { return a * 2 })
|
||||
fab := Right(N.Mul(2))
|
||||
fa := Right(42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = MonadApPar(fab, fa)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMonadApPar_RightLeft(b *testing.B) {
|
||||
fab := Right(func(a int) int { return a * 2 })
|
||||
fab := Right(N.Mul(2))
|
||||
fa := Left[int](benchErr)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = MonadApPar(fab, fa)
|
||||
}
|
||||
}
|
||||
@@ -314,30 +315,30 @@ func BenchmarkMonadApPar_LeftRight(b *testing.B) {
|
||||
fa := Right(42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = MonadApPar(fab, fa)
|
||||
}
|
||||
}
|
||||
|
||||
// Benchmark execution of applicative operations
|
||||
func BenchmarkExecuteApSeq_RightRight(b *testing.B) {
|
||||
fab := Right(func(a int) int { return a * 2 })
|
||||
fab := Right(N.Mul(2))
|
||||
fa := Right(42)
|
||||
rioe := MonadApSeq(fab, fa)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkExecuteApPar_RightRight(b *testing.B) {
|
||||
fab := Right(func(a int) int { return a * 2 })
|
||||
fab := Right(N.Mul(2))
|
||||
fa := Right(42)
|
||||
rioe := MonadApPar(fab, fa)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
@@ -348,7 +349,7 @@ func BenchmarkAlt_RightRight(b *testing.B) {
|
||||
alternative := Alt(func() ReaderIOResult[int] { return Right(99) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = alternative(rioe)
|
||||
}
|
||||
}
|
||||
@@ -358,7 +359,7 @@ func BenchmarkAlt_LeftRight(b *testing.B) {
|
||||
alternative := Alt(func() ReaderIOResult[int] { return Right(99) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = alternative(rioe)
|
||||
}
|
||||
}
|
||||
@@ -368,7 +369,7 @@ func BenchmarkOrElse_Right(b *testing.B) {
|
||||
recover := OrElse(func(e error) ReaderIOResult[int] { return Right(0) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = recover(rioe)
|
||||
}
|
||||
}
|
||||
@@ -378,7 +379,7 @@ func BenchmarkOrElse_Left(b *testing.B) {
|
||||
recover := OrElse(func(e error) ReaderIOResult[int] { return Right(0) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = recover(rioe)
|
||||
}
|
||||
}
|
||||
@@ -389,7 +390,7 @@ func BenchmarkChainEitherK_Right(b *testing.B) {
|
||||
chainer := ChainEitherK(func(a int) Either[int] { return E.Right[error](a * 2) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = chainer(rioe)
|
||||
}
|
||||
}
|
||||
@@ -399,7 +400,7 @@ func BenchmarkChainEitherK_Left(b *testing.B) {
|
||||
chainer := ChainEitherK(func(a int) Either[int] { return E.Right[error](a * 2) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = chainer(rioe)
|
||||
}
|
||||
}
|
||||
@@ -409,7 +410,7 @@ func BenchmarkChainIOK_Right(b *testing.B) {
|
||||
chainer := ChainIOK(func(a int) func() int { return func() int { return a * 2 } })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = chainer(rioe)
|
||||
}
|
||||
}
|
||||
@@ -419,7 +420,7 @@ func BenchmarkChainIOK_Left(b *testing.B) {
|
||||
chainer := ChainIOK(func(a int) func() int { return func() int { return a * 2 } })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = chainer(rioe)
|
||||
}
|
||||
}
|
||||
@@ -429,7 +430,7 @@ func BenchmarkChainIOEitherK_Right(b *testing.B) {
|
||||
chainer := ChainIOEitherK(func(a int) IOEither[int] { return IOE.Of[error](a * 2) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = chainer(rioe)
|
||||
}
|
||||
}
|
||||
@@ -439,7 +440,7 @@ func BenchmarkChainIOEitherK_Left(b *testing.B) {
|
||||
chainer := ChainIOEitherK(func(a int) IOEither[int] { return IOE.Of[error](a * 2) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = chainer(rioe)
|
||||
}
|
||||
}
|
||||
@@ -447,7 +448,7 @@ func BenchmarkChainIOEitherK_Left(b *testing.B) {
|
||||
// Benchmark context operations
|
||||
func BenchmarkAsk(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Ask()
|
||||
}
|
||||
}
|
||||
@@ -455,7 +456,7 @@ func BenchmarkAsk(b *testing.B) {
|
||||
func BenchmarkDefer(b *testing.B) {
|
||||
gen := func() ReaderIOResult[int] { return Right(42) }
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = Defer(gen)
|
||||
}
|
||||
}
|
||||
@@ -463,7 +464,7 @@ func BenchmarkDefer(b *testing.B) {
|
||||
func BenchmarkMemoize(b *testing.B) {
|
||||
rioe := Right(42)
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = Memoize(rioe)
|
||||
}
|
||||
}
|
||||
@@ -472,14 +473,14 @@ func BenchmarkMemoize(b *testing.B) {
|
||||
func BenchmarkDelay_Construction(b *testing.B) {
|
||||
rioe := Right(42)
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = Delay[int](time.Millisecond)(rioe)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkTimer_Construction(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Timer(time.Millisecond)
|
||||
}
|
||||
}
|
||||
@@ -490,7 +491,7 @@ func BenchmarkTryCatch_Success(b *testing.B) {
|
||||
return func() (int, error) { return 42, nil }
|
||||
}
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = TryCatch(f)
|
||||
}
|
||||
}
|
||||
@@ -500,7 +501,7 @@ func BenchmarkTryCatch_Error(b *testing.B) {
|
||||
return func() (int, error) { return 0, benchErr }
|
||||
}
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = TryCatch(f)
|
||||
}
|
||||
}
|
||||
@@ -512,7 +513,7 @@ func BenchmarkExecuteTryCatch_Success(b *testing.B) {
|
||||
rioe := TryCatch(f)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
@@ -524,7 +525,7 @@ func BenchmarkExecuteTryCatch_Error(b *testing.B) {
|
||||
rioe := TryCatch(f)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
@@ -534,10 +535,10 @@ func BenchmarkPipeline_Map_Right(b *testing.B) {
|
||||
rioe := Right(21)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = F.Pipe1(
|
||||
rioe,
|
||||
Map(func(x int) int { return x * 2 }),
|
||||
Map(N.Mul(2)),
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -546,10 +547,10 @@ func BenchmarkPipeline_Map_Left(b *testing.B) {
|
||||
rioe := Left[int](benchErr)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = F.Pipe1(
|
||||
rioe,
|
||||
Map(func(x int) int { return x * 2 }),
|
||||
Map(N.Mul(2)),
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -558,7 +559,7 @@ func BenchmarkPipeline_Chain_Right(b *testing.B) {
|
||||
rioe := Right(21)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = F.Pipe1(
|
||||
rioe,
|
||||
Chain(func(x int) ReaderIOResult[int] { return Right(x * 2) }),
|
||||
@@ -570,7 +571,7 @@ func BenchmarkPipeline_Chain_Left(b *testing.B) {
|
||||
rioe := Left[int](benchErr)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = F.Pipe1(
|
||||
rioe,
|
||||
Chain(func(x int) ReaderIOResult[int] { return Right(x * 2) }),
|
||||
@@ -582,12 +583,12 @@ func BenchmarkPipeline_Complex_Right(b *testing.B) {
|
||||
rioe := Right(10)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = F.Pipe3(
|
||||
rioe,
|
||||
Map(func(x int) int { return x * 2 }),
|
||||
Map(N.Mul(2)),
|
||||
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
|
||||
Map(func(x int) int { return x * 2 }),
|
||||
Map(N.Mul(2)),
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -596,12 +597,12 @@ func BenchmarkPipeline_Complex_Left(b *testing.B) {
|
||||
rioe := Left[int](benchErr)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchRIOE = F.Pipe3(
|
||||
rioe,
|
||||
Map(func(x int) int { return x * 2 }),
|
||||
Map(N.Mul(2)),
|
||||
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
|
||||
Map(func(x int) int { return x * 2 }),
|
||||
Map(N.Mul(2)),
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -609,13 +610,13 @@ func BenchmarkPipeline_Complex_Left(b *testing.B) {
|
||||
func BenchmarkExecutePipeline_Complex_Right(b *testing.B) {
|
||||
rioe := F.Pipe3(
|
||||
Right(10),
|
||||
Map(func(x int) int { return x * 2 }),
|
||||
Map(N.Mul(2)),
|
||||
Chain(func(x int) ReaderIOResult[int] { return Right(x + 1) }),
|
||||
Map(func(x int) int { return x * 2 }),
|
||||
Map(N.Mul(2)),
|
||||
)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
@@ -624,7 +625,7 @@ func BenchmarkExecutePipeline_Complex_Right(b *testing.B) {
|
||||
func BenchmarkDo(b *testing.B) {
|
||||
type State struct{ value int }
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Do(State{})
|
||||
}
|
||||
}
|
||||
@@ -642,7 +643,7 @@ func BenchmarkBind_Right(b *testing.B) {
|
||||
)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = binder(initial)
|
||||
}
|
||||
}
|
||||
@@ -658,7 +659,7 @@ func BenchmarkLet_Right(b *testing.B) {
|
||||
)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = letter(initial)
|
||||
}
|
||||
}
|
||||
@@ -674,7 +675,7 @@ func BenchmarkApS_Right(b *testing.B) {
|
||||
)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = aps(initial)
|
||||
}
|
||||
}
|
||||
@@ -687,7 +688,7 @@ func BenchmarkTraverseArray_Empty(b *testing.B) {
|
||||
})
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = traverser(arr)
|
||||
}
|
||||
}
|
||||
@@ -699,7 +700,7 @@ func BenchmarkTraverseArray_Small(b *testing.B) {
|
||||
})
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = traverser(arr)
|
||||
}
|
||||
}
|
||||
@@ -714,7 +715,7 @@ func BenchmarkTraverseArray_Medium(b *testing.B) {
|
||||
})
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = traverser(arr)
|
||||
}
|
||||
}
|
||||
@@ -726,7 +727,7 @@ func BenchmarkTraverseArraySeq_Small(b *testing.B) {
|
||||
})
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = traverser(arr)
|
||||
}
|
||||
}
|
||||
@@ -738,7 +739,7 @@ func BenchmarkTraverseArrayPar_Small(b *testing.B) {
|
||||
})
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = traverser(arr)
|
||||
}
|
||||
}
|
||||
@@ -751,7 +752,7 @@ func BenchmarkSequenceArray_Small(b *testing.B) {
|
||||
}
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = SequenceArray(arr)
|
||||
}
|
||||
}
|
||||
@@ -763,7 +764,7 @@ func BenchmarkExecuteTraverseArray_Small(b *testing.B) {
|
||||
})(arr)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
@@ -775,7 +776,7 @@ func BenchmarkExecuteTraverseArraySeq_Small(b *testing.B) {
|
||||
})(arr)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
@@ -787,7 +788,7 @@ func BenchmarkExecuteTraverseArrayPar_Small(b *testing.B) {
|
||||
})(arr)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
@@ -800,7 +801,7 @@ func BenchmarkTraverseRecord_Small(b *testing.B) {
|
||||
})
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = traverser(rec)
|
||||
}
|
||||
}
|
||||
@@ -813,7 +814,7 @@ func BenchmarkSequenceRecord_Small(b *testing.B) {
|
||||
}
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = SequenceRecord(rec)
|
||||
}
|
||||
}
|
||||
@@ -826,7 +827,7 @@ func BenchmarkWithResource_Success(b *testing.B) {
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = WithResource[int](acquire, release)(body)
|
||||
}
|
||||
}
|
||||
@@ -839,7 +840,7 @@ func BenchmarkExecuteWithResource_Success(b *testing.B) {
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
@@ -852,7 +853,7 @@ func BenchmarkExecuteWithResource_ErrorInBody(b *testing.B) {
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(benchCtx)()
|
||||
}
|
||||
}
|
||||
@@ -865,13 +866,13 @@ func BenchmarkExecute_CanceledContext(b *testing.B) {
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(ctx)()
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkExecuteApPar_CanceledContext(b *testing.B) {
|
||||
fab := Right(func(a int) int { return a * 2 })
|
||||
fab := Right(N.Mul(2))
|
||||
fa := Right(42)
|
||||
rioe := MonadApPar(fab, fa)
|
||||
ctx, cancel := context.WithCancel(benchCtx)
|
||||
@@ -879,7 +880,7 @@ func BenchmarkExecuteApPar_CanceledContext(b *testing.B) {
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = rioe(ctx)()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -26,6 +26,7 @@ import (
|
||||
IOG "github.com/IBM/fp-go/v2/io"
|
||||
IOE "github.com/IBM/fp-go/v2/ioeither"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
R "github.com/IBM/fp-go/v2/reader"
|
||||
"github.com/stretchr/testify/assert"
|
||||
@@ -77,27 +78,27 @@ func TestOf(t *testing.T) {
|
||||
|
||||
func TestMonadMap(t *testing.T) {
|
||||
t.Run("Map over Right", func(t *testing.T) {
|
||||
result := MonadMap(Of(5), func(x int) int { return x * 2 })
|
||||
result := MonadMap(Of(5), N.Mul(2))
|
||||
assert.Equal(t, E.Right[error](10), result(context.Background())())
|
||||
})
|
||||
|
||||
t.Run("Map over Left", func(t *testing.T) {
|
||||
err := errors.New("test error")
|
||||
result := MonadMap(Left[int](err), func(x int) int { return x * 2 })
|
||||
result := MonadMap(Left[int](err), N.Mul(2))
|
||||
assert.Equal(t, E.Left[int](err), result(context.Background())())
|
||||
})
|
||||
}
|
||||
|
||||
func TestMap(t *testing.T) {
|
||||
t.Run("Map with success", func(t *testing.T) {
|
||||
mapper := Map(func(x int) int { return x * 2 })
|
||||
mapper := Map(N.Mul(2))
|
||||
result := mapper(Of(5))
|
||||
assert.Equal(t, E.Right[error](10), result(context.Background())())
|
||||
})
|
||||
|
||||
t.Run("Map with error", func(t *testing.T) {
|
||||
err := errors.New("test error")
|
||||
mapper := Map(func(x int) int { return x * 2 })
|
||||
mapper := Map(N.Mul(2))
|
||||
result := mapper(Left[int](err))
|
||||
assert.Equal(t, E.Left[int](err), result(context.Background())())
|
||||
})
|
||||
@@ -182,7 +183,7 @@ func TestChainFirst(t *testing.T) {
|
||||
|
||||
func TestMonadApSeq(t *testing.T) {
|
||||
t.Run("ApSeq with success", func(t *testing.T) {
|
||||
fab := Of(func(x int) int { return x * 2 })
|
||||
fab := Of(N.Mul(2))
|
||||
fa := Of(5)
|
||||
result := MonadApSeq(fab, fa)
|
||||
assert.Equal(t, E.Right[error](10), result(context.Background())())
|
||||
@@ -198,7 +199,7 @@ func TestMonadApSeq(t *testing.T) {
|
||||
|
||||
t.Run("ApSeq with error in value", func(t *testing.T) {
|
||||
err := errors.New("test error")
|
||||
fab := Of(func(x int) int { return x * 2 })
|
||||
fab := Of(N.Mul(2))
|
||||
fa := Left[int](err)
|
||||
result := MonadApSeq(fab, fa)
|
||||
assert.Equal(t, E.Left[int](err), result(context.Background())())
|
||||
@@ -207,7 +208,7 @@ func TestMonadApSeq(t *testing.T) {
|
||||
|
||||
func TestApSeq(t *testing.T) {
|
||||
fa := Of(5)
|
||||
fab := Of(func(x int) int { return x * 2 })
|
||||
fab := Of(N.Mul(2))
|
||||
result := MonadApSeq(fab, fa)
|
||||
assert.Equal(t, E.Right[error](10), result(context.Background())())
|
||||
}
|
||||
@@ -215,7 +216,7 @@ func TestApSeq(t *testing.T) {
|
||||
func TestApPar(t *testing.T) {
|
||||
t.Run("ApPar with success", func(t *testing.T) {
|
||||
fa := Of(5)
|
||||
fab := Of(func(x int) int { return x * 2 })
|
||||
fab := Of(N.Mul(2))
|
||||
result := MonadApPar(fab, fa)
|
||||
assert.Equal(t, E.Right[error](10), result(context.Background())())
|
||||
})
|
||||
@@ -224,7 +225,7 @@ func TestApPar(t *testing.T) {
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
cancel()
|
||||
fa := Of(5)
|
||||
fab := Of(func(x int) int { return x * 2 })
|
||||
fab := Of(N.Mul(2))
|
||||
result := MonadApPar(fab, fa)
|
||||
res := result(ctx)()
|
||||
assert.True(t, E.IsLeft(res))
|
||||
@@ -587,14 +588,14 @@ func TestFlatten(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestMonadFlap(t *testing.T) {
|
||||
fab := Of(func(x int) int { return x * 2 })
|
||||
fab := Of(N.Mul(2))
|
||||
result := MonadFlap(fab, 5)
|
||||
assert.Equal(t, E.Right[error](10), result(context.Background())())
|
||||
}
|
||||
|
||||
func TestFlap(t *testing.T) {
|
||||
flapper := Flap[int](5)
|
||||
result := flapper(Of(func(x int) int { return x * 2 }))
|
||||
result := flapper(Of(N.Mul(2)))
|
||||
assert.Equal(t, E.Right[error](10), result(context.Background())())
|
||||
}
|
||||
|
||||
|
||||
@@ -312,7 +312,7 @@ func TestMonadChainFirstLeft(t *testing.T) {
|
||||
Left[int](originalErr),
|
||||
func(e error) ReaderIOResult[int] {
|
||||
capturedError = e
|
||||
return Right[int](999) // This Right value is ignored
|
||||
return Right(999) // This Right value is ignored
|
||||
},
|
||||
)
|
||||
actualResult := result(ctx)()
|
||||
@@ -324,7 +324,7 @@ func TestMonadChainFirstLeft(t *testing.T) {
|
||||
t.Run("Right value passes through", func(t *testing.T) {
|
||||
sideEffectCalled := false
|
||||
result := MonadChainFirstLeft(
|
||||
Right[int](42),
|
||||
Right(42),
|
||||
func(e error) ReaderIOResult[int] {
|
||||
sideEffectCalled = true
|
||||
return Left[int](fmt.Errorf("should not be called"))
|
||||
@@ -343,7 +343,7 @@ func TestMonadChainFirstLeft(t *testing.T) {
|
||||
func(e error) ReaderIOResult[int] {
|
||||
effectCount++
|
||||
// Try to return Right, but original Left should still be returned
|
||||
return Right[int](999)
|
||||
return Right(999)
|
||||
},
|
||||
)
|
||||
actualResult := result(ctx)()
|
||||
@@ -378,7 +378,7 @@ func TestChainFirstLeft(t *testing.T) {
|
||||
originalErr := fmt.Errorf("test error")
|
||||
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
|
||||
captured = e
|
||||
return Right[int](42) // This Right is ignored
|
||||
return Right(42) // This Right is ignored
|
||||
})
|
||||
result := F.Pipe1(
|
||||
Left[int](originalErr),
|
||||
@@ -394,10 +394,10 @@ func TestChainFirstLeft(t *testing.T) {
|
||||
called := false
|
||||
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
|
||||
called = true
|
||||
return Right[int](0)
|
||||
return Right(0)
|
||||
})
|
||||
result := F.Pipe1(
|
||||
Right[int](100),
|
||||
Right(100),
|
||||
chainFn,
|
||||
)
|
||||
assert.False(t, called)
|
||||
@@ -409,7 +409,7 @@ func TestChainFirstLeft(t *testing.T) {
|
||||
originalErr := fmt.Errorf("original")
|
||||
chainFn := ChainFirstLeft[int](func(e error) ReaderIOResult[int] {
|
||||
// Try to return Right, but original Left should still be returned
|
||||
return Right[int](999)
|
||||
return Right(999)
|
||||
})
|
||||
|
||||
result := F.Pipe1(
|
||||
|
||||
@@ -16,8 +16,8 @@
|
||||
package readerioresult
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/array"
|
||||
"github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/internal/array"
|
||||
"github.com/IBM/fp-go/v2/internal/record"
|
||||
)
|
||||
|
||||
@@ -29,7 +29,7 @@ import (
|
||||
//
|
||||
// Returns a function that transforms an array into a ReaderIOResult of an array.
|
||||
func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
|
||||
return array.Traverse[[]A](
|
||||
return array.Traverse(
|
||||
Of[[]B],
|
||||
Map[[]B, func(B) []B],
|
||||
Ap[[]B, B],
|
||||
@@ -46,7 +46,7 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
|
||||
//
|
||||
// Returns a function that transforms an array into a ReaderIOResult of an array.
|
||||
func TraverseArrayWithIndex[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
|
||||
return array.TraverseWithIndex[[]A](
|
||||
return array.TraverseWithIndex(
|
||||
Of[[]B],
|
||||
Map[[]B, func(B) []B],
|
||||
Ap[[]B, B],
|
||||
@@ -135,22 +135,20 @@ func MonadTraverseArraySeq[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B
|
||||
//
|
||||
// Returns a function that transforms an array into a ReaderIOResult of an array.
|
||||
func TraverseArraySeq[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
|
||||
return array.Traverse[[]A](
|
||||
return array.Traverse(
|
||||
Of[[]B],
|
||||
Map[[]B, func(B) []B],
|
||||
ApSeq[[]B, B],
|
||||
|
||||
f,
|
||||
)
|
||||
}
|
||||
|
||||
// TraverseArrayWithIndexSeq uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
|
||||
func TraverseArrayWithIndexSeq[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
|
||||
return array.TraverseWithIndex[[]A](
|
||||
return array.TraverseWithIndex(
|
||||
Of[[]B],
|
||||
Map[[]B, func(B) []B],
|
||||
ApSeq[[]B, B],
|
||||
|
||||
f,
|
||||
)
|
||||
}
|
||||
@@ -230,22 +228,20 @@ func MonadTraverseArrayPar[A, B any](as []A, f Kleisli[A, B]) ReaderIOResult[[]B
|
||||
//
|
||||
// Returns a function that transforms an array into a ReaderIOResult of an array.
|
||||
func TraverseArrayPar[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
|
||||
return array.Traverse[[]A](
|
||||
return array.Traverse(
|
||||
Of[[]B],
|
||||
Map[[]B, func(B) []B],
|
||||
ApPar[[]B, B],
|
||||
|
||||
f,
|
||||
)
|
||||
}
|
||||
|
||||
// TraverseArrayWithIndexPar uses transforms an array [[]A] into [[]ReaderIOResult[B]] and then resolves that into a [ReaderIOResult[[]B]]
|
||||
func TraverseArrayWithIndexPar[A, B any](f func(int, A) ReaderIOResult[B]) Kleisli[[]A, []B] {
|
||||
return array.TraverseWithIndex[[]A](
|
||||
return array.TraverseWithIndex(
|
||||
Of[[]B],
|
||||
Map[[]B, func(B) []B],
|
||||
ApPar[[]B, B],
|
||||
|
||||
f,
|
||||
)
|
||||
}
|
||||
|
||||
@@ -249,7 +249,7 @@ func TestMultiTokenStringRepresentation(t *testing.T) {
|
||||
|
||||
// Benchmark tests
|
||||
func BenchmarkMakeToken(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
MakeToken[int]("BenchToken")
|
||||
}
|
||||
}
|
||||
@@ -259,13 +259,13 @@ func BenchmarkTokenUnerase(b *testing.B) {
|
||||
value := any(42)
|
||||
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
token.Unerase(value)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMakeMultiToken(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
MakeMultiToken[int]("BenchMulti")
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,16 +4,17 @@ import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
A "github.com/IBM/fp-go/v2/array"
|
||||
TST "github.com/IBM/fp-go/v2/internal/testing"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestCompactArray(t *testing.T) {
|
||||
ar := []Either[string, string]{
|
||||
ar := A.From(
|
||||
Of[string]("ok"),
|
||||
Left[string]("err"),
|
||||
Of[string]("ok"),
|
||||
}
|
||||
)
|
||||
|
||||
res := CompactArray(ar)
|
||||
assert.Equal(t, 2, len(res))
|
||||
|
||||
@@ -58,7 +58,7 @@ func FromIO[E any, IO ~func() A, A any](f IO) Either[E, A] {
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// fab := either.Right[error](func(x int) int { return x * 2 })
|
||||
// fab := either.Right[error](N.Mul(2))
|
||||
// fa := either.Right[error](21)
|
||||
// result := either.MonadAp(fab, fa) // Right(42)
|
||||
func MonadAp[B, E, A any](fab Either[E, func(a A) B], fa Either[E, A]) Either[E, B] {
|
||||
@@ -81,7 +81,7 @@ func Ap[B, E, A any](fa Either[E, A]) Operator[E, func(A) B, B] {
|
||||
//
|
||||
// result := either.MonadMap(
|
||||
// either.Right[error](21),
|
||||
// func(x int) int { return x * 2 },
|
||||
// N.Mul(2),
|
||||
// ) // Right(42)
|
||||
//
|
||||
//go:inline
|
||||
|
||||
@@ -20,6 +20,7 @@ import (
|
||||
"testing"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
)
|
||||
|
||||
var (
|
||||
@@ -33,21 +34,21 @@ var (
|
||||
// Benchmark core constructors
|
||||
func BenchmarkLeft(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = Left[int](errBench)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkRight(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = Right[error](42)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkOf(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = Of[error](42)
|
||||
}
|
||||
}
|
||||
@@ -57,7 +58,7 @@ func BenchmarkIsLeft(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchBool = IsLeft(left)
|
||||
}
|
||||
}
|
||||
@@ -66,7 +67,7 @@ func BenchmarkIsRight(b *testing.B) {
|
||||
right := Right[error](42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchBool = IsRight(right)
|
||||
}
|
||||
}
|
||||
@@ -75,10 +76,10 @@ func BenchmarkIsRight(b *testing.B) {
|
||||
func BenchmarkMonadFold_Right(b *testing.B) {
|
||||
right := Right[error](42)
|
||||
onLeft := func(e error) int { return 0 }
|
||||
onRight := func(a int) int { return a * 2 }
|
||||
onRight := N.Mul(2)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchInt = MonadFold(right, onLeft, onRight)
|
||||
}
|
||||
}
|
||||
@@ -86,10 +87,10 @@ func BenchmarkMonadFold_Right(b *testing.B) {
|
||||
func BenchmarkMonadFold_Left(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
onLeft := func(e error) int { return 0 }
|
||||
onRight := func(a int) int { return a * 2 }
|
||||
onRight := N.Mul(2)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchInt = MonadFold(left, onLeft, onRight)
|
||||
}
|
||||
}
|
||||
@@ -98,11 +99,11 @@ func BenchmarkFold_Right(b *testing.B) {
|
||||
right := Right[error](42)
|
||||
folder := Fold(
|
||||
func(e error) int { return 0 },
|
||||
func(a int) int { return a * 2 },
|
||||
N.Mul(2),
|
||||
)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchInt = folder(right)
|
||||
}
|
||||
}
|
||||
@@ -111,11 +112,11 @@ func BenchmarkFold_Left(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
folder := Fold(
|
||||
func(e error) int { return 0 },
|
||||
func(a int) int { return a * 2 },
|
||||
N.Mul(2),
|
||||
)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchInt = folder(left)
|
||||
}
|
||||
}
|
||||
@@ -125,7 +126,7 @@ func BenchmarkUnwrap_Right(b *testing.B) {
|
||||
right := Right[error](42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchInt, _ = Unwrap(right)
|
||||
}
|
||||
}
|
||||
@@ -134,7 +135,7 @@ func BenchmarkUnwrap_Left(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchInt, _ = Unwrap(left)
|
||||
}
|
||||
}
|
||||
@@ -143,7 +144,7 @@ func BenchmarkUnwrapError_Right(b *testing.B) {
|
||||
right := Right[error](42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchInt, _ = UnwrapError(right)
|
||||
}
|
||||
}
|
||||
@@ -152,7 +153,7 @@ func BenchmarkUnwrapError_Left(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchInt, _ = UnwrapError(left)
|
||||
}
|
||||
}
|
||||
@@ -160,40 +161,40 @@ func BenchmarkUnwrapError_Left(b *testing.B) {
|
||||
// Benchmark functor operations
|
||||
func BenchmarkMonadMap_Right(b *testing.B) {
|
||||
right := Right[error](42)
|
||||
mapper := func(a int) int { return a * 2 }
|
||||
mapper := N.Mul(2)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = MonadMap(right, mapper)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMonadMap_Left(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
mapper := func(a int) int { return a * 2 }
|
||||
mapper := N.Mul(2)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = MonadMap(left, mapper)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMap_Right(b *testing.B) {
|
||||
right := Right[error](42)
|
||||
mapper := Map[error](func(a int) int { return a * 2 })
|
||||
mapper := Map[error](N.Mul(2))
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = mapper(right)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMap_Left(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
mapper := Map[error](func(a int) int { return a * 2 })
|
||||
mapper := Map[error](N.Mul(2))
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = mapper(left)
|
||||
}
|
||||
}
|
||||
@@ -203,7 +204,7 @@ func BenchmarkMapLeft_Right(b *testing.B) {
|
||||
mapper := MapLeft[int](error.Error)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = mapper(right)
|
||||
}
|
||||
}
|
||||
@@ -213,7 +214,7 @@ func BenchmarkMapLeft_Left(b *testing.B) {
|
||||
mapper := MapLeft[int](error.Error)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = mapper(left)
|
||||
}
|
||||
}
|
||||
@@ -226,7 +227,7 @@ func BenchmarkBiMap_Right(b *testing.B) {
|
||||
)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = mapper(right)
|
||||
}
|
||||
}
|
||||
@@ -239,7 +240,7 @@ func BenchmarkBiMap_Left(b *testing.B) {
|
||||
)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = mapper(left)
|
||||
}
|
||||
}
|
||||
@@ -250,7 +251,7 @@ func BenchmarkMonadChain_Right(b *testing.B) {
|
||||
chainer := func(a int) Either[error, int] { return Right[error](a * 2) }
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = MonadChain(right, chainer)
|
||||
}
|
||||
}
|
||||
@@ -260,7 +261,7 @@ func BenchmarkMonadChain_Left(b *testing.B) {
|
||||
chainer := func(a int) Either[error, int] { return Right[error](a * 2) }
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = MonadChain(left, chainer)
|
||||
}
|
||||
}
|
||||
@@ -270,7 +271,7 @@ func BenchmarkChain_Right(b *testing.B) {
|
||||
chainer := Chain(func(a int) Either[error, int] { return Right[error](a * 2) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = chainer(right)
|
||||
}
|
||||
}
|
||||
@@ -280,7 +281,7 @@ func BenchmarkChain_Left(b *testing.B) {
|
||||
chainer := Chain(func(a int) Either[error, int] { return Right[error](a * 2) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = chainer(left)
|
||||
}
|
||||
}
|
||||
@@ -290,7 +291,7 @@ func BenchmarkChainFirst_Right(b *testing.B) {
|
||||
chainer := ChainFirst(func(a int) Either[error, string] { return Right[error]("logged") })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = chainer(right)
|
||||
}
|
||||
}
|
||||
@@ -300,7 +301,7 @@ func BenchmarkChainFirst_Left(b *testing.B) {
|
||||
chainer := ChainFirst(func(a int) Either[error, string] { return Right[error]("logged") })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = chainer(left)
|
||||
}
|
||||
}
|
||||
@@ -309,7 +310,7 @@ func BenchmarkFlatten_Right(b *testing.B) {
|
||||
nested := Right[error](Right[error](42))
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = Flatten(nested)
|
||||
}
|
||||
}
|
||||
@@ -318,28 +319,28 @@ func BenchmarkFlatten_Left(b *testing.B) {
|
||||
nested := Left[Either[error, int]](errBench)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = Flatten(nested)
|
||||
}
|
||||
}
|
||||
|
||||
// Benchmark applicative operations
|
||||
func BenchmarkMonadAp_RightRight(b *testing.B) {
|
||||
fab := Right[error](func(a int) int { return a * 2 })
|
||||
fab := Right[error](N.Mul(2))
|
||||
fa := Right[error](42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = MonadAp(fab, fa)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkMonadAp_RightLeft(b *testing.B) {
|
||||
fab := Right[error](func(a int) int { return a * 2 })
|
||||
fab := Right[error](N.Mul(2))
|
||||
fa := Left[int](errBench)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = MonadAp(fab, fa)
|
||||
}
|
||||
}
|
||||
@@ -349,18 +350,18 @@ func BenchmarkMonadAp_LeftRight(b *testing.B) {
|
||||
fa := Right[error](42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = MonadAp(fab, fa)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkAp_RightRight(b *testing.B) {
|
||||
fab := Right[error](func(a int) int { return a * 2 })
|
||||
fab := Right[error](N.Mul(2))
|
||||
fa := Right[error](42)
|
||||
ap := Ap[int](fa)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = ap(fab)
|
||||
}
|
||||
}
|
||||
@@ -371,7 +372,7 @@ func BenchmarkAlt_RightRight(b *testing.B) {
|
||||
alternative := Alt(func() Either[error, int] { return Right[error](99) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = alternative(right)
|
||||
}
|
||||
}
|
||||
@@ -381,7 +382,7 @@ func BenchmarkAlt_LeftRight(b *testing.B) {
|
||||
alternative := Alt(func() Either[error, int] { return Right[error](99) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = alternative(left)
|
||||
}
|
||||
}
|
||||
@@ -391,7 +392,7 @@ func BenchmarkOrElse_Right(b *testing.B) {
|
||||
recover := OrElse(func(e error) Either[error, int] { return Right[error](0) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = recover(right)
|
||||
}
|
||||
}
|
||||
@@ -401,7 +402,7 @@ func BenchmarkOrElse_Left(b *testing.B) {
|
||||
recover := OrElse(func(e error) Either[error, int] { return Right[error](0) })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = recover(left)
|
||||
}
|
||||
}
|
||||
@@ -410,7 +411,7 @@ func BenchmarkOrElse_Left(b *testing.B) {
|
||||
func BenchmarkTryCatch_Success(b *testing.B) {
|
||||
onThrow := func(err error) error { return err }
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = TryCatch(42, nil, onThrow)
|
||||
}
|
||||
}
|
||||
@@ -418,21 +419,21 @@ func BenchmarkTryCatch_Success(b *testing.B) {
|
||||
func BenchmarkTryCatch_Error(b *testing.B) {
|
||||
onThrow := func(err error) error { return err }
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = TryCatch(0, errBench, onThrow)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkTryCatchError_Success(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = TryCatchError(42, nil)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkTryCatchError_Error(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = TryCatchError(0, errBench)
|
||||
}
|
||||
}
|
||||
@@ -441,7 +442,7 @@ func BenchmarkSwap_Right(b *testing.B) {
|
||||
right := Right[error](42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Swap(right)
|
||||
}
|
||||
}
|
||||
@@ -450,7 +451,7 @@ func BenchmarkSwap_Left(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Swap(left)
|
||||
}
|
||||
}
|
||||
@@ -460,7 +461,7 @@ func BenchmarkGetOrElse_Right(b *testing.B) {
|
||||
getter := GetOrElse(func(e error) int { return 0 })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchInt = getter(right)
|
||||
}
|
||||
}
|
||||
@@ -470,7 +471,7 @@ func BenchmarkGetOrElse_Left(b *testing.B) {
|
||||
getter := GetOrElse(func(e error) int { return 0 })
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchInt = getter(left)
|
||||
}
|
||||
}
|
||||
@@ -480,10 +481,10 @@ func BenchmarkPipeline_Map_Right(b *testing.B) {
|
||||
right := Right[error](21)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = F.Pipe1(
|
||||
right,
|
||||
Map[error](func(x int) int { return x * 2 }),
|
||||
Map[error](N.Mul(2)),
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -492,10 +493,10 @@ func BenchmarkPipeline_Map_Left(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = F.Pipe1(
|
||||
left,
|
||||
Map[error](func(x int) int { return x * 2 }),
|
||||
Map[error](N.Mul(2)),
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -504,7 +505,7 @@ func BenchmarkPipeline_Chain_Right(b *testing.B) {
|
||||
right := Right[error](21)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = F.Pipe1(
|
||||
right,
|
||||
Chain(func(x int) Either[error, int] { return Right[error](x * 2) }),
|
||||
@@ -516,7 +517,7 @@ func BenchmarkPipeline_Chain_Left(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = F.Pipe1(
|
||||
left,
|
||||
Chain(func(x int) Either[error, int] { return Right[error](x * 2) }),
|
||||
@@ -528,12 +529,12 @@ func BenchmarkPipeline_Complex_Right(b *testing.B) {
|
||||
right := Right[error](10)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = F.Pipe3(
|
||||
right,
|
||||
Map[error](func(x int) int { return x * 2 }),
|
||||
Map[error](N.Mul(2)),
|
||||
Chain(func(x int) Either[error, int] { return Right[error](x + 1) }),
|
||||
Map[error](func(x int) int { return x * 2 }),
|
||||
Map[error](N.Mul(2)),
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -542,12 +543,12 @@ func BenchmarkPipeline_Complex_Left(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = F.Pipe3(
|
||||
left,
|
||||
Map[error](func(x int) int { return x * 2 }),
|
||||
Map[error](N.Mul(2)),
|
||||
Chain(func(x int) Either[error, int] { return Right[error](x + 1) }),
|
||||
Map[error](func(x int) int { return x * 2 }),
|
||||
Map[error](N.Mul(2)),
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -559,7 +560,7 @@ func BenchmarkMonadSequence2_RightRight(b *testing.B) {
|
||||
f := func(a, b int) Either[error, int] { return Right[error](a + b) }
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = MonadSequence2(e1, e2, f)
|
||||
}
|
||||
}
|
||||
@@ -570,7 +571,7 @@ func BenchmarkMonadSequence2_LeftRight(b *testing.B) {
|
||||
f := func(a, b int) Either[error, int] { return Right[error](a + b) }
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = MonadSequence2(e1, e2, f)
|
||||
}
|
||||
}
|
||||
@@ -582,7 +583,7 @@ func BenchmarkMonadSequence3_RightRightRight(b *testing.B) {
|
||||
f := func(a, b, c int) Either[error, int] { return Right[error](a + b + c) }
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchResult = MonadSequence3(e1, e2, e3, f)
|
||||
}
|
||||
}
|
||||
@@ -591,7 +592,7 @@ func BenchmarkMonadSequence3_RightRightRight(b *testing.B) {
|
||||
func BenchmarkDo(b *testing.B) {
|
||||
type State struct{ value int }
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = Do[error](State{})
|
||||
}
|
||||
}
|
||||
@@ -609,7 +610,7 @@ func BenchmarkBind_Right(b *testing.B) {
|
||||
)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = binder(initial)
|
||||
}
|
||||
}
|
||||
@@ -625,7 +626,7 @@ func BenchmarkLet_Right(b *testing.B) {
|
||||
)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = letter(initial)
|
||||
}
|
||||
}
|
||||
@@ -635,7 +636,7 @@ func BenchmarkString_Right(b *testing.B) {
|
||||
right := Right[error](42)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchString = right.String()
|
||||
}
|
||||
}
|
||||
@@ -644,7 +645,7 @@ func BenchmarkString_Left(b *testing.B) {
|
||||
left := Left[int](errBench)
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
benchString = left.String()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -66,7 +66,7 @@ func TestUnwrapError(t *testing.T) {
|
||||
|
||||
func TestReduce(t *testing.T) {
|
||||
|
||||
s := S.Semigroup()
|
||||
s := S.Semigroup
|
||||
|
||||
assert.Equal(t, "foobar", F.Pipe1(Right[string]("bar"), Reduce[string](s.Concat, "foo")))
|
||||
assert.Equal(t, "foo", F.Pipe1(Left[string]("bar"), Reduce[string](s.Concat, "foo")))
|
||||
|
||||
@@ -46,7 +46,7 @@ func _log[E, A any](left func(string, ...any), right func(string, ...any), prefi
|
||||
// result := F.Pipe2(
|
||||
// either.Right[error](42),
|
||||
// logger("Processing"),
|
||||
// either.Map(func(x int) int { return x * 2 }),
|
||||
// either.Map(N.Mul(2)),
|
||||
// )
|
||||
// // Logs: "Processing: 42"
|
||||
// // result is Right(84)
|
||||
|
||||
142
v2/either/validation.go
Normal file
142
v2/either/validation.go
Normal file
@@ -0,0 +1,142 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package either
|
||||
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
)
|
||||
|
||||
// MonadApV is the applicative validation functor that combines errors using a semigroup.
|
||||
//
|
||||
// Unlike the standard [MonadAp] which short-circuits on the first Left (error),
|
||||
// MonadApV accumulates all errors using the provided semigroup's Concat operation.
|
||||
// This is particularly useful for validation scenarios where you want to collect
|
||||
// all validation errors rather than stopping at the first one.
|
||||
//
|
||||
// The function takes a semigroup for combining errors and returns a function that
|
||||
// applies a wrapped function to a wrapped value, accumulating errors if both are Left.
|
||||
//
|
||||
// Behavior:
|
||||
// - If both fab and fa are Left, combines their errors using sg.Concat
|
||||
// - If only fab is Left, returns Left with fab's error
|
||||
// - If only fa is Left, returns Left with fa's error
|
||||
// - If both are Right, applies the function and returns Right with the result
|
||||
//
|
||||
// Type Parameters:
|
||||
// - B: The result type after applying the function
|
||||
// - E: The error type (must support the semigroup operation)
|
||||
// - A: The input type to the function
|
||||
//
|
||||
// Parameters:
|
||||
// - sg: A semigroup that defines how to combine two error values
|
||||
//
|
||||
// Returns:
|
||||
// - A function that takes a wrapped function and a wrapped value, returning
|
||||
// Either[E, B] with accumulated errors or the computed result
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Define a semigroup that concatenates error messages
|
||||
// errorSemigroup := semigroup.MakeSemigroup(func(e1, e2 string) string {
|
||||
// return e1 + "; " + e2
|
||||
// })
|
||||
//
|
||||
// // Create the validation applicative
|
||||
// applyV := either.MonadApV[int](errorSemigroup)
|
||||
//
|
||||
// // Both are errors - errors get combined
|
||||
// fab := either.Left[func(int) int]("error1")
|
||||
// fa := either.Left[int]("error2")
|
||||
// result := applyV(fab, fa) // Left("error1; error2")
|
||||
//
|
||||
// // One error - returns that error
|
||||
// fab2 := either.Right[string](N.Mul(2))
|
||||
// fa2 := either.Left[int]("validation failed")
|
||||
// result2 := applyV(fab2, fa2) // Left("validation failed")
|
||||
//
|
||||
// // Both success - applies function
|
||||
// fab3 := either.Right[string](N.Mul(2))
|
||||
// fa3 := either.Right[string](21)
|
||||
// result3 := applyV(fab3, fa3) // Right(42)
|
||||
func MonadApV[B, E, A any](sg S.Semigroup[E]) func(fab Either[E, func(a A) B], fa Either[E, A]) Either[E, B] {
|
||||
c := F.Bind2of2(sg.Concat)
|
||||
return func(fab Either[E, func(a A) B], fa Either[E, A]) Either[E, B] {
|
||||
return MonadFold(fab, func(eab E) Either[E, B] {
|
||||
return MonadFold(fa, F.Flow2(c(eab), Left[B]), F.Constant1[A](Left[B](eab)))
|
||||
}, func(ab func(A) B) Either[E, B] {
|
||||
return MonadFold(fa, Left[B, E], F.Flow2(ab, Right[E, B]))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// ApV is the curried version of [MonadApV] that combines errors using a semigroup.
|
||||
//
|
||||
// This function provides a more convenient API for validation scenarios by currying
|
||||
// the arguments. It first takes the value to validate, then returns a function that
|
||||
// takes the validation function. This allows for a more natural composition style.
|
||||
//
|
||||
// Like [MonadApV], this accumulates all errors using the provided semigroup instead
|
||||
// of short-circuiting on the first error. This is the key difference from the
|
||||
// standard [Ap] function.
|
||||
//
|
||||
// Type Parameters:
|
||||
// - B: The result type after applying the function
|
||||
// - E: The error type (must support the semigroup operation)
|
||||
// - A: The input type to the function
|
||||
//
|
||||
// Parameters:
|
||||
// - sg: A semigroup that defines how to combine two error values
|
||||
//
|
||||
// Returns:
|
||||
// - A function that takes a value Either[E, A] and returns an Operator that
|
||||
// applies validation functions while accumulating errors
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Define a semigroup for combining validation errors
|
||||
// type ValidationError struct {
|
||||
// Errors []string
|
||||
// }
|
||||
// errorSemigroup := semigroup.MakeSemigroup(func(e1, e2 ValidationError) ValidationError {
|
||||
// return ValidationError{Errors: append(e1.Errors, e2.Errors...)}
|
||||
// })
|
||||
//
|
||||
// // Create validators
|
||||
// validatePositive := func(x int) either.Either[ValidationError, int] {
|
||||
// if x > 0 {
|
||||
// return either.Right[ValidationError](x)
|
||||
// }
|
||||
// return either.Left[int](ValidationError{Errors: []string{"must be positive"}})
|
||||
// }
|
||||
//
|
||||
// // Use ApV for validation
|
||||
// applyValidation := either.ApV[int](errorSemigroup)
|
||||
// value := either.Left[int](ValidationError{Errors: []string{"invalid input"}})
|
||||
// validator := either.Left[func(int) int](ValidationError{Errors: []string{"invalid validator"}})
|
||||
//
|
||||
// result := applyValidation(value)(validator)
|
||||
// // Left(ValidationError{Errors: []string{"invalid validator", "invalid input"}})
|
||||
func ApV[B, E, A any](sg S.Semigroup[E]) func(fa Either[E, A]) Operator[E, func(A) B, B] {
|
||||
c := F.Bind2of2(sg.Concat)
|
||||
return func(fa Either[E, A]) Operator[E, func(A) B, B] {
|
||||
return Fold(func(eab E) Either[E, B] {
|
||||
return MonadFold(fa, F.Flow2(c(eab), Left[B]), F.Constant1[A](Left[B](eab)))
|
||||
}, func(ab func(A) B) Either[E, B] {
|
||||
return MonadFold(fa, Left[B, E], F.Flow2(ab, Right[E, B]))
|
||||
})
|
||||
}
|
||||
}
|
||||
381
v2/either/validation_test.go
Normal file
381
v2/either/validation_test.go
Normal file
@@ -0,0 +1,381 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package either
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// TestMonadApV_BothRight tests MonadApV when both function and value are Right
|
||||
func TestMonadApV_BothRight(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + "; " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := MonadApV[int, string, int](sg)
|
||||
|
||||
// Both are Right - should apply function
|
||||
fab := Right[string](N.Mul(2))
|
||||
fa := Right[string](21)
|
||||
|
||||
result := applyV(fab, fa)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, Right[string](42), result)
|
||||
}
|
||||
|
||||
// TestMonadApV_BothLeft tests MonadApV when both function and value are Left
|
||||
func TestMonadApV_BothLeft(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + "; " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := MonadApV[int, string, int](sg)
|
||||
|
||||
// Both are Left - should combine errors
|
||||
fab := Left[func(int) int]("error1")
|
||||
fa := Left[int]("error2")
|
||||
|
||||
result := applyV(fab, fa)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
// When both are Left, errors are combined as: fa error + fab error
|
||||
assert.Equal(t, Left[int]("error2; error1"), result)
|
||||
}
|
||||
|
||||
// TestMonadApV_LeftFunction tests MonadApV when function is Left and value is Right
|
||||
func TestMonadApV_LeftFunction(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + "; " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := MonadApV[int, string, int](sg)
|
||||
|
||||
// Function is Left, value is Right - should return function's error
|
||||
fab := Left[func(int) int]("function error")
|
||||
fa := Right[string](21)
|
||||
|
||||
result := applyV(fab, fa)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
assert.Equal(t, Left[int]("function error"), result)
|
||||
}
|
||||
|
||||
// TestMonadApV_LeftValue tests MonadApV when function is Right and value is Left
|
||||
func TestMonadApV_LeftValue(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + "; " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := MonadApV[int, string, int](sg)
|
||||
|
||||
// Function is Right, value is Left - should return value's error
|
||||
fab := Right[string](N.Mul(2))
|
||||
fa := Left[int]("value error")
|
||||
|
||||
result := applyV(fab, fa)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
assert.Equal(t, Left[int]("value error"), result)
|
||||
}
|
||||
|
||||
// TestMonadApV_WithSliceSemigroup tests MonadApV with a slice-based semigroup
|
||||
func TestMonadApV_WithSliceSemigroup(t *testing.T) {
|
||||
// Create a semigroup that concatenates slices
|
||||
sg := S.MakeSemigroup(func(a, b []string) []string {
|
||||
return append(a, b...)
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := MonadApV[string, []string, string](sg)
|
||||
|
||||
// Both are Left with slice errors
|
||||
fab := Left[func(string) string]([]string{"error1", "error2"})
|
||||
fa := Left[string]([]string{"error3", "error4"})
|
||||
|
||||
result := applyV(fab, fa)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
// When both are Left, errors are combined as: fa errors + fab errors
|
||||
expected := Left[string]([]string{"error3", "error4", "error1", "error2"})
|
||||
assert.Equal(t, expected, result)
|
||||
}
|
||||
|
||||
// TestMonadApV_ComplexFunction tests MonadApV with a more complex function
|
||||
func TestMonadApV_ComplexFunction(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + " | " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := MonadApV[string, string, int](sg)
|
||||
|
||||
// Test with a function that transforms the value
|
||||
fab := Right[string](func(x int) string {
|
||||
if x > 0 {
|
||||
return "positive"
|
||||
}
|
||||
return "non-positive"
|
||||
})
|
||||
fa := Right[string](42)
|
||||
|
||||
result := applyV(fab, fa)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, Right[string]("positive"), result)
|
||||
}
|
||||
|
||||
// TestApV_BothRight tests ApV when both function and value are Right
|
||||
func TestApV_BothRight(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + "; " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := ApV[int, string, int](sg)
|
||||
|
||||
// Both are Right - should apply function
|
||||
fa := Right[string](21)
|
||||
fab := Right[string](N.Mul(2))
|
||||
|
||||
result := applyV(fa)(fab)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, Right[string](42), result)
|
||||
}
|
||||
|
||||
// TestApV_BothLeft tests ApV when both function and value are Left
|
||||
func TestApV_BothLeft(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + "; " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := ApV[int, string, int](sg)
|
||||
|
||||
// Both are Left - should combine errors
|
||||
fa := Left[int]("error2")
|
||||
fab := Left[func(int) int]("error1")
|
||||
|
||||
result := applyV(fa)(fab)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
// When both are Left, errors are combined as: fa error + fab error
|
||||
assert.Equal(t, Left[int]("error2; error1"), result)
|
||||
}
|
||||
|
||||
// TestApV_LeftFunction tests ApV when function is Left and value is Right
|
||||
func TestApV_LeftFunction(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + "; " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := ApV[int, string, int](sg)
|
||||
|
||||
// Function is Left, value is Right - should return function's error
|
||||
fa := Right[string](21)
|
||||
fab := Left[func(int) int]("function error")
|
||||
|
||||
result := applyV(fa)(fab)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
assert.Equal(t, Left[int]("function error"), result)
|
||||
}
|
||||
|
||||
// TestApV_LeftValue tests ApV when function is Right and value is Left
|
||||
func TestApV_LeftValue(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + "; " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := ApV[int, string, int](sg)
|
||||
|
||||
// Function is Right, value is Left - should return value's error
|
||||
fa := Left[int]("value error")
|
||||
fab := Right[string](N.Mul(2))
|
||||
|
||||
result := applyV(fa)(fab)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
assert.Equal(t, Left[int]("value error"), result)
|
||||
}
|
||||
|
||||
// TestApV_Composition tests ApV with function composition
|
||||
func TestApV_Composition(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + " & " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := ApV[string, string, int](sg)
|
||||
|
||||
// Test composition with pipe
|
||||
fa := Right[string](10)
|
||||
fab := Right[string](func(x int) string {
|
||||
return F.Pipe1(x, func(n int) string {
|
||||
if n >= 10 {
|
||||
return "large"
|
||||
}
|
||||
return "small"
|
||||
})
|
||||
})
|
||||
|
||||
result := F.Pipe1(fa, applyV)(fab)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, Right[string]("large"), result)
|
||||
}
|
||||
|
||||
// TestApV_WithStructSemigroup tests ApV with a custom struct semigroup
|
||||
func TestApV_WithStructSemigroup(t *testing.T) {
|
||||
type ValidationErrors struct {
|
||||
Errors []string
|
||||
}
|
||||
|
||||
// Create a semigroup that combines validation errors
|
||||
sg := S.MakeSemigroup(func(a, b ValidationErrors) ValidationErrors {
|
||||
return ValidationErrors{
|
||||
Errors: append(append([]string{}, a.Errors...), b.Errors...),
|
||||
}
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := ApV[int, ValidationErrors, int](sg)
|
||||
|
||||
// Both are Left with validation errors
|
||||
fa := Left[int](ValidationErrors{Errors: []string{"field1: required"}})
|
||||
fab := Left[func(int) int](ValidationErrors{Errors: []string{"field2: invalid"}})
|
||||
|
||||
result := applyV(fa)(fab)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
// When both are Left, errors are combined as: fa errors + fab errors
|
||||
expected := Left[int](ValidationErrors{
|
||||
Errors: []string{"field1: required", "field2: invalid"},
|
||||
})
|
||||
assert.Equal(t, expected, result)
|
||||
}
|
||||
|
||||
// TestApV_MultipleValidations tests ApV with multiple validation steps
|
||||
func TestApV_MultipleValidations(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + ", " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := ApV[int, string, int](sg)
|
||||
|
||||
// Simulate multiple validation failures
|
||||
validation1 := Left[int]("age must be positive")
|
||||
validation2 := Left[func(int) int]("name is required")
|
||||
|
||||
result := applyV(validation1)(validation2)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
// When both are Left, errors are combined as: validation1 error + validation2 error
|
||||
assert.Equal(t, Left[int]("age must be positive, name is required"), result)
|
||||
}
|
||||
|
||||
// TestMonadApV_DifferentTypes tests MonadApV with different input and output types
|
||||
func TestMonadApV_DifferentTypes(t *testing.T) {
|
||||
// Create a semigroup for string concatenation
|
||||
sg := S.MakeSemigroup(func(a, b string) string {
|
||||
return a + " + " + b
|
||||
})
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := MonadApV[string, string, int](sg)
|
||||
|
||||
// Function converts int to string
|
||||
fab := Right[string](func(x int) string {
|
||||
return F.Pipe1(x, func(n int) string {
|
||||
if n == 0 {
|
||||
return "zero"
|
||||
} else if n > 0 {
|
||||
return "positive"
|
||||
}
|
||||
return "negative"
|
||||
})
|
||||
})
|
||||
fa := Right[string](-5)
|
||||
|
||||
result := applyV(fab, fa)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, Right[string]("negative"), result)
|
||||
}
|
||||
|
||||
// TestApV_FirstSemigroup tests ApV with First semigroup (always returns first error)
|
||||
func TestApV_FirstSemigroup(t *testing.T) {
|
||||
// Use First semigroup which always returns the first value
|
||||
sg := S.First[string]()
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := ApV[int, string, int](sg)
|
||||
|
||||
// Both are Left - should return first error
|
||||
fa := Left[int]("error2")
|
||||
fab := Left[func(int) int]("error1")
|
||||
|
||||
result := applyV(fa)(fab)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
// First semigroup returns the first value, which is fa's error
|
||||
assert.Equal(t, Left[int]("error2"), result)
|
||||
}
|
||||
|
||||
// TestApV_LastSemigroup tests ApV with Last semigroup (always returns last error)
|
||||
func TestApV_LastSemigroup(t *testing.T) {
|
||||
// Use Last semigroup which always returns the last value
|
||||
sg := S.Last[string]()
|
||||
|
||||
// Create the validation applicative
|
||||
applyV := ApV[int, string, int](sg)
|
||||
|
||||
// Both are Left - should return last error
|
||||
fa := Left[int]("error2")
|
||||
fab := Left[func(int) int]("error1")
|
||||
|
||||
result := applyV(fa)(fab)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
// Last semigroup returns the last value, which is fab's error
|
||||
assert.Equal(t, Left[int]("error1"), result)
|
||||
}
|
||||
|
||||
// Made with Bob
|
||||
@@ -36,7 +36,7 @@
|
||||
// )
|
||||
//
|
||||
// // Define some endomorphisms
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
//
|
||||
// // Compose them (RIGHT-TO-LEFT execution)
|
||||
@@ -62,7 +62,7 @@
|
||||
//
|
||||
// // Combine multiple endomorphisms (RIGHT-TO-LEFT execution)
|
||||
// combined := M.ConcatAll(monoid)(
|
||||
// func(x int) int { return x * 2 }, // applied third
|
||||
// N.Mul(2), // applied third
|
||||
// func(x int) int { return x + 1 }, // applied second
|
||||
// func(x int) int { return x * 3 }, // applied first
|
||||
// )
|
||||
@@ -74,7 +74,7 @@
|
||||
// MonadChain executes LEFT-TO-RIGHT, unlike Compose:
|
||||
//
|
||||
// // Chain allows sequencing of endomorphisms (LEFT-TO-RIGHT)
|
||||
// f := func(x int) int { return x * 2 }
|
||||
// f := N.Mul(2)
|
||||
// g := func(x int) int { return x + 1 }
|
||||
// chained := endomorphism.MonadChain(f, g) // f first, then g
|
||||
// result := chained(5) // (5 * 2) + 1 = 11
|
||||
@@ -83,7 +83,7 @@
|
||||
//
|
||||
// The key difference between Compose and Chain/MonadChain is execution order:
|
||||
//
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
//
|
||||
// // Compose: RIGHT-TO-LEFT (mathematical composition)
|
||||
|
||||
@@ -37,7 +37,7 @@ import (
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
// result := endomorphism.MonadAp(double, increment) // Composes: double ∘ increment
|
||||
// // result(5) = double(increment(5)) = double(6) = 12
|
||||
@@ -64,7 +64,7 @@ func MonadAp[A any](fab Endomorphism[A], fa Endomorphism[A]) Endomorphism[A] {
|
||||
//
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
// applyIncrement := endomorphism.Ap(increment)
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// composed := applyIncrement(double) // double ∘ increment
|
||||
// // composed(5) = double(increment(5)) = double(6) = 12
|
||||
func Ap[A any](fa Endomorphism[A]) Operator[A] {
|
||||
@@ -91,7 +91,7 @@ func Ap[A any](fa Endomorphism[A]) Operator[A] {
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
//
|
||||
// // MonadCompose executes RIGHT-TO-LEFT: increment first, then double
|
||||
@@ -123,7 +123,7 @@ func MonadCompose[A any](f, g Endomorphism[A]) Endomorphism[A] {
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
// mapped := endomorphism.MonadMap(double, increment)
|
||||
// // mapped(5) = double(increment(5)) = double(6) = 12
|
||||
@@ -153,7 +153,7 @@ func MonadMap[A any](f, g Endomorphism[A]) Endomorphism[A] {
|
||||
//
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
// composeWithIncrement := endomorphism.Compose(increment)
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
//
|
||||
// // Composes double with increment (RIGHT-TO-LEFT: increment first, then double)
|
||||
// composed := composeWithIncrement(double)
|
||||
@@ -186,7 +186,7 @@ func Compose[A any](g Endomorphism[A]) Operator[A] {
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// mapDouble := endomorphism.Map(double)
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
// mapped := mapDouble(increment)
|
||||
@@ -215,7 +215,7 @@ func Map[A any](f Endomorphism[A]) Operator[A] {
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
//
|
||||
// // MonadChain executes LEFT-TO-RIGHT: double first, then increment
|
||||
@@ -243,7 +243,7 @@ func MonadChain[A any](ma Endomorphism[A], f Endomorphism[A]) Endomorphism[A] {
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// log := func(x int) int { fmt.Println(x); return x }
|
||||
// chained := endomorphism.MonadChainFirst(double, log)
|
||||
// result := chained(5) // Prints 10, returns 10
|
||||
@@ -269,7 +269,7 @@ func MonadChainFirst[A any](ma Endomorphism[A], f Endomorphism[A]) Endomorphism[
|
||||
//
|
||||
// log := func(x int) int { fmt.Println(x); return x }
|
||||
// chainLog := endomorphism.ChainFirst(log)
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// chained := chainLog(double)
|
||||
// result := chained(5) // Prints 10, returns 10
|
||||
func ChainFirst[A any](f Endomorphism[A]) Operator[A] {
|
||||
@@ -296,7 +296,7 @@ func ChainFirst[A any](f Endomorphism[A]) Operator[A] {
|
||||
//
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
// chainWithIncrement := endomorphism.Chain(increment)
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
//
|
||||
// // Chains double (first) with increment (second)
|
||||
// chained := chainWithIncrement(double)
|
||||
|
||||
@@ -19,6 +19,7 @@ import (
|
||||
"testing"
|
||||
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
@@ -204,7 +205,7 @@ func TestCompose(t *testing.T) {
|
||||
|
||||
// TestMonadComposeVsCompose demonstrates the relationship between MonadCompose and Compose
|
||||
func TestMonadComposeVsCompose(t *testing.T) {
|
||||
double := func(x int) int { return x * 2 }
|
||||
double := N.Mul(2)
|
||||
increment := func(x int) int { return x + 1 }
|
||||
|
||||
// MonadCompose takes both functions at once
|
||||
@@ -448,7 +449,7 @@ func TestOperatorType(t *testing.T) {
|
||||
func BenchmarkCompose(b *testing.B) {
|
||||
composed := MonadCompose(double, increment)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = composed(5)
|
||||
}
|
||||
}
|
||||
@@ -456,7 +457,7 @@ func BenchmarkCompose(b *testing.B) {
|
||||
// BenchmarkMonoidConcatAll benchmarks ConcatAll with monoid
|
||||
// TestComposeVsChain demonstrates the key difference between Compose and Chain
|
||||
func TestComposeVsChain(t *testing.T) {
|
||||
double := func(x int) int { return x * 2 }
|
||||
double := N.Mul(2)
|
||||
increment := func(x int) int { return x + 1 }
|
||||
|
||||
// Compose executes RIGHT-TO-LEFT
|
||||
@@ -499,7 +500,7 @@ func BenchmarkMonoidConcatAll(b *testing.B) {
|
||||
monoid := Monoid[int]()
|
||||
combined := M.ConcatAll(monoid)([]Endomorphism[int]{double, increment, square})
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = combined(5)
|
||||
}
|
||||
}
|
||||
@@ -509,7 +510,7 @@ func BenchmarkChain(b *testing.B) {
|
||||
chainWithIncrement := Chain(increment)
|
||||
chained := chainWithIncrement(double)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for b.Loop() {
|
||||
_ = chained(5)
|
||||
}
|
||||
}
|
||||
@@ -704,7 +705,7 @@ func TestApEqualsCompose(t *testing.T) {
|
||||
|
||||
// TestChainFirst tests the ChainFirst operation
|
||||
func TestChainFirst(t *testing.T) {
|
||||
double := func(x int) int { return x * 2 }
|
||||
double := N.Mul(2)
|
||||
|
||||
// Track side effect
|
||||
var sideEffect int
|
||||
|
||||
10
v2/endomorphism/from.go
Normal file
10
v2/endomorphism/from.go
Normal file
@@ -0,0 +1,10 @@
|
||||
package endomorphism
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/function"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
)
|
||||
|
||||
func FromSemigroup[A any](s S.Semigroup[A]) Kleisli[A] {
|
||||
return function.Bind2of2(s.Concat)
|
||||
}
|
||||
@@ -35,7 +35,7 @@ import (
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// myFunc := func(x int) int { return x * 2 }
|
||||
// myFunc := N.Mul(2)
|
||||
// endo := endomorphism.Of(myFunc)
|
||||
func Of[F ~func(A) A, A any](f F) Endomorphism[A] {
|
||||
return f
|
||||
@@ -75,7 +75,7 @@ func Unwrap[F ~func(A) A, A any](f Endomorphism[A]) F {
|
||||
// result := id(42) // Returns: 42
|
||||
//
|
||||
// // Identity is neutral for composition
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// composed := endomorphism.Compose(id, double)
|
||||
// // composed behaves exactly like double
|
||||
func Identity[A any]() Endomorphism[A] {
|
||||
@@ -103,7 +103,7 @@ func Identity[A any]() Endomorphism[A] {
|
||||
// import S "github.com/IBM/fp-go/v2/semigroup"
|
||||
//
|
||||
// sg := endomorphism.Semigroup[int]()
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
//
|
||||
// // Combine using the semigroup (RIGHT-TO-LEFT execution)
|
||||
@@ -139,7 +139,7 @@ func Semigroup[A any]() S.Semigroup[Endomorphism[A]] {
|
||||
// import M "github.com/IBM/fp-go/v2/monoid"
|
||||
//
|
||||
// monoid := endomorphism.Monoid[int]()
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
// square := func(x int) int { return x * x }
|
||||
//
|
||||
|
||||
@@ -29,7 +29,7 @@ type (
|
||||
// Example:
|
||||
//
|
||||
// // Simple endomorphisms on integers
|
||||
// double := func(x int) int { return x * 2 }
|
||||
// double := N.Mul(2)
|
||||
// increment := func(x int) int { return x + 1 }
|
||||
//
|
||||
// // Both are endomorphisms of type Endomorphism[int]
|
||||
|
||||
@@ -23,6 +23,7 @@ import (
|
||||
|
||||
E "github.com/IBM/fp-go/v2/either"
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
@@ -266,7 +267,7 @@ func TestEither(t *testing.T) {
|
||||
erased := Erase(42)
|
||||
result := F.Pipe1(
|
||||
SafeUnerase[int](erased),
|
||||
E.Map[error](func(x int) int { return x * 2 }),
|
||||
E.Map[error](N.Mul(2)),
|
||||
)
|
||||
|
||||
assert.True(t, E.IsRight(result))
|
||||
|
||||
49
v2/idiomatic/option/apply._go
Normal file
49
v2/idiomatic/option/apply._go
Normal file
@@ -0,0 +1,49 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
)
|
||||
|
||||
// ApplySemigroup lifts a Semigroup over a type A to a Semigroup over Option[A].
|
||||
// The resulting semigroup combines two Options using the applicative functor pattern.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// intSemigroup := semigroup.MakeSemigroup(func(a, b int) int { return a + b })
|
||||
// optSemigroup := ApplySemigroup(intSemigroup)
|
||||
// result := optSemigroup.Concat(Some(2), Some(3)) // Some(5)
|
||||
// result := optSemigroup.Concat(Some(2), None[int]()) // None
|
||||
func ApplySemigroup[A any](s S.Semigroup[A]) S.Semigroup[Option[A]] {
|
||||
return S.ApplySemigroup(MonadMap[A, func(A) A], MonadAp[A, A], s)
|
||||
}
|
||||
|
||||
// ApplicativeMonoid returns a Monoid that concatenates Option instances via their applicative functor.
|
||||
// This combines the monoid structure of the underlying type with the Option structure.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// intMonoid := monoid.MakeMonoid(func(a, b int) int { return a + b }, 0)
|
||||
// optMonoid := ApplicativeMonoid(intMonoid)
|
||||
// result := optMonoid.Concat(Some(2), Some(3)) // Some(5)
|
||||
// result := optMonoid.Empty() // Some(0)
|
||||
//
|
||||
//go:inline
|
||||
func ApplicativeMonoid[A any](m M.Monoid[A]) M.Monoid[Option[A]] {
|
||||
return M.ApplicativeMonoid(Of[A], MonadMap[A, func(A) A], MonadAp[A, A], m)
|
||||
}
|
||||
96
v2/idiomatic/option/array.go
Normal file
96
v2/idiomatic/option/array.go
Normal file
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
// TraverseArrayG transforms an array by applying a function that returns an Option to each element.
|
||||
// Returns Some containing the array of results if all operations succeed, None if any fails.
|
||||
// This is the generic version that works with custom slice types.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// parse := func(s string) Option[int] {
|
||||
// n, err := strconv.Atoi(s)
|
||||
// if err != nil { return None[int]() }
|
||||
// return Some(n)
|
||||
// }
|
||||
// result := TraverseArrayG[[]string, []int](parse)([]string{"1", "2", "3"}) // Some([1, 2, 3])
|
||||
// result := TraverseArrayG[[]string, []int](parse)([]string{"1", "x", "3"}) // None
|
||||
func TraverseArrayG[GA ~[]A, GB ~[]B, A, B any](f Kleisli[A, B]) Kleisli[GA, GB] {
|
||||
return func(g GA) (GB, bool) {
|
||||
var bs GB
|
||||
for _, a := range g {
|
||||
b, bok := f(a)
|
||||
if !bok {
|
||||
return bs, false
|
||||
}
|
||||
bs = append(bs, b)
|
||||
}
|
||||
return bs, true
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseArray transforms an array by applying a function that returns an Option to each element.
|
||||
// Returns Some containing the array of results if all operations succeed, None if any fails.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// validate := func(x int) Option[int] {
|
||||
// if x > 0 { return Some(x * 2) }
|
||||
// return None[int]()
|
||||
// }
|
||||
// result := TraverseArray(validate)([]int{1, 2, 3}) // Some([2, 4, 6])
|
||||
// result := TraverseArray(validate)([]int{1, -1, 3}) // None
|
||||
func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
|
||||
return TraverseArrayG[[]A, []B](f)
|
||||
}
|
||||
|
||||
// TraverseArrayWithIndexG transforms an array by applying an indexed function that returns an Option.
|
||||
// The function receives both the index and the element.
|
||||
// This is the generic version that works with custom slice types.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// f := func(i int, s string) Option[string] {
|
||||
// return Some(fmt.Sprintf("%d:%s", i, s))
|
||||
// }
|
||||
// result := TraverseArrayWithIndexG[[]string, []string](f)([]string{"a", "b"}) // Some(["0:a", "1:b"])
|
||||
func TraverseArrayWithIndexG[GA ~[]A, GB ~[]B, A, B any](f func(int, A) (B, bool)) Kleisli[GA, GB] {
|
||||
return func(g GA) (GB, bool) {
|
||||
var bs GB
|
||||
for i, a := range g {
|
||||
b, bok := f(i, a)
|
||||
if !bok {
|
||||
return bs, false
|
||||
}
|
||||
bs = append(bs, b)
|
||||
}
|
||||
return bs, true
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseArrayWithIndex transforms an array by applying an indexed function that returns an Option.
|
||||
// The function receives both the index and the element.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// f := func(i int, x int) Option[int] {
|
||||
// if x > i { return Some(x) }
|
||||
// return None[int]()
|
||||
// }
|
||||
// result := TraverseArrayWithIndex(f)([]int{1, 2, 3}) // Some([1, 2, 3])
|
||||
func TraverseArrayWithIndex[A, B any](f func(int, A) (B, bool)) Kleisli[[]A, []B] {
|
||||
return TraverseArrayWithIndexG[[]A, []B](f)
|
||||
}
|
||||
18
v2/idiomatic/option/assert_test.go
Normal file
18
v2/idiomatic/option/assert_test.go
Normal file
@@ -0,0 +1,18 @@
|
||||
package option
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func AssertEq[A any](l A, lok bool) func(A, bool) func(*testing.T) {
|
||||
return func(r A, rok bool) func(*testing.T) {
|
||||
return func(t *testing.T) {
|
||||
assert.Equal(t, lok, rok)
|
||||
if lok && rok {
|
||||
assert.Equal(t, l, r)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
356
v2/idiomatic/option/bind.go
Normal file
356
v2/idiomatic/option/bind.go
Normal file
@@ -0,0 +1,356 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/function"
|
||||
L "github.com/IBM/fp-go/v2/optics/lens"
|
||||
)
|
||||
|
||||
// Do creates an empty context of type S to be used with the Bind operation.
|
||||
// This is the starting point for building up a context using do-notation style.
|
||||
//
|
||||
// Parameters:
|
||||
// - empty: The initial empty context value
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Result struct {
|
||||
// x int
|
||||
// y string
|
||||
// }
|
||||
// result := Do(Result{})
|
||||
func Do[S any](
|
||||
empty S,
|
||||
) (S, bool) {
|
||||
return Of(empty)
|
||||
}
|
||||
|
||||
// Bind attaches the result of a computation to a context S1 to produce a context S2.
|
||||
// This is used in do-notation style to sequentially build up a context.
|
||||
//
|
||||
// Parameters:
|
||||
// - setter: A function that takes a value and returns a function to update the context
|
||||
// - f: A function that computes an Option value from the current context
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type State struct { x int; y int }
|
||||
// result := F.Pipe2(
|
||||
// Do(State{}),
|
||||
// Bind(func(x int) func(State) State {
|
||||
// return func(s State) State { s.x = x; return s }
|
||||
// }, func(s State) (int, bool) { return 42, true }),
|
||||
// )
|
||||
func Bind[S1, S2, A any](
|
||||
setter func(A) func(S1) S2,
|
||||
f Kleisli[S1, A],
|
||||
) Operator[S1, S2] {
|
||||
return func(s1 S1, s1ok bool) (s2 S2, s2ok bool) {
|
||||
if s1ok {
|
||||
a, aok := f(s1)
|
||||
if aok {
|
||||
return Of(setter(a)(s1))
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// Let attaches the result of a pure computation to a context S1 to produce a context S2.
|
||||
// Unlike Bind, the computation function returns a plain value, not an Option.
|
||||
//
|
||||
// Parameters:
|
||||
// - key: A function that takes a value and returns a function to update the context
|
||||
// - f: A pure function that computes a value from the current context
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type State struct { x int; computed int }
|
||||
// result := F.Pipe2(
|
||||
// Do(State{x: 5}),
|
||||
// Let(func(c int) func(State) State {
|
||||
// return func(s State) State { s.computed = c; return s }
|
||||
// }, func(s State) int { return s.x * 2 }),
|
||||
// )
|
||||
func Let[S1, S2, B any](
|
||||
key func(B) func(S1) S2,
|
||||
f func(S1) B,
|
||||
) Operator[S1, S2] {
|
||||
return func(s1 S1, s1ok bool) (s2 S2, s2ok bool) {
|
||||
if s1ok {
|
||||
return Of(key(f(s1))(s1))
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// LetTo attaches a constant value to a context S1 to produce a context S2.
|
||||
//
|
||||
// Parameters:
|
||||
// - key: A function that takes a value and returns a function to update the context
|
||||
// - b: The constant value to attach to the context
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type State struct { x int; name string }
|
||||
// result := F.Pipe2(
|
||||
// Do(State{x: 5}),
|
||||
// LetTo(func(n string) func(State) State {
|
||||
// return func(s State) State { s.name = n; return s }
|
||||
// }, "example"),
|
||||
// )
|
||||
func LetTo[S1, S2, B any](
|
||||
key func(B) func(S1) S2,
|
||||
b B,
|
||||
) Operator[S1, S2] {
|
||||
kb := key(b)
|
||||
return func(s1 S1, s1ok bool) (s2 S2, s2ok bool) {
|
||||
if s1ok {
|
||||
return Of(kb(s1))
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// BindTo initializes a new state S1 from a value T.
|
||||
// This is typically used as the first operation after creating an Option value.
|
||||
//
|
||||
// Parameters:
|
||||
// - setter: A function that creates the initial context from a value
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type State struct { value int }
|
||||
// result := F.Pipe1(
|
||||
// Some(42),
|
||||
// BindTo(func(x int) State { return State{value: x} }),
|
||||
// )
|
||||
func BindTo[S1, T any](
|
||||
setter func(T) S1,
|
||||
) Operator[T, S1] {
|
||||
return func(t T, tok bool) (s1 S1, s1ok bool) {
|
||||
if tok {
|
||||
return Of(setter(t))
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// ApS attaches a value to a context S1 to produce a context S2 by considering the context and the value concurrently.
|
||||
// This uses the applicative functor pattern, allowing parallel composition.
|
||||
//
|
||||
// Parameters:
|
||||
// - setter: A function that takes a value and returns a function to update the context
|
||||
//
|
||||
// Returns a function that takes an Option (value, bool) and returns an Operator.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type State struct { x int; y int }
|
||||
// result := F.Pipe2(
|
||||
// Do(State{}),
|
||||
// ApS(func(x int) func(State) State {
|
||||
// return func(s State) State { s.x = x; return s }
|
||||
// }, Some(42)),
|
||||
// )
|
||||
func ApS[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
) func(T, bool) Operator[S1, S2] {
|
||||
return func(t T, tok bool) Operator[S1, S2] {
|
||||
if tok {
|
||||
st := setter(t)
|
||||
return func(s1 S1, s1ok bool) (s2 S2, s2ok bool) {
|
||||
if s1ok {
|
||||
return Of(st(s1))
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
return func(_ S1, _ bool) (s2 S2, s2ok bool) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ApSL attaches a value to a context using a lens-based setter.
|
||||
// This is a convenience function that combines ApS with a lens, allowing you to use
|
||||
// optics to update nested structures in a more composable way.
|
||||
//
|
||||
// The lens parameter provides both the getter and setter for a field within the structure S.
|
||||
// This eliminates the need to manually write setter functions.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Address struct {
|
||||
// Street string
|
||||
// City string
|
||||
// }
|
||||
//
|
||||
// type Person struct {
|
||||
// Name string
|
||||
// Address Address
|
||||
// }
|
||||
//
|
||||
// // Create a lens for the Address field
|
||||
// addressLens := lens.MakeLens(
|
||||
// func(p Person) Address { return p.Address },
|
||||
// func(p Person, a Address) Person { p.Address = a; return p },
|
||||
// )
|
||||
//
|
||||
// // Use ApSL to update the address
|
||||
// result := F.Pipe2(
|
||||
// option.Some(Person{Name: "Alice"}),
|
||||
// option.ApSL(
|
||||
// addressLens,
|
||||
// option.Some(Address{Street: "Main St", City: "NYC"}),
|
||||
// ),
|
||||
// )
|
||||
//
|
||||
// Parameters:
|
||||
// - lens: A lens that focuses on a field within the structure S
|
||||
//
|
||||
// Returns a function that takes an Option (value, bool) and returns an Operator.
|
||||
func ApSL[S, T any](
|
||||
lens L.Lens[S, T],
|
||||
) func(T, bool) Operator[S, S] {
|
||||
return ApS(lens.Set)
|
||||
}
|
||||
|
||||
// BindL attaches the result of a computation to a context using a lens-based setter.
|
||||
// This is a convenience function that combines Bind with a lens, allowing you to use
|
||||
// optics to update nested structures based on their current values.
|
||||
//
|
||||
// The lens parameter provides both the getter and setter for a field within the structure S.
|
||||
// The computation function f receives the current value of the focused field and returns
|
||||
// an Option that produces the new value.
|
||||
//
|
||||
// Unlike ApSL, BindL uses monadic sequencing, meaning the computation f can depend on
|
||||
// the current value of the focused field.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Counter struct {
|
||||
// Value int
|
||||
// }
|
||||
//
|
||||
// valueLens := lens.MakeLens(
|
||||
// func(c Counter) int { return c.Value },
|
||||
// func(c Counter, v int) Counter { c.Value = v; return c },
|
||||
// )
|
||||
//
|
||||
// // Increment the counter, but return None if it would exceed 100
|
||||
// increment := func(v int) option.Option[int] {
|
||||
// if v >= 100 {
|
||||
// return option.None[int]()
|
||||
// }
|
||||
// return option.Some(v + 1)
|
||||
// }
|
||||
//
|
||||
// result := F.Pipe1(
|
||||
// option.Some(Counter{Value: 42}),
|
||||
// option.BindL(valueLens, increment),
|
||||
// ) // Some(Counter{Value: 43})
|
||||
//
|
||||
// Parameters:
|
||||
// - lens: A lens that focuses on a field within the structure S
|
||||
// - f: A function that computes an Option value from the current field value
|
||||
func BindL[S, T any](
|
||||
lens L.Lens[S, T],
|
||||
f Kleisli[T, T],
|
||||
) Operator[S, S] {
|
||||
return Bind(lens.Set, func(s S) (T, bool) {
|
||||
return f(lens.Get(s))
|
||||
})
|
||||
}
|
||||
|
||||
// LetL attaches the result of a pure computation to a context using a lens-based setter.
|
||||
// This is a convenience function that combines Let with a lens, allowing you to use
|
||||
// optics to update nested structures with pure transformations.
|
||||
//
|
||||
// The lens parameter provides both the getter and setter for a field within the structure S.
|
||||
// The transformation function f receives the current value of the focused field and returns
|
||||
// the new value directly (not wrapped in Option).
|
||||
//
|
||||
// This is useful for pure transformations that cannot fail, such as mathematical operations,
|
||||
// string manipulations, or other deterministic updates.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Counter struct {
|
||||
// Value int
|
||||
// }
|
||||
//
|
||||
// valueLens := lens.MakeLens(
|
||||
// func(c Counter) int { return c.Value },
|
||||
// func(c Counter, v int) Counter { c.Value = v; return c },
|
||||
// )
|
||||
//
|
||||
// // Double the counter value
|
||||
// double := func(v int) int { return v * 2 }
|
||||
//
|
||||
// result := F.Pipe1(
|
||||
// option.Some(Counter{Value: 21}),
|
||||
// option.LetL(valueLens, double),
|
||||
// ) // Some(Counter{Value: 42})
|
||||
//
|
||||
// Parameters:
|
||||
// - lens: A lens that focuses on a field within the structure S
|
||||
// - f: A pure transformation function for the field value
|
||||
func LetL[S, T any](
|
||||
lens L.Lens[S, T],
|
||||
f Endomorphism[T],
|
||||
) Operator[S, S] {
|
||||
return Let(lens.Set, function.Flow2(lens.Get, f))
|
||||
}
|
||||
|
||||
// LetToL attaches a constant value to a context using a lens-based setter.
|
||||
// This is a convenience function that combines LetTo with a lens, allowing you to use
|
||||
// optics to set nested fields to specific values.
|
||||
//
|
||||
// The lens parameter provides the setter for a field within the structure S.
|
||||
// Unlike LetL which transforms the current value, LetToL simply replaces it with
|
||||
// the provided constant value b.
|
||||
//
|
||||
// This is useful for resetting fields, initializing values, or setting fields to
|
||||
// predetermined constants.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Config struct {
|
||||
// Debug bool
|
||||
// Timeout int
|
||||
// }
|
||||
//
|
||||
// debugLens := lens.MakeLens(
|
||||
// func(c Config) bool { return c.Debug },
|
||||
// func(c Config, d bool) Config { c.Debug = d; return c },
|
||||
// )
|
||||
//
|
||||
// result := F.Pipe1(
|
||||
// option.Some(Config{Debug: true, Timeout: 30}),
|
||||
// option.LetToL(debugLens, false),
|
||||
// ) // Some(Config{Debug: false, Timeout: 30})
|
||||
//
|
||||
// Parameters:
|
||||
// - lens: A lens that focuses on a field within the structure S
|
||||
// - b: The constant value to set the field to
|
||||
func LetToL[S, T any](
|
||||
lens L.Lens[S, T],
|
||||
b T,
|
||||
) Operator[S, S] {
|
||||
return LetTo(lens.Set, b)
|
||||
}
|
||||
52
v2/idiomatic/option/bind_test.go
Normal file
52
v2/idiomatic/option/bind_test.go
Normal file
@@ -0,0 +1,52 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/IBM/fp-go/v2/internal/utils"
|
||||
)
|
||||
|
||||
func getLastName(s utils.Initial) (string, bool) {
|
||||
return Of("Doe")
|
||||
}
|
||||
|
||||
func getGivenName(s utils.WithLastName) (string, bool) {
|
||||
return Of("John")
|
||||
}
|
||||
|
||||
func TestBind(t *testing.T) {
|
||||
|
||||
res, resok := Flow3(
|
||||
Bind(utils.SetLastName, getLastName),
|
||||
Bind(utils.SetGivenName, getGivenName),
|
||||
Map(utils.GetFullName),
|
||||
)(Do(utils.Empty))
|
||||
|
||||
AssertEq(Of("John Doe"))(res, resok)(t)
|
||||
}
|
||||
|
||||
func TestApS(t *testing.T) {
|
||||
|
||||
res, resok := Flow3(
|
||||
ApS(utils.SetLastName)(Of("Doe")),
|
||||
ApS(utils.SetGivenName)(Of("John")),
|
||||
Map(utils.GetFullName),
|
||||
)(Do(utils.Empty))
|
||||
|
||||
AssertEq(Of("John Doe"))(res, resok)(t)
|
||||
}
|
||||
113
v2/idiomatic/option/core.go
Normal file
113
v2/idiomatic/option/core.go
Normal file
@@ -0,0 +1,113 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import "fmt"
|
||||
|
||||
type (
|
||||
Operator[A, B any] = func(A, bool) (B, bool)
|
||||
Kleisli[A, B any] = func(A) (B, bool)
|
||||
)
|
||||
|
||||
// IsSome checks if an Option contains a value.
|
||||
//
|
||||
// Parameters:
|
||||
// - t: The value of the Option
|
||||
// - tok: Whether the Option contains a value (true for Some, false for None)
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// opt := Some(42)
|
||||
// IsSome(opt) // true
|
||||
// opt := None[int]()
|
||||
// IsSome(opt) // false
|
||||
//
|
||||
//go:inline
|
||||
func IsSome[T any](t T, tok bool) bool {
|
||||
return tok
|
||||
}
|
||||
|
||||
// IsNone checks if an Option is None (contains no value).
|
||||
//
|
||||
// Parameters:
|
||||
// - t: The value of the Option
|
||||
// - tok: Whether the Option contains a value (true for Some, false for None)
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// opt := None[int]()
|
||||
// IsNone(opt) // true
|
||||
// opt := Some(42)
|
||||
// IsNone(opt) // false
|
||||
//
|
||||
//go:inline
|
||||
func IsNone[T any](t T, tok bool) bool {
|
||||
return !tok
|
||||
}
|
||||
|
||||
// Some creates an Option that contains a value.
|
||||
//
|
||||
// Parameters:
|
||||
// - value: The value to wrap in Some
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// opt := Some(42) // Option containing 42
|
||||
// opt := Some("hello") // Option containing "hello"
|
||||
//
|
||||
//go:inline
|
||||
func Some[T any](value T) (T, bool) {
|
||||
return value, true
|
||||
}
|
||||
|
||||
// Of creates an Option that contains a value.
|
||||
// This is an alias for Some and is used in monadic contexts.
|
||||
//
|
||||
// Parameters:
|
||||
// - value: The value to wrap in Some
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// opt := Of(42) // Option containing 42
|
||||
//
|
||||
//go:inline
|
||||
func Of[T any](value T) (T, bool) {
|
||||
return Some(value)
|
||||
}
|
||||
|
||||
// None creates an Option that contains no value.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// opt := None[int]() // Empty Option of type int
|
||||
// opt := None[string]() // Empty Option of type string
|
||||
//
|
||||
//go:inline
|
||||
func None[T any]() (t T, tok bool) {
|
||||
return
|
||||
}
|
||||
|
||||
// ToString converts an Option to a string representation for debugging.
|
||||
//
|
||||
// Parameters:
|
||||
// - t: The value of the Option
|
||||
// - tok: Whether the Option contains a value (true for Some, false for None)
|
||||
func ToString[T any](t T, tok bool) string {
|
||||
if tok {
|
||||
return fmt.Sprintf("Some[%T](%v)", t, t)
|
||||
}
|
||||
return fmt.Sprintf("None[%T]", t)
|
||||
}
|
||||
241
v2/idiomatic/option/doc.go
Normal file
241
v2/idiomatic/option/doc.go
Normal file
@@ -0,0 +1,241 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Package option implements the Option monad using idiomatic Go tuple signatures.
|
||||
//
|
||||
// Unlike the standard option package which uses wrapper structs, this package represents
|
||||
// Options as tuples (value, bool) where the boolean indicates presence (true) or absence (false).
|
||||
// This approach is more idiomatic in Go and has better performance characteristics.
|
||||
//
|
||||
// # Type Signatures
|
||||
//
|
||||
// The core types used in this package are:
|
||||
//
|
||||
// Operator[A, B any] = func(A, bool) (B, bool) // Transforms an Option[A] to Option[B]
|
||||
// Kleisli[A, B any] = func(A) (B, bool) // Monadic function from A to Option[B]
|
||||
//
|
||||
// # Basic Usage
|
||||
//
|
||||
// Create an Option with Some or None:
|
||||
//
|
||||
// some := Some(42) // (42, true)
|
||||
// none := None[int]() // (0, false)
|
||||
// opt := Of(42) // Alternative to Some: (42, true)
|
||||
//
|
||||
// Check if an Option contains a value:
|
||||
//
|
||||
// value, ok := Some(42)
|
||||
// if ok {
|
||||
// // value == 42
|
||||
// }
|
||||
//
|
||||
// if IsSome(Some(42)) {
|
||||
// // Option contains a value
|
||||
// }
|
||||
// if IsNone(None[int]()) {
|
||||
// // Option is empty
|
||||
// }
|
||||
//
|
||||
// Extract values:
|
||||
//
|
||||
// value, ok := Some(42) // Direct tuple unpacking: value == 42, ok == true
|
||||
// value := GetOrElse(func() int { return 0 })(Some(42)) // Returns 42
|
||||
// value := GetOrElse(func() int { return 0 })(None[int]()) // Returns 0
|
||||
//
|
||||
// # Transformations
|
||||
//
|
||||
// Map transforms the contained value:
|
||||
//
|
||||
// double := Map(func(x int) int { return x * 2 })
|
||||
// result := double(Some(21)) // (42, true)
|
||||
// result := double(None[int]()) // (0, false)
|
||||
//
|
||||
// Chain sequences operations that may fail:
|
||||
//
|
||||
// validate := Chain(func(x int) (int, bool) {
|
||||
// if x > 0 { return x * 2, true }
|
||||
// return 0, false
|
||||
// })
|
||||
// result := validate(Some(5)) // (10, true)
|
||||
// result := validate(Some(-1)) // (0, false)
|
||||
//
|
||||
// Filter keeps values that satisfy a predicate:
|
||||
//
|
||||
// isPositive := Filter(func(x int) bool { return x > 0 })
|
||||
// result := isPositive(Some(5)) // (5, true)
|
||||
// result := isPositive(Some(-1)) // (0, false)
|
||||
//
|
||||
// # Working with Collections
|
||||
//
|
||||
// Transform arrays:
|
||||
//
|
||||
// doublePositive := func(x int) (int, bool) {
|
||||
// if x > 0 { return x * 2, true }
|
||||
// return 0, false
|
||||
// }
|
||||
// result := TraverseArray(doublePositive)([]int{1, 2, 3}) // ([2, 4, 6], true)
|
||||
// result := TraverseArray(doublePositive)([]int{1, -2, 3}) // ([], false)
|
||||
//
|
||||
// Sequence arrays of Options:
|
||||
//
|
||||
// opts := []Option[int]{Some(1), Some(2), Some(3)}
|
||||
// result := SequenceArray(opts) // ([1, 2, 3], true)
|
||||
//
|
||||
// opts := []Option[int]{Some(1), None[int](), Some(3)}
|
||||
// result := SequenceArray(opts) // ([], false)
|
||||
//
|
||||
// Compact arrays (remove None values):
|
||||
//
|
||||
// opts := []Option[int]{Some(1), None[int](), Some(3)}
|
||||
// result := CompactArray(opts) // [1, 3]
|
||||
//
|
||||
// # Algebraic Operations
|
||||
//
|
||||
// Option supports various algebraic structures:
|
||||
//
|
||||
// - Functor: Map operations for transforming values
|
||||
// - Applicative: Ap operations for applying wrapped functions
|
||||
// - Monad: Chain operations for sequencing computations
|
||||
// - Alternative: Alt operations for providing fallbacks
|
||||
//
|
||||
// Applicative example:
|
||||
//
|
||||
// fab := Some(func(x int) int { return x * 2 })
|
||||
// fa := Some(21)
|
||||
// result := Ap[int](fa)(fab) // (42, true)
|
||||
//
|
||||
// Alternative example:
|
||||
//
|
||||
// withDefault := Alt(func() (int, bool) { return 100, true })
|
||||
// result := withDefault(Some(42)) // (42, true)
|
||||
// result := withDefault(None[int]()) // (100, true)
|
||||
//
|
||||
// # Error Handling
|
||||
//
|
||||
// Convert error-returning functions:
|
||||
//
|
||||
// result := TryCatch(func() (int, error) {
|
||||
// return strconv.Atoi("42")
|
||||
// }) // (42, true)
|
||||
//
|
||||
// result := TryCatch(func() (int, error) {
|
||||
// return strconv.Atoi("invalid")
|
||||
// }) // (0, false)
|
||||
//
|
||||
// Convert validation functions:
|
||||
//
|
||||
// parse := FromValidation(func(s string) (int, bool) {
|
||||
// n, err := strconv.Atoi(s)
|
||||
// return n, err == nil
|
||||
// })
|
||||
// result := parse("42") // (42, true)
|
||||
// result := parse("invalid") // (0, false)
|
||||
//
|
||||
// Convert predicates:
|
||||
//
|
||||
// isPositive := FromPredicate(func(n int) bool { return n > 0 })
|
||||
// result := isPositive(5) // (5, true)
|
||||
// result := isPositive(-1) // (-1, false)
|
||||
//
|
||||
// Convert nullable pointers:
|
||||
//
|
||||
// var ptr *int = nil
|
||||
// result := FromNillable(ptr) // (nil, false)
|
||||
// val := 42
|
||||
// result := FromNillable(&val) // (&val, true)
|
||||
//
|
||||
// # Do-Notation Style
|
||||
//
|
||||
// Build complex computations using do-notation:
|
||||
//
|
||||
// type Result struct {
|
||||
// x int
|
||||
// y int
|
||||
// sum int
|
||||
// }
|
||||
//
|
||||
// result := F.Pipe3(
|
||||
// Do(Result{}),
|
||||
// Bind(func(x int) func(Result) Result {
|
||||
// return func(r Result) Result { r.x = x; return r }
|
||||
// }, func(r Result) (int, bool) { return Some(10) }),
|
||||
// Bind(func(y int) func(Result) Result {
|
||||
// return func(r Result) Result { r.y = y; return r }
|
||||
// }, func(r Result) (int, bool) { return Some(20) }),
|
||||
// Let(func(sum int) func(Result) Result {
|
||||
// return func(r Result) Result { r.sum = sum; return r }
|
||||
// }, func(r Result) int { return r.x + r.y }),
|
||||
// ) // (Result{x: 10, y: 20, sum: 30}, true)
|
||||
//
|
||||
// # Lens-Based Operations
|
||||
//
|
||||
// Use lenses for cleaner field updates:
|
||||
//
|
||||
// type Person struct {
|
||||
// Name string
|
||||
// Age int
|
||||
// }
|
||||
//
|
||||
// ageLens := lens.MakeLens(
|
||||
// func(p Person) int { return p.Age },
|
||||
// func(p Person, age int) Person { p.Age = age; return p },
|
||||
// )
|
||||
//
|
||||
// // Update using a lens
|
||||
// incrementAge := BindL(ageLens, func(age int) (int, bool) {
|
||||
// if age < 120 { return age + 1, true }
|
||||
// return 0, false
|
||||
// })
|
||||
// result := incrementAge(Some(Person{Name: "Alice", Age: 30}))
|
||||
// // (Person{Name: "Alice", Age: 31}, true)
|
||||
//
|
||||
// // Set using a lens
|
||||
// setAge := LetToL(ageLens, 25)
|
||||
// result := setAge(Some(Person{Name: "Bob", Age: 30}))
|
||||
// // (Person{Name: "Bob", Age: 25}, true)
|
||||
//
|
||||
// # Folding and Reducing
|
||||
//
|
||||
// Fold provides a way to handle both Some and None cases:
|
||||
//
|
||||
// handler := Fold(
|
||||
// func() string { return "no value" },
|
||||
// func(x int) string { return fmt.Sprintf("value: %d", x) },
|
||||
// )
|
||||
// result := handler(Some(42)) // "value: 42"
|
||||
// result := handler(None[int]()) // "no value"
|
||||
//
|
||||
// Reduce folds an Option into a single value:
|
||||
//
|
||||
// sum := Reduce(func(acc, val int) int { return acc + val }, 0)
|
||||
// result := sum(Some(5)) // 5
|
||||
// result := sum(None[int]()) // 0
|
||||
//
|
||||
// # Debugging
|
||||
//
|
||||
// Convert Options to strings for debugging:
|
||||
//
|
||||
// str := ToString(Some(42)) // "Some[int](42)"
|
||||
// str := ToString(None[int]()) // "None[int]"
|
||||
//
|
||||
// # Subpackages
|
||||
//
|
||||
// - option/number: Number conversion utilities (Atoi, Itoa)
|
||||
// - option/testing: Testing utilities for verifying monad laws
|
||||
package option
|
||||
|
||||
//go:generate go run .. option --count 10 --filename gen.go
|
||||
|
||||
// Made with Bob
|
||||
84
v2/idiomatic/option/eq.go
Normal file
84
v2/idiomatic/option/eq.go
Normal file
@@ -0,0 +1,84 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
EQ "github.com/IBM/fp-go/v2/eq"
|
||||
)
|
||||
|
||||
// Eq constructs an equality predicate for Option[A] given an equality predicate for A.
|
||||
// Two Options are equal if:
|
||||
// - Both are None, or
|
||||
// - Both are Some and their contained values are equal according to the provided Eq
|
||||
//
|
||||
// Parameters:
|
||||
// - eq: An equality predicate for the contained type A
|
||||
//
|
||||
// Returns a curried function that takes two Options (as tuples) and returns true if they are equal.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// intEq := eq.FromStrictEquals[int]()
|
||||
// optEq := Eq(intEq)
|
||||
//
|
||||
// opt1 := Some(42) // (42, true)
|
||||
// opt2 := Some(42) // (42, true)
|
||||
// optEq(opt1)(opt2) // true
|
||||
//
|
||||
// opt3 := Some(43) // (43, true)
|
||||
// optEq(opt1)(opt3) // false
|
||||
//
|
||||
// none1 := None[int]() // (0, false)
|
||||
// none2 := None[int]() // (0, false)
|
||||
// optEq(none1)(none2) // true
|
||||
//
|
||||
// optEq(opt1)(none1) // false
|
||||
func Eq[A any](eq EQ.Eq[A]) func(A, bool) func(A, bool) bool {
|
||||
return func(a1 A, a1ok bool) func(A, bool) bool {
|
||||
return func(a2 A, a2ok bool) bool {
|
||||
if a1ok {
|
||||
if a2ok {
|
||||
return eq.Equals(a1, a2)
|
||||
}
|
||||
return false
|
||||
}
|
||||
return !a2ok
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FromStrictEquals constructs an Eq for Option[A] using Go's built-in equality (==) for type A.
|
||||
// This is a convenience function for comparable types.
|
||||
//
|
||||
// Returns a curried function that takes two Options (as tuples) and returns true if they are equal.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// optEq := FromStrictEquals[int]()
|
||||
//
|
||||
// opt1 := Some(42) // (42, true)
|
||||
// opt2 := Some(42) // (42, true)
|
||||
// optEq(opt1)(opt2) // true
|
||||
//
|
||||
// none1 := None[int]() // (0, false)
|
||||
// none2 := None[int]() // (0, false)
|
||||
// optEq(none1)(none2) // true
|
||||
//
|
||||
// opt3 := Some(43) // (43, true)
|
||||
// optEq(opt1)(opt3) // false
|
||||
func FromStrictEquals[A comparable]() func(A, bool) func(A, bool) bool {
|
||||
return Eq(EQ.FromStrictEquals[A]())
|
||||
}
|
||||
41
v2/idiomatic/option/eq_test.go
Normal file
41
v2/idiomatic/option/eq_test.go
Normal file
@@ -0,0 +1,41 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestEq(t *testing.T) {
|
||||
|
||||
r1, r1ok := Of(1)
|
||||
r2, r2ok := Of(1)
|
||||
r3, r3ok := Of(2)
|
||||
|
||||
n1, n1ok := None[int]()
|
||||
|
||||
eq := FromStrictEquals[int]()
|
||||
|
||||
assert.True(t, eq(r1, r1ok)(r1, r1ok))
|
||||
assert.True(t, eq(r1, r1ok)(r2, r2ok))
|
||||
assert.False(t, eq(r1, r1ok)(r3, r3ok))
|
||||
assert.False(t, eq(r1, r1ok)(n1, n1ok))
|
||||
|
||||
assert.True(t, eq(n1, n1ok)(n1, n1ok))
|
||||
assert.False(t, eq(n1, n1ok)(r2, r2ok))
|
||||
}
|
||||
55
v2/idiomatic/option/examples_create_test.go
Normal file
55
v2/idiomatic/option/examples_create_test.go
Normal file
@@ -0,0 +1,55 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import "fmt"
|
||||
|
||||
func ExampleSome_creation() {
|
||||
|
||||
// Build an Option
|
||||
none1, none1ok := None[int]()
|
||||
some1, some1ok := Some("value")
|
||||
|
||||
// Build from a value
|
||||
fromNillable := FromNillable[string]
|
||||
nonFromNil, nonFromNilok := fromNillable(nil) // None[*string]
|
||||
value := "value"
|
||||
someFromPointer, someFromPointerok := fromNillable(&value) // Some[*string](xxx)
|
||||
|
||||
// some predicate
|
||||
isEven := func(num int) bool {
|
||||
return num%2 == 0
|
||||
}
|
||||
|
||||
fromEven := FromPredicate(isEven)
|
||||
noneFromPred, noneFromPredok := fromEven(3) // None[int]
|
||||
someFromPred, someFromPredok := fromEven(4) // Some[int](4)
|
||||
|
||||
fmt.Println(ToString(none1, none1ok))
|
||||
fmt.Println(ToString(some1, some1ok))
|
||||
fmt.Println(ToString(nonFromNil, nonFromNilok))
|
||||
fmt.Println(IsSome(someFromPointer, someFromPointerok))
|
||||
fmt.Println(ToString(noneFromPred, noneFromPredok))
|
||||
fmt.Println(ToString(someFromPred, someFromPredok))
|
||||
|
||||
// Output:
|
||||
// None[int]
|
||||
// Some[string](value)
|
||||
// None[*string]
|
||||
// true
|
||||
// None[int]
|
||||
// Some[int](4)
|
||||
}
|
||||
57
v2/idiomatic/option/examples_extract_test.go
Normal file
57
v2/idiomatic/option/examples_extract_test.go
Normal file
@@ -0,0 +1,57 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
)
|
||||
|
||||
func ExampleSome_extraction() {
|
||||
|
||||
noneValue, okFromNone := None[int]()
|
||||
someValue, okFromSome := Of(42)
|
||||
|
||||
// Convert Option[T] with a default value
|
||||
noneWithDefault := GetOrElse(F.Constant(0))(noneValue, okFromNone) // 0
|
||||
someWithDefault := GetOrElse(F.Constant(0))(someValue, okFromSome) // 42
|
||||
|
||||
// Apply a different function on None/Some(...)
|
||||
doubleOrZero := Fold(
|
||||
F.Constant(0), // none case
|
||||
N.Mul(2), // some case
|
||||
) // func(ma Option[int]) int
|
||||
|
||||
doubleFromNone := doubleOrZero(noneValue, okFromNone) // 0
|
||||
doubleFromSome := doubleOrZero(someValue, okFromSome) // 84
|
||||
|
||||
fmt.Printf("%d, %t\n", noneValue, okFromNone)
|
||||
fmt.Printf("%d, %t\n", someValue, okFromSome)
|
||||
fmt.Println(noneWithDefault)
|
||||
fmt.Println(someWithDefault)
|
||||
fmt.Println(doubleFromNone)
|
||||
fmt.Println(doubleFromSome)
|
||||
|
||||
// Output:
|
||||
// 0, false
|
||||
// 42, true
|
||||
// 0
|
||||
// 42
|
||||
// 0
|
||||
// 84
|
||||
}
|
||||
89
v2/idiomatic/option/function.go
Normal file
89
v2/idiomatic/option/function.go
Normal file
@@ -0,0 +1,89 @@
|
||||
package option
|
||||
|
||||
// Pipe1 takes an initial value t0 and successively applies 1 functions where the input of a function is the return value of the previous function
|
||||
// The final return value is the result of the last function application
|
||||
//
|
||||
//go:inline
|
||||
func Pipe1[F1 ~func(T0) (T1, bool), T0, T1 any](t0 T0, f1 F1) (T1, bool) {
|
||||
return f1(t0)
|
||||
}
|
||||
|
||||
// Flow1 creates a function that takes an initial value t0 and successively applies 1 functions where the input of a function is the return value of the previous function
|
||||
// The final return value is the result of the last function application
|
||||
//
|
||||
//go:inline
|
||||
func Flow1[F1 ~func(T0, bool) (T1, bool), T0, T1 any](f1 F1) func(T0, bool) (T1, bool) {
|
||||
return f1
|
||||
}
|
||||
|
||||
// Pipe2 takes an initial value t0 and successively applies 2 functions where the input of a function is the return value of the previous function
|
||||
// The final return value is the result of the last function application
|
||||
//
|
||||
//go:inline
|
||||
func Pipe2[F1 ~func(T0) (T1, bool), F2 ~func(T1, bool) (T2, bool), T0, T1, T2 any](t0 T0, f1 F1, f2 F2) (T2, bool) {
|
||||
return f2(f1(t0))
|
||||
}
|
||||
|
||||
// Flow2 creates a function that takes an initial value t0 and successively applies 2 functions where the input of a function is the return value of the previous function
|
||||
// The final return value is the result of the last function application
|
||||
//
|
||||
//go:inline
|
||||
func Flow2[F1 ~func(T0, bool) (T1, bool), F2 ~func(T1, bool) (T2, bool), T0, T1, T2 any](f1 F1, f2 F2) func(T0, bool) (T2, bool) {
|
||||
return func(t0 T0, t0ok bool) (T2, bool) {
|
||||
return f2(f1(t0, t0ok))
|
||||
}
|
||||
}
|
||||
|
||||
// Pipe3 takes an initial value t0 and successively applies 3 functions where the input of a function is the return value of the previous function
|
||||
// The final return value is the result of the last function application
|
||||
//
|
||||
//go:inline
|
||||
func Pipe3[F1 ~func(T0) (T1, bool), F2 ~func(T1, bool) (T2, bool), F3 ~func(T2, bool) (T3, bool), T0, T1, T2, T3 any](t0 T0, f1 F1, f2 F2, f3 F3) (T3, bool) {
|
||||
return f3(f2(f1(t0)))
|
||||
}
|
||||
|
||||
// Flow3 creates a function that takes an initial value t0 and successively applies 3 functions where the input of a function is the return value of the previous function
|
||||
// The final return value is the result of the last function application
|
||||
//
|
||||
//go:inline
|
||||
func Flow3[F1 ~func(T0, bool) (T1, bool), F2 ~func(T1, bool) (T2, bool), F3 ~func(T2, bool) (T3, bool), T0, T1, T2, T3 any](f1 F1, f2 F2, f3 F3) func(T0, bool) (T3, bool) {
|
||||
return func(t0 T0, t0ok bool) (T3, bool) {
|
||||
return f3(f2(f1(t0, t0ok)))
|
||||
}
|
||||
}
|
||||
|
||||
// Pipe4 takes an initial value t0 and successively applies 4 functions where the input of a function is the return value of the previous function
|
||||
// The final return value is the result of the last function application
|
||||
//
|
||||
//go:inline
|
||||
func Pipe4[F1 ~func(T0) (T1, bool), F2 ~func(T1, bool) (T2, bool), F3 ~func(T2, bool) (T3, bool), F4 ~func(T3, bool) (T4, bool), T0, T1, T2, T3, T4 any](t0 T0, f1 F1, f2 F2, f3 F3, f4 F4) (T4, bool) {
|
||||
return f4(f3(f2(f1(t0))))
|
||||
}
|
||||
|
||||
// Flow4 creates a function that takes an initial value t0 and successively applies 4 functions where the input of a function is the return value of the previous function
|
||||
// The final return value is the result of the last function application
|
||||
//
|
||||
//go:inline
|
||||
func Flow4[F1 ~func(T0, bool) (T1, bool), F2 ~func(T1, bool) (T2, bool), F3 ~func(T2, bool) (T3, bool), F4 ~func(T3, bool) (T4, bool), T0, T1, T2, T3, T4 any](f1 F1, f2 F2, f3 F3, f4 F4) func(T0, bool) (T4, bool) {
|
||||
return func(t0 T0, t0ok bool) (T4, bool) {
|
||||
return f4(f3(f2(f1(t0, t0ok))))
|
||||
}
|
||||
}
|
||||
|
||||
// Pipe5 takes an initial value t0 and successively applies 5 functions where the input of a function is the return value of the previous function
|
||||
// The final return value is the result of the last function application
|
||||
//
|
||||
//go:inline
|
||||
func Pipe5[F1 ~func(T0) (T1, bool), F2 ~func(T1, bool) (T2, bool), F3 ~func(T2, bool) (T3, bool), F4 ~func(T3, bool) (T4, bool), F5 ~func(T4, bool) (T5, bool), T0, T1, T2, T3, T4, T5 any](t0 T0, f1 F1, f2 F2, f3 F3, f4 F4, f5 F5) (T5, bool) {
|
||||
return f5(f4(f3(f2(f1(t0)))))
|
||||
}
|
||||
|
||||
// Flow5 creates a function that takes an initial value t0 and successively applies 5 functions where the input of a function is the return value of the previous function
|
||||
// The final return value is the result of the last function application
|
||||
//
|
||||
//go:inline
|
||||
func Flow5[F1 ~func(T0, bool) (T1, bool), F2 ~func(T1, bool) (T2, bool), F3 ~func(T2, bool) (T3, bool), F4 ~func(T3, bool) (T4, bool), F5 ~func(T4, bool) (T5, bool), T0, T1, T2, T3, T4, T5 any](f1 F1, f2 F2, f3 F3, f4 F4, f5 F5) func(T0, bool) (T5, bool) {
|
||||
return func(t0 T0, t0ok bool) (T5, bool) {
|
||||
return f5(f4(f3(f2(f1(t0, t0ok)))))
|
||||
}
|
||||
}
|
||||
41
v2/idiomatic/option/functor.go
Normal file
41
v2/idiomatic/option/functor.go
Normal file
@@ -0,0 +1,41 @@
|
||||
// Copyright (c) 2024 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
type (
|
||||
optionFunctor[A, B any] struct{}
|
||||
|
||||
Functor[A, B any] interface {
|
||||
Map(func(A) B) func(A, bool) (B, bool)
|
||||
}
|
||||
)
|
||||
|
||||
func (o optionFunctor[A, B]) Map(f func(A) B) Operator[A, B] {
|
||||
return Map(f)
|
||||
}
|
||||
|
||||
// Functor implements the functoric operations for Option.
|
||||
// A functor is a type that can be mapped over, transforming the contained value
|
||||
// while preserving the structure.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// f := Functor[int, string]()
|
||||
// mapper := f.Map(strconv.Itoa)
|
||||
// result := mapper(Some(42)) // Some("42")
|
||||
func MakeFunctor[A, B any]() Functor[A, B] {
|
||||
return optionFunctor[A, B]{}
|
||||
}
|
||||
195
v2/idiomatic/option/gen.go
Normal file
195
v2/idiomatic/option/gen.go
Normal file
@@ -0,0 +1,195 @@
|
||||
// Code generated by go generate; DO NOT EDIT.
|
||||
// This file was generated by robots at
|
||||
// 2025-03-09 23:53:08.2750287 +0100 CET m=+0.001545801
|
||||
|
||||
package option
|
||||
|
||||
// TraverseTuple1 converts a [Tuple1] of [A] via transformation functions transforming [A] to [Option[A]] into a [Option[Tuple1]].
|
||||
func TraverseTuple1[F1 ~Kleisli[A1, T1], A1, T1 any](f1 F1) func(A1) (T1, bool) {
|
||||
return func(a1 A1) (t1 T1, ok bool) {
|
||||
if t1, ok := f1(a1); ok {
|
||||
return t1, true
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseTuple2 converts a [Tuple2] of [A] via transformation functions transforming [A] to [Option[A]] into a [Option[Tuple2]].
|
||||
func TraverseTuple2[F1 ~Kleisli[A1, T1], F2 ~Kleisli[A2, T2], A1, T1, A2, T2 any](f1 F1, f2 F2) func(A1, A2) (T1, T2, bool) {
|
||||
return func(a1 A1, a2 A2) (t1 T1, t2 T2, ok bool) {
|
||||
if t1, ok := f1(a1); ok {
|
||||
if t2, ok := f2(a2); ok {
|
||||
return t1, t2, true
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseTuple3 converts a [Tuple3] of [A] via transformation functions transforming [A] to [Option[A]] into a [Option[Tuple3]].
|
||||
func TraverseTuple3[F1 ~Kleisli[A1, T1], F2 ~Kleisli[A2, T2], F3 ~Kleisli[A3, T3], A1, T1, A2, T2, A3, T3 any](f1 F1, f2 F2, f3 F3) func(A1, A2, A3) (T1, T2, T3, bool) {
|
||||
return func(a1 A1, a2 A2, a3 A3) (t1 T1, t2 T2, t3 T3, ok bool) {
|
||||
if t1, ok := f1(a1); ok {
|
||||
if t2, ok := f2(a2); ok {
|
||||
if t3, ok := f3(a3); ok {
|
||||
return t1, t2, t3, true
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseTuple4 converts a [Tuple4] of [A] via transformation functions transforming [A] to [Option[A]] into a [Option[Tuple4]].
|
||||
func TraverseTuple4[F1 ~Kleisli[A1, T1], F2 ~Kleisli[A2, T2], F3 ~Kleisli[A3, T3], F4 ~Kleisli[A4, T4], A1, T1, A2, T2, A3, T3, A4, T4 any](f1 F1, f2 F2, f3 F3, f4 F4) func(A1, A2, A3, A4) (T1, T2, T3, T4, bool) {
|
||||
return func(a1 A1, a2 A2, a3 A3, a4 A4) (t1 T1, t2 T2, t3 T3, t4 T4, ok bool) {
|
||||
if t1, ok := f1(a1); ok {
|
||||
if t2, ok := f2(a2); ok {
|
||||
if t3, ok := f3(a3); ok {
|
||||
if t4, ok := f4(a4); ok {
|
||||
return t1, t2, t3, t4, true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseTuple5 converts a [Tuple5] of [A] via transformation functions transforming [A] to [Option[A]] into a [Option[Tuple5]].
|
||||
func TraverseTuple5[F1 ~Kleisli[A1, T1], F2 ~Kleisli[A2, T2], F3 ~Kleisli[A3, T3], F4 ~Kleisli[A4, T4], F5 ~Kleisli[A5, T5], A1, T1, A2, T2, A3, T3, A4, T4, A5, T5 any](f1 F1, f2 F2, f3 F3, f4 F4, f5 F5) func(A1, A2, A3, A4, A5) (T1, T2, T3, T4, T5, bool) {
|
||||
return func(a1 A1, a2 A2, a3 A3, a4 A4, a5 A5) (t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, ok bool) {
|
||||
if t1, ok := f1(a1); ok {
|
||||
if t2, ok := f2(a2); ok {
|
||||
if t3, ok := f3(a3); ok {
|
||||
if t4, ok := f4(a4); ok {
|
||||
if t5, ok := f5(a5); ok {
|
||||
return t1, t2, t3, t4, t5, true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseTuple6 converts a [Tuple6] of [A] via transformation functions transforming [A] to [Option[A]] into a [Option[Tuple6]].
|
||||
func TraverseTuple6[F1 ~Kleisli[A1, T1], F2 ~Kleisli[A2, T2], F3 ~Kleisli[A3, T3], F4 ~Kleisli[A4, T4], F5 ~Kleisli[A5, T5], F6 ~Kleisli[A6, T6], A1, T1, A2, T2, A3, T3, A4, T4, A5, T5, A6, T6 any](f1 F1, f2 F2, f3 F3, f4 F4, f5 F5, f6 F6) func(A1, A2, A3, A4, A5, A6) (T1, T2, T3, T4, T5, T6, bool) {
|
||||
return func(a1 A1, a2 A2, a3 A3, a4 A4, a5 A5, a6 A6) (t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6, ok bool) {
|
||||
if t1, ok := f1(a1); ok {
|
||||
if t2, ok := f2(a2); ok {
|
||||
if t3, ok := f3(a3); ok {
|
||||
if t4, ok := f4(a4); ok {
|
||||
if t5, ok := f5(a5); ok {
|
||||
if t6, ok := f6(a6); ok {
|
||||
return t1, t2, t3, t4, t5, t6, true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseTuple7 converts a [Tuple7] of [A] via transformation functions transforming [A] to [Option[A]] into a [Option[Tuple7]].
|
||||
func TraverseTuple7[F1 ~Kleisli[A1, T1], F2 ~Kleisli[A2, T2], F3 ~Kleisli[A3, T3], F4 ~Kleisli[A4, T4], F5 ~Kleisli[A5, T5], F6 ~Kleisli[A6, T6], F7 ~Kleisli[A7, T7], A1, T1, A2, T2, A3, T3, A4, T4, A5, T5, A6, T6, A7, T7 any](f1 F1, f2 F2, f3 F3, f4 F4, f5 F5, f6 F6, f7 F7) func(A1, A2, A3, A4, A5, A6, A7) (T1, T2, T3, T4, T5, T6, T7, bool) {
|
||||
return func(a1 A1, a2 A2, a3 A3, a4 A4, a5 A5, a6 A6, a7 A7) (t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6, t7 T7, ok bool) {
|
||||
if t1, ok := f1(a1); ok {
|
||||
if t2, ok := f2(a2); ok {
|
||||
if t3, ok := f3(a3); ok {
|
||||
if t4, ok := f4(a4); ok {
|
||||
if t5, ok := f5(a5); ok {
|
||||
if t6, ok := f6(a6); ok {
|
||||
if t7, ok := f7(a7); ok {
|
||||
return t1, t2, t3, t4, t5, t6, t7, true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseTuple8 converts a [Tuple8] of [A] via transformation functions transforming [A] to [Option[A]] into a [Option[Tuple8]].
|
||||
func TraverseTuple8[F1 ~Kleisli[A1, T1], F2 ~Kleisli[A2, T2], F3 ~Kleisli[A3, T3], F4 ~Kleisli[A4, T4], F5 ~Kleisli[A5, T5], F6 ~Kleisli[A6, T6], F7 ~Kleisli[A7, T7], F8 ~Kleisli[A8, T8], A1, T1, A2, T2, A3, T3, A4, T4, A5, T5, A6, T6, A7, T7, A8, T8 any](f1 F1, f2 F2, f3 F3, f4 F4, f5 F5, f6 F6, f7 F7, f8 F8) func(A1, A2, A3, A4, A5, A6, A7, A8) (T1, T2, T3, T4, T5, T6, T7, T8, bool) {
|
||||
return func(a1 A1, a2 A2, a3 A3, a4 A4, a5 A5, a6 A6, a7 A7, a8 A8) (t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6, t7 T7, t8 T8, ok bool) {
|
||||
if t1, ok := f1(a1); ok {
|
||||
if t2, ok := f2(a2); ok {
|
||||
if t3, ok := f3(a3); ok {
|
||||
if t4, ok := f4(a4); ok {
|
||||
if t5, ok := f5(a5); ok {
|
||||
if t6, ok := f6(a6); ok {
|
||||
if t7, ok := f7(a7); ok {
|
||||
if t8, ok := f8(a8); ok {
|
||||
return t1, t2, t3, t4, t5, t6, t7, t8, true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseTuple9 converts a [Tuple9] of [A] via transformation functions transforming [A] to [Option[A]] into a [Option[Tuple9]].
|
||||
func TraverseTuple9[F1 ~Kleisli[A1, T1], F2 ~Kleisli[A2, T2], F3 ~Kleisli[A3, T3], F4 ~Kleisli[A4, T4], F5 ~Kleisli[A5, T5], F6 ~Kleisli[A6, T6], F7 ~Kleisli[A7, T7], F8 ~Kleisli[A8, T8], F9 ~Kleisli[A9, T9], A1, T1, A2, T2, A3, T3, A4, T4, A5, T5, A6, T6, A7, T7, A8, T8, A9, T9 any](f1 F1, f2 F2, f3 F3, f4 F4, f5 F5, f6 F6, f7 F7, f8 F8, f9 F9) func(A1, A2, A3, A4, A5, A6, A7, A8, A9) (T1, T2, T3, T4, T5, T6, T7, T8, T9, bool) {
|
||||
return func(a1 A1, a2 A2, a3 A3, a4 A4, a5 A5, a6 A6, a7 A7, a8 A8, a9 A9) (t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6, t7 T7, t8 T8, t9 T9, ok bool) {
|
||||
if t1, ok := f1(a1); ok {
|
||||
if t2, ok := f2(a2); ok {
|
||||
if t3, ok := f3(a3); ok {
|
||||
if t4, ok := f4(a4); ok {
|
||||
if t5, ok := f5(a5); ok {
|
||||
if t6, ok := f6(a6); ok {
|
||||
if t7, ok := f7(a7); ok {
|
||||
if t8, ok := f8(a8); ok {
|
||||
if t9, ok := f9(a9); ok {
|
||||
return t1, t2, t3, t4, t5, t6, t7, t8, t9, true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseTuple10 converts a [Tuple10] of [A] via transformation functions transforming [A] to [Option[A]] into a [Option[Tuple10]].
|
||||
func TraverseTuple10[F1 ~Kleisli[A1, T1], F2 ~Kleisli[A2, T2], F3 ~Kleisli[A3, T3], F4 ~Kleisli[A4, T4], F5 ~Kleisli[A5, T5], F6 ~Kleisli[A6, T6], F7 ~Kleisli[A7, T7], F8 ~Kleisli[A8, T8], F9 ~Kleisli[A9, T9], F10 ~Kleisli[A10, T10], A1, T1, A2, T2, A3, T3, A4, T4, A5, T5, A6, T6, A7, T7, A8, T8, A9, T9, A10, T10 any](f1 F1, f2 F2, f3 F3, f4 F4, f5 F5, f6 F6, f7 F7, f8 F8, f9 F9, f10 F10) func(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) (T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, bool) {
|
||||
return func(a1 A1, a2 A2, a3 A3, a4 A4, a5 A5, a6 A6, a7 A7, a8 A8, a9 A9, a10 A10) (t1 T1, t2 T2, t3 T3, t4 T4, t5 T5, t6 T6, t7 T7, t8 T8, t9 T9, t10 T10, ok bool) {
|
||||
if t1, ok := f1(a1); ok {
|
||||
if t2, ok := f2(a2); ok {
|
||||
if t3, ok := f3(a3); ok {
|
||||
if t4, ok := f4(a4); ok {
|
||||
if t5, ok := f5(a5); ok {
|
||||
if t6, ok := f6(a6); ok {
|
||||
if t7, ok := f7(a7); ok {
|
||||
if t8, ok := f8(a8); ok {
|
||||
if t9, ok := f9(a9); ok {
|
||||
if t10, ok := f10(a10); ok {
|
||||
return t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
69
v2/idiomatic/option/iter.go
Normal file
69
v2/idiomatic/option/iter.go
Normal file
@@ -0,0 +1,69 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
I "github.com/IBM/fp-go/v2/iterator/iter"
|
||||
)
|
||||
|
||||
// TraverseIter transforms a sequence by applying a function that returns an Option to each element.
|
||||
// Returns Some containing a sequence of results if all operations succeed, None if any fails.
|
||||
// This function is useful for processing sequences where each element may fail validation or transformation.
|
||||
//
|
||||
// The traversal short-circuits on the first None encountered, making it efficient for validation pipelines.
|
||||
// The resulting sequence is lazy and will only be evaluated when iterated.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Parse a sequence of strings to integers
|
||||
// parse := func(s string) Option[int] {
|
||||
// n, err := strconv.Atoi(s)
|
||||
// if err != nil { return None[int]() }
|
||||
// return Some(n)
|
||||
// }
|
||||
//
|
||||
// // Create a sequence of strings
|
||||
// strings := func(yield func(string) bool) {
|
||||
// for _, s := range []string{"1", "2", "3"} {
|
||||
// if !yield(s) { return }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// result := TraverseIter(parse)(strings)
|
||||
// // result is Some(sequence of [1, 2, 3])
|
||||
//
|
||||
// // With invalid input
|
||||
// invalidStrings := func(yield func(string) bool) {
|
||||
// for _, s := range []string{"1", "invalid", "3"} {
|
||||
// if !yield(s) { return }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// result := TraverseIter(parse)(invalidStrings)
|
||||
// // result is None because "invalid" cannot be parsed
|
||||
func TraverseIter[A, B any](f Kleisli[A, B]) Kleisli[Seq[A], Seq[B]] {
|
||||
return func(s Seq[A]) (Seq[B], bool) {
|
||||
var bs []B
|
||||
for a := range s {
|
||||
b, bok := f(a)
|
||||
if !bok {
|
||||
return nil, false
|
||||
}
|
||||
bs = append(bs, b)
|
||||
}
|
||||
return I.From(bs...), true
|
||||
}
|
||||
}
|
||||
325
v2/idiomatic/option/iter_test.go
Normal file
325
v2/idiomatic/option/iter_test.go
Normal file
@@ -0,0 +1,325 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"slices"
|
||||
"strconv"
|
||||
"testing"
|
||||
|
||||
A "github.com/IBM/fp-go/v2/array"
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
I "github.com/IBM/fp-go/v2/iterator/iter"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// Helper function to create a sequence from a slice
|
||||
func seqFromSlice[T any](items []T) Seq[T] {
|
||||
return I.From(items...)
|
||||
}
|
||||
|
||||
// Helper function to collect a sequence into a slice
|
||||
func collectSeq[T any](seq Seq[T]) []T {
|
||||
return slices.Collect(seq)
|
||||
}
|
||||
|
||||
func TestTraverseIter_AllSome(t *testing.T) {
|
||||
// Test case where all transformations succeed
|
||||
parse := func(s string) (int, bool) {
|
||||
n, err := strconv.Atoi(s)
|
||||
if err != nil {
|
||||
return None[int]()
|
||||
}
|
||||
return Some(n)
|
||||
}
|
||||
|
||||
input := I.From("1", "2", "3", "4", "5")
|
||||
result, resultok := TraverseIter(parse)(input)
|
||||
|
||||
assert.True(t, IsSome(result, resultok), "Expected Some result when all transformations succeed")
|
||||
|
||||
collected := collectSeq(result)
|
||||
expected := A.From(1, 2, 3, 4, 5)
|
||||
assert.Equal(t, expected, collected)
|
||||
}
|
||||
|
||||
func TestTraverseIter_ContainsNone(t *testing.T) {
|
||||
// Test case where one transformation fails
|
||||
parse := func(s string) (int, bool) {
|
||||
n, err := strconv.Atoi(s)
|
||||
if err != nil {
|
||||
return None[int]()
|
||||
}
|
||||
return Some(n)
|
||||
}
|
||||
|
||||
input := seqFromSlice([]string{"1", "invalid", "3"})
|
||||
result, resultok := TraverseIter(parse)(input)
|
||||
|
||||
assert.True(t, IsNone(result, resultok), "Expected None when any transformation fails")
|
||||
}
|
||||
|
||||
func TestTraverseIter_EmptySequence(t *testing.T) {
|
||||
// Test with empty sequence
|
||||
double := func(x int) (int, bool) {
|
||||
return Some(x * 2)
|
||||
}
|
||||
|
||||
input := seqFromSlice([]int{})
|
||||
result, resultok := TraverseIter(double)(input)
|
||||
|
||||
assert.True(t, IsSome(result, resultok), "Expected Some for empty sequence")
|
||||
|
||||
collected := collectSeq(result)
|
||||
assert.Empty(t, collected)
|
||||
}
|
||||
|
||||
func TestTraverseIter_SingleElement(t *testing.T) {
|
||||
// Test with single element - success case
|
||||
validate := func(x int) (int, bool) {
|
||||
if x > 0 {
|
||||
return Some(x * 2)
|
||||
}
|
||||
return None[int]()
|
||||
}
|
||||
|
||||
input := seqFromSlice([]int{5})
|
||||
result, resultok := TraverseIter(validate)(input)
|
||||
|
||||
assert.True(t, IsSome(result, resultok))
|
||||
collected := collectSeq(result)
|
||||
assert.Equal(t, []int{10}, collected)
|
||||
}
|
||||
|
||||
func TestTraverseIter_SingleElementFails(t *testing.T) {
|
||||
// Test with single element - failure case
|
||||
validate := func(x int) (int, bool) {
|
||||
if x > 0 {
|
||||
return Some(x * 2)
|
||||
}
|
||||
return None[int]()
|
||||
}
|
||||
|
||||
input := seqFromSlice([]int{-5})
|
||||
result, resultok := TraverseIter(validate)(input)
|
||||
|
||||
assert.True(t, IsNone(result, resultok))
|
||||
}
|
||||
|
||||
func TestTraverseIter_Validation(t *testing.T) {
|
||||
// Test validation use case
|
||||
validatePositive := func(x int) (int, bool) {
|
||||
if x > 0 {
|
||||
return Some(x)
|
||||
}
|
||||
return None[int]()
|
||||
}
|
||||
|
||||
// All positive
|
||||
input1 := seqFromSlice([]int{1, 2, 3, 4})
|
||||
result1, result1ok := TraverseIter(validatePositive)(input1)
|
||||
assert.True(t, IsSome(result1, result1ok))
|
||||
|
||||
// Contains negative
|
||||
input2 := seqFromSlice([]int{1, -2, 3})
|
||||
result2, result2ok := TraverseIter(validatePositive)(input2)
|
||||
assert.True(t, IsNone(result2, result2ok))
|
||||
|
||||
// Contains zero
|
||||
input3 := seqFromSlice([]int{1, 0, 3})
|
||||
result3, result3ok := TraverseIter(validatePositive)(input3)
|
||||
assert.True(t, IsNone(result3, result3ok))
|
||||
}
|
||||
|
||||
func TestTraverseIter_Transformation(t *testing.T) {
|
||||
// Test transformation use case
|
||||
safeDivide := func(x int) (float64, bool) {
|
||||
if x != 0 {
|
||||
return Some(100.0 / float64(x))
|
||||
}
|
||||
return None[float64]()
|
||||
}
|
||||
|
||||
// All non-zero
|
||||
input1 := seqFromSlice([]int{1, 2, 4, 5})
|
||||
result1, result1ok := TraverseIter(safeDivide)(input1)
|
||||
assert.True(t, IsSome(result1, result1ok))
|
||||
|
||||
collected := collectSeq(result1)
|
||||
expected := []float64{100.0, 50.0, 25.0, 20.0}
|
||||
assert.Equal(t, expected, collected)
|
||||
|
||||
// Contains zero
|
||||
input2 := seqFromSlice([]int{1, 0, 4})
|
||||
result2, result2ok := TraverseIter(safeDivide)(input2)
|
||||
assert.True(t, IsNone(result2, result2ok))
|
||||
}
|
||||
|
||||
func TestTraverseIter_ShortCircuit(t *testing.T) {
|
||||
// Test that traversal short-circuits on first None
|
||||
callCount := 0
|
||||
countingFunc := func(x int) (int, bool) {
|
||||
callCount++
|
||||
if x < 0 {
|
||||
return None[int]()
|
||||
}
|
||||
return Some(x * 2)
|
||||
}
|
||||
|
||||
// First element fails
|
||||
input := seqFromSlice([]int{-1, 2, 3, 4, 5})
|
||||
result, resultok := TraverseIter(countingFunc)(input)
|
||||
|
||||
assert.True(t, IsNone(result, resultok))
|
||||
// Should have called the function for elements until the first failure
|
||||
// Note: The exact count depends on implementation details of the traverse function
|
||||
assert.Greater(t, callCount, 0, "Function should be called at least once")
|
||||
}
|
||||
|
||||
func TestTraverseIter_LazyEvaluation(t *testing.T) {
|
||||
// Test that the result sequence is lazy
|
||||
transform := func(x int) (int, bool) {
|
||||
return Some(x * 2)
|
||||
}
|
||||
|
||||
input := seqFromSlice([]int{1, 2, 3, 4, 5})
|
||||
result, resultok := TraverseIter(transform)(input)
|
||||
|
||||
assert.True(t, IsSome(result, resultok))
|
||||
|
||||
// Partially consume the sequence
|
||||
callCount := 0
|
||||
Fold(func() int { return 0 }, func(seq Seq[int]) int {
|
||||
for val := range seq {
|
||||
callCount++
|
||||
_ = val
|
||||
if callCount == 2 {
|
||||
break
|
||||
}
|
||||
}
|
||||
return callCount
|
||||
})(result, resultok)
|
||||
|
||||
assert.Equal(t, 2, callCount, "Should only evaluate consumed elements")
|
||||
}
|
||||
|
||||
func TestTraverseIter_ComplexTransformation(t *testing.T) {
|
||||
// Test with more complex transformation
|
||||
type Person struct {
|
||||
Name string
|
||||
Age int
|
||||
}
|
||||
|
||||
validatePerson := func(name string) (Person, bool) {
|
||||
if name == "" {
|
||||
return None[Person]()
|
||||
}
|
||||
return Some(Person{Name: name, Age: len(name)})
|
||||
}
|
||||
|
||||
input := seqFromSlice([]string{"Alice", "Bob", "Charlie"})
|
||||
result, resultok := TraverseIter(validatePerson)(input)
|
||||
|
||||
assert.True(t, IsSome(result, resultok))
|
||||
|
||||
collected := collectSeq((result))
|
||||
expected := []Person{
|
||||
{Name: "Alice", Age: 5},
|
||||
{Name: "Bob", Age: 3},
|
||||
{Name: "Charlie", Age: 7},
|
||||
}
|
||||
assert.Equal(t, expected, collected)
|
||||
}
|
||||
|
||||
func TestTraverseIter_WithPipeline(t *testing.T) {
|
||||
// Test TraverseIter in a functional pipeline
|
||||
parse := func(s string) (int, bool) {
|
||||
n, err := strconv.Atoi(s)
|
||||
if err != nil {
|
||||
return None[int]()
|
||||
}
|
||||
return Some(n)
|
||||
}
|
||||
|
||||
input := seqFromSlice([]string{"1", "2", "3", "4", "5"})
|
||||
|
||||
collected := Fold(func() []int { return nil }, F.Identity[[]int])(Map(collectSeq[int])(TraverseIter(parse)(input)))
|
||||
expected := []int{1, 2, 3, 4, 5}
|
||||
assert.Equal(t, expected, collected)
|
||||
}
|
||||
|
||||
func TestTraverseIter_ChainedTransformations(t *testing.T) {
|
||||
// Test chaining multiple transformations
|
||||
parseAndValidate := func(s string) (int, bool) {
|
||||
n, err := strconv.Atoi(s)
|
||||
if err != nil {
|
||||
return None[int]()
|
||||
}
|
||||
if n > 0 {
|
||||
return Some(n)
|
||||
}
|
||||
return None[int]()
|
||||
}
|
||||
|
||||
// All valid
|
||||
input1 := seqFromSlice([]string{"1", "2", "3"})
|
||||
result1, result1ok := TraverseIter(parseAndValidate)(input1)
|
||||
assert.True(t, IsSome(result1, result1ok))
|
||||
|
||||
// Contains invalid number
|
||||
input2 := seqFromSlice([]string{"1", "invalid", "3"})
|
||||
result2, result2ok := TraverseIter(parseAndValidate)(input2)
|
||||
assert.True(t, IsNone(result2, result2ok))
|
||||
|
||||
// Contains non-positive number
|
||||
input3 := seqFromSlice([]string{"1", "0", "3"})
|
||||
result3, result3ok := TraverseIter(parseAndValidate)(input3)
|
||||
assert.True(t, IsNone(result3, result3ok))
|
||||
}
|
||||
|
||||
// Example test demonstrating usage
|
||||
func ExampleTraverseIter() {
|
||||
// Parse a sequence of strings to integers
|
||||
parse := func(s string) (int, bool) {
|
||||
n, err := strconv.Atoi(s)
|
||||
if err != nil {
|
||||
return None[int]()
|
||||
}
|
||||
return Some(n)
|
||||
}
|
||||
|
||||
// Create a sequence of valid strings
|
||||
validStrings := seqFromSlice([]string{"1", "2", "3"})
|
||||
result, resultok := TraverseIter(parse)(validStrings)
|
||||
|
||||
if IsSome(result, resultok) {
|
||||
numbers := collectSeq(result)
|
||||
fmt.Println(numbers)
|
||||
}
|
||||
|
||||
// Create a sequence with invalid string
|
||||
invalidStrings := seqFromSlice([]string{"1", "invalid", "3"})
|
||||
result2, result2ok := TraverseIter(parse)(invalidStrings)
|
||||
|
||||
if IsNone(result2, result2ok) {
|
||||
fmt.Println("Parsing failed")
|
||||
}
|
||||
|
||||
// Output:
|
||||
// [1 2 3]
|
||||
// Parsing failed
|
||||
}
|
||||
61
v2/idiomatic/option/logger.go
Normal file
61
v2/idiomatic/option/logger.go
Normal file
@@ -0,0 +1,61 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"log"
|
||||
|
||||
L "github.com/IBM/fp-go/v2/logging"
|
||||
)
|
||||
|
||||
func _log[A any](left func(string, ...any), right func(string, ...any), prefix string) Operator[A, A] {
|
||||
return func(a A, aok bool) (A, bool) {
|
||||
if aok {
|
||||
right("%s: %v", prefix, a)
|
||||
} else {
|
||||
left("%s", prefix)
|
||||
}
|
||||
return a, aok
|
||||
}
|
||||
}
|
||||
|
||||
// Logger creates a logging function for Options that logs the state (None or Some with value)
|
||||
// and returns the original Option unchanged. This is useful for debugging pipelines.
|
||||
//
|
||||
// Parameters:
|
||||
// - loggers: optional log.Logger instances to use for logging (defaults to standard logger)
|
||||
//
|
||||
// Returns a function that takes a prefix string and returns a function that logs and passes through an Option.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// logger := Logger[int]()
|
||||
// result := F.Pipe2(
|
||||
// Some(42),
|
||||
// logger("step1"), // logs "step1: 42"
|
||||
// Map(N.Mul(2)),
|
||||
// ) // Some(84)
|
||||
//
|
||||
// result := F.Pipe1(
|
||||
// None[int](),
|
||||
// logger("step1"), // logs "step1"
|
||||
// ) // None
|
||||
func Logger[A any](loggers ...*log.Logger) func(string) Operator[A, A] {
|
||||
left, right := L.LoggingCallbacks(loggers...)
|
||||
return func(prefix string) Operator[A, A] {
|
||||
return _log[A](left, right, prefix)
|
||||
}
|
||||
}
|
||||
61
v2/idiomatic/option/monad._go
Normal file
61
v2/idiomatic/option/monad._go
Normal file
@@ -0,0 +1,61 @@
|
||||
// Copyright (c) 2024 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/internal/monad"
|
||||
)
|
||||
|
||||
type (
|
||||
optionMonad[A, B any] struct{}
|
||||
)
|
||||
|
||||
func (o *optionMonad[A, B]) Of(a A) Option[A] {
|
||||
return Of(a)
|
||||
}
|
||||
|
||||
func (o *optionMonad[A, B]) Map(f func(A) B) Operator[A, B] {
|
||||
return Map(f)
|
||||
}
|
||||
|
||||
func (o *optionMonad[A, B]) Chain(f Kleisli[A, B]) Operator[A, B] {
|
||||
return Chain(f)
|
||||
}
|
||||
|
||||
func (o *optionMonad[A, B]) Ap(fa Option[A]) func(Option[func(A) B]) Option[B] {
|
||||
return Ap[B](fa)
|
||||
}
|
||||
|
||||
// Monad implements the monadic operations for Option.
|
||||
// A monad provides a way to chain computations that may fail, handling the
|
||||
// None case automatically.
|
||||
//
|
||||
// The monad interface includes:
|
||||
// - Of: wraps a value in an Option
|
||||
// - Map: transforms the contained value
|
||||
// - Chain: sequences Option-returning operations
|
||||
// - Ap: applies an Option-wrapped function to an Option-wrapped value
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// m := Monad[int, string]()
|
||||
// result := m.Chain(func(x int) Option[string] {
|
||||
// if x > 0 { return Some(fmt.Sprintf("%d", x)) }
|
||||
// return None[string]()
|
||||
// })(Some(42)) // Some("42")
|
||||
func Monad[A, B any]() monad.Monad[A, B, Option[A], Option[B], Option[func(A) B]] {
|
||||
return &optionMonad[A, B]{}
|
||||
}
|
||||
111
v2/idiomatic/option/monoid._go
Normal file
111
v2/idiomatic/option/monoid._go
Normal file
@@ -0,0 +1,111 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
)
|
||||
|
||||
// Semigroup returns a function that lifts a Semigroup over type A to a Semigroup over Option[A].
|
||||
// The resulting semigroup combines two Options according to these rules:
|
||||
// - If both are Some, concatenates their values using the provided Semigroup
|
||||
// - If one is None, returns the other
|
||||
// - If both are None, returns None
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// intSemigroup := semigroup.MakeSemigroup(func(a, b int) int { return a + b })
|
||||
// optSemigroup := Semigroup[int]()(intSemigroup)
|
||||
// optSemigroup.Concat(Some(2), Some(3)) // Some(5)
|
||||
// optSemigroup.Concat(Some(2), None[int]()) // Some(2)
|
||||
// optSemigroup.Concat(None[int](), Some(3)) // Some(3)
|
||||
func Semigroup[A any]() func(S.Semigroup[A]) S.Semigroup[Option[A]] {
|
||||
return func(s S.Semigroup[A]) S.Semigroup[Option[A]] {
|
||||
concat := s.Concat
|
||||
return S.MakeSemigroup(
|
||||
func(x, y Option[A]) Option[A] {
|
||||
return MonadFold(x, F.Constant(y), func(left A) Option[A] {
|
||||
return MonadFold(y, F.Constant(x), func(right A) Option[A] {
|
||||
return Some(concat(left, right))
|
||||
})
|
||||
})
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// Monoid returns a function that lifts a Semigroup over type A to a Monoid over Option[A].
|
||||
// The monoid returns the left-most non-None value. If both operands are Some, their inner
|
||||
// values are concatenated using the provided Semigroup. The empty value is None.
|
||||
//
|
||||
// Truth table:
|
||||
//
|
||||
// | x | y | concat(x, y) |
|
||||
// | ------- | ------- | ------------------ |
|
||||
// | none | none | none |
|
||||
// | some(a) | none | some(a) |
|
||||
// | none | some(b) | some(b) |
|
||||
// | some(a) | some(b) | some(concat(a, b)) |
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// intSemigroup := semigroup.MakeSemigroup(func(a, b int) int { return a + b })
|
||||
// optMonoid := Monoid[int]()(intSemigroup)
|
||||
// optMonoid.Concat(Some(2), Some(3)) // Some(5)
|
||||
// optMonoid.Empty() // None
|
||||
func Monoid[A any]() func(S.Semigroup[A]) M.Monoid[Option[A]] {
|
||||
sg := Semigroup[A]()
|
||||
return func(s S.Semigroup[A]) M.Monoid[Option[A]] {
|
||||
return M.MakeMonoid(sg(s).Concat, None[A]())
|
||||
}
|
||||
}
|
||||
|
||||
// AlternativeMonoid creates a Monoid for Option[A] using the alternative semantics.
|
||||
// This combines the applicative functor structure with the alternative (Alt) operation.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// intMonoid := monoid.MakeMonoid(func(a, b int) int { return a + b }, 0)
|
||||
// optMonoid := AlternativeMonoid(intMonoid)
|
||||
// result := optMonoid.Concat(Some(2), Some(3)) // Some(5)
|
||||
func AlternativeMonoid[A any](m M.Monoid[A]) M.Monoid[Option[A]] {
|
||||
return M.AlternativeMonoid(
|
||||
Of[A],
|
||||
MonadMap[A, func(A) A],
|
||||
MonadAp[A, A],
|
||||
MonadAlt[A],
|
||||
m,
|
||||
)
|
||||
}
|
||||
|
||||
// AltMonoid creates a Monoid for Option[A] using the Alt operation.
|
||||
// This monoid returns the first Some value, or None if both are None.
|
||||
// The empty value is None.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// optMonoid := AltMonoid[int]()
|
||||
// optMonoid.Concat(Some(2), Some(3)) // Some(2) - returns first Some
|
||||
// optMonoid.Concat(None[int](), Some(3)) // Some(3)
|
||||
// optMonoid.Empty() // None
|
||||
func AltMonoid[A any]() M.Monoid[Option[A]] {
|
||||
return M.AltMonoid(
|
||||
None[A],
|
||||
MonadAlt[A],
|
||||
)
|
||||
}
|
||||
45
v2/idiomatic/option/number/number.go
Normal file
45
v2/idiomatic/option/number/number.go
Normal file
@@ -0,0 +1,45 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Package number provides Option-based utilities for number conversions.
|
||||
package number
|
||||
|
||||
import (
|
||||
"strconv"
|
||||
)
|
||||
|
||||
// Atoi converts a string to an integer, returning Some(int) on success or None on failure.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// result := Atoi("42") // Some(42)
|
||||
// result := Atoi("abc") // None
|
||||
// result := Atoi("") // None
|
||||
func Atoi(value string) (int, bool) {
|
||||
data, err := strconv.Atoi(value)
|
||||
return data, err == nil
|
||||
}
|
||||
|
||||
// Itoa converts an integer to a string, always returning Some(string).
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// result := Itoa(42) // Some("42")
|
||||
// result := Itoa(-10) // Some("-10")
|
||||
// result := Itoa(0) // Some("0")
|
||||
func Itoa(value int) (string, bool) {
|
||||
return strconv.Itoa(value), true
|
||||
|
||||
}
|
||||
329
v2/idiomatic/option/option.go
Normal file
329
v2/idiomatic/option/option.go
Normal file
@@ -0,0 +1,329 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Package option implements the Option monad using idiomatic Go data types.
|
||||
//
|
||||
// Unlike the standard option package which uses wrapper structs, this package represents
|
||||
// Options as tuples (value, bool) where the boolean indicates presence (true) or absence (false).
|
||||
// This approach is more idiomatic in Go and has better performance characteristics.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Creating Options
|
||||
// some := Some(42) // (42, true)
|
||||
// none := None[int]() // (0, false)
|
||||
//
|
||||
// // Using Options
|
||||
// result, ok := some // ok == true, result == 42
|
||||
// result, ok := none // ok == false, result == 0
|
||||
//
|
||||
// // Transforming Options
|
||||
// doubled := Map(func(x int) int { return x * 2 })(some) // (84, true)
|
||||
package option
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/eq"
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
P "github.com/IBM/fp-go/v2/predicate"
|
||||
)
|
||||
|
||||
// FromPredicate returns a function that creates an Option based on a predicate.
|
||||
// The returned function will wrap a value in Some if the predicate is satisfied, otherwise None.
|
||||
//
|
||||
// Parameters:
|
||||
// - pred: A predicate function that determines if a value should be wrapped in Some
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// isPositive := FromPredicate(func(n int) bool { return n > 0 })
|
||||
// result := isPositive(5) // Some(5)
|
||||
// result := isPositive(-1) // None
|
||||
func FromPredicate[A any](pred func(A) bool) Kleisli[A, A] {
|
||||
return func(a A) (A, bool) {
|
||||
return a, pred(a)
|
||||
}
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func FromZero[A comparable]() Kleisli[A, A] {
|
||||
return FromPredicate(P.IsZero[A]())
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func FromNonZero[A comparable]() Kleisli[A, A] {
|
||||
return FromPredicate(P.IsNonZero[A]())
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func FromEq[A any](pred eq.Eq[A]) func(A) Kleisli[A, A] {
|
||||
return F.Flow2(P.IsEqual(pred), FromPredicate[A])
|
||||
}
|
||||
|
||||
// FromNillable converts a pointer to an Option.
|
||||
// Returns Some if the pointer is non-nil, None otherwise.
|
||||
//
|
||||
// Parameters:
|
||||
// - a: A pointer that may be nil
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// var ptr *int = nil
|
||||
// result := FromNillable(ptr) // None
|
||||
// val := 42
|
||||
// result := FromNillable(&val) // Some(&val)
|
||||
func FromNillable[A any](a *A) (*A, bool) {
|
||||
return a, F.IsNonNil(a)
|
||||
}
|
||||
|
||||
// Ap is the curried applicative functor for Option.
|
||||
// Returns a function that applies an Option-wrapped function to the given Option value.
|
||||
//
|
||||
// Parameters:
|
||||
// - fa: The value of the Option
|
||||
// - faok: Whether the Option contains a value (true for Some, false for None)
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// fa := Some(5)
|
||||
// applyTo5 := Ap[int](fa)
|
||||
// fab := Some(N.Mul(2))
|
||||
// result := applyTo5(fab) // Some(10)
|
||||
func Ap[B, A any](fa A, faok bool) Operator[func(A) B, B] {
|
||||
if faok {
|
||||
return func(fab func(A) B, fabok bool) (b B, bok bool) {
|
||||
if fabok {
|
||||
return fab(fa), true
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
return func(_ func(A) B, _ bool) (b B, bok bool) {
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// Map returns a function that applies a transformation to the value inside an Option.
|
||||
// If the Option is None, returns None.
|
||||
//
|
||||
// Parameters:
|
||||
// - f: A transformation function to apply to the Option value
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// double := Map(N.Mul(2))
|
||||
// result := double(Some(5)) // Some(10)
|
||||
// result := double(None[int]()) // None
|
||||
func Map[A, B any](f func(a A) B) Operator[A, B] {
|
||||
return func(fa A, faok bool) (b B, bok bool) {
|
||||
if faok {
|
||||
return f(fa), true
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// MapTo returns a function that replaces the value inside an Option with a constant.
|
||||
//
|
||||
// Parameters:
|
||||
// - b: The constant value to replace with
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// replaceWith42 := MapTo[string, int](42)
|
||||
// result := replaceWith42(Some("hello")) // Some(42)
|
||||
func MapTo[A, B any](b B) Operator[A, B] {
|
||||
return func(_ A, faok bool) (B, bool) {
|
||||
return b, faok
|
||||
}
|
||||
}
|
||||
|
||||
// Fold provides a way to handle both Some and None cases of an Option.
|
||||
// Returns a function that applies onNone if the Option is None, or onSome if it's Some.
|
||||
//
|
||||
// Parameters:
|
||||
// - onNone: Function to call when the Option is None
|
||||
// - onSome: Function to call when the Option is Some, receives the wrapped value
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// handler := Fold(
|
||||
// func() string { return "no value" },
|
||||
// func(x int) string { return fmt.Sprintf("value: %d", x) },
|
||||
// )
|
||||
// result := handler(Some(42)) // "value: 42"
|
||||
// result := handler(None[int]()) // "no value"
|
||||
func Fold[A, B any](onNone func() B, onSome func(A) B) func(A, bool) B {
|
||||
return func(a A, aok bool) B {
|
||||
if aok {
|
||||
return onSome(a)
|
||||
}
|
||||
return onNone()
|
||||
}
|
||||
}
|
||||
|
||||
// GetOrElse returns a function that extracts the value from an Option or returns a default.
|
||||
//
|
||||
// Parameters:
|
||||
// - onNone: Function that provides the default value when the Option is None
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// getOrZero := GetOrElse(func() int { return 0 })
|
||||
// result := getOrZero(Some(42)) // 42
|
||||
// result := getOrZero(None[int]()) // 0
|
||||
func GetOrElse[A any](onNone func() A) func(A, bool) A {
|
||||
return func(a A, aok bool) A {
|
||||
if aok {
|
||||
return a
|
||||
}
|
||||
return onNone()
|
||||
}
|
||||
}
|
||||
|
||||
// Chain returns a function that applies an Option-returning function to an Option value.
|
||||
// This is the curried form of the monadic bind operation.
|
||||
//
|
||||
// Parameters:
|
||||
// - f: A function that takes a value and returns an Option
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// validate := Chain(func(x int) (int, bool) {
|
||||
// if x > 0 { return x * 2, true }
|
||||
// return 0, false
|
||||
// })
|
||||
// result := validate(Some(5)) // Some(10)
|
||||
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
|
||||
return func(a A, aok bool) (b B, bok bool) {
|
||||
if aok {
|
||||
return f(a)
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// ChainTo returns a function that ignores its input Option and returns a fixed Option.
|
||||
//
|
||||
// Parameters:
|
||||
// - b: The value of the replacement Option
|
||||
// - bok: Whether the replacement Option contains a value
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// replaceWith := ChainTo(Some("hello"))
|
||||
// result := replaceWith(Some(42)) // Some("hello")
|
||||
func ChainTo[A, B any](b B, bok bool) Operator[A, B] {
|
||||
return func(_ A, aok bool) (B, bool) {
|
||||
return b, bok && aok
|
||||
}
|
||||
}
|
||||
|
||||
// ChainFirst returns a function that applies an Option-returning function but keeps the original value.
|
||||
//
|
||||
// Parameters:
|
||||
// - f: A function that takes a value and returns an Option (result is used only for success/failure)
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// logAndKeep := ChainFirst(func(x int) (string, bool) {
|
||||
// fmt.Println(x)
|
||||
// return "logged", true
|
||||
// })
|
||||
// result := logAndKeep(Some(5)) // Some(5)
|
||||
func ChainFirst[A, B any](f Kleisli[A, B]) Operator[A, A] {
|
||||
return func(a A, aok bool) (A, bool) {
|
||||
if aok {
|
||||
_, bok := f(a)
|
||||
return a, bok
|
||||
}
|
||||
return a, false
|
||||
}
|
||||
}
|
||||
|
||||
// Alt returns a function that provides an alternative Option if the input is None.
|
||||
//
|
||||
// Parameters:
|
||||
// - that: A function that provides an alternative Option
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// withDefault := Alt(func() (int, bool) { return 0, true })
|
||||
// result := withDefault(Some(5)) // Some(5)
|
||||
// result := withDefault(None[int]()) // Some(0)
|
||||
func Alt[A any](that func() (A, bool)) Operator[A, A] {
|
||||
return func(a A, aok bool) (A, bool) {
|
||||
if aok {
|
||||
return a, aok
|
||||
}
|
||||
return that()
|
||||
}
|
||||
}
|
||||
|
||||
// Reduce folds an Option into a single value using a reducer function.
|
||||
// If the Option is None, returns the initial value.
|
||||
//
|
||||
// Parameters:
|
||||
// - f: A reducer function that combines the accumulator with the Option value
|
||||
// - initial: The initial/default value to use
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// sum := Reduce(func(acc, val int) int { return acc + val }, 0)
|
||||
// result := sum(Some(5)) // 5
|
||||
// result := sum(None[int]()) // 0
|
||||
func Reduce[A, B any](f func(B, A) B, initial B) func(A, bool) B {
|
||||
return func(a A, aok bool) B {
|
||||
if aok {
|
||||
return f(initial, a)
|
||||
}
|
||||
return initial
|
||||
}
|
||||
}
|
||||
|
||||
// Filter keeps the Option if it's Some and the predicate is satisfied, otherwise returns None.
|
||||
//
|
||||
// Parameters:
|
||||
// - pred: A predicate function to test the Option value
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// isPositive := Filter(func(x int) bool { return x > 0 })
|
||||
// result := isPositive(Some(5)) // Some(5)
|
||||
// result := isPositive(Some(-1)) // None
|
||||
// result := isPositive(None[int]()) // None
|
||||
func Filter[A any](pred func(A) bool) Operator[A, A] {
|
||||
return func(a A, aok bool) (A, bool) {
|
||||
return a, aok && pred(a)
|
||||
}
|
||||
}
|
||||
|
||||
// Flap returns a function that applies a value to an Option-wrapped function.
|
||||
//
|
||||
// Parameters:
|
||||
// - a: The value to apply to the function
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// applyFive := Flap[int](5)
|
||||
// fab := Some(N.Mul(2))
|
||||
// result := applyFive(fab) // Some(10)
|
||||
func Flap[B, A any](a A) Operator[func(A) B, B] {
|
||||
return func(f func(A) B, fabok bool) (b B, bok bool) {
|
||||
if fabok {
|
||||
return f(a), true
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
167
v2/idiomatic/option/option_coverage_test.go
Normal file
167
v2/idiomatic/option/option_coverage_test.go
Normal file
@@ -0,0 +1,167 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// Test Logger function
|
||||
func TestLogger(t *testing.T) {
|
||||
logger := Logger[int]()
|
||||
logFunc := logger("test")
|
||||
|
||||
// Test with Some
|
||||
result, resultok := logFunc(Some(42))
|
||||
AssertEq(Some(42))(result, resultok)(t)
|
||||
|
||||
// Test with None
|
||||
result, resultok = logFunc(None[int]())
|
||||
AssertEq(None[int]())(result, resultok)(t)
|
||||
}
|
||||
|
||||
// Test TraverseArrayG with custom slice types
|
||||
func TestTraverseArrayG(t *testing.T) {
|
||||
type MySlice []int
|
||||
type MyResultSlice []string
|
||||
|
||||
f := func(x int) (string, bool) {
|
||||
if x > 0 {
|
||||
return Some(fmt.Sprintf("%d", x))
|
||||
}
|
||||
return None[string]()
|
||||
}
|
||||
|
||||
result, resultok := TraverseArrayG[MySlice, MyResultSlice](f)(MySlice{1, 2, 3})
|
||||
AssertEq(Some(MyResultSlice{"1", "2", "3"}))(result, resultok)(t)
|
||||
|
||||
// Test with failure
|
||||
result, resultok = TraverseArrayG[MySlice, MyResultSlice](f)(MySlice{1, -1, 3})
|
||||
AssertEq(None[MyResultSlice]())(result, resultok)(t)
|
||||
}
|
||||
|
||||
// Test TraverseRecordG with custom map types
|
||||
func TestTraverseRecordG(t *testing.T) {
|
||||
type MyMap map[string]int
|
||||
type MyResultMap map[string]string
|
||||
|
||||
f := func(x int) (string, bool) {
|
||||
if x > 0 {
|
||||
return Some(fmt.Sprintf("%d", x))
|
||||
}
|
||||
return None[string]()
|
||||
}
|
||||
|
||||
input := MyMap{"a": 1, "b": 2}
|
||||
result, resultok := TraverseRecordG[MyMap, MyResultMap](f)(input)
|
||||
|
||||
assert.True(t, IsSome(result, resultok))
|
||||
assert.Equal(t, "1", result["a"])
|
||||
assert.Equal(t, "2", result["b"])
|
||||
}
|
||||
|
||||
// Test TraverseTuple3 through TraverseTuple10
|
||||
func TestTraverseTuple3(t *testing.T) {
|
||||
f1 := func(x int) (int, bool) { return Some(x * 2) }
|
||||
f2 := func(s string) (string, bool) { return Some(s + "!") }
|
||||
f3 := func(b bool) (bool, bool) { return Some(!b) }
|
||||
|
||||
traverse := TraverseTuple3(f1, f2, f3)
|
||||
r1, r2, r3, resultok := traverse(5, "hello", true)
|
||||
assert.True(t, resultok)
|
||||
assert.Equal(t, r1, 10)
|
||||
assert.Equal(t, r2, "hello!")
|
||||
assert.Equal(t, r3, false)
|
||||
}
|
||||
|
||||
func TestTraverseTuple4(t *testing.T) {
|
||||
f1 := func(x int) (int, bool) { return Some(x * 2) }
|
||||
f2 := func(x int) (int, bool) { return Some(x + 1) }
|
||||
f3 := func(x int) (int, bool) { return Some(x - 1) }
|
||||
f4 := func(x int) (int, bool) { return Some(x * 3) }
|
||||
|
||||
traverse := TraverseTuple4(f1, f2, f3, f4)
|
||||
r1, r2, r3, r4, resultok := traverse(1, 2, 3, 4)
|
||||
assert.True(t, resultok)
|
||||
assert.Equal(t, r1, 2)
|
||||
assert.Equal(t, r2, 3)
|
||||
assert.Equal(t, r3, 2)
|
||||
assert.Equal(t, r4, 12)
|
||||
}
|
||||
|
||||
// Test edge cases for MonadFold
|
||||
func TestMonadFoldEdgeCases(t *testing.T) {
|
||||
// Test with complex types
|
||||
type ComplexType struct {
|
||||
value int
|
||||
name string
|
||||
}
|
||||
|
||||
result := Fold(
|
||||
func() string { return "none" },
|
||||
func(ct ComplexType) string { return ct.name },
|
||||
)(Some(ComplexType{value: 42, name: "test"}))
|
||||
|
||||
assert.Equal(t, "test", result)
|
||||
|
||||
result = Fold(func() string { return "none" },
|
||||
func(ct ComplexType) string { return ct.name },
|
||||
)(None[ComplexType]())
|
||||
|
||||
assert.Equal(t, "none", result)
|
||||
}
|
||||
|
||||
// Test TraverseArrayWithIndexG
|
||||
func TestTraverseArrayWithIndexG(t *testing.T) {
|
||||
type MySlice []int
|
||||
type MyResultSlice []string
|
||||
|
||||
f := func(i int, x int) (string, bool) {
|
||||
return Some(fmt.Sprintf("%d:%d", i, x))
|
||||
}
|
||||
|
||||
result, resultok := TraverseArrayWithIndexG[MySlice, MyResultSlice](f)(MySlice{10, 20, 30})
|
||||
AssertEq(Some(MyResultSlice{"0:10", "1:20", "2:30"}))(result, resultok)(t)
|
||||
}
|
||||
|
||||
// Test TraverseRecordWithIndexG
|
||||
func TestTraverseRecordWithIndexG(t *testing.T) {
|
||||
type MyMap map[string]int
|
||||
type MyResultMap map[string]string
|
||||
|
||||
f := func(k string, v int) (string, bool) {
|
||||
return Some(fmt.Sprintf("%s=%d", k, v))
|
||||
}
|
||||
|
||||
input := MyMap{"a": 1, "b": 2}
|
||||
result, resultok := TraverseRecordWithIndexG[MyMap, MyResultMap](f)(input)
|
||||
|
||||
assert.True(t, IsSome(result, resultok))
|
||||
}
|
||||
|
||||
// Test TraverseTuple1
|
||||
func TestTraverseTuple1(t *testing.T) {
|
||||
f := func(x int) (int, bool) { return Some(x * 2) }
|
||||
|
||||
traverse := TraverseTuple1(f)
|
||||
result, resultok := traverse(5)
|
||||
|
||||
assert.True(t, resultok)
|
||||
assert.Equal(t, 10, result)
|
||||
}
|
||||
415
v2/idiomatic/option/option_extended_test.go
Normal file
415
v2/idiomatic/option/option_extended_test.go
Normal file
@@ -0,0 +1,415 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// Test FromNillable
|
||||
func TestFromNillable(t *testing.T) {
|
||||
var nilPtr *int = nil
|
||||
AssertEq(None[*int]())(FromNillable(nilPtr))(t)
|
||||
|
||||
val := 42
|
||||
ptr := &val
|
||||
result, resultok := FromNillable(ptr)
|
||||
assert.True(t, IsSome(result, resultok))
|
||||
assert.Equal(t, &val, result)
|
||||
}
|
||||
|
||||
// Test MapTo
|
||||
func TestMapTo(t *testing.T) {
|
||||
t.Run("positive case - replace value", func(t *testing.T) {
|
||||
replaceWith42 := MapTo[string](42)
|
||||
// Should replace value when Some
|
||||
AssertEq(Some(42))(replaceWith42(Some("hello")))(t)
|
||||
AssertEq(Some(42))(replaceWith42(Some("world")))(t)
|
||||
})
|
||||
|
||||
t.Run("negative case - input is None", func(t *testing.T) {
|
||||
replaceWith42 := MapTo[string](42)
|
||||
// Should return None when input is None
|
||||
AssertEq(None[int]())(replaceWith42(None[string]()))(t)
|
||||
})
|
||||
}
|
||||
|
||||
// Test GetOrElse
|
||||
func TestGetOrElse(t *testing.T) {
|
||||
t.Run("positive case - extract value from Some", func(t *testing.T) {
|
||||
getOrZero := GetOrElse(func() int { return 0 })
|
||||
// Should extract value when Some
|
||||
assert.Equal(t, 42, getOrZero(Some(42)))
|
||||
assert.Equal(t, 100, getOrZero(Some(100)))
|
||||
})
|
||||
|
||||
t.Run("negative case - use default for None", func(t *testing.T) {
|
||||
getOrZero := GetOrElse(func() int { return 0 })
|
||||
// Should return default when None
|
||||
assert.Equal(t, 0, getOrZero(None[int]()))
|
||||
})
|
||||
|
||||
t.Run("positive case - custom default", func(t *testing.T) {
|
||||
getOrNegative := GetOrElse(func() int { return -1 })
|
||||
// Should use custom default
|
||||
assert.Equal(t, -1, getOrNegative(None[int]()))
|
||||
assert.Equal(t, 42, getOrNegative(Some(42)))
|
||||
})
|
||||
}
|
||||
|
||||
// Test ChainTo
|
||||
func TestChainTo(t *testing.T) {
|
||||
t.Run("positive case - replace with Some", func(t *testing.T) {
|
||||
replaceWith := ChainTo[int](Some("hello"))
|
||||
// Should replace any input with the fixed value
|
||||
AssertEq(Some("hello"))(replaceWith(Some(42)))(t)
|
||||
AssertEq(None[string]())(replaceWith(None[int]()))(t)
|
||||
})
|
||||
|
||||
t.Run("negative case - replace with None", func(t *testing.T) {
|
||||
replaceWith := ChainTo[int](None[string]())
|
||||
// Should replace any input with None
|
||||
AssertEq(None[string]())(replaceWith(Some(42)))(t)
|
||||
AssertEq(None[string]())(replaceWith(None[int]()))(t)
|
||||
})
|
||||
}
|
||||
|
||||
// Test ChainFirst
|
||||
func TestChainFirst(t *testing.T) {
|
||||
t.Run("positive case - side effect succeeds", func(t *testing.T) {
|
||||
sideEffect := func(x int) (string, bool) {
|
||||
return Some(fmt.Sprintf("%d", x))
|
||||
}
|
||||
chainFirst := ChainFirst(sideEffect)
|
||||
|
||||
// Should keep original value when side effect succeeds
|
||||
AssertEq(Some(5))(chainFirst(Some(5)))(t)
|
||||
})
|
||||
|
||||
t.Run("negative case - side effect fails", func(t *testing.T) {
|
||||
sideEffect := func(x int) (string, bool) {
|
||||
if x < 0 {
|
||||
return None[string]()
|
||||
}
|
||||
return Some(fmt.Sprintf("%d", x))
|
||||
}
|
||||
chainFirst := ChainFirst(sideEffect)
|
||||
|
||||
// Should return None when side effect fails
|
||||
AssertEq(None[int]())(chainFirst(Some(-5)))(t)
|
||||
})
|
||||
|
||||
t.Run("negative case - input is None", func(t *testing.T) {
|
||||
sideEffect := func(x int) (string, bool) {
|
||||
return Some(fmt.Sprintf("%d", x))
|
||||
}
|
||||
chainFirst := ChainFirst(sideEffect)
|
||||
|
||||
// Should return None when input is None
|
||||
AssertEq(None[int]())(chainFirst(None[int]()))(t)
|
||||
})
|
||||
}
|
||||
|
||||
// Test Filter
|
||||
func TestFilter(t *testing.T) {
|
||||
t.Run("positive case - predicate satisfied", func(t *testing.T) {
|
||||
isPositive := Filter(func(x int) bool { return x > 0 })
|
||||
// Should keep value when predicate is satisfied
|
||||
AssertEq(Some(5))(isPositive(Some(5)))(t)
|
||||
})
|
||||
|
||||
t.Run("negative case - predicate not satisfied", func(t *testing.T) {
|
||||
isPositive := Filter(func(x int) bool { return x > 0 })
|
||||
// Should return None when predicate fails
|
||||
AssertEq(None[int]())(isPositive(Some(-1)))(t)
|
||||
AssertEq(None[int]())(isPositive(Some(0)))(t)
|
||||
})
|
||||
|
||||
t.Run("negative case - input is None", func(t *testing.T) {
|
||||
isPositive := Filter(func(x int) bool { return x > 0 })
|
||||
// Should return None when input is None
|
||||
AssertEq(None[int]())(isPositive(None[int]()))(t)
|
||||
})
|
||||
}
|
||||
|
||||
// Test Flap
|
||||
func TestFlap(t *testing.T) {
|
||||
t.Run("positive case - function is Some", func(t *testing.T) {
|
||||
applyFive := Flap[int](5)
|
||||
double := N.Mul(2)
|
||||
// Should apply value to function
|
||||
AssertEq(Some(10))(applyFive(Some(double)))(t)
|
||||
})
|
||||
|
||||
t.Run("positive case - multiple operations", func(t *testing.T) {
|
||||
applyTen := Flap[int](10)
|
||||
triple := N.Mul(3)
|
||||
// Should work with different values
|
||||
AssertEq(Some(30))(applyTen(Some(triple)))(t)
|
||||
})
|
||||
|
||||
t.Run("negative case - function is None", func(t *testing.T) {
|
||||
applyFive := Flap[int](5)
|
||||
// Should return None when function is None
|
||||
AssertEq(None[int]())(applyFive(None[func(int) int]()))(t)
|
||||
})
|
||||
}
|
||||
|
||||
// Test String and Format
|
||||
func TestStringFormat(t *testing.T) {
|
||||
str := ToString(Some(42))
|
||||
assert.Contains(t, str, "Some")
|
||||
assert.Contains(t, str, "42")
|
||||
|
||||
str = ToString(None[int]())
|
||||
assert.Contains(t, str, "None")
|
||||
}
|
||||
|
||||
// // Test Semigroup
|
||||
// func TestSemigroup(t *testing.T) {
|
||||
// intSemigroup := S.MakeSemigroup(func(a, b int) int { return a + b })
|
||||
// optSemigroup := Semigroup[int]()(intSemigroup)
|
||||
|
||||
// AssertEq(Some(5), optSemigroup.Concat(Some(2), Some(3)))
|
||||
// AssertEq(Some(2), optSemigroup.Concat(Some(2), None[int]()))
|
||||
// AssertEq(Some(3), optSemigroup.Concat(None[int](), Some(3)))
|
||||
// AssertEq(None[int](), optSemigroup.Concat(None[int](), None[int]()))
|
||||
// }
|
||||
|
||||
// // Test Monoid
|
||||
// func TestMonoid(t *testing.T) {
|
||||
// intSemigroup := S.MakeSemigroup(func(a, b int) int { return a + b })
|
||||
// optMonoid := Monoid[int]()(intSemigroup)
|
||||
|
||||
// AssertEq(Some(5), optMonoid.Concat(Some(2), Some(3)))
|
||||
// AssertEq(None[int](), optMonoid.Empty())
|
||||
// }
|
||||
|
||||
// // Test ApplySemigroup
|
||||
// func TestApplySemigroup(t *testing.T) {
|
||||
// intSemigroup := S.MakeSemigroup(func(a, b int) int { return a + b })
|
||||
// optSemigroup := ApplySemigroup(intSemigroup)
|
||||
|
||||
// AssertEq(Some(5), optSemigroup.Concat(Some(2), Some(3)))
|
||||
// AssertEq(None[int](), optSemigroup.Concat(Some(2), None[int]()))
|
||||
// }
|
||||
|
||||
// // Test ApplicativeMonoid
|
||||
// func TestApplicativeMonoid(t *testing.T) {
|
||||
// intMonoid := M.MakeMonoid(func(a, b int) int { return a + b }, 0)
|
||||
// optMonoid := ApplicativeMonoid(intMonoid)
|
||||
|
||||
// AssertEq(Some(5), optMonoid.Concat(Some(2), Some(3)))
|
||||
// AssertEq(Some(0), optMonoid.Empty())
|
||||
// }
|
||||
|
||||
// // Test AlternativeMonoid
|
||||
// func TestAlternativeMonoid(t *testing.T) {
|
||||
// intMonoid := M.MakeMonoid(func(a, b int) int { return a + b }, 0)
|
||||
// optMonoid := AlternativeMonoid(intMonoid)
|
||||
|
||||
// // AlternativeMonoid uses applicative semantics, so it combines values
|
||||
// AssertEq(Some(5), optMonoid.Concat(Some(2), Some(3)))
|
||||
// AssertEq(Some(3), optMonoid.Concat(None[int](), Some(3)))
|
||||
// AssertEq(Some(0), optMonoid.Empty())
|
||||
// }
|
||||
|
||||
// // Test AltMonoid
|
||||
// func TestAltMonoid(t *testing.T) {
|
||||
// optMonoid := AltMonoid[int]()
|
||||
|
||||
// AssertEq(Some(2), optMonoid.Concat(Some(2), Some(3)))
|
||||
// AssertEq(Some(3), optMonoid.Concat(None[int](), Some(3)))
|
||||
// AssertEq(None[int](), optMonoid.Empty())
|
||||
// }
|
||||
|
||||
// Test Do, Let, LetTo, BindTo
|
||||
func TestDoLetLetToBindTo(t *testing.T) {
|
||||
type State struct {
|
||||
x int
|
||||
y int
|
||||
computed int
|
||||
name string
|
||||
}
|
||||
|
||||
result, resultok := Pipe5(
|
||||
State{},
|
||||
Do,
|
||||
Let(func(c int) func(State) State {
|
||||
return func(s State) State { s.x = c; return s }
|
||||
}, func(s State) int { return 5 }),
|
||||
LetTo(func(n string) func(State) State {
|
||||
return func(s State) State { s.name = n; return s }
|
||||
}, "test"),
|
||||
Bind(func(y int) func(State) State {
|
||||
return func(s State) State { s.y = y; return s }
|
||||
}, func(s State) (int, bool) { return Some(10) }),
|
||||
Map(func(s State) State {
|
||||
s.computed = s.x + s.y
|
||||
return s
|
||||
}),
|
||||
)
|
||||
|
||||
AssertEq(Some(State{x: 5, y: 10, computed: 15, name: "test"}))(result, resultok)(t)
|
||||
}
|
||||
|
||||
// Test BindTo
|
||||
func TestBindToFunction(t *testing.T) {
|
||||
type State struct {
|
||||
value int
|
||||
}
|
||||
|
||||
result, resultok := Pipe2(
|
||||
42,
|
||||
Some,
|
||||
BindTo(func(x int) State { return State{value: x} }),
|
||||
)
|
||||
|
||||
AssertEq(Some(State{value: 42}))(result, resultok)(t)
|
||||
}
|
||||
|
||||
// // Test Functor
|
||||
// func TestFunctor(t *testing.T) {
|
||||
// f := Functor[int, string]()
|
||||
// mapper := f.Map(strconv.Itoa)
|
||||
|
||||
// AssertEq(Some("42"), mapper(Some(42)))
|
||||
// AssertEq(None[string](), mapper(None[int]()))
|
||||
// }
|
||||
|
||||
// // Test Monad
|
||||
// func TestMonad(t *testing.T) {
|
||||
// m := Monad[int, string]()
|
||||
|
||||
// // Test Of
|
||||
// AssertEq(Some(42), m.Of(42))
|
||||
|
||||
// // Test Map
|
||||
// mapper := m.Map(strconv.Itoa)
|
||||
// AssertEq(Some("42"), mapper(Some(42)))
|
||||
|
||||
// // Test Chain
|
||||
// chainer := m.Chain(func(x int) (string, bool) {
|
||||
// if x > 0 {
|
||||
// return Some(fmt.Sprintf("%d", x))
|
||||
// }
|
||||
// return None[string]()
|
||||
// })
|
||||
// AssertEq(Some("42"), chainer(Some(42)))
|
||||
|
||||
// // Test Ap
|
||||
// double := func(x int) string { return fmt.Sprintf("%d", x*2) }
|
||||
// ap := m.Ap(Some(5))
|
||||
// AssertEq(Some("10"), ap(Some(double)))
|
||||
// }
|
||||
|
||||
// // Test Pointed
|
||||
// func TestPointed(t *testing.T) {
|
||||
// p := Pointed[int]()
|
||||
// AssertEq(Some(42), p.Of(42))
|
||||
// }
|
||||
|
||||
// Test ToAny
|
||||
func TestToAny(t *testing.T) {
|
||||
result, resultok := ToAny(42)
|
||||
assert.True(t, IsSome(result, resultok))
|
||||
|
||||
assert.Equal(t, 42, result)
|
||||
}
|
||||
|
||||
// Test TraverseArray
|
||||
func TestTraverseArray(t *testing.T) {
|
||||
validate := func(x int) (int, bool) {
|
||||
if x > 0 {
|
||||
return Some(x * 2)
|
||||
}
|
||||
return None[int]()
|
||||
}
|
||||
|
||||
result, resultok := TraverseArray(validate)([]int{1, 2, 3})
|
||||
AssertEq(Some([]int{2, 4, 6}))(result, resultok)(t)
|
||||
|
||||
result, resultok = TraverseArray(validate)([]int{1, -1, 3})
|
||||
AssertEq(None[[]int]())(result, resultok)(t)
|
||||
}
|
||||
|
||||
// Test TraverseArrayWithIndex
|
||||
func TestTraverseArrayWithIndex(t *testing.T) {
|
||||
f := func(i int, x int) (int, bool) {
|
||||
if x > i {
|
||||
return Some(x + i)
|
||||
}
|
||||
return None[int]()
|
||||
}
|
||||
|
||||
result, resultok := TraverseArrayWithIndex(f)([]int{1, 2, 3})
|
||||
AssertEq(Some([]int{1, 3, 5}))(result, resultok)(t)
|
||||
}
|
||||
|
||||
// Test TraverseRecord
|
||||
func TestTraverseRecord(t *testing.T) {
|
||||
validate := func(x int) (string, bool) {
|
||||
if x > 0 {
|
||||
return Some(fmt.Sprintf("%d", x))
|
||||
}
|
||||
return None[string]()
|
||||
}
|
||||
|
||||
input := map[string]int{"a": 1, "b": 2}
|
||||
result, resultok := TraverseRecord[string](validate)(input)
|
||||
|
||||
AssertEq(Some(map[string]string{"a": "1", "b": "2"}))(result, resultok)(t)
|
||||
}
|
||||
|
||||
// Test TraverseRecordWithIndex
|
||||
func TestTraverseRecordWithIndex(t *testing.T) {
|
||||
f := func(k string, v int) (string, bool) {
|
||||
return Some(fmt.Sprintf("%s:%d", k, v))
|
||||
}
|
||||
|
||||
input := map[string]int{"a": 1, "b": 2}
|
||||
result, resultok := TraverseRecordWithIndex(f)(input)
|
||||
|
||||
assert.True(t, IsSome(result, resultok))
|
||||
}
|
||||
|
||||
// Test TraverseTuple functions
|
||||
func TestTraverseTuple2(t *testing.T) {
|
||||
f1 := func(x int) (int, bool) { return Some(x * 2) }
|
||||
f2 := func(s string) (string, bool) { return Some(s + "!") }
|
||||
|
||||
traverse := TraverseTuple2(f1, f2)
|
||||
r1, r2, resultok := traverse(5, "hello")
|
||||
|
||||
assert.True(t, resultok)
|
||||
assert.Equal(t, r1, 10)
|
||||
assert.Equal(t, r2, "hello!")
|
||||
}
|
||||
|
||||
// Test FromStrictCompare
|
||||
func TestFromStrictCompare(t *testing.T) {
|
||||
optOrd := FromStrictCompare[int]()
|
||||
|
||||
assert.Equal(t, 0, optOrd(Some(5))(Some(5)))
|
||||
assert.Equal(t, -1, optOrd(Some(3))(Some(5)))
|
||||
assert.Equal(t, +1, optOrd(Some(5))(Some(3)))
|
||||
assert.Equal(t, -1, optOrd(None[int]())(Some(5)))
|
||||
assert.Equal(t, +1, optOrd(Some(5))(None[int]()))
|
||||
}
|
||||
133
v2/idiomatic/option/option_test.go
Normal file
133
v2/idiomatic/option/option_test.go
Normal file
@@ -0,0 +1,133 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/IBM/fp-go/v2/internal/utils"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestIsNone(t *testing.T) {
|
||||
assert.True(t, IsNone(None[int]()))
|
||||
assert.False(t, IsNone(Of(1)))
|
||||
}
|
||||
|
||||
func TestIsSome(t *testing.T) {
|
||||
assert.True(t, IsSome(Of(1)))
|
||||
assert.False(t, IsSome(None[int]()))
|
||||
}
|
||||
|
||||
func TestMapOption(t *testing.T) {
|
||||
|
||||
AssertEq(Map(utils.Double)(Some(2)))(Some(4))(t)
|
||||
|
||||
AssertEq(Map(utils.Double)(None[int]()))(None[int]())(t)
|
||||
}
|
||||
|
||||
func TestAp(t *testing.T) {
|
||||
AssertEq(Some(4))(Ap[int](Some(2))(Some(utils.Double)))(t)
|
||||
AssertEq(None[int]())(Ap[int](None[int]())(Some(utils.Double)))(t)
|
||||
AssertEq(None[int]())(Ap[int](Some(2))(None[func(int) int]()))(t)
|
||||
AssertEq(None[int]())(Ap[int](None[int]())(None[func(int) int]()))(t)
|
||||
}
|
||||
|
||||
func TestChain(t *testing.T) {
|
||||
f := func(n int) (int, bool) { return Some(n * 2) }
|
||||
g := func(_ int) (int, bool) { return None[int]() }
|
||||
|
||||
AssertEq(Some(2))(Chain(f)(Some(1)))(t)
|
||||
AssertEq(None[int]())(Chain(f)(None[int]()))(t)
|
||||
AssertEq(None[int]())(Chain(g)(Some(1)))(t)
|
||||
AssertEq(None[int]())(Chain(g)(None[int]()))(t)
|
||||
}
|
||||
|
||||
func TestChainToUnit(t *testing.T) {
|
||||
t.Run("positive case - replace Some input with Some value", func(t *testing.T) {
|
||||
replaceWith := ChainTo[int](Some("hello"))
|
||||
// Should replace Some(42) with Some("hello")
|
||||
AssertEq(Some("hello"))(replaceWith(Some(42)))(t)
|
||||
})
|
||||
|
||||
t.Run("positive case - replace None input with Some value", func(t *testing.T) {
|
||||
replaceWith := ChainTo[int](Some("hello"))
|
||||
// Should replace None with Some("hello")
|
||||
AssertEq(None[string]())(replaceWith(None[int]()))(t)
|
||||
})
|
||||
|
||||
t.Run("positive case - replace with different types", func(t *testing.T) {
|
||||
replaceWithNumber := ChainTo[string](Some(100))
|
||||
// Should work with type conversion
|
||||
AssertEq(Some(100))(replaceWithNumber(Some("test")))(t)
|
||||
AssertEq(None[int]())(replaceWithNumber(None[string]()))(t)
|
||||
})
|
||||
|
||||
t.Run("negative case - replace Some input with None", func(t *testing.T) {
|
||||
replaceWithNone := ChainTo[int](None[string]())
|
||||
// Should replace Some(42) with None
|
||||
AssertEq(None[string]())(replaceWithNone(Some(42)))(t)
|
||||
})
|
||||
|
||||
t.Run("negative case - replace None input with None", func(t *testing.T) {
|
||||
replaceWithNone := ChainTo[int](None[string]())
|
||||
// Should replace None with None
|
||||
AssertEq(None[string]())(replaceWithNone(None[int]()))(t)
|
||||
})
|
||||
|
||||
t.Run("negative case - chaining multiple ChainTo operations", func(t *testing.T) {
|
||||
// Chain multiple ChainTo operations - each ChainTo ignores input and returns fixed value
|
||||
step1 := ChainTo[int](Some("first"))
|
||||
step2 := ChainTo[string](Some(2.5))
|
||||
step3 := ChainTo[float64](None[bool]())
|
||||
|
||||
result1, result1ok := step1(Some(1))
|
||||
result2, result2ok := step2(result1, result1ok)
|
||||
result3, result3ok := step3(result2, result2ok)
|
||||
|
||||
// Final result should be None
|
||||
AssertEq(None[bool]())(result3, result3ok)(t)
|
||||
})
|
||||
}
|
||||
|
||||
// func TestFlatten(t *testing.T) {
|
||||
// assert.Equal(t, Of(1), F.Pipe1(Of(Of(1)), Flatten[int]))
|
||||
// }
|
||||
|
||||
// func TestFold(t *testing.T) {
|
||||
// f := F.Constant("none")
|
||||
// g := func(s string) string { return fmt.Sprintf("some%d", len(s)) }
|
||||
|
||||
// fold := Fold(f, g)
|
||||
|
||||
// assert.Equal(t, "none", fold(None[string]()))
|
||||
// assert.Equal(t, "some3", fold(Some("abc")))
|
||||
// }
|
||||
|
||||
// func TestFromPredicate(t *testing.T) {
|
||||
// p := func(n int) bool { return n > 2 }
|
||||
// f := FromPredicate(p)
|
||||
|
||||
// assert.Equal(t, None[int](), f(1))
|
||||
// assert.Equal(t, Some(3), f(3))
|
||||
// }
|
||||
|
||||
// func TestAlt(t *testing.T) {
|
||||
// assert.Equal(t, Some(1), F.Pipe1(Some(1), Alt(F.Constant(Some(2)))))
|
||||
// assert.Equal(t, Some(2), F.Pipe1(Some(2), Alt(F.Constant(None[int]()))))
|
||||
// assert.Equal(t, Some(1), F.Pipe1(None[int](), Alt(F.Constant(Some(1)))))
|
||||
// assert.Equal(t, None[int](), F.Pipe1(None[int](), Alt(F.Constant(None[int]()))))
|
||||
// }
|
||||
66
v2/idiomatic/option/ord.go
Normal file
66
v2/idiomatic/option/ord.go
Normal file
@@ -0,0 +1,66 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
C "github.com/IBM/fp-go/v2/constraints"
|
||||
"github.com/IBM/fp-go/v2/ord"
|
||||
)
|
||||
|
||||
// Ord constructs an ordering for Option[A] given an ordering for A.
|
||||
// The ordering follows these rules:
|
||||
// - None is considered less than any Some value
|
||||
// - Two None values are equal
|
||||
// - Two Some values are compared using the provided Ord for A
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// intOrd := ord.FromStrictCompare[int]()
|
||||
// optOrd := Ord(intOrd)
|
||||
// optOrd.Compare(None[int](), Some(5)) // -1 (None < Some)
|
||||
// optOrd.Compare(Some(3), Some(5)) // -1 (3 < 5)
|
||||
// optOrd.Compare(Some(5), Some(3)) // 1 (5 > 3)
|
||||
// optOrd.Compare(None[int](), None[int]()) // 0 (equal)
|
||||
func Ord[A any](o ord.Ord[A]) func(A, bool) func(A, bool) int {
|
||||
return func(l A, lok bool) func(A, bool) int {
|
||||
if lok {
|
||||
return func(r A, rok bool) int {
|
||||
if rok {
|
||||
return o.Compare(l, r)
|
||||
}
|
||||
return +1
|
||||
}
|
||||
}
|
||||
return func(_ A, rok bool) int {
|
||||
if rok {
|
||||
return -1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FromStrictCompare constructs an Ord for Option[A] using Go's built-in comparison operators for type A.
|
||||
// This is a convenience function for ordered types (types that support <, >, ==).
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// optOrd := FromStrictCompare[int]()
|
||||
// optOrd.Compare(Some(5), Some(10)) // -1
|
||||
// optOrd.Compare(None[int](), Some(5)) // -1
|
||||
func FromStrictCompare[A C.Ordered]() func(A, bool) func(A, bool) int {
|
||||
return Ord(ord.FromStrictCompare[A]())
|
||||
}
|
||||
46
v2/idiomatic/option/ord_test.go
Normal file
46
v2/idiomatic/option/ord_test.go
Normal file
@@ -0,0 +1,46 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
S "github.com/IBM/fp-go/v2/string"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// it('getOrd', () => {
|
||||
// const OS = _.getOrd(S.Ord)
|
||||
// U.deepStrictEqual(OS.compare(_.none, _.none), 0)
|
||||
// U.deepStrictEqual(OS.compare(_.some('a'), _.none), 1)
|
||||
// U.deepStrictEqual(OS.compare(_.none, _.some('a')), -1)
|
||||
// U.deepStrictEqual(OS.compare(_.some('a'), _.some('a')), 0)
|
||||
// U.deepStrictEqual(OS.compare(_.some('a'), _.some('b')), -1)
|
||||
// U.deepStrictEqual(OS.compare(_.some('b'), _.some('a')), 1)
|
||||
// })
|
||||
|
||||
func TestOrd(t *testing.T) {
|
||||
|
||||
os := Ord(S.Ord)
|
||||
|
||||
assert.Equal(t, 0, os((None[string]()))(None[string]()))
|
||||
assert.Equal(t, +1, os(Some("a"))(None[string]()))
|
||||
assert.Equal(t, -1, os(None[string]())(Some("a")))
|
||||
assert.Equal(t, 0, os(Some("a"))(Some("a")))
|
||||
assert.Equal(t, -1, os(Some("a"))(Some("b")))
|
||||
assert.Equal(t, +1, os(Some("b"))(Some("a")))
|
||||
|
||||
}
|
||||
39
v2/idiomatic/option/pointed.go
Normal file
39
v2/idiomatic/option/pointed.go
Normal file
@@ -0,0 +1,39 @@
|
||||
// Copyright (c) 2024 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
type (
|
||||
optionPointed[A any] struct{}
|
||||
|
||||
Pointed[A any] interface {
|
||||
Of(A) (A, bool)
|
||||
}
|
||||
)
|
||||
|
||||
func (o optionPointed[A]) Of(a A) (A, bool) {
|
||||
return Of(a)
|
||||
}
|
||||
|
||||
// Pointed implements the Pointed operations for Option.
|
||||
// A pointed functor is a functor with an Of operation that wraps a value.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// p := Pointed[int]()
|
||||
// result := p.Of(42) // Some(42)
|
||||
func MakePointed[A any]() Pointed[A] {
|
||||
return optionPointed[A]{}
|
||||
}
|
||||
99
v2/idiomatic/option/record.go
Normal file
99
v2/idiomatic/option/record.go
Normal file
@@ -0,0 +1,99 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
// TraverseRecordG transforms a record (map) by applying a function that returns an Option to each value.
|
||||
// Returns Some containing the map of results if all operations succeed, None if any fails.
|
||||
// This is the generic version that works with custom map types.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// validate := func(x int) Option[int] {
|
||||
// if x > 0 { return Some(x * 2) }
|
||||
// return None[int]()
|
||||
// }
|
||||
// input := map[string]int{"a": 1, "b": 2}
|
||||
// result := TraverseRecordG[map[string]int, map[string]int](validate)(input) // Some(map[a:2 b:4])
|
||||
func TraverseRecordG[GA ~map[K]A, GB ~map[K]B, K comparable, A, B any](f Kleisli[A, B]) Kleisli[GA, GB] {
|
||||
return func(ga GA) (GB, bool) {
|
||||
gb := make(GB)
|
||||
for k, a := range ga {
|
||||
if b, ok := f(a); ok {
|
||||
gb[k] = b
|
||||
} else {
|
||||
return gb, false
|
||||
}
|
||||
|
||||
}
|
||||
return gb, true
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseRecord transforms a record (map) by applying a function that returns an Option to each value.
|
||||
// Returns Some containing the map of results if all operations succeed, None if any fails.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// validate := func(x int) Option[string] {
|
||||
// if x > 0 { return Some(fmt.Sprintf("%d", x)) }
|
||||
// return None[string]()
|
||||
// }
|
||||
// input := map[string]int{"a": 1, "b": 2}
|
||||
// result := TraverseRecord(validate)(input) // Some(map[a:"1" b:"2"])
|
||||
func TraverseRecord[K comparable, A, B any](f Kleisli[A, B]) Kleisli[map[K]A, map[K]B] {
|
||||
return TraverseRecordG[map[K]A, map[K]B](f)
|
||||
}
|
||||
|
||||
// TraverseRecordWithIndexG transforms a record by applying a function that receives both key and value.
|
||||
// Returns Some containing the map of results if all operations succeed, None if any fails.
|
||||
// This is the generic version that works with custom map types.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// f := func(k string, v int) Option[string] {
|
||||
// return Some(fmt.Sprintf("%s:%d", k, v))
|
||||
// }
|
||||
// input := map[string]int{"a": 1, "b": 2}
|
||||
// result := TraverseRecordWithIndexG[map[string]int, map[string]string](f)(input) // Some(map[a:"a:1" b:"b:2"])
|
||||
func TraverseRecordWithIndexG[GA ~map[K]A, GB ~map[K]B, K comparable, A, B any](f func(K, A) (B, bool)) Kleisli[GA, GB] {
|
||||
return func(ga GA) (GB, bool) {
|
||||
gb := make(GB)
|
||||
for k, a := range ga {
|
||||
if b, ok := f(k, a); ok {
|
||||
gb[k] = b
|
||||
} else {
|
||||
return gb, false
|
||||
}
|
||||
|
||||
}
|
||||
return gb, true
|
||||
}
|
||||
}
|
||||
|
||||
// TraverseRecordWithIndex transforms a record by applying a function that receives both key and value.
|
||||
// Returns Some containing the map of results if all operations succeed, None if any fails.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// f := func(k string, v int) Option[int] {
|
||||
// if v > 0 { return Some(v) }
|
||||
// return None[int]()
|
||||
// }
|
||||
// input := map[string]int{"a": 1, "b": 2}
|
||||
// result := TraverseRecordWithIndex(f)(input) // Some(map[a:1 b:2])
|
||||
func TraverseRecordWithIndex[K comparable, A, B any](f func(K, A) (B, bool)) Kleisli[map[K]A, map[K]B] {
|
||||
return TraverseRecordWithIndexG[map[K]A, map[K]B](f)
|
||||
}
|
||||
102
v2/idiomatic/option/testing/laws._go
Normal file
102
v2/idiomatic/option/testing/laws._go
Normal file
@@ -0,0 +1,102 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package testing
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
EQ "github.com/IBM/fp-go/v2/eq"
|
||||
L "github.com/IBM/fp-go/v2/internal/monad/testing"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
// AssertLaws asserts the monad laws for the Option monad.
|
||||
// This function verifies that Option satisfies the functor, applicative, and monad laws.
|
||||
//
|
||||
// The laws tested include:
|
||||
// - Functor laws: identity and composition
|
||||
// - Applicative laws: identity, composition, homomorphism, and interchange
|
||||
// - Monad laws: left identity, right identity, and associativity
|
||||
//
|
||||
// Parameters:
|
||||
// - t: testing instance
|
||||
// - eqa, eqb, eqc: equality predicates for types A, B, and C
|
||||
// - ab: a function from A to B for testing
|
||||
// - bc: a function from B to C for testing
|
||||
//
|
||||
// Returns a function that takes a value of type A and returns true if all laws hold.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// func TestOptionLaws(t *testing.T) {
|
||||
// eqInt := eq.FromStrictEquals[int]()
|
||||
// eqString := eq.FromStrictEquals[string]()
|
||||
// eqBool := eq.FromStrictEquals[bool]()
|
||||
//
|
||||
// ab := strconv.Itoa
|
||||
// bc := func(s string) bool { return len(s) > 0 }
|
||||
//
|
||||
// assert := AssertLaws(t, eqInt, eqString, eqBool, ab, bc)
|
||||
// assert(42) // verifies laws hold for value 42
|
||||
// }
|
||||
func AssertLaws[A, B, C any](t *testing.T,
|
||||
eqa EQ.Eq[A],
|
||||
eqb EQ.Eq[B],
|
||||
eqc EQ.Eq[C],
|
||||
|
||||
ab func(A) B,
|
||||
bc func(B) C,
|
||||
) func(a A) bool {
|
||||
|
||||
return L.AssertLaws(t,
|
||||
O.Eq(eqa),
|
||||
O.Eq(eqb),
|
||||
O.Eq(eqc),
|
||||
|
||||
O.Of[A],
|
||||
O.Of[B],
|
||||
O.Of[C],
|
||||
|
||||
O.Of[func(A) A],
|
||||
O.Of[func(A) B],
|
||||
O.Of[func(B) C],
|
||||
O.Of[func(func(A) B) B],
|
||||
|
||||
O.MonadMap[A, A],
|
||||
O.MonadMap[A, B],
|
||||
O.MonadMap[A, C],
|
||||
O.MonadMap[B, C],
|
||||
|
||||
O.MonadMap[func(B) C, func(func(A) B) func(A) C],
|
||||
|
||||
O.MonadChain[A, A],
|
||||
O.MonadChain[A, B],
|
||||
O.MonadChain[A, C],
|
||||
O.MonadChain[B, C],
|
||||
|
||||
O.MonadAp[A, A],
|
||||
O.MonadAp[B, A],
|
||||
O.MonadAp[C, B],
|
||||
O.MonadAp[C, A],
|
||||
|
||||
O.MonadAp[B, func(A) B],
|
||||
O.MonadAp[func(A) C, func(A) B],
|
||||
|
||||
ab,
|
||||
bc,
|
||||
)
|
||||
|
||||
}
|
||||
47
v2/idiomatic/option/testing/laws_test._go
Normal file
47
v2/idiomatic/option/testing/laws_test._go
Normal file
@@ -0,0 +1,47 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package testing
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
EQ "github.com/IBM/fp-go/v2/eq"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestMonadLaws(t *testing.T) {
|
||||
// some comparison
|
||||
eqa := EQ.FromStrictEquals[bool]()
|
||||
eqb := EQ.FromStrictEquals[int]()
|
||||
eqc := EQ.FromStrictEquals[string]()
|
||||
|
||||
ab := func(a bool) int {
|
||||
if a {
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
bc := func(b int) string {
|
||||
return fmt.Sprintf("value %d", b)
|
||||
}
|
||||
|
||||
laws := AssertLaws(t, eqa, eqb, eqc, ab, bc)
|
||||
|
||||
assert.True(t, laws(true))
|
||||
assert.True(t, laws(false))
|
||||
}
|
||||
50
v2/idiomatic/option/type.go
Normal file
50
v2/idiomatic/option/type.go
Normal file
@@ -0,0 +1,50 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
func toType[T any](a any) (T, bool) {
|
||||
b, ok := a.(T)
|
||||
return b, ok
|
||||
}
|
||||
|
||||
// ToType attempts to convert a value of type any to a specific type T using type assertion.
|
||||
// Returns Some(value) if the type assertion succeeds, None if it fails.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// var x any = 42
|
||||
// result := ToType[int](x) // Some(42)
|
||||
//
|
||||
// var y any = "hello"
|
||||
// result := ToType[int](y) // None (wrong type)
|
||||
//
|
||||
//go:inline
|
||||
func ToType[T any](src any) (T, bool) {
|
||||
return toType[T](src)
|
||||
}
|
||||
|
||||
// ToAny converts a value of any type to Option[any].
|
||||
// This always succeeds and returns Some containing the value as any.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// result := ToAny(42) // Some(any(42))
|
||||
// result := ToAny("hello") // Some(any("hello"))
|
||||
//
|
||||
//go:inline
|
||||
func ToAny[T any](src T) (any, bool) {
|
||||
return Of(any(src))
|
||||
}
|
||||
35
v2/idiomatic/option/type_test.go
Normal file
35
v2/idiomatic/option/type_test.go
Normal file
@@ -0,0 +1,35 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package option
|
||||
|
||||
import (
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestTypeConversion(t *testing.T) {
|
||||
|
||||
var src any = "Carsten"
|
||||
|
||||
dst, dstOk := ToType[string](src)
|
||||
AssertEq(Some("Carsten"))(dst, dstOk)(t)
|
||||
}
|
||||
|
||||
func TestInvalidConversion(t *testing.T) {
|
||||
var src any = make(map[string]string)
|
||||
|
||||
dst, dstOk := ToType[int](src)
|
||||
AssertEq(None[int]())(dst, dstOk)(t)
|
||||
}
|
||||
12
v2/idiomatic/option/types.go
Normal file
12
v2/idiomatic/option/types.go
Normal file
@@ -0,0 +1,12 @@
|
||||
package option
|
||||
|
||||
import (
|
||||
"iter"
|
||||
|
||||
"github.com/IBM/fp-go/v2/endomorphism"
|
||||
)
|
||||
|
||||
type (
|
||||
Seq[T any] = iter.Seq[T]
|
||||
Endomorphism[T any] = endomorphism.Endomorphism[T]
|
||||
)
|
||||
@@ -15,6 +15,10 @@
|
||||
|
||||
package array
|
||||
|
||||
func Of[GA ~[]A, A any](a A) GA {
|
||||
return GA{a}
|
||||
}
|
||||
|
||||
func Slice[GA ~[]A, A any](low, high int) func(as GA) GA {
|
||||
return func(as GA) GA {
|
||||
length := len(as)
|
||||
@@ -77,8 +81,7 @@ func IsNonNil[GA ~[]A, A any](as GA) bool {
|
||||
|
||||
func Reduce[GA ~[]A, A, B any](fa GA, f func(B, A) B, initial B) B {
|
||||
current := initial
|
||||
count := len(fa)
|
||||
for i := 0; i < count; i++ {
|
||||
for i := range len(fa) {
|
||||
current = f(current, fa[i])
|
||||
}
|
||||
return current
|
||||
@@ -86,8 +89,7 @@ func Reduce[GA ~[]A, A, B any](fa GA, f func(B, A) B, initial B) B {
|
||||
|
||||
func ReduceWithIndex[GA ~[]A, A, B any](fa GA, f func(int, B, A) B, initial B) B {
|
||||
current := initial
|
||||
count := len(fa)
|
||||
for i := 0; i < count; i++ {
|
||||
for i := range len(fa) {
|
||||
current = f(i, current, fa[i])
|
||||
}
|
||||
return current
|
||||
@@ -142,7 +144,7 @@ func UpsertAt[GA ~[]A, A any](a A) func(GA) GA {
|
||||
func MonadMap[GA ~[]A, GB ~[]B, A, B any](as GA, f func(a A) B) GB {
|
||||
count := len(as)
|
||||
bs := make(GB, count)
|
||||
for i := count - 1; i >= 0; i-- {
|
||||
for i := range count {
|
||||
bs[i] = f(as[i])
|
||||
}
|
||||
return bs
|
||||
@@ -157,7 +159,7 @@ func Map[GA ~[]A, GB ~[]B, A, B any](f func(a A) B) func(GA) GB {
|
||||
func MonadMapWithIndex[GA ~[]A, GB ~[]B, A, B any](as GA, f func(idx int, a A) B) GB {
|
||||
count := len(as)
|
||||
bs := make(GB, count)
|
||||
for i := count - 1; i >= 0; i-- {
|
||||
for i := range count {
|
||||
bs[i] = f(i, as[i])
|
||||
}
|
||||
return bs
|
||||
@@ -166,3 +168,19 @@ func MonadMapWithIndex[GA ~[]A, GB ~[]B, A, B any](as GA, f func(idx int, a A) B
|
||||
func ConstNil[GA ~[]A, A any]() GA {
|
||||
return (GA)(nil)
|
||||
}
|
||||
|
||||
func Concat[GT ~[]T, T any](left, right GT) GT {
|
||||
// some performance checks
|
||||
ll := len(left)
|
||||
if ll == 0 {
|
||||
return right
|
||||
}
|
||||
lr := len(right)
|
||||
if lr == 0 {
|
||||
return left
|
||||
}
|
||||
// need to copy
|
||||
buf := make(GT, ll+lr)
|
||||
copy(buf[copy(buf, left):], right)
|
||||
return buf
|
||||
}
|
||||
|
||||
@@ -19,6 +19,72 @@ import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
)
|
||||
|
||||
func MonadSequenceSegment[HKTB, HKTRB any](
|
||||
fof func(HKTB) HKTRB,
|
||||
empty HKTRB,
|
||||
concat func(HKTRB, HKTRB) HKTRB,
|
||||
fbs []HKTB,
|
||||
start, end int,
|
||||
) HKTRB {
|
||||
|
||||
switch end - start {
|
||||
case 0:
|
||||
return empty
|
||||
case 1:
|
||||
return fof(fbs[start])
|
||||
default:
|
||||
mid := (start + end) / 2
|
||||
return concat(
|
||||
MonadSequenceSegment(fof, empty, concat, fbs, start, mid),
|
||||
MonadSequenceSegment(fof, empty, concat, fbs, mid, end),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
func SequenceSegment[HKTB, HKTRB any](
|
||||
fof func(HKTB) HKTRB,
|
||||
empty HKTRB,
|
||||
concat func(HKTRB, HKTRB) HKTRB,
|
||||
) func([]HKTB) HKTRB {
|
||||
|
||||
concat_f := func(left, right func([]HKTB) HKTRB) func([]HKTB) HKTRB {
|
||||
return func(fbs []HKTB) HKTRB {
|
||||
return concat(left(fbs), right(fbs))
|
||||
}
|
||||
}
|
||||
empty_f := F.Constant1[[]HKTB](empty)
|
||||
at := func(idx int) func([]HKTB) HKTRB {
|
||||
return func(fbs []HKTB) HKTRB {
|
||||
return fof(fbs[idx])
|
||||
}
|
||||
}
|
||||
|
||||
var divide func(start, end int) func([]HKTB) HKTRB
|
||||
divide = func(start, end int) func([]HKTB) HKTRB {
|
||||
switch end - start {
|
||||
case 0:
|
||||
return empty_f
|
||||
case 1:
|
||||
return at(start)
|
||||
default:
|
||||
mid := (start + end) / 2
|
||||
left := divide(start, mid)
|
||||
right := divide(mid, end)
|
||||
|
||||
return concat_f(left, right)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO this could be cached by length
|
||||
get_divide := func(len int) func([]HKTB) HKTRB {
|
||||
return divide(0, len)
|
||||
}
|
||||
|
||||
return func(fbs []HKTB) HKTRB {
|
||||
return get_divide(len(fbs))(fbs)
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
|
||||
@@ -79,6 +145,34 @@ func TraverseWithIndex[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
|
||||
|
||||
HKTRB = HKT<GB>
|
||||
HKTB = HKT<B>
|
||||
HKTAB = HKT<func(A)B>
|
||||
*/
|
||||
func MonadSequence[GA ~[]HKTA, HKTA, HKTRA any](
|
||||
fof func(HKTA) HKTRA,
|
||||
empty HKTRA,
|
||||
concat func(HKTRA, HKTRA) HKTRA,
|
||||
|
||||
ta GA) HKTRA {
|
||||
return MonadSequenceSegment(fof, empty, concat, ta, 0, len(ta))
|
||||
}
|
||||
|
||||
func Sequence[GA ~[]HKTA, HKTA, HKTRA any](
|
||||
fof func(HKTA) HKTRA,
|
||||
empty HKTRA,
|
||||
concat func(HKTRA, HKTRA) HKTRA,
|
||||
) func(GA) HKTRA {
|
||||
|
||||
return func(ma GA) HKTRA {
|
||||
return MonadSequence(fof, empty, concat, ma)
|
||||
}
|
||||
}
|
||||
|
||||
func MonadTraverseReduce[GA ~[]A, GB, A, B, HKTB, HKTAB, HKTRB any](
|
||||
fof func(GB) HKTRB,
|
||||
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
|
||||
|
||||
100
v2/internal/iter/iter.go
Normal file
100
v2/internal/iter/iter.go
Normal file
@@ -0,0 +1,100 @@
|
||||
package iter
|
||||
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
)
|
||||
|
||||
func MonadReduceWithIndex[GA ~func(yield func(A) bool), A, B any](fa GA, f func(int, B, A) B, initial B) B {
|
||||
current := initial
|
||||
var i int
|
||||
for a := range fa {
|
||||
current = f(i, current, a)
|
||||
i += 1
|
||||
}
|
||||
return current
|
||||
}
|
||||
|
||||
func MonadReduce[GA ~func(yield func(A) bool), A, B any](fa GA, f func(B, A) B, initial B) B {
|
||||
current := initial
|
||||
for a := range fa {
|
||||
current = f(current, a)
|
||||
}
|
||||
return current
|
||||
}
|
||||
|
||||
// Concat concatenates two sequences, yielding all elements from left followed by all elements from right.
|
||||
func Concat[GT ~func(yield func(T) bool), T any](left, right GT) GT {
|
||||
return func(yield func(T) bool) {
|
||||
for t := range left {
|
||||
if !yield(t) {
|
||||
return
|
||||
}
|
||||
}
|
||||
for t := range right {
|
||||
if !yield(t) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func Of[GA ~func(yield func(A) bool), A any](a A) GA {
|
||||
return func(yield func(A) bool) {
|
||||
yield(a)
|
||||
}
|
||||
}
|
||||
|
||||
func MonadAppend[GA ~func(yield func(A) bool), A any](f GA, tail A) GA {
|
||||
return Concat(f, Of[GA](tail))
|
||||
}
|
||||
|
||||
func Append[GA ~func(yield func(A) bool), A any](tail A) func(GA) GA {
|
||||
return F.Bind2nd(Concat[GA], Of[GA](tail))
|
||||
}
|
||||
|
||||
func Prepend[GA ~func(yield func(A) bool), A any](head A) func(GA) GA {
|
||||
return F.Bind1st(Concat[GA], Of[GA](head))
|
||||
}
|
||||
|
||||
func Empty[GA ~func(yield func(A) bool), A any]() GA {
|
||||
return func(_ func(A) bool) {}
|
||||
}
|
||||
|
||||
func ToArray[GA ~func(yield func(A) bool), GB ~[]A, A any](fa GA) GB {
|
||||
bs := make(GB, 0)
|
||||
for a := range fa {
|
||||
bs = append(bs, a)
|
||||
}
|
||||
return bs
|
||||
}
|
||||
|
||||
func MonadMapToArray[GA ~func(yield func(A) bool), GB ~[]B, A, B any](fa GA, f func(A) B) GB {
|
||||
bs := make(GB, 0)
|
||||
for a := range fa {
|
||||
bs = append(bs, f(a))
|
||||
}
|
||||
return bs
|
||||
}
|
||||
|
||||
func MapToArray[GA ~func(yield func(A) bool), GB ~[]B, A, B any](f func(A) B) func(GA) GB {
|
||||
return F.Bind2nd(MonadMapToArray[GA, GB], f)
|
||||
}
|
||||
|
||||
func MonadMapToArrayWithIndex[GA ~func(yield func(A) bool), GB ~[]B, A, B any](fa GA, f func(int, A) B) GB {
|
||||
bs := make(GB, 0)
|
||||
var i int
|
||||
for a := range fa {
|
||||
bs = append(bs, f(i, a))
|
||||
i += 1
|
||||
}
|
||||
return bs
|
||||
}
|
||||
|
||||
func MapToArrayWithIndex[GA ~func(yield func(A) bool), GB ~[]B, A, B any](f func(int, A) B) func(GA) GB {
|
||||
return F.Bind2nd(MonadMapToArrayWithIndex[GA, GB], f)
|
||||
}
|
||||
|
||||
func Monoid[GA ~func(yield func(A) bool), A any]() M.Monoid[GA] {
|
||||
return M.MakeMonoid(Concat[GA], Empty[GA]())
|
||||
}
|
||||
203
v2/internal/iter/traverse.go
Normal file
203
v2/internal/iter/traverse.go
Normal file
@@ -0,0 +1,203 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
INTA "github.com/IBM/fp-go/v2/internal/array"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
)
|
||||
|
||||
/*
|
||||
*
|
||||
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
|
||||
|
||||
HKTRB = HKT<GB>
|
||||
HKTB = HKT<B>
|
||||
HKTAB = HKT<func(A)B>
|
||||
*/
|
||||
func MonadTraverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKT_B, HKT_GB_GB, HKT_GB any](
|
||||
fmap_b func(HKT_B, func(B) GB) HKT_GB,
|
||||
|
||||
fof_gb func(GB) HKT_GB,
|
||||
fmap_gb func(HKT_GB, func(GB) func(GB) GB) HKT_GB_GB,
|
||||
fap_gb func(HKT_GB_GB, HKT_GB) HKT_GB,
|
||||
|
||||
ta GA,
|
||||
f func(A) HKT_B) HKT_GB {
|
||||
|
||||
fof := F.Bind2nd(fmap_b, Of[GB])
|
||||
|
||||
empty := fof_gb(Empty[GB]())
|
||||
|
||||
cb := F.Curry2(Concat[GB])
|
||||
concat_gb := F.Bind2nd(fmap_gb, cb)
|
||||
concat := func(first HKT_GB, second HKT_GB) HKT_GB {
|
||||
return fap_gb(concat_gb(first), second)
|
||||
}
|
||||
|
||||
// convert to an array
|
||||
hktb := MonadMapToArray[GA, []HKT_B](ta, f)
|
||||
return INTA.MonadSequenceSegment(fof, empty, concat, hktb, 0, len(hktb))
|
||||
}
|
||||
|
||||
func Traverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKT_B, HKT_GB_GB, HKT_GB any](
|
||||
fmap_b func(func(B) GB) func(HKT_B) HKT_GB,
|
||||
|
||||
fof_gb func(GB) HKT_GB,
|
||||
fmap_gb func(func(GB) func(GB) GB) func(HKT_GB) HKT_GB_GB,
|
||||
fap_gb func(HKT_GB_GB, HKT_GB) HKT_GB,
|
||||
|
||||
f func(A) HKT_B) func(GA) HKT_GB {
|
||||
|
||||
fof := fmap_b(Of[GB])
|
||||
empty := fof_gb(Empty[GB]())
|
||||
cb := F.Curry2(Concat[GB])
|
||||
concat_gb := fmap_gb(cb)
|
||||
|
||||
concat := func(first, second HKT_GB) HKT_GB {
|
||||
return fap_gb(concat_gb(first), second)
|
||||
}
|
||||
|
||||
return func(ma GA) HKT_GB {
|
||||
// return INTA.SequenceSegment(fof, empty, concat)(MapToArray[GA, []HKT_B](f)(ma))
|
||||
hktb := MonadMapToArray[GA, []HKT_B](ma, f)
|
||||
return INTA.MonadSequenceSegment(fof, empty, concat, hktb, 0, len(hktb))
|
||||
}
|
||||
}
|
||||
|
||||
func MonadSequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
|
||||
fof func(HKTA) HKTRA,
|
||||
m M.Monoid[HKTRA],
|
||||
|
||||
ta GA) HKTRA {
|
||||
|
||||
// convert to an array
|
||||
hktb := ToArray[GA, []HKTA](ta)
|
||||
return INTA.MonadSequenceSegment(fof, m.Empty(), m.Concat, hktb, 0, len(hktb))
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
|
||||
|
||||
HKTRB = HKT<GB>
|
||||
HKTB = HKT<B>
|
||||
HKTAB = HKT<func(A)B>
|
||||
*/
|
||||
func MonadTraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
|
||||
fof func(HKTB) HKTRB,
|
||||
m M.Monoid[HKTRB],
|
||||
|
||||
ta GA,
|
||||
f func(int, A) HKTB) HKTRB {
|
||||
|
||||
// convert to an array
|
||||
hktb := MonadMapToArrayWithIndex[GA, []HKTB](ta, f)
|
||||
return INTA.MonadSequenceSegment(fof, m.Empty(), m.Concat, hktb, 0, len(hktb))
|
||||
}
|
||||
|
||||
func Sequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
|
||||
fof func(HKTA) HKTRA,
|
||||
m M.Monoid[HKTRA]) func(GA) HKTRA {
|
||||
|
||||
return func(ma GA) HKTRA {
|
||||
return MonadSequence(fof, m, ma)
|
||||
}
|
||||
}
|
||||
|
||||
func TraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
|
||||
fof func(HKTB) HKTRB,
|
||||
m M.Monoid[HKTRB],
|
||||
|
||||
f func(int, A) HKTB) func(GA) HKTRB {
|
||||
|
||||
return func(ma GA) HKTRB {
|
||||
return MonadTraverseWithIndex(fof, m, ma, f)
|
||||
}
|
||||
}
|
||||
|
||||
func MonadTraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
|
||||
fof func(GB) HKTRB,
|
||||
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
|
||||
fap func(HKTB) func(HKTAB) HKTRB,
|
||||
|
||||
ta GA,
|
||||
|
||||
transform func(A) HKTB,
|
||||
reduce func(GB, B) GB,
|
||||
initial GB,
|
||||
) HKTRB {
|
||||
mmap := fmap(F.Curry2(reduce))
|
||||
|
||||
return MonadReduce(ta, func(r HKTRB, a A) HKTRB {
|
||||
return F.Pipe2(
|
||||
r,
|
||||
mmap,
|
||||
fap(transform(a)),
|
||||
)
|
||||
}, fof(initial))
|
||||
}
|
||||
|
||||
func MonadTraverseReduceWithIndex[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
|
||||
fof func(GB) HKTRB,
|
||||
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
|
||||
fap func(HKTB) func(HKTAB) HKTRB,
|
||||
|
||||
ta GA,
|
||||
|
||||
transform func(int, A) HKTB,
|
||||
reduce func(GB, B) GB,
|
||||
initial GB,
|
||||
) HKTRB {
|
||||
mmap := fmap(F.Curry2(reduce))
|
||||
|
||||
return MonadReduceWithIndex(ta, func(idx int, r HKTRB, a A) HKTRB {
|
||||
return F.Pipe2(
|
||||
r,
|
||||
mmap,
|
||||
fap(transform(idx, a)),
|
||||
)
|
||||
}, fof(initial))
|
||||
}
|
||||
|
||||
func TraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
|
||||
fof func(GB) HKTRB,
|
||||
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
|
||||
fap func(HKTB) func(HKTAB) HKTRB,
|
||||
|
||||
transform func(A) HKTB,
|
||||
reduce func(GB, B) GB,
|
||||
initial GB,
|
||||
) func(GA) HKTRB {
|
||||
return func(ta GA) HKTRB {
|
||||
return MonadTraverseReduce(fof, fmap, fap, ta, transform, reduce, initial)
|
||||
}
|
||||
}
|
||||
|
||||
func TraverseReduceWithIndex[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
|
||||
fof func(GB) HKTRB,
|
||||
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
|
||||
fap func(HKTB) func(HKTAB) HKTRB,
|
||||
|
||||
transform func(int, A) HKTB,
|
||||
reduce func(GB, B) GB,
|
||||
initial GB,
|
||||
) func(GA) HKTRB {
|
||||
return func(ta GA) HKTRB {
|
||||
return MonadTraverseReduceWithIndex(fof, fmap, fap, ta, transform, reduce, initial)
|
||||
}
|
||||
}
|
||||
9
v2/internal/iter/types.go
Normal file
9
v2/internal/iter/types.go
Normal file
@@ -0,0 +1,9 @@
|
||||
package iter
|
||||
|
||||
import (
|
||||
I "iter"
|
||||
)
|
||||
|
||||
type (
|
||||
Seq[A any] = I.Seq[A]
|
||||
)
|
||||
@@ -23,6 +23,7 @@ import (
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
S "github.com/IBM/fp-go/v2/semigroup"
|
||||
T "github.com/IBM/fp-go/v2/tuple"
|
||||
"github.com/stretchr/testify/assert"
|
||||
@@ -55,14 +56,14 @@ func TestMapTo(t *testing.T) {
|
||||
|
||||
// Test MonadApSeq
|
||||
func TestMonadApSeq(t *testing.T) {
|
||||
f := Of(func(x int) int { return x * 2 })
|
||||
f := Of(N.Mul(2))
|
||||
result := MonadApSeq(f, Of(21))
|
||||
assert.Equal(t, 42, result())
|
||||
}
|
||||
|
||||
// Test ApPar
|
||||
func TestApPar(t *testing.T) {
|
||||
f := Of(func(x int) int { return x * 2 })
|
||||
f := Of(N.Mul(2))
|
||||
result := F.Pipe1(f, ApPar[int](Of(21)))
|
||||
assert.Equal(t, 42, result())
|
||||
}
|
||||
@@ -128,14 +129,14 @@ func TestDefer(t *testing.T) {
|
||||
|
||||
// Test MonadFlap
|
||||
func TestMonadFlap(t *testing.T) {
|
||||
f := Of(func(x int) int { return x * 2 })
|
||||
f := Of(N.Mul(2))
|
||||
result := MonadFlap(f, 21)
|
||||
assert.Equal(t, 42, result())
|
||||
}
|
||||
|
||||
// Test Flap
|
||||
func TestFlap(t *testing.T) {
|
||||
f := Of(func(x int) int { return x * 2 })
|
||||
f := Of(N.Mul(2))
|
||||
result := F.Pipe1(f, Flap[int](21))
|
||||
assert.Equal(t, 42, result())
|
||||
}
|
||||
@@ -355,7 +356,7 @@ func TestApplicativeTypeClass(t *testing.T) {
|
||||
assert.Equal(t, 21, io1())
|
||||
|
||||
// Test Map
|
||||
io2 := app.Map(func(x int) int { return x * 2 })(io1)
|
||||
io2 := app.Map(N.Mul(2))(io1)
|
||||
assert.Equal(t, 42, io2())
|
||||
}
|
||||
|
||||
|
||||
@@ -18,6 +18,7 @@ package io
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
INTA "github.com/IBM/fp-go/v2/internal/array"
|
||||
INTI "github.com/IBM/fp-go/v2/internal/iter"
|
||||
INTR "github.com/IBM/fp-go/v2/internal/record"
|
||||
)
|
||||
|
||||
@@ -60,6 +61,18 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
|
||||
)
|
||||
}
|
||||
|
||||
func TraverseIter[A, B any](f Kleisli[A, B]) Kleisli[Seq[A], Seq[B]] {
|
||||
return INTI.Traverse[Seq[A]](
|
||||
Map[B],
|
||||
|
||||
Of[Seq[B]],
|
||||
Map[Seq[B]],
|
||||
MonadAp[Seq[B]],
|
||||
|
||||
f,
|
||||
)
|
||||
}
|
||||
|
||||
// TraverseArrayWithIndex is like TraverseArray but the function also receives the index.
|
||||
// Executes in parallel by default.
|
||||
//
|
||||
|
||||
7
v2/io/types.go
Normal file
7
v2/io/types.go
Normal file
@@ -0,0 +1,7 @@
|
||||
package io
|
||||
|
||||
import "iter"
|
||||
|
||||
type (
|
||||
Seq[T any] = iter.Seq[T]
|
||||
)
|
||||
897
v2/iterator/iter/iter.go
Normal file
897
v2/iterator/iter/iter.go
Normal file
@@ -0,0 +1,897 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Package iter provides functional programming utilities for Go 1.23+ iterators.
|
||||
//
|
||||
// This package offers a comprehensive set of operations for working with lazy sequences
|
||||
// using Go's native iter.Seq and iter.Seq2 types. It follows functional programming
|
||||
// principles and provides monadic operations, transformations, and reductions.
|
||||
//
|
||||
// The package supports:
|
||||
// - Functor operations (Map, MapWithIndex, MapWithKey)
|
||||
// - Monad operations (Chain, Flatten, Ap)
|
||||
// - Filtering (Filter, FilterMap, FilterWithIndex, FilterWithKey)
|
||||
// - Folding and reduction (Reduce, Fold, FoldMap)
|
||||
// - Sequence construction (Of, From, MakeBy, Replicate)
|
||||
// - Sequence combination (Zip, Prepend, Append)
|
||||
//
|
||||
// All operations are lazy and only execute when the sequence is consumed via iteration.
|
||||
//
|
||||
// Example usage:
|
||||
//
|
||||
// // Create a sequence and transform it
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// doubled := Map(N.Mul(2))(seq)
|
||||
//
|
||||
// // Filter and reduce
|
||||
// evens := Filter(func(x int) bool { return x%2 == 0 })(doubled)
|
||||
// sum := MonadReduce(evens, func(acc, x int) int { return acc + x }, 0)
|
||||
// // sum = 20 (2+4+6+8+10 from doubled evens)
|
||||
package iter
|
||||
|
||||
import (
|
||||
"slices"
|
||||
|
||||
I "iter"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/internal/functor"
|
||||
G "github.com/IBM/fp-go/v2/internal/iter"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
// Of creates a sequence containing a single element.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := Of(42)
|
||||
// // yields: 42
|
||||
//
|
||||
//go:inline
|
||||
func Of[A any](a A) Seq[A] {
|
||||
return G.Of[Seq[A]](a)
|
||||
}
|
||||
|
||||
// Of2 creates a key-value sequence containing a single key-value pair.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := Of2("key", 100)
|
||||
// // yields: ("key", 100)
|
||||
func Of2[K, A any](k K, a A) Seq2[K, A] {
|
||||
return func(yield func(K, A) bool) {
|
||||
yield(k, a)
|
||||
}
|
||||
}
|
||||
|
||||
// MonadMap transforms each element in a sequence using the provided function.
|
||||
// This is the monadic version that takes the sequence as the first parameter.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3)
|
||||
// result := MonadMap(seq, N.Mul(2))
|
||||
// // yields: 2, 4, 6
|
||||
func MonadMap[A, B any](as Seq[A], f func(A) B) Seq[B] {
|
||||
return func(yield Predicate[B]) {
|
||||
for a := range as {
|
||||
if !yield(f(a)) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Map returns a function that transforms each element in a sequence.
|
||||
// This is the curried version of MonadMap.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// double := Map(N.Mul(2))
|
||||
// seq := From(1, 2, 3)
|
||||
// result := double(seq)
|
||||
// // yields: 2, 4, 6
|
||||
//
|
||||
//go:inline
|
||||
func Map[A, B any](f func(A) B) Operator[A, B] {
|
||||
return F.Bind2nd(MonadMap[A, B], f)
|
||||
}
|
||||
|
||||
// MonadMapWithIndex transforms each element in a sequence using a function that also receives the element's index.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From("a", "b", "c")
|
||||
// result := MonadMapWithIndex(seq, func(i int, s string) string {
|
||||
// return fmt.Sprintf("%d:%s", i, s)
|
||||
// })
|
||||
// // yields: "0:a", "1:b", "2:c"
|
||||
func MonadMapWithIndex[A, B any](as Seq[A], f func(int, A) B) Seq[B] {
|
||||
return func(yield Predicate[B]) {
|
||||
var i int
|
||||
for a := range as {
|
||||
if !yield(f(i, a)) {
|
||||
return
|
||||
}
|
||||
i += 1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// MapWithIndex returns a function that transforms elements with their indices.
|
||||
// This is the curried version of MonadMapWithIndex.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// addIndex := MapWithIndex(func(i int, s string) string {
|
||||
// return fmt.Sprintf("%d:%s", i, s)
|
||||
// })
|
||||
// seq := From("a", "b", "c")
|
||||
// result := addIndex(seq)
|
||||
// // yields: "0:a", "1:b", "2:c"
|
||||
//
|
||||
//go:inline
|
||||
func MapWithIndex[A, B any](f func(int, A) B) Operator[A, B] {
|
||||
return F.Bind2nd(MonadMapWithIndex[A, B], f)
|
||||
}
|
||||
|
||||
// MonadMapWithKey transforms values in a key-value sequence using a function that receives both key and value.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := Of2("x", 10)
|
||||
// result := MonadMapWithKey(seq, func(k string, v int) int { return v * 2 })
|
||||
// // yields: ("x", 20)
|
||||
func MonadMapWithKey[K, A, B any](as Seq2[K, A], f func(K, A) B) Seq2[K, B] {
|
||||
return func(yield func(K, B) bool) {
|
||||
for k, a := range as {
|
||||
if !yield(k, f(k, a)) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// MapWithKey returns a function that transforms values using their keys.
|
||||
// This is the curried version of MonadMapWithKey.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// doubleValue := MapWithKey(func(k string, v int) int { return v * 2 })
|
||||
// seq := Of2("x", 10)
|
||||
// result := doubleValue(seq)
|
||||
// // yields: ("x", 20)
|
||||
//
|
||||
//go:inline
|
||||
func MapWithKey[K, A, B any](f func(K, A) B) Operator2[K, A, B] {
|
||||
return F.Bind2nd(MonadMapWithKey[K, A, B], f)
|
||||
}
|
||||
|
||||
// MonadFilter returns a sequence containing only elements that satisfy the predicate.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// result := MonadFilter(seq, func(x int) bool { return x%2 == 0 })
|
||||
// // yields: 2, 4
|
||||
func MonadFilter[A any](as Seq[A], pred func(A) bool) Seq[A] {
|
||||
return func(yield Predicate[A]) {
|
||||
for a := range as {
|
||||
if pred(a) {
|
||||
if !yield(a) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Filter returns a function that filters elements based on a predicate.
|
||||
// This is the curried version of MonadFilter.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// evens := Filter(func(x int) bool { return x%2 == 0 })
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// result := evens(seq)
|
||||
// // yields: 2, 4
|
||||
//
|
||||
//go:inline
|
||||
func Filter[A any](pred func(A) bool) Operator[A, A] {
|
||||
return F.Bind2nd(MonadFilter[A], pred)
|
||||
}
|
||||
|
||||
// MonadFilterWithIndex filters elements using a predicate that also receives the element's index.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From("a", "b", "c", "d")
|
||||
// result := MonadFilterWithIndex(seq, func(i int, s string) bool { return i%2 == 0 })
|
||||
// // yields: "a", "c" (elements at even indices)
|
||||
func MonadFilterWithIndex[A any](as Seq[A], pred func(int, A) bool) Seq[A] {
|
||||
return func(yield Predicate[A]) {
|
||||
var i int
|
||||
for a := range as {
|
||||
if pred(i, a) {
|
||||
if !yield(a) {
|
||||
return
|
||||
}
|
||||
}
|
||||
i++
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FilterWithIndex returns a function that filters elements based on their index and value.
|
||||
// This is the curried version of MonadFilterWithIndex.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// evenIndices := FilterWithIndex(func(i int, s string) bool { return i%2 == 0 })
|
||||
// seq := From("a", "b", "c", "d")
|
||||
// result := evenIndices(seq)
|
||||
// // yields: "a", "c"
|
||||
//
|
||||
//go:inline
|
||||
func FilterWithIndex[A any](pred func(int, A) bool) Operator[A, A] {
|
||||
return F.Bind2nd(MonadFilterWithIndex[A], pred)
|
||||
}
|
||||
|
||||
// MonadFilterWithKey filters key-value pairs using a predicate that receives both key and value.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := Of2("x", 10)
|
||||
// result := MonadFilterWithKey(seq, func(k string, v int) bool { return v > 5 })
|
||||
// // yields: ("x", 10)
|
||||
func MonadFilterWithKey[K, A any](as Seq2[K, A], pred func(K, A) bool) Seq2[K, A] {
|
||||
return func(yield func(K, A) bool) {
|
||||
for k, a := range as {
|
||||
if pred(k, a) {
|
||||
if !yield(k, a) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FilterWithKey returns a function that filters key-value pairs based on a predicate.
|
||||
// This is the curried version of MonadFilterWithKey.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// largeValues := FilterWithKey(func(k string, v int) bool { return v > 5 })
|
||||
// seq := Of2("x", 10)
|
||||
// result := largeValues(seq)
|
||||
// // yields: ("x", 10)
|
||||
//
|
||||
//go:inline
|
||||
func FilterWithKey[K, A any](pred func(K, A) bool) Operator2[K, A, A] {
|
||||
return F.Bind2nd(MonadFilterWithKey[K, A], pred)
|
||||
}
|
||||
|
||||
// MonadFilterMap applies a function that returns an Option to each element,
|
||||
// keeping only the Some values and unwrapping them.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// result := MonadFilterMap(seq, func(x int) Option[int] {
|
||||
// if x%2 == 0 {
|
||||
// return option.Some(x * 10)
|
||||
// }
|
||||
// return option.None[int]()
|
||||
// })
|
||||
// // yields: 20, 40
|
||||
func MonadFilterMap[A, B any](as Seq[A], f option.Kleisli[A, B]) Seq[B] {
|
||||
return func(yield Predicate[B]) {
|
||||
for a := range as {
|
||||
if b, ok := option.Unwrap(f(a)); ok {
|
||||
if !yield(b) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FilterMap returns a function that filters and maps in one operation.
|
||||
// This is the curried version of MonadFilterMap.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// evenDoubled := FilterMap(func(x int) Option[int] {
|
||||
// if x%2 == 0 {
|
||||
// return option.Some(x * 2)
|
||||
// }
|
||||
// return option.None[int]()
|
||||
// })
|
||||
// seq := From(1, 2, 3, 4)
|
||||
// result := evenDoubled(seq)
|
||||
// // yields: 4, 8
|
||||
//
|
||||
//go:inline
|
||||
func FilterMap[A, B any](f option.Kleisli[A, B]) Operator[A, B] {
|
||||
return F.Bind2nd(MonadFilterMap[A, B], f)
|
||||
}
|
||||
|
||||
// MonadFilterMapWithIndex applies a function with index that returns an Option,
|
||||
// keeping only the Some values.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From("a", "b", "c")
|
||||
// result := MonadFilterMapWithIndex(seq, func(i int, s string) Option[string] {
|
||||
// if i%2 == 0 {
|
||||
// return option.Some(fmt.Sprintf("%d:%s", i, s))
|
||||
// }
|
||||
// return option.None[string]()
|
||||
// })
|
||||
// // yields: "0:a", "2:c"
|
||||
func MonadFilterMapWithIndex[A, B any](as Seq[A], f func(int, A) Option[B]) Seq[B] {
|
||||
return func(yield Predicate[B]) {
|
||||
var i int
|
||||
for a := range as {
|
||||
if b, ok := option.Unwrap(f(i, a)); ok {
|
||||
if !yield(b) {
|
||||
return
|
||||
}
|
||||
}
|
||||
i++
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FilterMapWithIndex returns a function that filters and maps with index.
|
||||
// This is the curried version of MonadFilterMapWithIndex.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// evenIndexed := FilterMapWithIndex(func(i int, s string) Option[string] {
|
||||
// if i%2 == 0 {
|
||||
// return option.Some(s)
|
||||
// }
|
||||
// return option.None[string]()
|
||||
// })
|
||||
// seq := From("a", "b", "c", "d")
|
||||
// result := evenIndexed(seq)
|
||||
// // yields: "a", "c"
|
||||
//
|
||||
//go:inline
|
||||
func FilterMapWithIndex[A, B any](f func(int, A) Option[B]) Operator[A, B] {
|
||||
return F.Bind2nd(MonadFilterMapWithIndex[A, B], f)
|
||||
}
|
||||
|
||||
// MonadFilterMapWithKey applies a function with key that returns an Option to key-value pairs,
|
||||
// keeping only the Some values.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := Of2("x", 10)
|
||||
// result := MonadFilterMapWithKey(seq, func(k string, v int) Option[int] {
|
||||
// if v > 5 {
|
||||
// return option.Some(v * 2)
|
||||
// }
|
||||
// return option.None[int]()
|
||||
// })
|
||||
// // yields: ("x", 20)
|
||||
func MonadFilterMapWithKey[K, A, B any](as Seq2[K, A], f func(K, A) Option[B]) Seq2[K, B] {
|
||||
return func(yield func(K, B) bool) {
|
||||
for k, a := range as {
|
||||
if b, ok := option.Unwrap(f(k, a)); ok {
|
||||
if !yield(k, b) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FilterMapWithKey returns a function that filters and maps key-value pairs.
|
||||
// This is the curried version of MonadFilterMapWithKey.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// largeDoubled := FilterMapWithKey(func(k string, v int) Option[int] {
|
||||
// if v > 5 {
|
||||
// return option.Some(v * 2)
|
||||
// }
|
||||
// return option.None[int]()
|
||||
// })
|
||||
// seq := Of2("x", 10)
|
||||
// result := largeDoubled(seq)
|
||||
// // yields: ("x", 20)
|
||||
//
|
||||
//go:inline
|
||||
func FilterMapWithKey[K, A, B any](f func(K, A) Option[B]) Operator2[K, A, B] {
|
||||
return F.Bind2nd(MonadFilterMapWithKey[K, A, B], f)
|
||||
}
|
||||
|
||||
// MonadChain applies a function that returns a sequence to each element and flattens the results.
|
||||
// This is the monadic bind operation (flatMap).
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3)
|
||||
// result := MonadChain(seq, func(x int) Seq[int] {
|
||||
// return From(x, x*10)
|
||||
// })
|
||||
// // yields: 1, 10, 2, 20, 3, 30
|
||||
func MonadChain[A, B any](as Seq[A], f Kleisli[A, B]) Seq[B] {
|
||||
return func(yield Predicate[B]) {
|
||||
for a := range as {
|
||||
for b := range f(a) {
|
||||
if !yield(b) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Chain returns a function that chains (flatMaps) a sequence transformation.
|
||||
// This is the curried version of MonadChain.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// duplicate := Chain(func(x int) Seq[int] { return From(x, x) })
|
||||
// seq := From(1, 2, 3)
|
||||
// result := duplicate(seq)
|
||||
// // yields: 1, 1, 2, 2, 3, 3
|
||||
//
|
||||
//go:inline
|
||||
func Chain[A, B any](f func(A) Seq[B]) Operator[A, B] {
|
||||
return F.Bind2nd(MonadChain[A, B], f)
|
||||
}
|
||||
|
||||
// Flatten flattens a sequence of sequences into a single sequence.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// nested := From(From(1, 2), From(3, 4), From(5))
|
||||
// result := Flatten(nested)
|
||||
// // yields: 1, 2, 3, 4, 5
|
||||
//
|
||||
//go:inline
|
||||
func Flatten[A any](mma Seq[Seq[A]]) Seq[A] {
|
||||
return MonadChain(mma, F.Identity[Seq[A]])
|
||||
}
|
||||
|
||||
// MonadAp applies a sequence of functions to a sequence of values.
|
||||
// This is the applicative apply operation.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// fns := From(N.Mul(2), func(x int) int { return x + 10 })
|
||||
// vals := From(5, 3)
|
||||
// result := MonadAp(fns, vals)
|
||||
// // yields: 10, 6, 15, 13 (each function applied to each value)
|
||||
//
|
||||
//go:inline
|
||||
func MonadAp[B, A any](fab Seq[func(A) B], fa Seq[A]) Seq[B] {
|
||||
return MonadChain(fab, F.Bind1st(MonadMap[A, B], fa))
|
||||
}
|
||||
|
||||
// Ap returns a function that applies functions to values.
|
||||
// This is the curried version of MonadAp.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// applyTo5 := Ap(From(5))
|
||||
// fns := From(N.Mul(2), func(x int) int { return x + 10 })
|
||||
// result := applyTo5(fns)
|
||||
// // yields: 10, 15
|
||||
//
|
||||
//go:inline
|
||||
func Ap[B, A any](fa Seq[A]) Operator[func(A) B, B] {
|
||||
return F.Bind2nd(MonadAp[B, A], fa)
|
||||
}
|
||||
|
||||
// From creates a sequence from a variadic list of elements.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// // yields: 1, 2, 3, 4, 5
|
||||
//
|
||||
//go:inline
|
||||
func From[A any](data ...A) Seq[A] {
|
||||
return slices.Values(data)
|
||||
}
|
||||
|
||||
// Empty returns an empty sequence that yields no elements.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := Empty[int]()
|
||||
// // yields nothing
|
||||
//
|
||||
//go:inline
|
||||
func Empty[A any]() Seq[A] {
|
||||
return G.Empty[Seq[A]]()
|
||||
}
|
||||
|
||||
// MakeBy creates a sequence of n elements by applying a function to each index.
|
||||
// Returns an empty sequence if n <= 0.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := MakeBy(5, func(i int) int { return i * i })
|
||||
// // yields: 0, 1, 4, 9, 16
|
||||
func MakeBy[A any](n int, f func(int) A) Seq[A] {
|
||||
// sanity check
|
||||
if n <= 0 {
|
||||
return Empty[A]()
|
||||
}
|
||||
// run the generator function across the input
|
||||
return func(yield Predicate[A]) {
|
||||
for i := range n {
|
||||
if !yield(f(i)) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Replicate creates a sequence containing n copies of the same element.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := Replicate(3, "hello")
|
||||
// // yields: "hello", "hello", "hello"
|
||||
//
|
||||
//go:inline
|
||||
func Replicate[A any](n int, a A) Seq[A] {
|
||||
return MakeBy(n, F.Constant1[int](a))
|
||||
}
|
||||
|
||||
// MonadReduce reduces a sequence to a single value by applying a function to each element
|
||||
// and an accumulator, starting with an initial value.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// sum := MonadReduce(seq, func(acc, x int) int { return acc + x }, 0)
|
||||
// // returns: 15
|
||||
//
|
||||
//go:inline
|
||||
func MonadReduce[A, B any](fa Seq[A], f func(B, A) B, initial B) B {
|
||||
return G.MonadReduce(fa, f, initial)
|
||||
}
|
||||
|
||||
// Reduce returns a function that reduces a sequence to a single value.
|
||||
// This is the curried version of MonadReduce.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// sum := Reduce(func(acc, x int) int { return acc + x }, 0)
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// result := sum(seq)
|
||||
// // returns: 15
|
||||
func Reduce[A, B any](f func(B, A) B, initial B) func(Seq[A]) B {
|
||||
return func(fa Seq[A]) B {
|
||||
return MonadReduce(fa, f, initial)
|
||||
}
|
||||
}
|
||||
|
||||
// MonadReduceWithIndex reduces a sequence using a function that also receives the element's index.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(10, 20, 30)
|
||||
// result := MonadReduceWithIndex(seq, func(i, acc, x int) int {
|
||||
// return acc + (i * x)
|
||||
// }, 0)
|
||||
// // returns: 0*10 + 1*20 + 2*30 = 80
|
||||
//
|
||||
//go:inline
|
||||
func MonadReduceWithIndex[A, B any](fa Seq[A], f func(int, B, A) B, initial B) B {
|
||||
return G.MonadReduceWithIndex(fa, f, initial)
|
||||
}
|
||||
|
||||
// ReduceWithIndex returns a function that reduces with index.
|
||||
// This is the curried version of MonadReduceWithIndex.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// weightedSum := ReduceWithIndex(func(i, acc, x int) int {
|
||||
// return acc + (i * x)
|
||||
// }, 0)
|
||||
// seq := From(10, 20, 30)
|
||||
// result := weightedSum(seq)
|
||||
// // returns: 80
|
||||
func ReduceWithIndex[A, B any](f func(int, B, A) B, initial B) func(Seq[A]) B {
|
||||
return func(fa Seq[A]) B {
|
||||
return MonadReduceWithIndex(fa, f, initial)
|
||||
}
|
||||
}
|
||||
|
||||
// MonadReduceWithKey reduces a key-value sequence using a function that receives the key.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := Of2("x", 10)
|
||||
// result := MonadReduceWithKey(seq, func(k string, acc int, v int) int {
|
||||
// return acc + v
|
||||
// }, 0)
|
||||
// // returns: 10
|
||||
func MonadReduceWithKey[K, A, B any](fa Seq2[K, A], f func(K, B, A) B, initial B) B {
|
||||
current := initial
|
||||
for k, a := range fa {
|
||||
current = f(k, current, a)
|
||||
}
|
||||
return current
|
||||
}
|
||||
|
||||
// ReduceWithKey returns a function that reduces key-value pairs.
|
||||
// This is the curried version of MonadReduceWithKey.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// sumValues := ReduceWithKey(func(k string, acc int, v int) int {
|
||||
// return acc + v
|
||||
// }, 0)
|
||||
// seq := Of2("x", 10)
|
||||
// result := sumValues(seq)
|
||||
// // returns: 10
|
||||
func ReduceWithKey[K, A, B any](f func(K, B, A) B, initial B) func(Seq2[K, A]) B {
|
||||
return func(fa Seq2[K, A]) B {
|
||||
return MonadReduceWithKey(fa, f, initial)
|
||||
}
|
||||
}
|
||||
|
||||
// MonadFold folds a sequence using a monoid's concat operation and empty value.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/number"
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// sum := MonadFold(seq, number.MonoidSum[int]())
|
||||
// // returns: 15
|
||||
//
|
||||
//go:inline
|
||||
func MonadFold[A any](fa Seq[A], m M.Monoid[A]) A {
|
||||
return MonadReduce(fa, m.Concat, m.Empty())
|
||||
}
|
||||
|
||||
// Fold returns a function that folds a sequence using a monoid.
|
||||
// This is the curried version of MonadFold.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/number"
|
||||
// sumAll := Fold(number.MonoidSum[int]())
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// result := sumAll(seq)
|
||||
// // returns: 15
|
||||
//
|
||||
//go:inline
|
||||
func Fold[A any](m M.Monoid[A]) func(Seq[A]) A {
|
||||
return Reduce(m.Concat, m.Empty())
|
||||
}
|
||||
|
||||
// MonadFoldMap maps each element to a monoid value and combines them using the monoid.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/string"
|
||||
// seq := From(1, 2, 3)
|
||||
// result := MonadFoldMap(seq, func(x int) string {
|
||||
// return fmt.Sprintf("%d ", x)
|
||||
// }, string.Monoid)
|
||||
// // returns: "1 2 3 "
|
||||
//
|
||||
//go:inline
|
||||
func MonadFoldMap[A, B any](fa Seq[A], f func(A) B, m M.Monoid[B]) B {
|
||||
return MonadReduce(fa, func(b B, a A) B {
|
||||
return m.Concat(b, f(a))
|
||||
}, m.Empty())
|
||||
}
|
||||
|
||||
// FoldMap returns a function that maps and folds using a monoid.
|
||||
// This is the curried version of MonadFoldMap.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/string"
|
||||
// stringify := FoldMap(string.Monoid)(func(x int) string {
|
||||
// return fmt.Sprintf("%d ", x)
|
||||
// })
|
||||
// seq := From(1, 2, 3)
|
||||
// result := stringify(seq)
|
||||
// // returns: "1 2 3 "
|
||||
//
|
||||
//go:inline
|
||||
func FoldMap[A, B any](m M.Monoid[B]) func(func(A) B) func(Seq[A]) B {
|
||||
return func(f func(A) B) func(Seq[A]) B {
|
||||
return func(as Seq[A]) B {
|
||||
return MonadFoldMap(as, f, m)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// MonadFoldMapWithIndex maps each element with its index to a monoid value and combines them.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/string"
|
||||
// seq := From("a", "b", "c")
|
||||
// result := MonadFoldMapWithIndex(seq, func(i int, s string) string {
|
||||
// return fmt.Sprintf("%d:%s ", i, s)
|
||||
// }, string.Monoid)
|
||||
// // returns: "0:a 1:b 2:c "
|
||||
//
|
||||
//go:inline
|
||||
func MonadFoldMapWithIndex[A, B any](fa Seq[A], f func(int, A) B, m M.Monoid[B]) B {
|
||||
return MonadReduceWithIndex(fa, func(i int, b B, a A) B {
|
||||
return m.Concat(b, f(i, a))
|
||||
}, m.Empty())
|
||||
}
|
||||
|
||||
// FoldMapWithIndex returns a function that maps with index and folds.
|
||||
// This is the curried version of MonadFoldMapWithIndex.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/string"
|
||||
// indexedStringify := FoldMapWithIndex(string.Monoid)(func(i int, s string) string {
|
||||
// return fmt.Sprintf("%d:%s ", i, s)
|
||||
// })
|
||||
// seq := From("a", "b", "c")
|
||||
// result := indexedStringify(seq)
|
||||
// // returns: "0:a 1:b 2:c "
|
||||
//
|
||||
//go:inline
|
||||
func FoldMapWithIndex[A, B any](m M.Monoid[B]) func(func(int, A) B) func(Seq[A]) B {
|
||||
return func(f func(int, A) B) func(Seq[A]) B {
|
||||
return func(as Seq[A]) B {
|
||||
return MonadFoldMapWithIndex(as, f, m)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// MonadFoldMapWithKey maps each key-value pair to a monoid value and combines them.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import "github.com/IBM/fp-go/v2/string"
|
||||
// seq := Of2("x", 10)
|
||||
// result := MonadFoldMapWithKey(seq, func(k string, v int) string {
|
||||
// return fmt.Sprintf("%s:%d ", k, v)
|
||||
// }, string.Monoid)
|
||||
// // returns: "x:10 "
|
||||
//
|
||||
//go:inline
|
||||
func MonadFoldMapWithKey[K, A, B any](fa Seq2[K, A], f func(K, A) B, m M.Monoid[B]) B {
|
||||
return MonadReduceWithKey(fa, func(k K, b B, a A) B {
|
||||
return m.Concat(b, f(k, a))
|
||||
}, m.Empty())
|
||||
}
|
||||
|
||||
// FoldMapWithKey returns a function that maps with key and folds.
|
||||
// This is the curried version of MonadFoldMapWithKey.
|
||||
//
|
||||
//go:inline
|
||||
func FoldMapWithKey[K, A, B any](m M.Monoid[B]) func(func(K, A) B) func(Seq2[K, A]) B {
|
||||
return func(f func(K, A) B) func(Seq2[K, A]) B {
|
||||
return func(as Seq2[K, A]) B {
|
||||
return MonadFoldMapWithKey(as, f, m)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// MonadFlap applies a fixed value to a sequence of functions.
|
||||
// This is the dual of MonadAp.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// fns := From(N.Mul(2), func(x int) int { return x + 10 })
|
||||
// result := MonadFlap(fns, 5)
|
||||
// // yields: 10, 15
|
||||
//
|
||||
//go:inline
|
||||
func MonadFlap[B, A any](fab Seq[func(A) B], a A) Seq[B] {
|
||||
return functor.MonadFlap(MonadMap[func(A) B, B], fab, a)
|
||||
}
|
||||
|
||||
// Flap returns a function that applies a fixed value to functions.
|
||||
// This is the curried version of MonadFlap.
|
||||
//
|
||||
//go:inline
|
||||
func Flap[B, A any](a A) Operator[func(A) B, B] {
|
||||
return functor.Flap(Map[func(A) B, B], a)
|
||||
}
|
||||
|
||||
// Prepend returns a function that adds an element to the beginning of a sequence.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(2, 3, 4)
|
||||
// result := Prepend(1)(seq)
|
||||
// // yields: 1, 2, 3, 4
|
||||
//
|
||||
//go:inline
|
||||
func Prepend[A any](head A) Operator[A, A] {
|
||||
return G.Prepend[Seq[A]](head)
|
||||
}
|
||||
|
||||
// Append returns a function that adds an element to the end of a sequence.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3)
|
||||
// result := Append(4)(seq)
|
||||
// // yields: 1, 2, 3, 4
|
||||
//
|
||||
//go:inline
|
||||
func Append[A any](tail A) Operator[A, A] {
|
||||
return G.Append[Seq[A]](tail)
|
||||
}
|
||||
|
||||
// MonadZip combines two sequences into a sequence of pairs.
|
||||
// The resulting sequence stops when either input sequence is exhausted.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seqA := From(1, 2, 3)
|
||||
// seqB := From("a", "b")
|
||||
// result := MonadZip(seqB, seqA)
|
||||
// // yields: (1, "a"), (2, "b")
|
||||
func MonadZip[A, B any](fb Seq[B], fa Seq[A]) Seq2[A, B] {
|
||||
|
||||
return func(yield func(A, B) bool) {
|
||||
na, sa := I.Pull(fa)
|
||||
defer sa()
|
||||
|
||||
for b := range fb {
|
||||
a, ok := na()
|
||||
if !ok {
|
||||
return
|
||||
}
|
||||
|
||||
if !yield(a, b) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Zip returns a function that zips a sequence with another sequence.
|
||||
// This is the curried version of MonadZip.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seqA := From(1, 2, 3)
|
||||
// zipWithA := Zip(seqA)
|
||||
// seqB := From("a", "b", "c")
|
||||
// result := zipWithA(seqB)
|
||||
// // yields: (1, "a"), (2, "b"), (3, "c")
|
||||
//
|
||||
//go:inline
|
||||
func Zip[A, B any](fa Seq[A]) func(Seq[B]) Seq2[A, B] {
|
||||
return F.Bind2nd(MonadZip[A, B], fa)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func MonadMapToArray[A, B any](fa Seq[A], f func(A) B) []B {
|
||||
return G.MonadMapToArray[Seq[A], []B](fa, f)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func MapToArray[A, B any](f func(A) B) func(Seq[A]) []B {
|
||||
return G.MapToArray[Seq[A], []B](f)
|
||||
}
|
||||
589
v2/iterator/iter/iter_test.go
Normal file
589
v2/iterator/iter/iter_test.go
Normal file
@@ -0,0 +1,589 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"maps"
|
||||
"slices"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
S "github.com/IBM/fp-go/v2/string"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// Helper function to collect sequence into a slice
|
||||
func toSlice[T any](seq Seq[T]) []T {
|
||||
return slices.Collect(seq)
|
||||
}
|
||||
|
||||
// Helper function to collect Seq2 into a map
|
||||
func toMap[K comparable, V any](seq Seq2[K, V]) map[K]V {
|
||||
return maps.Collect(seq)
|
||||
}
|
||||
|
||||
func TestOf(t *testing.T) {
|
||||
seq := Of(42)
|
||||
result := toSlice(seq)
|
||||
assert.Equal(t, []int{42}, result)
|
||||
}
|
||||
|
||||
func TestOf2(t *testing.T) {
|
||||
seq := Of2("key", 100)
|
||||
result := toMap(seq)
|
||||
assert.Equal(t, map[string]int{"key": 100}, result)
|
||||
}
|
||||
|
||||
func TestFrom(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
result := toSlice(seq)
|
||||
assert.Equal(t, []int{1, 2, 3, 4, 5}, result)
|
||||
}
|
||||
|
||||
func TestEmpty(t *testing.T) {
|
||||
seq := Empty[int]()
|
||||
result := toSlice(seq)
|
||||
assert.Empty(t, result)
|
||||
}
|
||||
|
||||
func TestMonadMap(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
doubled := MonadMap(seq, N.Mul(2))
|
||||
result := toSlice(doubled)
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
}
|
||||
|
||||
func TestMap(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
double := Map(N.Mul(2))
|
||||
result := toSlice(double(seq))
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
}
|
||||
|
||||
func TestMonadMapWithIndex(t *testing.T) {
|
||||
seq := From("a", "b", "c")
|
||||
indexed := MonadMapWithIndex(seq, func(i int, s string) string {
|
||||
return fmt.Sprintf("%d:%s", i, s)
|
||||
})
|
||||
result := toSlice(indexed)
|
||||
assert.Equal(t, []string{"0:a", "1:b", "2:c"}, result)
|
||||
}
|
||||
|
||||
func TestMapWithIndex(t *testing.T) {
|
||||
seq := From("a", "b", "c")
|
||||
indexer := MapWithIndex(func(i int, s string) string {
|
||||
return fmt.Sprintf("%d:%s", i, s)
|
||||
})
|
||||
result := toSlice(indexer(seq))
|
||||
assert.Equal(t, []string{"0:a", "1:b", "2:c"}, result)
|
||||
}
|
||||
|
||||
func TestMonadMapWithKey(t *testing.T) {
|
||||
seq := Of2("x", 10)
|
||||
doubled := MonadMapWithKey(seq, func(k string, v int) int { return v * 2 })
|
||||
result := toMap(doubled)
|
||||
assert.Equal(t, map[string]int{"x": 20}, result)
|
||||
}
|
||||
|
||||
func TestMapWithKey(t *testing.T) {
|
||||
seq := Of2("x", 10)
|
||||
doubler := MapWithKey(func(k string, v int) int { return v * 2 })
|
||||
result := toMap(doubler(seq))
|
||||
assert.Equal(t, map[string]int{"x": 20}, result)
|
||||
}
|
||||
|
||||
func TestMonadFilter(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
evens := MonadFilter(seq, func(x int) bool { return x%2 == 0 })
|
||||
result := toSlice(evens)
|
||||
assert.Equal(t, []int{2, 4}, result)
|
||||
}
|
||||
|
||||
func TestFilter(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
isEven := Filter(func(x int) bool { return x%2 == 0 })
|
||||
result := toSlice(isEven(seq))
|
||||
assert.Equal(t, []int{2, 4}, result)
|
||||
}
|
||||
|
||||
func TestMonadFilterWithIndex(t *testing.T) {
|
||||
seq := From("a", "b", "c", "d")
|
||||
oddIndices := MonadFilterWithIndex(seq, func(i int, _ string) bool { return i%2 == 1 })
|
||||
result := toSlice(oddIndices)
|
||||
assert.Equal(t, []string{"b", "d"}, result)
|
||||
}
|
||||
|
||||
func TestFilterWithIndex(t *testing.T) {
|
||||
seq := From("a", "b", "c", "d")
|
||||
oddIndexFilter := FilterWithIndex(func(i int, _ string) bool { return i%2 == 1 })
|
||||
result := toSlice(oddIndexFilter(seq))
|
||||
assert.Equal(t, []string{"b", "d"}, result)
|
||||
}
|
||||
|
||||
func TestMonadFilterWithKey(t *testing.T) {
|
||||
seq := Of2("x", 10)
|
||||
filtered := MonadFilterWithKey(seq, func(k string, v int) bool { return v > 5 })
|
||||
result := toMap(filtered)
|
||||
assert.Equal(t, map[string]int{"x": 10}, result)
|
||||
|
||||
seq2 := Of2("y", 3)
|
||||
filtered2 := MonadFilterWithKey(seq2, func(k string, v int) bool { return v > 5 })
|
||||
result2 := toMap(filtered2)
|
||||
assert.Equal(t, map[string]int{}, result2)
|
||||
}
|
||||
|
||||
func TestFilterWithKey(t *testing.T) {
|
||||
seq := Of2("x", 10)
|
||||
filter := FilterWithKey(func(k string, v int) bool { return v > 5 })
|
||||
result := toMap(filter(seq))
|
||||
assert.Equal(t, map[string]int{"x": 10}, result)
|
||||
}
|
||||
|
||||
func TestMonadFilterMap(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4)
|
||||
result := MonadFilterMap(seq, func(x int) Option[int] {
|
||||
if x%2 == 0 {
|
||||
return O.Some(x * 10)
|
||||
}
|
||||
return O.None[int]()
|
||||
})
|
||||
assert.Equal(t, []int{20, 40}, toSlice(result))
|
||||
}
|
||||
|
||||
func TestFilterMap(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4)
|
||||
filterMapper := FilterMap(func(x int) Option[int] {
|
||||
if x%2 == 0 {
|
||||
return O.Some(x * 10)
|
||||
}
|
||||
return O.None[int]()
|
||||
})
|
||||
result := toSlice(filterMapper(seq))
|
||||
assert.Equal(t, []int{20, 40}, result)
|
||||
}
|
||||
|
||||
func TestMonadFilterMapWithIndex(t *testing.T) {
|
||||
seq := From("a", "b", "c")
|
||||
result := MonadFilterMapWithIndex(seq, func(i int, s string) Option[string] {
|
||||
if i%2 == 0 {
|
||||
return O.Some(strings.ToUpper(s))
|
||||
}
|
||||
return O.None[string]()
|
||||
})
|
||||
assert.Equal(t, []string{"A", "C"}, toSlice(result))
|
||||
}
|
||||
|
||||
func TestFilterMapWithIndex(t *testing.T) {
|
||||
seq := From("a", "b", "c")
|
||||
filterMapper := FilterMapWithIndex(func(i int, s string) Option[string] {
|
||||
if i%2 == 0 {
|
||||
return O.Some(strings.ToUpper(s))
|
||||
}
|
||||
return O.None[string]()
|
||||
})
|
||||
result := toSlice(filterMapper(seq))
|
||||
assert.Equal(t, []string{"A", "C"}, result)
|
||||
}
|
||||
|
||||
func TestMonadFilterMapWithKey(t *testing.T) {
|
||||
seq := Of2("x", 10)
|
||||
result := MonadFilterMapWithKey(seq, func(k string, v int) Option[int] {
|
||||
if v > 5 {
|
||||
return O.Some(v * 2)
|
||||
}
|
||||
return O.None[int]()
|
||||
})
|
||||
assert.Equal(t, map[string]int{"x": 20}, toMap(result))
|
||||
}
|
||||
|
||||
func TestFilterMapWithKey(t *testing.T) {
|
||||
seq := Of2("x", 10)
|
||||
filterMapper := FilterMapWithKey(func(k string, v int) Option[int] {
|
||||
if v > 5 {
|
||||
return O.Some(v * 2)
|
||||
}
|
||||
return O.None[int]()
|
||||
})
|
||||
result := toMap(filterMapper(seq))
|
||||
assert.Equal(t, map[string]int{"x": 20}, result)
|
||||
}
|
||||
|
||||
func TestMonadChain(t *testing.T) {
|
||||
seq := From(1, 2)
|
||||
result := MonadChain(seq, func(x int) Seq[int] {
|
||||
return From(x, x*10)
|
||||
})
|
||||
assert.Equal(t, []int{1, 10, 2, 20}, toSlice(result))
|
||||
}
|
||||
|
||||
func TestChain(t *testing.T) {
|
||||
seq := From(1, 2)
|
||||
chainer := Chain(func(x int) Seq[int] {
|
||||
return From(x, x*10)
|
||||
})
|
||||
result := toSlice(chainer(seq))
|
||||
assert.Equal(t, []int{1, 10, 2, 20}, result)
|
||||
}
|
||||
|
||||
func TestFlatten(t *testing.T) {
|
||||
seq := From(From(1, 2), From(3, 4))
|
||||
result := Flatten(seq)
|
||||
assert.Equal(t, []int{1, 2, 3, 4}, toSlice(result))
|
||||
}
|
||||
|
||||
func TestMonadAp(t *testing.T) {
|
||||
fns := From(
|
||||
N.Mul(2),
|
||||
func(x int) int { return x + 10 },
|
||||
)
|
||||
vals := From(1, 2)
|
||||
result := MonadAp(fns, vals)
|
||||
assert.Equal(t, []int{2, 4, 11, 12}, toSlice(result))
|
||||
}
|
||||
|
||||
func TestAp(t *testing.T) {
|
||||
fns := From(
|
||||
N.Mul(2),
|
||||
func(x int) int { return x + 10 },
|
||||
)
|
||||
vals := From(1, 2)
|
||||
applier := Ap[int](vals)
|
||||
result := toSlice(applier(fns))
|
||||
assert.Equal(t, []int{2, 4, 11, 12}, result)
|
||||
}
|
||||
|
||||
func TestApCurried(t *testing.T) {
|
||||
f := F.Curry3(func(s1 string, n int, s2 string) string {
|
||||
return fmt.Sprintf("%s-%d-%s", s1, n, s2)
|
||||
})
|
||||
|
||||
result := F.Pipe4(
|
||||
Of(f),
|
||||
Ap[func(int) func(string) string](From("a", "b")),
|
||||
Ap[func(string) string](From(1, 2)),
|
||||
Ap[string](From("c", "d")),
|
||||
toSlice[string],
|
||||
)
|
||||
|
||||
expected := []string{"a-1-c", "a-1-d", "a-2-c", "a-2-d", "b-1-c", "b-1-d", "b-2-c", "b-2-d"}
|
||||
assert.Equal(t, expected, result)
|
||||
}
|
||||
|
||||
func TestMakeBy(t *testing.T) {
|
||||
seq := MakeBy(5, func(i int) int { return i * i })
|
||||
result := toSlice(seq)
|
||||
assert.Equal(t, []int{0, 1, 4, 9, 16}, result)
|
||||
}
|
||||
|
||||
func TestMakeByZero(t *testing.T) {
|
||||
seq := MakeBy(0, func(i int) int { return i })
|
||||
result := toSlice(seq)
|
||||
assert.Empty(t, result)
|
||||
}
|
||||
|
||||
func TestMakeByNegative(t *testing.T) {
|
||||
seq := MakeBy(-5, func(i int) int { return i })
|
||||
result := toSlice(seq)
|
||||
assert.Empty(t, result)
|
||||
}
|
||||
|
||||
func TestReplicate(t *testing.T) {
|
||||
seq := Replicate(3, "hello")
|
||||
result := toSlice(seq)
|
||||
assert.Equal(t, []string{"hello", "hello", "hello"}, result)
|
||||
}
|
||||
|
||||
func TestMonadReduce(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4)
|
||||
sum := MonadReduce(seq, func(acc, x int) int { return acc + x }, 0)
|
||||
assert.Equal(t, 10, sum)
|
||||
}
|
||||
|
||||
func TestReduce(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4)
|
||||
sum := Reduce(func(acc, x int) int { return acc + x }, 0)
|
||||
result := sum(seq)
|
||||
assert.Equal(t, 10, result)
|
||||
}
|
||||
|
||||
func TestMonadReduceWithIndex(t *testing.T) {
|
||||
seq := From(10, 20, 30)
|
||||
result := MonadReduceWithIndex(seq, func(i, acc, x int) int {
|
||||
return acc + (i * x)
|
||||
}, 0)
|
||||
// 0*10 + 1*20 + 2*30 = 0 + 20 + 60 = 80
|
||||
assert.Equal(t, 80, result)
|
||||
}
|
||||
|
||||
func TestReduceWithIndex(t *testing.T) {
|
||||
seq := From(10, 20, 30)
|
||||
reducer := ReduceWithIndex(func(i, acc, x int) int {
|
||||
return acc + (i * x)
|
||||
}, 0)
|
||||
result := reducer(seq)
|
||||
assert.Equal(t, 80, result)
|
||||
}
|
||||
|
||||
func TestMonadReduceWithKey(t *testing.T) {
|
||||
seq := Of2("x", 10)
|
||||
result := MonadReduceWithKey(seq, func(k string, acc, v int) int {
|
||||
return acc + v
|
||||
}, 0)
|
||||
assert.Equal(t, 10, result)
|
||||
}
|
||||
|
||||
func TestReduceWithKey(t *testing.T) {
|
||||
seq := Of2("x", 10)
|
||||
reducer := ReduceWithKey(func(k string, acc, v int) int {
|
||||
return acc + v
|
||||
}, 0)
|
||||
result := reducer(seq)
|
||||
assert.Equal(t, 10, result)
|
||||
}
|
||||
|
||||
func TestMonadFold(t *testing.T) {
|
||||
seq := From("Hello", " ", "World")
|
||||
result := MonadFold(seq, S.Monoid)
|
||||
assert.Equal(t, "Hello World", result)
|
||||
}
|
||||
|
||||
func TestFold(t *testing.T) {
|
||||
seq := From("Hello", " ", "World")
|
||||
folder := Fold(S.Monoid)
|
||||
result := folder(seq)
|
||||
assert.Equal(t, "Hello World", result)
|
||||
}
|
||||
|
||||
func TestMonadFoldMap(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
result := MonadFoldMap(seq, func(x int) string {
|
||||
return fmt.Sprintf("%d", x)
|
||||
}, S.Monoid)
|
||||
assert.Equal(t, "123", result)
|
||||
}
|
||||
|
||||
func TestFoldMap(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
folder := FoldMap[int](S.Monoid)(func(x int) string {
|
||||
return fmt.Sprintf("%d", x)
|
||||
})
|
||||
result := folder(seq)
|
||||
assert.Equal(t, "123", result)
|
||||
}
|
||||
|
||||
func TestMonadFoldMapWithIndex(t *testing.T) {
|
||||
seq := From("a", "b", "c")
|
||||
result := MonadFoldMapWithIndex(seq, func(i int, s string) string {
|
||||
return fmt.Sprintf("%d:%s ", i, s)
|
||||
}, S.Monoid)
|
||||
assert.Equal(t, "0:a 1:b 2:c ", result)
|
||||
}
|
||||
|
||||
func TestFoldMapWithIndex(t *testing.T) {
|
||||
seq := From("a", "b", "c")
|
||||
folder := FoldMapWithIndex[string](S.Monoid)(func(i int, s string) string {
|
||||
return fmt.Sprintf("%d:%s ", i, s)
|
||||
})
|
||||
result := folder(seq)
|
||||
assert.Equal(t, "0:a 1:b 2:c ", result)
|
||||
}
|
||||
|
||||
func TestMonadFoldMapWithKey(t *testing.T) {
|
||||
seq := Of2("x", 10)
|
||||
result := MonadFoldMapWithKey(seq, func(k string, v int) string {
|
||||
return fmt.Sprintf("%s:%d ", k, v)
|
||||
}, S.Monoid)
|
||||
assert.Equal(t, "x:10 ", result)
|
||||
}
|
||||
|
||||
func TestFoldMapWithKey(t *testing.T) {
|
||||
seq := Of2("x", 10)
|
||||
folder := FoldMapWithKey[string, int](S.Monoid)(func(k string, v int) string {
|
||||
return fmt.Sprintf("%s:%d ", k, v)
|
||||
})
|
||||
result := folder(seq)
|
||||
assert.Equal(t, "x:10 ", result)
|
||||
}
|
||||
|
||||
func TestMonadFlap(t *testing.T) {
|
||||
fns := From(
|
||||
N.Mul(2),
|
||||
func(x int) int { return x + 10 },
|
||||
)
|
||||
result := MonadFlap(fns, 5)
|
||||
assert.Equal(t, []int{10, 15}, toSlice(result))
|
||||
}
|
||||
|
||||
func TestFlap(t *testing.T) {
|
||||
fns := From(
|
||||
N.Mul(2),
|
||||
func(x int) int { return x + 10 },
|
||||
)
|
||||
flapper := Flap[int](5)
|
||||
result := toSlice(flapper(fns))
|
||||
assert.Equal(t, []int{10, 15}, result)
|
||||
}
|
||||
|
||||
func TestPrepend(t *testing.T) {
|
||||
seq := From(2, 3, 4)
|
||||
result := Prepend(1)(seq)
|
||||
assert.Equal(t, []int{1, 2, 3, 4}, toSlice(result))
|
||||
}
|
||||
|
||||
func TestAppend(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
result := Append(4)(seq)
|
||||
assert.Equal(t, []int{1, 2, 3, 4}, toSlice(result))
|
||||
}
|
||||
|
||||
func TestMonadZip(t *testing.T) {
|
||||
seqA := From(1, 2, 3)
|
||||
seqB := From("a", "b")
|
||||
result := MonadZip(seqB, seqA)
|
||||
|
||||
var pairs []string
|
||||
for a, b := range result {
|
||||
pairs = append(pairs, fmt.Sprintf("%d:%s", a, b))
|
||||
}
|
||||
assert.Equal(t, []string{"1:a", "2:b"}, pairs)
|
||||
}
|
||||
|
||||
func TestZip(t *testing.T) {
|
||||
seqA := From(1, 2, 3)
|
||||
seqB := From("a", "b", "c")
|
||||
zipWithA := Zip[int, string](seqA)
|
||||
result := zipWithA(seqB)
|
||||
|
||||
var pairs []string
|
||||
for a, b := range result {
|
||||
pairs = append(pairs, fmt.Sprintf("%d:%s", a, b))
|
||||
}
|
||||
assert.Equal(t, []string{"1:a", "2:b", "3:c"}, pairs)
|
||||
}
|
||||
|
||||
func TestMonoid(t *testing.T) {
|
||||
m := Monoid[int]()
|
||||
seq1 := From(1, 2)
|
||||
seq2 := From(3, 4)
|
||||
result := m.Concat(seq1, seq2)
|
||||
assert.Equal(t, []int{1, 2, 3, 4}, toSlice(result))
|
||||
}
|
||||
|
||||
func TestMonoidEmpty(t *testing.T) {
|
||||
m := Monoid[int]()
|
||||
empty := m.Empty()
|
||||
assert.Empty(t, toSlice(empty))
|
||||
}
|
||||
|
||||
func TestMonoidAssociativity(t *testing.T) {
|
||||
m := Monoid[int]()
|
||||
seq1 := From(1, 2)
|
||||
seq2 := From(3, 4)
|
||||
seq3 := From(5, 6)
|
||||
|
||||
// (seq1 + seq2) + seq3
|
||||
left := m.Concat(m.Concat(seq1, seq2), seq3)
|
||||
// seq1 + (seq2 + seq3)
|
||||
right := m.Concat(seq1, m.Concat(seq2, seq3))
|
||||
|
||||
assert.Equal(t, toSlice(left), toSlice(right))
|
||||
}
|
||||
|
||||
func TestMonoidIdentity(t *testing.T) {
|
||||
m := Monoid[int]()
|
||||
seq := From(1, 2, 3)
|
||||
empty := m.Empty()
|
||||
|
||||
// seq + empty = seq
|
||||
leftIdentity := m.Concat(seq, empty)
|
||||
assert.Equal(t, []int{1, 2, 3}, toSlice(leftIdentity))
|
||||
|
||||
// empty + seq = seq
|
||||
rightIdentity := m.Concat(empty, seq)
|
||||
assert.Equal(t, []int{1, 2, 3}, toSlice(rightIdentity))
|
||||
}
|
||||
|
||||
func TestPipelineComposition(t *testing.T) {
|
||||
// Test a complex pipeline
|
||||
result := F.Pipe4(
|
||||
From(1, 2, 3, 4, 5, 6),
|
||||
Filter(func(x int) bool { return x%2 == 0 }),
|
||||
Map(func(x int) int { return x * 10 }),
|
||||
Prepend(0),
|
||||
toSlice[int],
|
||||
)
|
||||
assert.Equal(t, []int{0, 20, 40, 60}, result)
|
||||
}
|
||||
|
||||
func TestLazyEvaluation(t *testing.T) {
|
||||
// Test that operations are lazy
|
||||
callCount := 0
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
mapped := MonadMap(seq, func(x int) int {
|
||||
callCount++
|
||||
return x * 2
|
||||
})
|
||||
|
||||
// No calls yet since we haven't iterated
|
||||
assert.Equal(t, 0, callCount)
|
||||
|
||||
// Iterate only first 2 elements
|
||||
count := 0
|
||||
for range mapped {
|
||||
count++
|
||||
if count == 2 {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
// Should have called the function only twice
|
||||
assert.Equal(t, 2, callCount)
|
||||
}
|
||||
|
||||
func ExampleFoldMap() {
|
||||
seq := From("a", "b", "c")
|
||||
fold := FoldMap[string](S.Monoid)(strings.ToUpper)
|
||||
result := fold(seq)
|
||||
fmt.Println(result)
|
||||
// Output: ABC
|
||||
}
|
||||
|
||||
func ExampleChain() {
|
||||
seq := From(1, 2)
|
||||
result := F.Pipe2(
|
||||
seq,
|
||||
Chain(func(x int) Seq[int] {
|
||||
return From(x, x*10)
|
||||
}),
|
||||
toSlice[int],
|
||||
)
|
||||
fmt.Println(result)
|
||||
// Output: [1 10 2 20]
|
||||
}
|
||||
|
||||
func ExampleMonoid() {
|
||||
m := Monoid[int]()
|
||||
seq1 := From(1, 2, 3)
|
||||
seq2 := From(4, 5, 6)
|
||||
combined := m.Concat(seq1, seq2)
|
||||
result := toSlice(combined)
|
||||
fmt.Println(result)
|
||||
// Output: [1 2 3 4 5 6]
|
||||
}
|
||||
37
v2/iterator/iter/monoid.go
Normal file
37
v2/iterator/iter/monoid.go
Normal file
@@ -0,0 +1,37 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/internal/iter"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
)
|
||||
|
||||
// Monoid returns a Monoid instance for Seq[T].
|
||||
// The monoid's concat operation concatenates sequences, and the empty value is an empty sequence.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// m := Monoid[int]()
|
||||
// seq1 := From(1, 2)
|
||||
// seq2 := From(3, 4)
|
||||
// result := m.Concat(seq1, seq2)
|
||||
// // yields: 1, 2, 3, 4
|
||||
//
|
||||
//go:inline
|
||||
func Monoid[T any]() M.Monoid[Seq[T]] {
|
||||
return G.Monoid[Seq[T]]()
|
||||
}
|
||||
57
v2/iterator/iter/types.go
Normal file
57
v2/iterator/iter/types.go
Normal file
@@ -0,0 +1,57 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
import (
|
||||
I "iter"
|
||||
|
||||
"github.com/IBM/fp-go/v2/iterator/stateless"
|
||||
"github.com/IBM/fp-go/v2/optics/lens/option"
|
||||
"github.com/IBM/fp-go/v2/predicate"
|
||||
)
|
||||
|
||||
type (
|
||||
// Option represents an optional value, either Some(value) or None.
|
||||
Option[A any] = option.Option[A]
|
||||
|
||||
// Seq is a single-value iterator sequence from Go 1.23+.
|
||||
// It represents a lazy sequence of values that can be iterated using range.
|
||||
Seq[T any] = I.Seq[T]
|
||||
|
||||
// Seq2 is a key-value iterator sequence from Go 1.23+.
|
||||
// It represents a lazy sequence of key-value pairs that can be iterated using range.
|
||||
Seq2[K, V any] = I.Seq2[K, V]
|
||||
|
||||
// Iterator is a stateless iterator type.
|
||||
Iterator[T any] = stateless.Iterator[T]
|
||||
|
||||
// Predicate is a function that tests a value and returns a boolean.
|
||||
Predicate[T any] = predicate.Predicate[T]
|
||||
|
||||
// Kleisli represents a function that takes a value and returns a sequence.
|
||||
// This is the monadic bind operation for sequences.
|
||||
Kleisli[A, B any] = func(A) Seq[B]
|
||||
|
||||
// Kleisli2 represents a function that takes a value and returns a key-value sequence.
|
||||
Kleisli2[K, A, B any] = func(A) Seq2[K, B]
|
||||
|
||||
// Operator represents a transformation from one sequence to another.
|
||||
// It's a function that takes a Seq[A] and returns a Seq[B].
|
||||
Operator[A, B any] = Kleisli[Seq[A], B]
|
||||
|
||||
// Operator2 represents a transformation from one key-value sequence to another.
|
||||
Operator2[K, A, B any] = Kleisli2[K, Seq2[K, A], B]
|
||||
)
|
||||
@@ -21,6 +21,6 @@ import (
|
||||
|
||||
// Any returns `true` if any element of the iterable is `true`. If the iterable is empty, return `false`
|
||||
// Similar to the [https://docs.python.org/3/library/functions.html#any] function
|
||||
func Any[U any](pred func(U) bool) func(ma Iterator[U]) bool {
|
||||
func Any[U any](pred Predicate[U]) Predicate[Iterator[U]] {
|
||||
return G.Any[Iterator[U]](pred)
|
||||
}
|
||||
|
||||
@@ -72,7 +72,7 @@ func Do[S any](
|
||||
func Bind[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
f Kleisli[S1, T],
|
||||
) Kleisli[Iterator[S1], S2] {
|
||||
) Operator[S1, S2] {
|
||||
return G.Bind[Iterator[S1], Iterator[S2]](setter, f)
|
||||
}
|
||||
|
||||
@@ -80,7 +80,7 @@ func Bind[S1, S2, T any](
|
||||
func Let[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
f func(S1) T,
|
||||
) Kleisli[Iterator[S1], S2] {
|
||||
) Operator[S1, S2] {
|
||||
return G.Let[Iterator[S1], Iterator[S2]](setter, f)
|
||||
}
|
||||
|
||||
@@ -88,14 +88,14 @@ func Let[S1, S2, T any](
|
||||
func LetTo[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
b T,
|
||||
) Kleisli[Iterator[S1], S2] {
|
||||
) Operator[S1, S2] {
|
||||
return G.LetTo[Iterator[S1], Iterator[S2]](setter, b)
|
||||
}
|
||||
|
||||
// BindTo initializes a new state [S1] from a value [T]
|
||||
func BindTo[S1, T any](
|
||||
setter func(T) S1,
|
||||
) Kleisli[Iterator[T], S1] {
|
||||
) Operator[T, S1] {
|
||||
return G.BindTo[Iterator[S1], Iterator[T]](setter)
|
||||
}
|
||||
|
||||
@@ -135,6 +135,6 @@ func BindTo[S1, T any](
|
||||
func ApS[S1, S2, T any](
|
||||
setter func(T) func(S1) S2,
|
||||
fa Iterator[T],
|
||||
) Kleisli[Iterator[S1], S2] {
|
||||
) Operator[S1, S2] {
|
||||
return G.ApS[Iterator[func(T) S2], Iterator[S1], Iterator[S2]](setter, fa)
|
||||
}
|
||||
|
||||
@@ -17,11 +17,10 @@ package stateless
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/iterator/stateless/generic"
|
||||
P "github.com/IBM/fp-go/v2/pair"
|
||||
)
|
||||
|
||||
// Compress returns an [Iterator] that filters elements from a data [Iterator] returning only those that have a corresponding element in selector [Iterator] that evaluates to `true`.
|
||||
// Stops when either the data or selectors iterator has been exhausted.
|
||||
func Compress[U any](sel Iterator[bool]) Kleisli[Iterator[U], U] {
|
||||
return G.Compress[Iterator[U], Iterator[bool], Iterator[P.Pair[U, bool]]](sel)
|
||||
func Compress[U any](sel Iterator[bool]) Operator[U, U] {
|
||||
return G.Compress[Iterator[U], Iterator[bool], Iterator[Pair[U, bool]]](sel)
|
||||
}
|
||||
|
||||
@@ -21,6 +21,6 @@ import (
|
||||
|
||||
// DropWhile creates an [Iterator] that drops elements from the [Iterator] as long as the predicate is true; afterwards, returns every element.
|
||||
// Note, the [Iterator] does not produce any output until the predicate first becomes false
|
||||
func DropWhile[U any](pred func(U) bool) Kleisli[Iterator[U], U] {
|
||||
func DropWhile[U any](pred Predicate[U]) Operator[U, U] {
|
||||
return G.DropWhile[Iterator[U]](pred)
|
||||
}
|
||||
|
||||
@@ -17,10 +17,9 @@ package stateless
|
||||
|
||||
import (
|
||||
G "github.com/IBM/fp-go/v2/iterator/stateless/generic"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
)
|
||||
|
||||
// First returns the first item in an iterator if such an item exists
|
||||
func First[U any](mu Iterator[U]) O.Option[U] {
|
||||
func First[U any](mu Iterator[U]) Option[U] {
|
||||
return G.First(mu)
|
||||
}
|
||||
|
||||
@@ -18,11 +18,10 @@ package generic
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
P "github.com/IBM/fp-go/v2/pair"
|
||||
)
|
||||
|
||||
// Any returns `true` if any element of the iterable is `true`. If the iterable is empty, return `false`
|
||||
func Any[GU ~func() O.Option[P.Pair[GU, U]], FCT ~func(U) bool, U any](pred FCT) func(ma GU) bool {
|
||||
func Any[GU ~func() Option[Pair[GU, U]], FCT ~Predicate[U], U any](pred FCT) func(ma GU) bool {
|
||||
return F.Flow3(
|
||||
Filter[GU](pred),
|
||||
First[GU],
|
||||
|
||||
@@ -19,8 +19,6 @@ import (
|
||||
"github.com/IBM/fp-go/v2/internal/apply"
|
||||
C "github.com/IBM/fp-go/v2/internal/chain"
|
||||
F "github.com/IBM/fp-go/v2/internal/functor"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
P "github.com/IBM/fp-go/v2/pair"
|
||||
)
|
||||
|
||||
// Do creates an empty context of type [S] to be used with the [Bind] operation.
|
||||
@@ -33,7 +31,7 @@ import (
|
||||
// Y int
|
||||
// }
|
||||
// result := generic.Do[Iterator[State]](State{})
|
||||
func Do[GS ~func() O.Option[P.Pair[GS, S]], S any](
|
||||
func Do[GS ~func() Option[Pair[GS, S]], S any](
|
||||
empty S,
|
||||
) GS {
|
||||
return Of[GS](empty)
|
||||
@@ -73,7 +71,7 @@ func Do[GS ~func() O.Option[P.Pair[GS, S]], S any](
|
||||
// },
|
||||
// ),
|
||||
// ) // Produces: {1,10}, {1,20}, {2,20}, {2,40}, {3,30}, {3,60}
|
||||
func Bind[GS1 ~func() O.Option[P.Pair[GS1, S1]], GS2 ~func() O.Option[P.Pair[GS2, S2]], GA ~func() O.Option[P.Pair[GA, A]], S1, S2, A any](
|
||||
func Bind[GS1 ~func() Option[Pair[GS1, S1]], GS2 ~func() Option[Pair[GS2, S2]], GA ~func() Option[Pair[GA, A]], S1, S2, A any](
|
||||
setter func(A) func(S1) S2,
|
||||
f func(S1) GA,
|
||||
) func(GS1) GS2 {
|
||||
@@ -87,7 +85,7 @@ func Bind[GS1 ~func() O.Option[P.Pair[GS1, S1]], GS2 ~func() O.Option[P.Pair[GS2
|
||||
}
|
||||
|
||||
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
|
||||
func Let[GS1 ~func() O.Option[P.Pair[GS1, S1]], GS2 ~func() O.Option[P.Pair[GS2, S2]], S1, S2, A any](
|
||||
func Let[GS1 ~func() Option[Pair[GS1, S1]], GS2 ~func() Option[Pair[GS2, S2]], S1, S2, A any](
|
||||
key func(A) func(S1) S2,
|
||||
f func(S1) A,
|
||||
) func(GS1) GS2 {
|
||||
@@ -99,7 +97,7 @@ func Let[GS1 ~func() O.Option[P.Pair[GS1, S1]], GS2 ~func() O.Option[P.Pair[GS2,
|
||||
}
|
||||
|
||||
// LetTo attaches the a value to a context [S1] to produce a context [S2]
|
||||
func LetTo[GS1 ~func() O.Option[P.Pair[GS1, S1]], GS2 ~func() O.Option[P.Pair[GS2, S2]], S1, S2, B any](
|
||||
func LetTo[GS1 ~func() Option[Pair[GS1, S1]], GS2 ~func() Option[Pair[GS2, S2]], S1, S2, B any](
|
||||
key func(B) func(S1) S2,
|
||||
b B,
|
||||
) func(GS1) GS2 {
|
||||
@@ -111,7 +109,7 @@ func LetTo[GS1 ~func() O.Option[P.Pair[GS1, S1]], GS2 ~func() O.Option[P.Pair[GS
|
||||
}
|
||||
|
||||
// BindTo initializes a new state [S1] from a value [T]
|
||||
func BindTo[GS1 ~func() O.Option[P.Pair[GS1, S1]], GA ~func() O.Option[P.Pair[GA, A]], S1, A any](
|
||||
func BindTo[GS1 ~func() Option[Pair[GS1, S1]], GA ~func() Option[Pair[GA, A]], S1, A any](
|
||||
setter func(A) S1,
|
||||
) func(GA) GS1 {
|
||||
return C.BindTo(
|
||||
@@ -153,7 +151,7 @@ func BindTo[GS1 ~func() O.Option[P.Pair[GS1, S1]], GA ~func() O.Option[P.Pair[GA
|
||||
// yIter,
|
||||
// ),
|
||||
// ) // Produces: {1,"a"}, {1,"b"}, {2,"a"}, {2,"b"}, {3,"a"}, {3,"b"}
|
||||
func ApS[GAS2 ~func() O.Option[P.Pair[GAS2, func(A) S2]], GS1 ~func() O.Option[P.Pair[GS1, S1]], GS2 ~func() O.Option[P.Pair[GS2, S2]], GA ~func() O.Option[P.Pair[GA, A]], S1, S2, A any](
|
||||
func ApS[GAS2 ~func() Option[Pair[GAS2, func(A) S2]], GS1 ~func() Option[Pair[GS1, S1]], GS2 ~func() Option[Pair[GS2, S2]], GA ~func() Option[Pair[GA, A]], S1, S2, A any](
|
||||
setter func(A) func(S1) S2,
|
||||
fa GA,
|
||||
) func(GS1) GS2 {
|
||||
|
||||
@@ -23,7 +23,7 @@ import (
|
||||
|
||||
// Compress returns an [Iterator] that filters elements from a data [Iterator] returning only those that have a corresponding element in selector [Iterator] that evaluates to `true`.
|
||||
// Stops when either the data or selectors iterator has been exhausted.
|
||||
func Compress[GU ~func() O.Option[P.Pair[GU, U]], GB ~func() O.Option[P.Pair[GB, bool]], CS ~func() O.Option[P.Pair[CS, P.Pair[U, bool]]], U any](sel GB) func(GU) GU {
|
||||
func Compress[GU ~func() Option[Pair[GU, U]], GB ~func() Option[Pair[GB, bool]], CS ~func() Option[Pair[CS, Pair[U, bool]]], U any](sel GB) func(GU) GU {
|
||||
return F.Flow2(
|
||||
Zip[GU, GB, CS](sel),
|
||||
FilterMap[GU, CS](F.Flow2(
|
||||
|
||||
@@ -21,9 +21,9 @@ import (
|
||||
P "github.com/IBM/fp-go/v2/pair"
|
||||
)
|
||||
|
||||
func Cycle[GU ~func() O.Option[P.Pair[GU, U]], U any](ma GU) GU {
|
||||
func Cycle[GU ~func() Option[Pair[GU, U]], U any](ma GU) GU {
|
||||
// avoid cyclic references
|
||||
var m func(O.Option[P.Pair[GU, U]]) O.Option[P.Pair[GU, U]]
|
||||
var m func(Option[Pair[GU, U]]) Option[Pair[GU, U]]
|
||||
|
||||
recurse := func(mu GU) GU {
|
||||
return F.Nullary2(
|
||||
@@ -32,11 +32,11 @@ func Cycle[GU ~func() O.Option[P.Pair[GU, U]], U any](ma GU) GU {
|
||||
)
|
||||
}
|
||||
|
||||
m = O.Fold(func() O.Option[P.Pair[GU, U]] {
|
||||
m = O.Fold(func() Option[Pair[GU, U]] {
|
||||
return recurse(ma)()
|
||||
}, F.Flow2(
|
||||
P.BiMap(recurse, F.Identity[U]),
|
||||
O.Of[P.Pair[GU, U]],
|
||||
O.Of[Pair[GU, U]],
|
||||
))
|
||||
|
||||
return recurse(ma)
|
||||
|
||||
@@ -24,9 +24,9 @@ import (
|
||||
|
||||
// DropWhile creates an [Iterator] that drops elements from the [Iterator] as long as the predicate is true; afterwards, returns every element.
|
||||
// Note, the [Iterator] does not produce any output until the predicate first becomes false
|
||||
func DropWhile[GU ~func() O.Option[P.Pair[GU, U]], U any](pred func(U) bool) func(GU) GU {
|
||||
func DropWhile[GU ~func() Option[Pair[GU, U]], U any](pred Predicate[U]) func(GU) GU {
|
||||
// avoid cyclic references
|
||||
var m func(O.Option[P.Pair[GU, U]]) O.Option[P.Pair[GU, U]]
|
||||
var m func(Option[Pair[GU, U]]) Option[Pair[GU, U]]
|
||||
|
||||
fromPred := O.FromPredicate(PR.Not(PR.ContraMap(P.Tail[GU, U])(pred)))
|
||||
|
||||
@@ -37,11 +37,11 @@ func DropWhile[GU ~func() O.Option[P.Pair[GU, U]], U any](pred func(U) bool) fun
|
||||
)
|
||||
}
|
||||
|
||||
m = O.Chain(func(t P.Pair[GU, U]) O.Option[P.Pair[GU, U]] {
|
||||
m = O.Chain(func(t Pair[GU, U]) Option[Pair[GU, U]] {
|
||||
return F.Pipe2(
|
||||
t,
|
||||
fromPred,
|
||||
O.Fold(recurse(Next(t)), O.Of[P.Pair[GU, U]]),
|
||||
O.Fold(recurse(Next(t)), O.Of[Pair[GU, U]]),
|
||||
)
|
||||
})
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ import (
|
||||
)
|
||||
|
||||
// First returns the first item in an iterator if such an item exists
|
||||
func First[GU ~func() O.Option[P.Pair[GU, U]], U any](mu GU) O.Option[U] {
|
||||
func First[GU ~func() Option[Pair[GU, U]], U any](mu GU) Option[U] {
|
||||
return F.Pipe1(
|
||||
mu(),
|
||||
O.Map(P.Tail[GU, U]),
|
||||
|
||||
@@ -23,12 +23,12 @@ import (
|
||||
)
|
||||
|
||||
// FromLazy returns an iterator on top of a lazy function
|
||||
func FromLazy[GU ~func() O.Option[P.Pair[GU, U]], LZ ~func() U, U any](l LZ) GU {
|
||||
func FromLazy[GU ~func() Option[Pair[GU, U]], LZ ~func() U, U any](l LZ) GU {
|
||||
return F.Pipe1(
|
||||
l,
|
||||
L.Map[LZ, GU](F.Flow2(
|
||||
F.Bind1st(P.MakePair[GU, U], Empty[GU]()),
|
||||
O.Of[P.Pair[GU, U]],
|
||||
O.Of[Pair[GU, U]],
|
||||
)),
|
||||
)
|
||||
}
|
||||
|
||||
@@ -27,42 +27,42 @@ import (
|
||||
P "github.com/IBM/fp-go/v2/pair"
|
||||
)
|
||||
|
||||
// Next returns the iterator for the next element in an iterator `P.Pair`
|
||||
func Next[GU ~func() O.Option[P.Pair[GU, U]], U any](m P.Pair[GU, U]) GU {
|
||||
// Next returns the iterator for the next element in an iterator `Pair`
|
||||
func Next[GU ~func() Option[Pair[GU, U]], U any](m Pair[GU, U]) GU {
|
||||
return P.Head(m)
|
||||
}
|
||||
|
||||
// Current returns the current element in an iterator `P.Pair`
|
||||
func Current[GU ~func() O.Option[P.Pair[GU, U]], U any](m P.Pair[GU, U]) U {
|
||||
// Current returns the current element in an iterator `Pair`
|
||||
func Current[GU ~func() Option[Pair[GU, U]], U any](m Pair[GU, U]) U {
|
||||
return P.Tail(m)
|
||||
}
|
||||
|
||||
// From constructs an array from a set of variadic arguments
|
||||
func From[GU ~func() O.Option[P.Pair[GU, U]], U any](data ...U) GU {
|
||||
func From[GU ~func() Option[Pair[GU, U]], U any](data ...U) GU {
|
||||
return FromArray[GU](data)
|
||||
}
|
||||
|
||||
// Empty returns the empty iterator
|
||||
func Empty[GU ~func() O.Option[P.Pair[GU, U]], U any]() GU {
|
||||
func Empty[GU ~func() Option[Pair[GU, U]], U any]() GU {
|
||||
return IO.None[GU]()
|
||||
}
|
||||
|
||||
// Of returns an iterator with one single element
|
||||
func Of[GU ~func() O.Option[P.Pair[GU, U]], U any](a U) GU {
|
||||
func Of[GU ~func() Option[Pair[GU, U]], U any](a U) GU {
|
||||
return IO.Of[GU](P.MakePair(Empty[GU](), a))
|
||||
}
|
||||
|
||||
// FromArray returns an iterator from multiple elements
|
||||
func FromArray[GU ~func() O.Option[P.Pair[GU, U]], US ~[]U, U any](as US) GU {
|
||||
func FromArray[GU ~func() Option[Pair[GU, U]], US ~[]U, U any](as US) GU {
|
||||
return A.MatchLeft(Empty[GU], func(head U, tail US) GU {
|
||||
return func() O.Option[P.Pair[GU, U]] {
|
||||
return func() Option[Pair[GU, U]] {
|
||||
return O.Of(P.MakePair(FromArray[GU](tail), head))
|
||||
}
|
||||
})(as)
|
||||
}
|
||||
|
||||
// reduce applies a function for each value of the iterator with a floating result
|
||||
func reduce[GU ~func() O.Option[P.Pair[GU, U]], U, V any](as GU, f func(V, U) V, initial V) V {
|
||||
func reduce[GU ~func() Option[Pair[GU, U]], U, V any](as GU, f func(V, U) V, initial V) V {
|
||||
next, ok := O.Unwrap(as())
|
||||
current := initial
|
||||
for ok {
|
||||
@@ -74,18 +74,18 @@ func reduce[GU ~func() O.Option[P.Pair[GU, U]], U, V any](as GU, f func(V, U) V,
|
||||
}
|
||||
|
||||
// Reduce applies a function for each value of the iterator with a floating result
|
||||
func Reduce[GU ~func() O.Option[P.Pair[GU, U]], U, V any](f func(V, U) V, initial V) func(GU) V {
|
||||
func Reduce[GU ~func() Option[Pair[GU, U]], U, V any](f func(V, U) V, initial V) func(GU) V {
|
||||
return F.Bind23of3(reduce[GU, U, V])(f, initial)
|
||||
}
|
||||
|
||||
// ToArray converts the iterator to an array
|
||||
func ToArray[GU ~func() O.Option[P.Pair[GU, U]], US ~[]U, U any](u GU) US {
|
||||
func ToArray[GU ~func() Option[Pair[GU, U]], US ~[]U, U any](u GU) US {
|
||||
return Reduce[GU](A.Append[US], A.Empty[US]())(u)
|
||||
}
|
||||
|
||||
func Map[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]], FCT ~func(U) V, U, V any](f FCT) func(ma GU) GV {
|
||||
func Map[GV ~func() Option[Pair[GV, V]], GU ~func() Option[Pair[GU, U]], FCT ~func(U) V, U, V any](f FCT) func(ma GU) GV {
|
||||
// pre-declare to avoid cyclic reference
|
||||
var m func(O.Option[P.Pair[GU, U]]) O.Option[P.Pair[GV, V]]
|
||||
var m func(Option[Pair[GU, U]]) Option[Pair[GV, V]]
|
||||
|
||||
recurse := func(ma GU) GV {
|
||||
return F.Nullary2(
|
||||
@@ -99,12 +99,12 @@ func Map[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]],
|
||||
return recurse
|
||||
}
|
||||
|
||||
func MonadMap[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]], U, V any](ma GU, f func(U) V) GV {
|
||||
func MonadMap[GV ~func() Option[Pair[GV, V]], GU ~func() Option[Pair[GU, U]], U, V any](ma GU, f func(U) V) GV {
|
||||
return Map[GV, GU](f)(ma)
|
||||
}
|
||||
|
||||
func concat[GU ~func() O.Option[P.Pair[GU, U]], U any](right, left GU) GU {
|
||||
var m func(ma O.Option[P.Pair[GU, U]]) O.Option[P.Pair[GU, U]]
|
||||
func concat[GU ~func() Option[Pair[GU, U]], U any](right, left GU) GU {
|
||||
var m func(ma Option[Pair[GU, U]]) Option[Pair[GU, U]]
|
||||
|
||||
recurse := func(left GU) GU {
|
||||
return F.Nullary2(left, m)
|
||||
@@ -114,15 +114,15 @@ func concat[GU ~func() O.Option[P.Pair[GU, U]], U any](right, left GU) GU {
|
||||
right,
|
||||
F.Flow2(
|
||||
P.BiMap(recurse, F.Identity[U]),
|
||||
O.Some[P.Pair[GU, U]],
|
||||
O.Some[Pair[GU, U]],
|
||||
))
|
||||
|
||||
return recurse(left)
|
||||
}
|
||||
|
||||
func Chain[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]], U, V any](f func(U) GV) func(GU) GV {
|
||||
func Chain[GV ~func() Option[Pair[GV, V]], GU ~func() Option[Pair[GU, U]], U, V any](f func(U) GV) func(GU) GV {
|
||||
// pre-declare to avoid cyclic reference
|
||||
var m func(O.Option[P.Pair[GU, U]]) O.Option[P.Pair[GV, V]]
|
||||
var m func(Option[Pair[GU, U]]) Option[Pair[GV, V]]
|
||||
|
||||
recurse := func(ma GU) GV {
|
||||
return F.Nullary2(
|
||||
@@ -134,7 +134,7 @@ func Chain[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]
|
||||
F.Flow3(
|
||||
P.BiMap(recurse, f),
|
||||
P.Paired(concat[GV]),
|
||||
func(v GV) O.Option[P.Pair[GV, V]] {
|
||||
func(v GV) Option[Pair[GV, V]] {
|
||||
return v()
|
||||
},
|
||||
),
|
||||
@@ -143,11 +143,11 @@ func Chain[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]
|
||||
return recurse
|
||||
}
|
||||
|
||||
func MonadChain[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]], U, V any](ma GU, f func(U) GV) GV {
|
||||
func MonadChain[GV ~func() Option[Pair[GV, V]], GU ~func() Option[Pair[GU, U]], U, V any](ma GU, f func(U) GV) GV {
|
||||
return Chain[GV, GU](f)(ma)
|
||||
}
|
||||
|
||||
func MonadChainFirst[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]], U, V any](ma GU, f func(U) GV) GU {
|
||||
func MonadChainFirst[GV ~func() Option[Pair[GV, V]], GU ~func() Option[Pair[GU, U]], U, V any](ma GU, f func(U) GV) GU {
|
||||
return C.MonadChainFirst(
|
||||
MonadChain[GU, GU, U, U],
|
||||
MonadMap[GU, GV, V, U],
|
||||
@@ -156,7 +156,7 @@ func MonadChainFirst[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.P
|
||||
)
|
||||
}
|
||||
|
||||
func ChainFirst[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]], U, V any](f func(U) GV) func(GU) GU {
|
||||
func ChainFirst[GV ~func() Option[Pair[GV, V]], GU ~func() Option[Pair[GU, U]], U, V any](f func(U) GV) func(GU) GU {
|
||||
return C.ChainFirst(
|
||||
Chain[GU, GU, U, U],
|
||||
Map[GU, GV, func(V) U, V, U],
|
||||
@@ -164,14 +164,14 @@ func ChainFirst[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[G
|
||||
)
|
||||
}
|
||||
|
||||
func Flatten[GV ~func() O.Option[P.Pair[GV, GU]], GU ~func() O.Option[P.Pair[GU, U]], U any](ma GV) GU {
|
||||
func Flatten[GV ~func() Option[Pair[GV, GU]], GU ~func() Option[Pair[GU, U]], U any](ma GV) GU {
|
||||
return MonadChain(ma, F.Identity[GU])
|
||||
}
|
||||
|
||||
// MakeBy returns an [Iterator] with an infinite number of elements initialized with `f(i)`
|
||||
func MakeBy[GU ~func() O.Option[P.Pair[GU, U]], FCT ~func(int) U, U any](f FCT) GU {
|
||||
func MakeBy[GU ~func() Option[Pair[GU, U]], FCT ~func(int) U, U any](f FCT) GU {
|
||||
|
||||
var m func(int) O.Option[P.Pair[GU, U]]
|
||||
var m func(int) Option[Pair[GU, U]]
|
||||
|
||||
recurse := func(i int) GU {
|
||||
return F.Nullary2(
|
||||
@@ -186,7 +186,7 @@ func MakeBy[GU ~func() O.Option[P.Pair[GU, U]], FCT ~func(int) U, U any](f FCT)
|
||||
utils.Inc,
|
||||
recurse),
|
||||
f),
|
||||
O.Of[P.Pair[GU, U]],
|
||||
O.Of[Pair[GU, U]],
|
||||
)
|
||||
|
||||
// bootstrap
|
||||
@@ -194,13 +194,13 @@ func MakeBy[GU ~func() O.Option[P.Pair[GU, U]], FCT ~func(int) U, U any](f FCT)
|
||||
}
|
||||
|
||||
// Replicate creates an infinite [Iterator] containing a value.
|
||||
func Replicate[GU ~func() O.Option[P.Pair[GU, U]], U any](a U) GU {
|
||||
func Replicate[GU ~func() Option[Pair[GU, U]], U any](a U) GU {
|
||||
return MakeBy[GU](F.Constant1[int](a))
|
||||
}
|
||||
|
||||
// Repeat creates an [Iterator] containing a value repeated the specified number of times.
|
||||
// Alias of [Replicate] combined with [Take]
|
||||
func Repeat[GU ~func() O.Option[P.Pair[GU, U]], U any](n int, a U) GU {
|
||||
func Repeat[GU ~func() Option[Pair[GU, U]], U any](n int, a U) GU {
|
||||
return F.Pipe2(
|
||||
a,
|
||||
Replicate[GU],
|
||||
@@ -209,13 +209,13 @@ func Repeat[GU ~func() O.Option[P.Pair[GU, U]], U any](n int, a U) GU {
|
||||
}
|
||||
|
||||
// Count creates an [Iterator] containing a consecutive sequence of integers starting with the provided start value
|
||||
func Count[GU ~func() O.Option[P.Pair[GU, int]]](start int) GU {
|
||||
func Count[GU ~func() Option[Pair[GU, int]]](start int) GU {
|
||||
return MakeBy[GU](N.Add(start))
|
||||
}
|
||||
|
||||
func FilterMap[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]], FCT ~func(U) O.Option[V], U, V any](f FCT) func(ma GU) GV {
|
||||
func FilterMap[GV ~func() Option[Pair[GV, V]], GU ~func() Option[Pair[GU, U]], FCT ~func(U) Option[V], U, V any](f FCT) func(ma GU) GV {
|
||||
// pre-declare to avoid cyclic reference
|
||||
var m func(O.Option[P.Pair[GU, U]]) O.Option[P.Pair[GV, V]]
|
||||
var m func(Option[Pair[GU, U]]) Option[Pair[GV, V]]
|
||||
|
||||
recurse := func(ma GU) GV {
|
||||
return F.Nullary2(
|
||||
@@ -226,11 +226,11 @@ func FilterMap[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU
|
||||
|
||||
m = O.Fold(
|
||||
Empty[GV](),
|
||||
func(t P.Pair[GU, U]) O.Option[P.Pair[GV, V]] {
|
||||
func(t Pair[GU, U]) Option[Pair[GV, V]] {
|
||||
r := recurse(Next(t))
|
||||
return O.MonadFold(f(Current(t)), r, F.Flow2(
|
||||
F.Bind1st(P.MakePair[GV, V], r),
|
||||
O.Some[P.Pair[GV, V]],
|
||||
O.Some[Pair[GV, V]],
|
||||
))
|
||||
},
|
||||
)
|
||||
@@ -238,26 +238,26 @@ func FilterMap[GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU
|
||||
return recurse
|
||||
}
|
||||
|
||||
func Filter[GU ~func() O.Option[P.Pair[GU, U]], FCT ~func(U) bool, U any](f FCT) func(ma GU) GU {
|
||||
func Filter[GU ~func() Option[Pair[GU, U]], FCT ~Predicate[U], U any](f FCT) func(ma GU) GU {
|
||||
return FilterMap[GU, GU](O.FromPredicate(f))
|
||||
}
|
||||
|
||||
func Ap[GUV ~func() O.Option[P.Pair[GUV, func(U) V]], GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]], U, V any](ma GU) func(fab GUV) GV {
|
||||
func Ap[GUV ~func() Option[Pair[GUV, func(U) V]], GV ~func() Option[Pair[GV, V]], GU ~func() Option[Pair[GU, U]], U, V any](ma GU) func(fab GUV) GV {
|
||||
return Chain[GV, GUV](F.Bind1st(MonadMap[GV, GU], ma))
|
||||
}
|
||||
|
||||
func MonadAp[GUV ~func() O.Option[P.Pair[GUV, func(U) V]], GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]], U, V any](fab GUV, ma GU) GV {
|
||||
func MonadAp[GUV ~func() Option[Pair[GUV, func(U) V]], GV ~func() Option[Pair[GV, V]], GU ~func() Option[Pair[GU, U]], U, V any](fab GUV, ma GU) GV {
|
||||
return Ap[GUV, GV](ma)(fab)
|
||||
}
|
||||
|
||||
func FilterChain[GVV ~func() O.Option[P.Pair[GVV, GV]], GV ~func() O.Option[P.Pair[GV, V]], GU ~func() O.Option[P.Pair[GU, U]], FCT ~func(U) O.Option[GV], U, V any](f FCT) func(ma GU) GV {
|
||||
func FilterChain[GVV ~func() Option[Pair[GVV, GV]], GV ~func() Option[Pair[GV, V]], GU ~func() Option[Pair[GU, U]], FCT ~func(U) Option[GV], U, V any](f FCT) func(ma GU) GV {
|
||||
return F.Flow2(
|
||||
FilterMap[GVV, GU](f),
|
||||
Flatten[GVV],
|
||||
)
|
||||
}
|
||||
|
||||
func FoldMap[GU ~func() O.Option[P.Pair[GU, U]], FCT ~func(U) V, U, V any](m M.Monoid[V]) func(FCT) func(ma GU) V {
|
||||
func FoldMap[GU ~func() Option[Pair[GU, U]], FCT ~func(U) V, U, V any](m M.Monoid[V]) func(FCT) func(ma GU) V {
|
||||
return func(f FCT) func(ma GU) V {
|
||||
return Reduce[GU](func(cur V, a U) V {
|
||||
return m.Concat(cur, f(a))
|
||||
@@ -265,6 +265,6 @@ func FoldMap[GU ~func() O.Option[P.Pair[GU, U]], FCT ~func(U) V, U, V any](m M.M
|
||||
}
|
||||
}
|
||||
|
||||
func Fold[GU ~func() O.Option[P.Pair[GU, U]], U any](m M.Monoid[U]) func(ma GU) U {
|
||||
func Fold[GU ~func() Option[Pair[GU, U]], U any](m M.Monoid[U]) func(ma GU) U {
|
||||
return Reduce[GU](m.Concat, m.Empty())
|
||||
}
|
||||
|
||||
@@ -18,10 +18,9 @@ package generic
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
P "github.com/IBM/fp-go/v2/pair"
|
||||
)
|
||||
|
||||
// Last returns the last item in an iterator if such an item exists
|
||||
func Last[GU ~func() O.Option[P.Pair[GU, U]], U any](mu GU) O.Option[U] {
|
||||
return reduce(mu, F.Ignore1of2[O.Option[U]](O.Of[U]), O.None[U]())
|
||||
func Last[GU ~func() Option[Pair[GU, U]], U any](mu GU) Option[U] {
|
||||
return reduce(mu, F.Ignore1of2[Option[U]](O.Of[U]), O.None[U]())
|
||||
}
|
||||
|
||||
@@ -17,11 +17,9 @@ package generic
|
||||
|
||||
import (
|
||||
"github.com/IBM/fp-go/v2/internal/monad"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
P "github.com/IBM/fp-go/v2/pair"
|
||||
)
|
||||
|
||||
type iteratorMonad[A, B any, GA ~func() O.Option[P.Pair[GA, A]], GB ~func() O.Option[P.Pair[GB, B]], GAB ~func() O.Option[P.Pair[GAB, func(A) B]]] struct{}
|
||||
type iteratorMonad[A, B any, GA ~func() Option[Pair[GA, A]], GB ~func() Option[Pair[GB, B]], GAB ~func() Option[Pair[GAB, func(A) B]]] struct{}
|
||||
|
||||
func (o *iteratorMonad[A, B, GA, GB, GAB]) Of(a A) GA {
|
||||
return Of[GA](a)
|
||||
@@ -40,6 +38,6 @@ func (o *iteratorMonad[A, B, GA, GB, GAB]) Ap(fa GA) func(GAB) GB {
|
||||
}
|
||||
|
||||
// Monad implements the monadic operations for iterators
|
||||
func Monad[A, B any, GA ~func() O.Option[P.Pair[GA, A]], GB ~func() O.Option[P.Pair[GB, B]], GAB ~func() O.Option[P.Pair[GAB, func(A) B]]]() monad.Monad[A, B, GA, GB, GAB] {
|
||||
func Monad[A, B any, GA ~func() Option[Pair[GA, A]], GB ~func() Option[Pair[GB, B]], GAB ~func() Option[Pair[GAB, func(A) B]]]() monad.Monad[A, B, GA, GB, GAB] {
|
||||
return &iteratorMonad[A, B, GA, GB, GAB]{}
|
||||
}
|
||||
|
||||
@@ -18,11 +18,9 @@ package generic
|
||||
import (
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
M "github.com/IBM/fp-go/v2/monoid"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
P "github.com/IBM/fp-go/v2/pair"
|
||||
)
|
||||
|
||||
func Monoid[GU ~func() O.Option[P.Pair[GU, U]], U any]() M.Monoid[GU] {
|
||||
func Monoid[GU ~func() Option[Pair[GU, U]], U any]() M.Monoid[GU] {
|
||||
return M.MakeMonoid(
|
||||
F.Swap(concat[GU]),
|
||||
Empty[GU](),
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user