mirror of
https://github.com/IBM/fp-go.git
synced 2025-12-23 23:51:14 +02:00
Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
49227551b6 |
@@ -34,6 +34,8 @@ import (
|
||||
// 3. Filtering to keep only pairs where the boolean (tail) is true
|
||||
// 4. Extracting the original values (head) from the filtered pairs
|
||||
//
|
||||
// RxJS Equivalent: Similar to combining [zip] with [filter] - https://rxjs.dev/api/operators/zip
|
||||
//
|
||||
// Type Parameters:
|
||||
// - U: The type of elements in the sequence to be filtered
|
||||
//
|
||||
|
||||
96
v2/iterator/iter/cycle.go
Normal file
96
v2/iterator/iter/cycle.go
Normal file
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
// Cycle creates a sequence that repeats the elements of the input sequence indefinitely.
|
||||
//
|
||||
// This function takes a finite sequence and creates an infinite sequence by cycling through
|
||||
// all elements repeatedly. When the end of the input sequence is reached, it starts over
|
||||
// from the beginning, continuing this pattern forever.
|
||||
//
|
||||
// RxJS Equivalent: [repeat] - https://rxjs.dev/api/operators/repeat
|
||||
//
|
||||
// WARNING: This creates an INFINITE sequence for non-empty inputs. It must be used with
|
||||
// operations that limit the output (such as Take, First, or early termination in iteration)
|
||||
// to avoid infinite loops.
|
||||
//
|
||||
// If the input sequence is empty, Cycle returns an empty sequence immediately. It does NOT
|
||||
// loop indefinitely - the result is simply an empty sequence.
|
||||
//
|
||||
// The operation is lazy - elements are only generated as they are consumed. The input sequence
|
||||
// is re-iterated each time the cycle completes, so any side effects in the source sequence
|
||||
// will be repeated.
|
||||
//
|
||||
// Type Parameters:
|
||||
// - U: The type of elements in the sequence
|
||||
//
|
||||
// Parameters:
|
||||
// - ma: The input sequence to cycle through. Should be finite.
|
||||
//
|
||||
// Returns:
|
||||
// - An infinite sequence that repeats the elements of the input sequence
|
||||
//
|
||||
// Example - Basic cycling with Take:
|
||||
//
|
||||
// seq := From(1, 2, 3)
|
||||
// cycled := Cycle(seq)
|
||||
// result := Take[int](7)(cycled)
|
||||
// // yields: 1, 2, 3, 1, 2, 3, 1
|
||||
//
|
||||
// Example - Cycling strings:
|
||||
//
|
||||
// seq := From("A", "B", "C")
|
||||
// cycled := Cycle(seq)
|
||||
// result := Take[string](5)(cycled)
|
||||
// // yields: "A", "B", "C", "A", "B"
|
||||
//
|
||||
// Example - Using with First:
|
||||
//
|
||||
// seq := From(10, 20, 30)
|
||||
// cycled := Cycle(seq)
|
||||
// first := First(cycled)
|
||||
// // returns: Some(10)
|
||||
//
|
||||
// Example - Combining with filter and take:
|
||||
//
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// cycled := Cycle(seq)
|
||||
// evens := MonadFilter(cycled, func(x int) bool { return x%2 == 0 })
|
||||
// result := Take[int](5)(evens)
|
||||
// // yields: 2, 4, 2, 4, 2 (cycles through even numbers)
|
||||
//
|
||||
// Example - Empty sequence (returns empty, does not loop):
|
||||
//
|
||||
// seq := Empty[int]()
|
||||
// cycled := Cycle(seq)
|
||||
// result := Take[int](10)(cycled)
|
||||
// // yields: nothing (empty sequence, terminates immediately)
|
||||
func Cycle[U any](ma Seq[U]) Seq[U] {
|
||||
return func(yield func(U) bool) {
|
||||
for {
|
||||
isEmpty := true
|
||||
for u := range ma {
|
||||
if !yield(u) {
|
||||
return
|
||||
}
|
||||
isEmpty = false
|
||||
}
|
||||
if isEmpty {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
611
v2/iterator/iter/cycle_test.go
Normal file
611
v2/iterator/iter/cycle_test.go
Normal file
@@ -0,0 +1,611 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
O "github.com/IBM/fp-go/v2/option"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// TestCycleBasic tests basic Cycle functionality with Take
|
||||
func TestCycleBasic(t *testing.T) {
|
||||
t.Run("cycles through integer sequence", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](7)(cycled))
|
||||
assert.Equal(t, []int{1, 2, 3, 1, 2, 3, 1}, result)
|
||||
})
|
||||
|
||||
t.Run("cycles through string sequence", func(t *testing.T) {
|
||||
seq := From("A", "B", "C")
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[string](8)(cycled))
|
||||
assert.Equal(t, []string{"A", "B", "C", "A", "B", "C", "A", "B"}, result)
|
||||
})
|
||||
|
||||
t.Run("cycles through single element", func(t *testing.T) {
|
||||
seq := From(42)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](5)(cycled))
|
||||
assert.Equal(t, []int{42, 42, 42, 42, 42}, result)
|
||||
})
|
||||
|
||||
t.Run("cycles through two elements", func(t *testing.T) {
|
||||
seq := From(true, false)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[bool](6)(cycled))
|
||||
assert.Equal(t, []bool{true, false, true, false, true, false}, result)
|
||||
})
|
||||
|
||||
t.Run("takes exact multiple of cycle length", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](9)(cycled))
|
||||
assert.Equal(t, []int{1, 2, 3, 1, 2, 3, 1, 2, 3}, result)
|
||||
})
|
||||
|
||||
t.Run("takes less than one cycle", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](3)(cycled))
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleEmpty tests Cycle with empty sequences
|
||||
func TestCycleEmpty(t *testing.T) {
|
||||
t.Run("cycles empty sequence produces nothing", func(t *testing.T) {
|
||||
seq := Empty[int]()
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](10)(cycled))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
|
||||
t.Run("cycles empty string sequence", func(t *testing.T) {
|
||||
seq := Empty[string]()
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[string](5)(cycled))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
|
||||
t.Run("take zero from cycled sequence", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](0)(cycled))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleWithComplexTypes tests Cycle with complex data types
|
||||
func TestCycleWithComplexTypes(t *testing.T) {
|
||||
type Person struct {
|
||||
Name string
|
||||
Age int
|
||||
}
|
||||
|
||||
t.Run("cycles structs", func(t *testing.T) {
|
||||
seq := From(
|
||||
Person{"Alice", 30},
|
||||
Person{"Bob", 25},
|
||||
)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[Person](5)(cycled))
|
||||
expected := []Person{
|
||||
{"Alice", 30},
|
||||
{"Bob", 25},
|
||||
{"Alice", 30},
|
||||
{"Bob", 25},
|
||||
{"Alice", 30},
|
||||
}
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
|
||||
t.Run("cycles pointers", func(t *testing.T) {
|
||||
p1 := &Person{"Alice", 30}
|
||||
p2 := &Person{"Bob", 25}
|
||||
seq := From(p1, p2)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[*Person](4)(cycled))
|
||||
assert.Equal(t, []*Person{p1, p2, p1, p2}, result)
|
||||
})
|
||||
|
||||
t.Run("cycles slices", func(t *testing.T) {
|
||||
seq := From([]int{1, 2}, []int{3, 4})
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[[]int](5)(cycled))
|
||||
expected := [][]int{{1, 2}, {3, 4}, {1, 2}, {3, 4}, {1, 2}}
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleWithFirst tests Cycle with First operation
|
||||
func TestCycleWithFirst(t *testing.T) {
|
||||
t.Run("gets first element from cycled sequence", func(t *testing.T) {
|
||||
seq := From(10, 20, 30)
|
||||
cycled := Cycle(seq)
|
||||
first := First(cycled)
|
||||
assert.Equal(t, O.Of(10), first)
|
||||
})
|
||||
|
||||
t.Run("gets first from single element cycle", func(t *testing.T) {
|
||||
seq := From(42)
|
||||
cycled := Cycle(seq)
|
||||
first := First(cycled)
|
||||
assert.Equal(t, O.Of(42), first)
|
||||
})
|
||||
|
||||
t.Run("gets none from empty cycle", func(t *testing.T) {
|
||||
seq := Empty[int]()
|
||||
cycled := Cycle(seq)
|
||||
first := First(cycled)
|
||||
assert.Equal(t, O.None[int](), first)
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleWithChainedOperations tests Cycle with other operations
|
||||
func TestCycleWithChainedOperations(t *testing.T) {
|
||||
t.Run("cycle then map", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
cycled := Cycle(seq)
|
||||
mapped := MonadMap(cycled, N.Mul(10))
|
||||
result := toSlice(Take[int](7)(mapped))
|
||||
assert.Equal(t, []int{10, 20, 30, 10, 20, 30, 10}, result)
|
||||
})
|
||||
|
||||
t.Run("cycle then filter", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
cycled := Cycle(seq)
|
||||
filtered := MonadFilter(cycled, func(x int) bool { return x%2 == 0 })
|
||||
result := toSlice(Take[int](6)(filtered))
|
||||
assert.Equal(t, []int{2, 4, 2, 4, 2, 4}, result)
|
||||
})
|
||||
|
||||
t.Run("map then cycle", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
mapped := MonadMap(seq, N.Mul(2))
|
||||
cycled := Cycle(mapped)
|
||||
result := toSlice(Take[int](7)(cycled))
|
||||
assert.Equal(t, []int{2, 4, 6, 2, 4, 6, 2}, result)
|
||||
})
|
||||
|
||||
t.Run("filter then cycle", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5, 6)
|
||||
filtered := MonadFilter(seq, func(x int) bool { return x%2 == 0 })
|
||||
cycled := Cycle(filtered)
|
||||
result := toSlice(Take[int](7)(cycled))
|
||||
assert.Equal(t, []int{2, 4, 6, 2, 4, 6, 2}, result)
|
||||
})
|
||||
|
||||
t.Run("cycle with multiple takes", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
cycled := Cycle(seq)
|
||||
taken1 := Take[int](10)(cycled)
|
||||
taken2 := Take[int](5)(taken1)
|
||||
result := toSlice(taken2)
|
||||
assert.Equal(t, []int{1, 2, 3, 1, 2}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleWithReplicate tests Cycle with Replicate
|
||||
func TestCycleWithReplicate(t *testing.T) {
|
||||
t.Run("cycles replicated values", func(t *testing.T) {
|
||||
seq := Replicate(3, "X")
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[string](7)(cycled))
|
||||
assert.Equal(t, []string{"X", "X", "X", "X", "X", "X", "X"}, result)
|
||||
})
|
||||
|
||||
t.Run("cycles single replicated value", func(t *testing.T) {
|
||||
seq := Replicate(1, 99)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](5)(cycled))
|
||||
assert.Equal(t, []int{99, 99, 99, 99, 99}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleWithMakeBy tests Cycle with MakeBy
|
||||
func TestCycleWithMakeBy(t *testing.T) {
|
||||
t.Run("cycles generated sequence", func(t *testing.T) {
|
||||
seq := MakeBy(3, func(i int) int { return i * i })
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](8)(cycled))
|
||||
assert.Equal(t, []int{0, 1, 4, 0, 1, 4, 0, 1}, result)
|
||||
})
|
||||
|
||||
t.Run("cycles single generated element", func(t *testing.T) {
|
||||
seq := MakeBy(1, func(i int) int { return i + 10 })
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](4)(cycled))
|
||||
assert.Equal(t, []int{10, 10, 10, 10}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleWithPrependAppend tests Cycle with Prepend and Append
|
||||
func TestCycleWithPrependAppend(t *testing.T) {
|
||||
t.Run("cycle prepended sequence", func(t *testing.T) {
|
||||
seq := From(2, 3)
|
||||
prepended := Prepend(1)(seq)
|
||||
cycled := Cycle(prepended)
|
||||
result := toSlice(Take[int](7)(cycled))
|
||||
assert.Equal(t, []int{1, 2, 3, 1, 2, 3, 1}, result)
|
||||
})
|
||||
|
||||
t.Run("cycle appended sequence", func(t *testing.T) {
|
||||
seq := From(1, 2)
|
||||
appended := Append(3)(seq)
|
||||
cycled := Cycle(appended)
|
||||
result := toSlice(Take[int](7)(cycled))
|
||||
assert.Equal(t, []int{1, 2, 3, 1, 2, 3, 1}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleWithFlatten tests Cycle with Flatten
|
||||
func TestCycleWithFlatten(t *testing.T) {
|
||||
t.Run("cycles flattened sequence", func(t *testing.T) {
|
||||
nested := From(From(1, 2), From(3))
|
||||
flattened := Flatten(nested)
|
||||
cycled := Cycle(flattened)
|
||||
result := toSlice(Take[int](7)(cycled))
|
||||
assert.Equal(t, []int{1, 2, 3, 1, 2, 3, 1}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleWithChain tests Cycle with Chain
|
||||
func TestCycleWithChain(t *testing.T) {
|
||||
t.Run("cycles chained sequence", func(t *testing.T) {
|
||||
seq := From(1, 2)
|
||||
chained := MonadChain(seq, func(x int) Seq[int] {
|
||||
return From(x, x*10)
|
||||
})
|
||||
cycled := Cycle(chained)
|
||||
result := toSlice(Take[int](10)(cycled))
|
||||
assert.Equal(t, []int{1, 10, 2, 20, 1, 10, 2, 20, 1, 10}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleEarlyTermination tests that Cycle respects early termination
|
||||
func TestCycleEarlyTermination(t *testing.T) {
|
||||
t.Run("terminates when yield returns false", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
cycled := Cycle(seq)
|
||||
|
||||
count := 0
|
||||
for v := range cycled {
|
||||
count++
|
||||
if v == 2 && count > 2 {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
// Should have stopped at the second occurrence of 2
|
||||
assert.Equal(t, 5, count) // 1, 2, 3, 1, 2
|
||||
})
|
||||
|
||||
t.Run("take limits infinite cycle", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
cycled := Cycle(seq)
|
||||
taken := Take[int](100)(cycled)
|
||||
|
||||
result := toSlice(taken)
|
||||
assert.Len(t, result, 100)
|
||||
|
||||
// Verify pattern repeats correctly
|
||||
for i := 0; i < 100; i++ {
|
||||
expected := (i % 3) + 1
|
||||
assert.Equal(t, expected, result[i])
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleLargeSequence tests Cycle with larger sequences
|
||||
func TestCycleLargeSequence(t *testing.T) {
|
||||
t.Run("cycles large sequence", func(t *testing.T) {
|
||||
data := make([]int, 10)
|
||||
for i := range data {
|
||||
data[i] = i
|
||||
}
|
||||
seq := From(data...)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](25)(cycled))
|
||||
|
||||
assert.Len(t, result, 25)
|
||||
// Verify first cycle
|
||||
for i := 0; i < 10; i++ {
|
||||
assert.Equal(t, i, result[i])
|
||||
}
|
||||
// Verify second cycle
|
||||
for i := 10; i < 20; i++ {
|
||||
assert.Equal(t, i-10, result[i])
|
||||
}
|
||||
// Verify partial third cycle
|
||||
for i := 20; i < 25; i++ {
|
||||
assert.Equal(t, i-20, result[i])
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleWithReduce tests Cycle with Reduce (limited by Take)
|
||||
func TestCycleWithReduce(t *testing.T) {
|
||||
t.Run("reduces limited cycled sequence", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
cycled := Cycle(seq)
|
||||
limited := Take[int](10)(cycled)
|
||||
sum := MonadReduce(limited, func(acc, x int) int { return acc + x }, 0)
|
||||
// 1+2+3+1+2+3+1+2+3+1 = 19
|
||||
assert.Equal(t, 19, sum)
|
||||
})
|
||||
}
|
||||
|
||||
// TestCycleEdgeCases tests edge cases
|
||||
func TestCycleEdgeCases(t *testing.T) {
|
||||
t.Run("cycle with very long take", func(t *testing.T) {
|
||||
seq := From(1, 2)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](1000)(cycled))
|
||||
assert.Len(t, result, 1000)
|
||||
|
||||
// Verify pattern
|
||||
for i := 0; i < 1000; i++ {
|
||||
expected := (i % 2) + 1
|
||||
assert.Equal(t, expected, result[i])
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("cycle single element many times", func(t *testing.T) {
|
||||
seq := From(7)
|
||||
cycled := Cycle(seq)
|
||||
result := toSlice(Take[int](100)(cycled))
|
||||
assert.Len(t, result, 100)
|
||||
for _, v := range result {
|
||||
assert.Equal(t, 7, v)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// Benchmark tests
|
||||
func BenchmarkCycle(b *testing.B) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
cycled := Cycle(seq)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
taken := Take[int](100)(cycled)
|
||||
for range taken {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkCycleSingleElement(b *testing.B) {
|
||||
seq := From(42)
|
||||
cycled := Cycle(seq)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
taken := Take[int](100)(cycled)
|
||||
for range taken {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkCycleWithMap(b *testing.B) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
cycled := Cycle(seq)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
mapped := MonadMap(cycled, N.Mul(2))
|
||||
taken := Take[int](100)(mapped)
|
||||
for range taken {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkCycleWithFilter(b *testing.B) {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
cycled := Cycle(seq)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
filtered := MonadFilter(cycled, func(x int) bool { return x%2 == 0 })
|
||||
taken := Take[int](50)(filtered)
|
||||
for range taken {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Example tests for documentation
|
||||
func ExampleCycle() {
|
||||
seq := From(1, 2, 3)
|
||||
cycled := Cycle(seq)
|
||||
result := Take[int](7)(cycled)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 1 2 3 1 2 3 1
|
||||
}
|
||||
|
||||
func ExampleCycle_singleElement() {
|
||||
seq := From("X")
|
||||
cycled := Cycle(seq)
|
||||
result := Take[string](5)(cycled)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%s ", v)
|
||||
}
|
||||
// Output: X X X X X
|
||||
}
|
||||
|
||||
func ExampleCycle_withFirst() {
|
||||
seq := From(10, 20, 30)
|
||||
cycled := Cycle(seq)
|
||||
first := First(cycled)
|
||||
|
||||
if value, ok := O.Unwrap(first); ok {
|
||||
fmt.Printf("First: %d\n", value)
|
||||
}
|
||||
// Output: First: 10
|
||||
}
|
||||
|
||||
func ExampleCycle_withFilter() {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
cycled := Cycle(seq)
|
||||
evens := MonadFilter(cycled, func(x int) bool { return x%2 == 0 })
|
||||
result := Take[int](6)(evens)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 2 4 2 4 2 4
|
||||
}
|
||||
|
||||
func ExampleCycle_withMap() {
|
||||
seq := From(1, 2, 3)
|
||||
cycled := Cycle(seq)
|
||||
doubled := MonadMap(cycled, N.Mul(2))
|
||||
result := Take[int](7)(doubled)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 2 4 6 2 4 6 2
|
||||
}
|
||||
|
||||
func ExampleCycle_empty() {
|
||||
seq := Empty[int]()
|
||||
cycled := Cycle(seq)
|
||||
result := Take[int](5)(cycled)
|
||||
|
||||
count := 0
|
||||
for range result {
|
||||
count++
|
||||
}
|
||||
fmt.Printf("Count: %d\n", count)
|
||||
// Output: Count: 0
|
||||
}
|
||||
|
||||
func ExampleCycle_exactMultiple() {
|
||||
seq := From("A", "B", "C")
|
||||
cycled := Cycle(seq)
|
||||
result := Take[string](9)(cycled)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%s ", v)
|
||||
}
|
||||
// Output: A B C A B C A B C
|
||||
}
|
||||
|
||||
// TestCycleWithZip tests Cycle combined with Zip operator
|
||||
func TestCycleWithZip(t *testing.T) {
|
||||
t.Run("zip infinite cycled sequence with finite sequence", func(t *testing.T) {
|
||||
// Create an infinite sequence by cycling
|
||||
infinite := Cycle(From(1, 2, 3))
|
||||
// Create a finite sequence
|
||||
finite := From("a", "b", "c", "d", "e")
|
||||
|
||||
// Zip them together - should stop when finite sequence ends
|
||||
zipped := MonadZip(infinite, finite)
|
||||
|
||||
// Convert to slice for verification
|
||||
result := make([]struct {
|
||||
num int
|
||||
str string
|
||||
}, 0)
|
||||
for num, str := range zipped {
|
||||
result = append(result, struct {
|
||||
num int
|
||||
str string
|
||||
}{num, str})
|
||||
}
|
||||
|
||||
// Should have 5 pairs (limited by finite sequence)
|
||||
assert.Len(t, result, 5)
|
||||
assert.Equal(t, 1, result[0].num)
|
||||
assert.Equal(t, "a", result[0].str)
|
||||
assert.Equal(t, 2, result[1].num)
|
||||
assert.Equal(t, "b", result[1].str)
|
||||
assert.Equal(t, 3, result[2].num)
|
||||
assert.Equal(t, "c", result[2].str)
|
||||
assert.Equal(t, 1, result[3].num) // Cycle repeats
|
||||
assert.Equal(t, "d", result[3].str)
|
||||
assert.Equal(t, 2, result[4].num)
|
||||
assert.Equal(t, "e", result[4].str)
|
||||
})
|
||||
|
||||
t.Run("zip finite sequence with infinite cycled sequence", func(t *testing.T) {
|
||||
// Reverse order: finite first, infinite second
|
||||
finite := From(10, 20, 30)
|
||||
infinite := Cycle(From("X", "Y"))
|
||||
|
||||
zipped := MonadZip(finite, infinite)
|
||||
|
||||
result := make([]struct {
|
||||
num int
|
||||
str string
|
||||
}, 0)
|
||||
for num, str := range zipped {
|
||||
result = append(result, struct {
|
||||
num int
|
||||
str string
|
||||
}{num, str})
|
||||
}
|
||||
|
||||
// Should have 3 pairs (limited by finite sequence)
|
||||
assert.Len(t, result, 3)
|
||||
assert.Equal(t, 10, result[0].num)
|
||||
assert.Equal(t, "X", result[0].str)
|
||||
assert.Equal(t, 20, result[1].num)
|
||||
assert.Equal(t, "Y", result[1].str)
|
||||
assert.Equal(t, 30, result[2].num)
|
||||
assert.Equal(t, "X", result[2].str) // Cycle repeats
|
||||
})
|
||||
|
||||
t.Run("zip two cycled sequences with take", func(t *testing.T) {
|
||||
// Both sequences are infinite, so we need Take to limit
|
||||
cycle1 := Cycle(From(1, 2))
|
||||
cycle2 := Cycle(From("a", "b", "c"))
|
||||
|
||||
zipped := MonadZip(cycle1, cycle2)
|
||||
|
||||
// Use Take to limit the infinite result
|
||||
count := 0
|
||||
result := make([]struct {
|
||||
num int
|
||||
str string
|
||||
}, 0)
|
||||
for num, str := range zipped {
|
||||
result = append(result, struct {
|
||||
num int
|
||||
str string
|
||||
}{num, str})
|
||||
count++
|
||||
if count >= 7 {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
assert.Len(t, result, 7)
|
||||
// Verify the pattern
|
||||
assert.Equal(t, 1, result[0].num)
|
||||
assert.Equal(t, "a", result[0].str)
|
||||
assert.Equal(t, 2, result[1].num)
|
||||
assert.Equal(t, "b", result[1].str)
|
||||
assert.Equal(t, 1, result[2].num) // cycle1 repeats
|
||||
assert.Equal(t, "c", result[2].str)
|
||||
assert.Equal(t, 2, result[3].num)
|
||||
assert.Equal(t, "a", result[3].str) // cycle2 repeats
|
||||
})
|
||||
}
|
||||
@@ -23,6 +23,8 @@ import "github.com/IBM/fp-go/v2/option"
|
||||
// contains at least one element, it returns Some(element). If the iterator is empty,
|
||||
// it returns None. The function consumes only the first element of the iterator.
|
||||
//
|
||||
// RxJS Equivalent: [first] - https://rxjs.dev/api/operators/first
|
||||
//
|
||||
// Type Parameters:
|
||||
// - U: The type of elements in the iterator
|
||||
//
|
||||
|
||||
@@ -81,6 +81,8 @@ func Of2[K, A any](k K, a A) Seq2[K, A] {
|
||||
// MonadMap transforms each element in a sequence using the provided function.
|
||||
// This is the monadic version that takes the sequence as the first parameter.
|
||||
//
|
||||
// RxJS Equivalent: [map] - https://rxjs.dev/api/operators/map
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3)
|
||||
@@ -183,6 +185,8 @@ func MapWithKey[K, A, B any](f func(K, A) B) Operator2[K, A, B] {
|
||||
|
||||
// MonadFilter returns a sequence containing only elements that satisfy the predicate.
|
||||
//
|
||||
// RxJS Equivalent: [filter] - https://rxjs.dev/api/operators/filter
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
@@ -425,6 +429,8 @@ func FilterMapWithKey[K, A, B any](f func(K, A) Option[B]) Operator2[K, A, B] {
|
||||
// MonadChain applies a function that returns a sequence to each element and flattens the results.
|
||||
// This is the monadic bind operation (flatMap).
|
||||
//
|
||||
// RxJS Equivalent: [mergeMap/flatMap] - https://rxjs.dev/api/operators/mergeMap
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3)
|
||||
@@ -461,6 +467,8 @@ func Chain[A, B any](f func(A) Seq[B]) Operator[A, B] {
|
||||
|
||||
// Flatten flattens a sequence of sequences into a single sequence.
|
||||
//
|
||||
// RxJS Equivalent: [mergeAll] - https://rxjs.dev/api/operators/mergeAll
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// nested := From(From(1, 2), From(3, 4), From(5))
|
||||
@@ -563,6 +571,8 @@ func Replicate[A any](n int, a A) Seq[A] {
|
||||
// MonadReduce reduces a sequence to a single value by applying a function to each element
|
||||
// and an accumulator, starting with an initial value.
|
||||
//
|
||||
// RxJS Equivalent: [reduce] - https://rxjs.dev/api/operators/reduce
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
@@ -819,6 +829,8 @@ func Flap[B, A any](a A) Operator[func(A) B, B] {
|
||||
|
||||
// Prepend returns a function that adds an element to the beginning of a sequence.
|
||||
//
|
||||
// RxJS Equivalent: [startWith] - https://rxjs.dev/api/operators/startWith
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(2, 3, 4)
|
||||
@@ -832,6 +844,8 @@ func Prepend[A any](head A) Operator[A, A] {
|
||||
|
||||
// Append returns a function that adds an element to the end of a sequence.
|
||||
//
|
||||
// RxJS Equivalent: [endWith] - https://rxjs.dev/api/operators/endWith
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seq := From(1, 2, 3)
|
||||
@@ -846,6 +860,8 @@ func Append[A any](tail A) Operator[A, A] {
|
||||
// MonadZip combines two sequences into a sequence of pairs.
|
||||
// The resulting sequence stops when either input sequence is exhausted.
|
||||
//
|
||||
// RxJS Equivalent: [zip] - https://rxjs.dev/api/operators/zip
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// seqA := From(1, 2, 3)
|
||||
|
||||
105
v2/iterator/iter/scan.go
Normal file
105
v2/iterator/iter/scan.go
Normal file
@@ -0,0 +1,105 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
// Scan applies an accumulator function over a sequence, emitting each intermediate result.
|
||||
//
|
||||
// This function is similar to Reduce, but instead of returning only the final accumulated value,
|
||||
// it returns a sequence containing all intermediate accumulated values. Each element in the
|
||||
// output sequence is the result of applying the accumulator function to the previous accumulated
|
||||
// value and the current input element.
|
||||
//
|
||||
// The operation is lazy - intermediate values are computed only as they are consumed.
|
||||
//
|
||||
// RxJS Equivalent: [scan] - https://rxjs.dev/api/operators/scan
|
||||
//
|
||||
// Scan is useful for:
|
||||
// - Computing running totals or cumulative sums
|
||||
// - Tracking state changes over a sequence
|
||||
// - Building up complex values incrementally
|
||||
// - Generating sequences based on previous values
|
||||
//
|
||||
// Type Parameters:
|
||||
// - FCT: The accumulator function type, must be ~func(V, U) V
|
||||
// - U: The type of elements in the input sequence
|
||||
// - V: The type of the accumulated value and elements in the output sequence
|
||||
//
|
||||
// Parameters:
|
||||
// - f: The accumulator function that takes the current accumulated value and the next
|
||||
// input element, returning the new accumulated value
|
||||
// - initial: The initial accumulated value (not included in the output sequence)
|
||||
//
|
||||
// Returns:
|
||||
// - An Operator that transforms a Seq[U] into a Seq[V] containing all intermediate
|
||||
// accumulated values
|
||||
//
|
||||
// Example - Running sum:
|
||||
//
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// runningSum := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
// result := runningSum(seq)
|
||||
// // yields: 1, 3, 6, 10, 15
|
||||
//
|
||||
// Example - Running product:
|
||||
//
|
||||
// seq := From(2, 3, 4)
|
||||
// runningProduct := Scan(func(acc, x int) int { return acc * x }, 1)
|
||||
// result := runningProduct(seq)
|
||||
// // yields: 2, 6, 24
|
||||
//
|
||||
// Example - Building strings:
|
||||
//
|
||||
// seq := From("a", "b", "c")
|
||||
// concat := Scan(func(acc, x string) string { return acc + x }, "")
|
||||
// result := concat(seq)
|
||||
// // yields: "a", "ab", "abc"
|
||||
//
|
||||
// Example - Tracking maximum:
|
||||
//
|
||||
// seq := From(3, 1, 4, 1, 5, 9, 2)
|
||||
// maxSoFar := Scan(func(acc, x int) int {
|
||||
// if x > acc { return x }
|
||||
// return acc
|
||||
// }, 0)
|
||||
// result := maxSoFar(seq)
|
||||
// // yields: 3, 3, 4, 4, 5, 9, 9
|
||||
//
|
||||
// Example - Empty sequence:
|
||||
//
|
||||
// seq := Empty[int]()
|
||||
// runningSum := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
// result := runningSum(seq)
|
||||
// // yields: nothing (empty sequence)
|
||||
//
|
||||
// Example - Single element:
|
||||
//
|
||||
// seq := From(42)
|
||||
// runningSum := Scan(func(acc, x int) int { return acc + x }, 10)
|
||||
// result := runningSum(seq)
|
||||
// // yields: 52
|
||||
func Scan[FCT ~func(V, U) V, U, V any](f FCT, initial V) Operator[U, V] {
|
||||
return func(s Seq[U]) Seq[V] {
|
||||
return func(yield func(V) bool) {
|
||||
current := initial
|
||||
for u := range s {
|
||||
current = f(current, u)
|
||||
if !yield(current) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
407
v2/iterator/iter/scan_test.go
Normal file
407
v2/iterator/iter/scan_test.go
Normal file
@@ -0,0 +1,407 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// TestScanBasic tests basic Scan functionality
|
||||
func TestScanBasic(t *testing.T) {
|
||||
t.Run("running sum of integers", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []int{1, 3, 6, 10, 15}, result)
|
||||
})
|
||||
|
||||
t.Run("running product", func(t *testing.T) {
|
||||
seq := From(2, 3, 4)
|
||||
scanned := Scan(func(acc, x int) int { return acc * x }, 1)
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []int{2, 6, 24}, result)
|
||||
})
|
||||
|
||||
t.Run("string concatenation", func(t *testing.T) {
|
||||
seq := From("a", "b", "c")
|
||||
scanned := Scan(func(acc, x string) string { return acc + x }, "")
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []string{"a", "ab", "abc"}, result)
|
||||
})
|
||||
|
||||
t.Run("string concatenation with separator", func(t *testing.T) {
|
||||
seq := From("hello", "world", "test")
|
||||
scanned := Scan(func(acc, x string) string {
|
||||
if acc == "" {
|
||||
return x
|
||||
}
|
||||
return acc + "-" + x
|
||||
}, "")
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []string{"hello", "hello-world", "hello-world-test"}, result)
|
||||
})
|
||||
|
||||
t.Run("single element", func(t *testing.T) {
|
||||
seq := From(42)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 10)
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []int{52}, result)
|
||||
})
|
||||
|
||||
t.Run("two elements", func(t *testing.T) {
|
||||
seq := From(5, 10)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []int{5, 15}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestScanEmpty tests Scan with empty sequences
|
||||
func TestScanEmpty(t *testing.T) {
|
||||
t.Run("empty integer sequence", func(t *testing.T) {
|
||||
seq := Empty[int]()
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
|
||||
t.Run("empty string sequence", func(t *testing.T) {
|
||||
seq := Empty[string]()
|
||||
scanned := Scan(func(acc, x string) string { return acc + x }, "start")
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestScanWithDifferentTypes tests Scan with different input/output types
|
||||
func TestScanWithDifferentTypes(t *testing.T) {
|
||||
t.Run("int to string accumulation", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
scanned := Scan(func(acc string, x int) string {
|
||||
return fmt.Sprintf("%s%d", acc, x)
|
||||
}, "")
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []string{"1", "12", "123"}, result)
|
||||
})
|
||||
|
||||
t.Run("string to int length accumulation", func(t *testing.T) {
|
||||
seq := From("a", "bb", "ccc")
|
||||
scanned := Scan(func(acc int, x string) int {
|
||||
return acc + len(x)
|
||||
}, 0)
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []int{1, 3, 6}, result)
|
||||
})
|
||||
|
||||
t.Run("accumulate into slice", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
scanned := Scan(func(acc []int, x int) []int {
|
||||
return append(acc, x)
|
||||
}, []int{})
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, [][]int{
|
||||
{1},
|
||||
{1, 2},
|
||||
{1, 2, 3},
|
||||
}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestScanStateful tests Scan with stateful operations
|
||||
func TestScanStateful(t *testing.T) {
|
||||
t.Run("tracking maximum", func(t *testing.T) {
|
||||
seq := From(3, 1, 4, 1, 5, 9, 2)
|
||||
scanned := Scan(func(acc, x int) int {
|
||||
if x > acc {
|
||||
return x
|
||||
}
|
||||
return acc
|
||||
}, 0)
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []int{3, 3, 4, 4, 5, 9, 9}, result)
|
||||
})
|
||||
|
||||
t.Run("tracking minimum", func(t *testing.T) {
|
||||
seq := From(5, 3, 8, 1, 4, 2)
|
||||
scanned := Scan(func(acc, x int) int {
|
||||
if acc == 0 || x < acc {
|
||||
return x
|
||||
}
|
||||
return acc
|
||||
}, 0)
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []int{5, 3, 3, 1, 1, 1}, result)
|
||||
})
|
||||
|
||||
t.Run("counting occurrences", func(t *testing.T) {
|
||||
seq := From(1, 2, 1, 3, 1, 2)
|
||||
scanned := Scan(func(acc map[int]int, x int) map[int]int {
|
||||
newMap := make(map[int]int)
|
||||
for k, v := range acc {
|
||||
newMap[k] = v
|
||||
}
|
||||
newMap[x]++
|
||||
return newMap
|
||||
}, map[int]int{})
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Len(t, result, 6)
|
||||
assert.Equal(t, 1, result[0][1])
|
||||
assert.Equal(t, 1, result[1][2])
|
||||
assert.Equal(t, 2, result[2][1])
|
||||
assert.Equal(t, 3, result[4][1])
|
||||
})
|
||||
}
|
||||
|
||||
// TestScanWithComplexTypes tests Scan with complex data types
|
||||
func TestScanWithComplexTypes(t *testing.T) {
|
||||
type Point struct {
|
||||
X, Y int
|
||||
}
|
||||
|
||||
t.Run("accumulate points", func(t *testing.T) {
|
||||
seq := From(Point{1, 0}, Point{0, 1}, Point{2, 2})
|
||||
scanned := Scan(func(acc, p Point) Point {
|
||||
return Point{acc.X + p.X, acc.Y + p.Y}
|
||||
}, Point{0, 0})
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []Point{
|
||||
{1, 0},
|
||||
{1, 1},
|
||||
{3, 3},
|
||||
}, result)
|
||||
})
|
||||
|
||||
t.Run("accumulate struct fields", func(t *testing.T) {
|
||||
type Data struct {
|
||||
Value int
|
||||
Count int
|
||||
}
|
||||
seq := From(5, 10, 15)
|
||||
scanned := Scan(func(acc Data, x int) Data {
|
||||
return Data{
|
||||
Value: acc.Value + x,
|
||||
Count: acc.Count + 1,
|
||||
}
|
||||
}, Data{0, 0})
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []Data{
|
||||
{5, 1},
|
||||
{15, 2},
|
||||
{30, 3},
|
||||
}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestScanWithChainedOperations tests Scan combined with other operations
|
||||
func TestScanWithChainedOperations(t *testing.T) {
|
||||
t.Run("scan then map", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
mapped := MonadMap(scanned(seq), func(x int) int { return x * 2 })
|
||||
result := toSlice(mapped)
|
||||
assert.Equal(t, []int{2, 6, 12, 20}, result)
|
||||
})
|
||||
|
||||
t.Run("map then scan", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4)
|
||||
mapped := MonadMap(seq, func(x int) int { return x * 2 })
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
result := toSlice(scanned(mapped))
|
||||
assert.Equal(t, []int{2, 6, 12, 20}, result)
|
||||
})
|
||||
|
||||
t.Run("scan then filter", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
filtered := MonadFilter(scanned(seq), func(x int) bool { return x%2 == 0 })
|
||||
result := toSlice(filtered)
|
||||
assert.Equal(t, []int{6, 10}, result)
|
||||
})
|
||||
|
||||
t.Run("scan then take", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
taken := Take[int](3)(scanned(seq))
|
||||
result := toSlice(taken)
|
||||
assert.Equal(t, []int{1, 3, 6}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestScanWithCycle tests Scan with infinite sequences
|
||||
func TestScanWithCycle(t *testing.T) {
|
||||
t.Run("scan cycled sequence with take", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
cycled := Cycle(seq)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
taken := Take[int](10)(scanned(cycled))
|
||||
result := toSlice(taken)
|
||||
// 1, 3, 6, 7, 9, 12, 13, 15, 18, 19
|
||||
assert.Equal(t, []int{1, 3, 6, 7, 9, 12, 13, 15, 18, 19}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestScanEarlyTermination tests that Scan respects early termination
|
||||
func TestScanEarlyTermination(t *testing.T) {
|
||||
t.Run("terminates when yield returns false", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
|
||||
count := 0
|
||||
for v := range scanned(seq) {
|
||||
count++
|
||||
if v >= 6 {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
assert.Equal(t, 3, count) // Should stop at 6 (1+2+3)
|
||||
})
|
||||
}
|
||||
|
||||
// TestScanWithInitialValue tests different initial values
|
||||
func TestScanWithInitialValue(t *testing.T) {
|
||||
t.Run("non-zero initial value", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 10)
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []int{11, 13, 16}, result)
|
||||
})
|
||||
|
||||
t.Run("negative initial value", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, -10)
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []int{-9, -7, -4}, result)
|
||||
})
|
||||
|
||||
t.Run("string initial value", func(t *testing.T) {
|
||||
seq := From("a", "b", "c")
|
||||
scanned := Scan(func(acc, x string) string { return acc + x }, "start:")
|
||||
result := toSlice(scanned(seq))
|
||||
assert.Equal(t, []string{"start:a", "start:ab", "start:abc"}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestScanLargeSequence tests Scan with larger sequences
|
||||
func TestScanLargeSequence(t *testing.T) {
|
||||
t.Run("scan large sequence", func(t *testing.T) {
|
||||
data := make([]int, 100)
|
||||
for i := range data {
|
||||
data[i] = i + 1
|
||||
}
|
||||
seq := From(data...)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
result := toSlice(scanned(seq))
|
||||
|
||||
assert.Len(t, result, 100)
|
||||
// Sum of 1 to n is n*(n+1)/2
|
||||
assert.Equal(t, 5050, result[99]) // Sum of 1 to 100
|
||||
assert.Equal(t, 1, result[0])
|
||||
assert.Equal(t, 3, result[1])
|
||||
assert.Equal(t, 6, result[2])
|
||||
})
|
||||
}
|
||||
|
||||
// Benchmark tests
|
||||
func BenchmarkScan(b *testing.B) {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for range scanned(seq) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkScanLarge(b *testing.B) {
|
||||
data := make([]int, 1000)
|
||||
for i := range data {
|
||||
data[i] = i + 1
|
||||
}
|
||||
seq := From(data...)
|
||||
scanned := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for range scanned(seq) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Example tests for documentation
|
||||
func ExampleScan() {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
runningSum := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
result := runningSum(seq)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 1 3 6 10 15
|
||||
}
|
||||
|
||||
func ExampleScan_runningProduct() {
|
||||
seq := From(2, 3, 4)
|
||||
runningProduct := Scan(func(acc, x int) int { return acc * x }, 1)
|
||||
result := runningProduct(seq)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 2 6 24
|
||||
}
|
||||
|
||||
func ExampleScan_stringConcatenation() {
|
||||
seq := From("a", "b", "c")
|
||||
concat := Scan(func(acc, x string) string { return acc + x }, "")
|
||||
result := concat(seq)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%s ", v)
|
||||
}
|
||||
// Output: a ab abc
|
||||
}
|
||||
|
||||
func ExampleScan_trackingMaximum() {
|
||||
seq := From(3, 1, 4, 1, 5, 9, 2)
|
||||
maxSoFar := Scan(func(acc, x int) int {
|
||||
if x > acc {
|
||||
return x
|
||||
}
|
||||
return acc
|
||||
}, 0)
|
||||
result := maxSoFar(seq)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 3 3 4 4 5 9 9
|
||||
}
|
||||
|
||||
func ExampleScan_empty() {
|
||||
seq := Empty[int]()
|
||||
runningSum := Scan(func(acc, x int) int { return acc + x }, 0)
|
||||
result := runningSum(seq)
|
||||
|
||||
count := 0
|
||||
for range result {
|
||||
count++
|
||||
}
|
||||
fmt.Printf("Count: %d\n", count)
|
||||
// Output: Count: 0
|
||||
}
|
||||
80
v2/iterator/iter/take.go
Normal file
80
v2/iterator/iter/take.go
Normal file
@@ -0,0 +1,80 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
import F "github.com/IBM/fp-go/v2/function"
|
||||
|
||||
// Take returns an operator that limits the number of elements in a sequence to at most n elements.
|
||||
//
|
||||
// This function creates a transformation that takes the first n elements from a sequence
|
||||
// and discards the rest. If n is less than or equal to 0, it returns an empty sequence.
|
||||
// If the input sequence has fewer than n elements, all elements are returned.
|
||||
//
|
||||
// The operation is lazy and only consumes elements from the source sequence as needed.
|
||||
// Once n elements have been yielded, iteration stops immediately without consuming
|
||||
// the remaining elements from the source.
|
||||
//
|
||||
// RxJS Equivalent: [take] - https://rxjs.dev/api/operators/take
|
||||
//
|
||||
// Type Parameters:
|
||||
// - U: The type of elements in the sequence
|
||||
//
|
||||
// Parameters:
|
||||
// - n: The maximum number of elements to take from the sequence
|
||||
//
|
||||
// Returns:
|
||||
// - An Operator that transforms a Seq[U] by taking at most n elements
|
||||
//
|
||||
// Example - Take first 3 elements:
|
||||
//
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// result := Take[int](3)(seq)
|
||||
// // yields: 1, 2, 3
|
||||
//
|
||||
// Example - Take more than available:
|
||||
//
|
||||
// seq := From(1, 2)
|
||||
// result := Take[int](5)(seq)
|
||||
// // yields: 1, 2 (all available elements)
|
||||
//
|
||||
// Example - Take zero or negative:
|
||||
//
|
||||
// seq := From(1, 2, 3)
|
||||
// result := Take[int](0)(seq)
|
||||
// // yields: nothing (empty sequence)
|
||||
//
|
||||
// Example - Chaining with other operations:
|
||||
//
|
||||
// seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
// evens := MonadFilter(seq, func(x int) bool { return x%2 == 0 })
|
||||
// result := Take[int](3)(evens)
|
||||
// // yields: 2, 4, 6 (first 3 even numbers)
|
||||
func Take[U any](n int) Operator[U, U] {
|
||||
if n <= 0 {
|
||||
return F.Constant1[Seq[U]](Empty[U]())
|
||||
}
|
||||
return func(s Seq[U]) Seq[U] {
|
||||
return func(yield Predicate[U]) {
|
||||
i := 0
|
||||
for u := range s {
|
||||
if i >= n || !yield(u) {
|
||||
return
|
||||
}
|
||||
i += 1
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
463
v2/iterator/iter/take_test.go
Normal file
463
v2/iterator/iter/take_test.go
Normal file
@@ -0,0 +1,463 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// TestTake tests basic Take functionality
|
||||
func TestTake(t *testing.T) {
|
||||
t.Run("takes first n elements from sequence", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
result := toSlice(Take[int](3)(seq))
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
|
||||
t.Run("takes first element", func(t *testing.T) {
|
||||
seq := From(10, 20, 30)
|
||||
result := toSlice(Take[int](1)(seq))
|
||||
assert.Equal(t, []int{10}, result)
|
||||
})
|
||||
|
||||
t.Run("takes all elements when n equals length", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
result := toSlice(Take[int](3)(seq))
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
|
||||
t.Run("takes all elements when n exceeds length", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
result := toSlice(Take[int](10)(seq))
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
|
||||
t.Run("takes from string sequence", func(t *testing.T) {
|
||||
seq := From("a", "b", "c", "d", "e")
|
||||
result := toSlice(Take[string](3)(seq))
|
||||
assert.Equal(t, []string{"a", "b", "c"}, result)
|
||||
})
|
||||
|
||||
t.Run("takes from single element sequence", func(t *testing.T) {
|
||||
seq := From(42)
|
||||
result := toSlice(Take[int](1)(seq))
|
||||
assert.Equal(t, []int{42}, result)
|
||||
})
|
||||
|
||||
t.Run("takes from large sequence", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
result := toSlice(Take[int](5)(seq))
|
||||
assert.Equal(t, []int{1, 2, 3, 4, 5}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestTakeZeroOrNegative tests Take with zero or negative values
|
||||
func TestTakeZeroOrNegative(t *testing.T) {
|
||||
t.Run("returns empty sequence when n is zero", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
result := toSlice(Take[int](0)(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
|
||||
t.Run("returns empty sequence when n is negative", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
result := toSlice(Take[int](-1)(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
|
||||
t.Run("returns empty sequence when n is large negative", func(t *testing.T) {
|
||||
seq := From("a", "b", "c")
|
||||
result := toSlice(Take[string](-100)(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestTakeEmpty tests Take with empty sequences
|
||||
func TestTakeEmpty(t *testing.T) {
|
||||
t.Run("returns empty from empty integer sequence", func(t *testing.T) {
|
||||
seq := Empty[int]()
|
||||
result := toSlice(Take[int](5)(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
|
||||
t.Run("returns empty from empty string sequence", func(t *testing.T) {
|
||||
seq := Empty[string]()
|
||||
result := toSlice(Take[string](3)(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
|
||||
t.Run("returns empty when taking zero from empty", func(t *testing.T) {
|
||||
seq := Empty[int]()
|
||||
result := toSlice(Take[int](0)(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestTakeWithComplexTypes tests Take with complex data types
|
||||
func TestTakeWithComplexTypes(t *testing.T) {
|
||||
type Person struct {
|
||||
Name string
|
||||
Age int
|
||||
}
|
||||
|
||||
t.Run("takes structs", func(t *testing.T) {
|
||||
seq := From(
|
||||
Person{"Alice", 30},
|
||||
Person{"Bob", 25},
|
||||
Person{"Charlie", 35},
|
||||
Person{"David", 28},
|
||||
)
|
||||
result := toSlice(Take[Person](2)(seq))
|
||||
expected := []Person{
|
||||
{"Alice", 30},
|
||||
{"Bob", 25},
|
||||
}
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
|
||||
t.Run("takes pointers", func(t *testing.T) {
|
||||
p1 := &Person{"Alice", 30}
|
||||
p2 := &Person{"Bob", 25}
|
||||
p3 := &Person{"Charlie", 35}
|
||||
seq := From(p1, p2, p3)
|
||||
result := toSlice(Take[*Person](2)(seq))
|
||||
assert.Equal(t, []*Person{p1, p2}, result)
|
||||
})
|
||||
|
||||
t.Run("takes slices", func(t *testing.T) {
|
||||
seq := From([]int{1, 2}, []int{3, 4}, []int{5, 6}, []int{7, 8})
|
||||
result := toSlice(Take[[]int](2)(seq))
|
||||
expected := [][]int{{1, 2}, {3, 4}}
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestTakeWithChainedOperations tests Take with other sequence operations
|
||||
func TestTakeWithChainedOperations(t *testing.T) {
|
||||
t.Run("take after map", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
mapped := MonadMap(seq, N.Mul(2))
|
||||
result := toSlice(Take[int](3)(mapped))
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
})
|
||||
|
||||
t.Run("take after filter", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
filtered := MonadFilter(seq, func(x int) bool { return x%2 == 0 })
|
||||
result := toSlice(Take[int](3)(filtered))
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
})
|
||||
|
||||
t.Run("map after take", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
taken := Take[int](3)(seq)
|
||||
result := toSlice(MonadMap(taken, N.Mul(10)))
|
||||
assert.Equal(t, []int{10, 20, 30}, result)
|
||||
})
|
||||
|
||||
t.Run("filter after take", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8)
|
||||
taken := Take[int](6)(seq)
|
||||
result := toSlice(MonadFilter(taken, func(x int) bool { return x%2 == 0 }))
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
})
|
||||
|
||||
t.Run("take after chain", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
chained := MonadChain(seq, func(x int) Seq[int] {
|
||||
return From(x, x*10)
|
||||
})
|
||||
result := toSlice(Take[int](4)(chained))
|
||||
assert.Equal(t, []int{1, 10, 2, 20}, result)
|
||||
})
|
||||
|
||||
t.Run("multiple takes", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
taken1 := Take[int](7)(seq)
|
||||
taken2 := Take[int](3)(taken1)
|
||||
result := toSlice(taken2)
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestTakeWithReplicate tests Take with Replicate
|
||||
func TestTakeWithReplicate(t *testing.T) {
|
||||
t.Run("takes from replicated sequence", func(t *testing.T) {
|
||||
seq := Replicate(10, 42)
|
||||
result := toSlice(Take[int](3)(seq))
|
||||
assert.Equal(t, []int{42, 42, 42}, result)
|
||||
})
|
||||
|
||||
t.Run("takes all from short replicate", func(t *testing.T) {
|
||||
seq := Replicate(2, "hello")
|
||||
result := toSlice(Take[string](5)(seq))
|
||||
assert.Equal(t, []string{"hello", "hello"}, result)
|
||||
})
|
||||
|
||||
t.Run("takes zero from replicate", func(t *testing.T) {
|
||||
seq := Replicate(5, 100)
|
||||
result := toSlice(Take[int](0)(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestTakeWithMakeBy tests Take with MakeBy
|
||||
func TestTakeWithMakeBy(t *testing.T) {
|
||||
t.Run("takes from generated sequence", func(t *testing.T) {
|
||||
seq := MakeBy(10, func(i int) int { return i * i })
|
||||
result := toSlice(Take[int](5)(seq))
|
||||
assert.Equal(t, []int{0, 1, 4, 9, 16}, result)
|
||||
})
|
||||
|
||||
t.Run("takes more than generated", func(t *testing.T) {
|
||||
seq := MakeBy(3, func(i int) int { return i + 1 })
|
||||
result := toSlice(Take[int](10)(seq))
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestTakeWithPrependAppend tests Take with Prepend and Append
|
||||
func TestTakeWithPrependAppend(t *testing.T) {
|
||||
t.Run("take from prepended sequence", func(t *testing.T) {
|
||||
seq := From(2, 3, 4, 5)
|
||||
prepended := Prepend(1)(seq)
|
||||
result := toSlice(Take[int](3)(prepended))
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
|
||||
t.Run("take from appended sequence", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
appended := Append(4)(seq)
|
||||
result := toSlice(Take[int](2)(appended))
|
||||
assert.Equal(t, []int{1, 2}, result)
|
||||
})
|
||||
|
||||
t.Run("take includes appended element", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
appended := Append(4)(seq)
|
||||
result := toSlice(Take[int](4)(appended))
|
||||
assert.Equal(t, []int{1, 2, 3, 4}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestTakeWithFlatten tests Take with Flatten
|
||||
func TestTakeWithFlatten(t *testing.T) {
|
||||
t.Run("takes from flattened sequence", func(t *testing.T) {
|
||||
nested := From(From(1, 2), From(3, 4), From(5, 6))
|
||||
flattened := Flatten(nested)
|
||||
result := toSlice(Take[int](4)(flattened))
|
||||
assert.Equal(t, []int{1, 2, 3, 4}, result)
|
||||
})
|
||||
|
||||
t.Run("takes from flattened with empty inner sequences", func(t *testing.T) {
|
||||
nested := From(From(1, 2), Empty[int](), From(3, 4))
|
||||
flattened := Flatten(nested)
|
||||
result := toSlice(Take[int](3)(flattened))
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestTakeDoesNotConsumeEntireSequence tests that Take is lazy
|
||||
func TestTakeDoesNotConsumeEntireSequence(t *testing.T) {
|
||||
t.Run("only consumes needed elements", func(t *testing.T) {
|
||||
callCount := 0
|
||||
seq := MonadMap(From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), func(x int) int {
|
||||
callCount++
|
||||
return x * 2
|
||||
})
|
||||
|
||||
taken := Take[int](3)(seq)
|
||||
|
||||
// Manually iterate to verify lazy evaluation
|
||||
result := []int{}
|
||||
for v := range taken {
|
||||
result = append(result, v)
|
||||
}
|
||||
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
// The map function may be called one extra time to check if there are more elements
|
||||
// This is expected behavior with Go's range over iterators
|
||||
assert.LessOrEqual(t, callCount, 4, "should not consume significantly more than needed")
|
||||
assert.GreaterOrEqual(t, callCount, 3, "should consume at least the needed elements")
|
||||
})
|
||||
|
||||
t.Run("stops early with filter", func(t *testing.T) {
|
||||
callCount := 0
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
filtered := MonadFilter(seq, func(x int) bool {
|
||||
callCount++
|
||||
return x%2 == 0
|
||||
})
|
||||
|
||||
taken := Take[int](2)(filtered)
|
||||
|
||||
// Manually iterate to verify lazy evaluation
|
||||
result := []int{}
|
||||
for v := range taken {
|
||||
result = append(result, v)
|
||||
}
|
||||
|
||||
assert.Equal(t, []int{2, 4}, result)
|
||||
// Should stop after finding 2 even numbers, may check a few more elements
|
||||
assert.LessOrEqual(t, callCount, 7, "should not consume significantly more than needed")
|
||||
assert.GreaterOrEqual(t, callCount, 4, "should consume at least enough to find 2 evens")
|
||||
})
|
||||
}
|
||||
|
||||
// TestTakeEdgeCases tests edge cases
|
||||
func TestTakeEdgeCases(t *testing.T) {
|
||||
t.Run("take 1 from single element", func(t *testing.T) {
|
||||
seq := From(42)
|
||||
result := toSlice(Take[int](1)(seq))
|
||||
assert.Equal(t, []int{42}, result)
|
||||
})
|
||||
|
||||
t.Run("take 0 from single element", func(t *testing.T) {
|
||||
seq := From(42)
|
||||
result := toSlice(Take[int](0)(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
|
||||
t.Run("take large number from small sequence", func(t *testing.T) {
|
||||
seq := From(1, 2)
|
||||
result := toSlice(Take[int](1000000)(seq))
|
||||
assert.Equal(t, []int{1, 2}, result)
|
||||
})
|
||||
|
||||
t.Run("take with very large n", func(t *testing.T) {
|
||||
seq := From(1, 2, 3)
|
||||
result := toSlice(Take[int](int(^uint(0) >> 1))(seq)) // max int
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// Benchmark tests
|
||||
func BenchmarkTake(b *testing.B) {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
taken := Take[int](5)(seq)
|
||||
for range taken {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkTakeLargeSequence(b *testing.B) {
|
||||
data := make([]int, 1000)
|
||||
for i := range data {
|
||||
data[i] = i
|
||||
}
|
||||
seq := From(data...)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
taken := Take[int](100)(seq)
|
||||
for range taken {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkTakeWithMap(b *testing.B) {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
mapped := MonadMap(seq, N.Mul(2))
|
||||
taken := Take[int](5)(mapped)
|
||||
for range taken {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkTakeWithFilter(b *testing.B) {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
filtered := MonadFilter(seq, func(x int) bool { return x%2 == 0 })
|
||||
taken := Take[int](3)(filtered)
|
||||
for range taken {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Example tests for documentation
|
||||
func ExampleTake() {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
taken := Take[int](3)(seq)
|
||||
|
||||
for v := range taken {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 1 2 3
|
||||
}
|
||||
|
||||
func ExampleTake_moreThanAvailable() {
|
||||
seq := From(1, 2, 3)
|
||||
taken := Take[int](10)(seq)
|
||||
|
||||
for v := range taken {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 1 2 3
|
||||
}
|
||||
|
||||
func ExampleTake_zero() {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
taken := Take[int](0)(seq)
|
||||
|
||||
count := 0
|
||||
for range taken {
|
||||
count++
|
||||
}
|
||||
fmt.Printf("Count: %d\n", count)
|
||||
// Output: Count: 0
|
||||
}
|
||||
|
||||
func ExampleTake_withFilter() {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
evens := MonadFilter(seq, func(x int) bool { return x%2 == 0 })
|
||||
taken := Take[int](3)(evens)
|
||||
|
||||
for v := range taken {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 2 4 6
|
||||
}
|
||||
|
||||
func ExampleTake_withMap() {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
doubled := MonadMap(seq, N.Mul(2))
|
||||
taken := Take[int](3)(doubled)
|
||||
|
||||
for v := range taken {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 2 4 6
|
||||
}
|
||||
|
||||
func ExampleTake_chained() {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
|
||||
result := Take[int](5)(
|
||||
MonadFilter(seq, func(x int) bool { return x > 3 }),
|
||||
)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 4 5 6 7 8
|
||||
}
|
||||
167
v2/iterator/iter/uniq.go
Normal file
167
v2/iterator/iter/uniq.go
Normal file
@@ -0,0 +1,167 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
import F "github.com/IBM/fp-go/v2/function"
|
||||
|
||||
// Uniq returns an operator that filters a sequence to contain only unique elements,
|
||||
// where uniqueness is determined by a key extraction function.
|
||||
//
|
||||
// This function takes a key extraction function and returns an operator that removes
|
||||
// duplicate elements from a sequence. Two elements are considered duplicates if the
|
||||
// key extraction function returns the same key for both. Only the first occurrence
|
||||
// of each unique key is kept in the output sequence.
|
||||
//
|
||||
// The operation maintains a map of seen keys internally, so memory usage grows with
|
||||
// the number of unique keys encountered. The operation is lazy - elements are processed
|
||||
// and filtered as they are consumed.
|
||||
//
|
||||
// RxJS Equivalent: [distinct] - https://rxjs.dev/api/operators/distinct
|
||||
//
|
||||
// Type Parameters:
|
||||
// - A: The type of elements in the sequence
|
||||
// - K: The type of the key used for uniqueness comparison (must be comparable)
|
||||
//
|
||||
// Parameters:
|
||||
// - f: A function that extracts a comparable key from each element
|
||||
//
|
||||
// Returns:
|
||||
// - An Operator that filters the sequence to contain only unique elements based on the key
|
||||
//
|
||||
// Example - Remove duplicate integers:
|
||||
//
|
||||
// seq := From(1, 2, 3, 2, 4, 1, 5)
|
||||
// unique := Uniq(func(x int) int { return x })
|
||||
// result := unique(seq)
|
||||
// // yields: 1, 2, 3, 4, 5
|
||||
//
|
||||
// Example - Unique by string length:
|
||||
//
|
||||
// seq := From("a", "bb", "c", "dd", "eee")
|
||||
// uniqueByLength := Uniq(func(s string) int { return len(s) })
|
||||
// result := uniqueByLength(seq)
|
||||
// // yields: "a", "bb", "eee" (first occurrence of each length)
|
||||
//
|
||||
// Example - Unique structs by field:
|
||||
//
|
||||
// type Person struct { ID int; Name string }
|
||||
// seq := From(
|
||||
// Person{1, "Alice"},
|
||||
// Person{2, "Bob"},
|
||||
// Person{1, "Alice2"}, // duplicate ID
|
||||
// )
|
||||
// uniqueByID := Uniq(func(p Person) int { return p.ID })
|
||||
// result := uniqueByID(seq)
|
||||
// // yields: Person{1, "Alice"}, Person{2, "Bob"}
|
||||
//
|
||||
// Example - Case-insensitive unique strings:
|
||||
//
|
||||
// seq := From("Hello", "world", "HELLO", "World", "test")
|
||||
// uniqueCaseInsensitive := Uniq(func(s string) string {
|
||||
// return strings.ToLower(s)
|
||||
// })
|
||||
// result := uniqueCaseInsensitive(seq)
|
||||
// // yields: "Hello", "world", "test"
|
||||
//
|
||||
// Example - Empty sequence:
|
||||
//
|
||||
// seq := Empty[int]()
|
||||
// unique := Uniq(func(x int) int { return x })
|
||||
// result := unique(seq)
|
||||
// // yields: nothing (empty sequence)
|
||||
//
|
||||
// Example - All duplicates:
|
||||
//
|
||||
// seq := From(1, 1, 1, 1)
|
||||
// unique := Uniq(func(x int) int { return x })
|
||||
// result := unique(seq)
|
||||
// // yields: 1 (only first occurrence)
|
||||
func Uniq[A any, K comparable](f func(A) K) Operator[A, A] {
|
||||
return func(s Seq[A]) Seq[A] {
|
||||
return func(yield func(A) bool) {
|
||||
items := make(map[K]struct{})
|
||||
for a := range s {
|
||||
k := f(a)
|
||||
if _, ok := items[k]; !ok {
|
||||
items[k] = struct{}{}
|
||||
if !yield(a) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// StrictUniq filters a sequence to contain only unique elements using direct comparison.
|
||||
//
|
||||
// This is a convenience function that uses the identity function as the key extractor,
|
||||
// meaning elements are compared directly for uniqueness. It's equivalent to calling
|
||||
// Uniq with the identity function, but provides a simpler API when the elements
|
||||
// themselves are comparable.
|
||||
//
|
||||
// The operation maintains a map of seen elements internally, so memory usage grows with
|
||||
// the number of unique elements. Only the first occurrence of each unique element is kept.
|
||||
//
|
||||
// RxJS Equivalent: [distinct] - https://rxjs.dev/api/operators/distinct
|
||||
//
|
||||
// Type Parameters:
|
||||
// - A: The type of elements in the sequence (must be comparable)
|
||||
//
|
||||
// Parameters:
|
||||
// - as: The input sequence to filter for unique elements
|
||||
//
|
||||
// Returns:
|
||||
// - A sequence containing only the first occurrence of each unique element
|
||||
//
|
||||
// Example - Remove duplicate integers:
|
||||
//
|
||||
// seq := From(1, 2, 3, 2, 4, 1, 5)
|
||||
// result := StrictUniq(seq)
|
||||
// // yields: 1, 2, 3, 4, 5
|
||||
//
|
||||
// Example - Remove duplicate strings:
|
||||
//
|
||||
// seq := From("apple", "banana", "apple", "cherry", "banana")
|
||||
// result := StrictUniq(seq)
|
||||
// // yields: "apple", "banana", "cherry"
|
||||
//
|
||||
// Example - Single element:
|
||||
//
|
||||
// seq := From(42)
|
||||
// result := StrictUniq(seq)
|
||||
// // yields: 42
|
||||
//
|
||||
// Example - All duplicates:
|
||||
//
|
||||
// seq := From("x", "x", "x")
|
||||
// result := StrictUniq(seq)
|
||||
// // yields: "x" (only first occurrence)
|
||||
//
|
||||
// Example - Empty sequence:
|
||||
//
|
||||
// seq := Empty[int]()
|
||||
// result := StrictUniq(seq)
|
||||
// // yields: nothing (empty sequence)
|
||||
//
|
||||
// Example - Already unique:
|
||||
//
|
||||
// seq := From(1, 2, 3, 4, 5)
|
||||
// result := StrictUniq(seq)
|
||||
// // yields: 1, 2, 3, 4, 5 (no changes)
|
||||
func StrictUniq[A comparable](as Seq[A]) Seq[A] {
|
||||
return Uniq(F.Identity[A])(as)
|
||||
}
|
||||
433
v2/iterator/iter/uniq_test.go
Normal file
433
v2/iterator/iter/uniq_test.go
Normal file
@@ -0,0 +1,433 @@
|
||||
// Copyright (c) 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iter
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
S "github.com/IBM/fp-go/v2/string"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// TestUniqBasic tests basic Uniq functionality
|
||||
func TestUniqBasic(t *testing.T) {
|
||||
t.Run("removes duplicate integers", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 2, 4, 1, 5)
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(seq))
|
||||
assert.Equal(t, []int{1, 2, 3, 4, 5}, result)
|
||||
})
|
||||
|
||||
t.Run("removes duplicate strings", func(t *testing.T) {
|
||||
seq := From("apple", "banana", "apple", "cherry", "banana")
|
||||
unique := Uniq(F.Identity[string])
|
||||
result := toSlice(unique(seq))
|
||||
assert.Equal(t, []string{"apple", "banana", "cherry"}, result)
|
||||
})
|
||||
|
||||
t.Run("keeps first occurrence", func(t *testing.T) {
|
||||
seq := From(1, 2, 1, 3, 2, 4)
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(seq))
|
||||
assert.Equal(t, []int{1, 2, 3, 4}, result)
|
||||
})
|
||||
|
||||
t.Run("single element", func(t *testing.T) {
|
||||
seq := From(42)
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(seq))
|
||||
assert.Equal(t, []int{42}, result)
|
||||
})
|
||||
|
||||
t.Run("all duplicates", func(t *testing.T) {
|
||||
seq := From(5, 5, 5, 5)
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(seq))
|
||||
assert.Equal(t, []int{5}, result)
|
||||
})
|
||||
|
||||
t.Run("already unique", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(seq))
|
||||
assert.Equal(t, []int{1, 2, 3, 4, 5}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestUniqEmpty tests Uniq with empty sequences
|
||||
func TestUniqEmpty(t *testing.T) {
|
||||
t.Run("empty integer sequence", func(t *testing.T) {
|
||||
seq := Empty[int]()
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
|
||||
t.Run("empty string sequence", func(t *testing.T) {
|
||||
seq := Empty[string]()
|
||||
unique := Uniq(F.Identity[string])
|
||||
result := toSlice(unique(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestUniqWithKeyExtractor tests Uniq with custom key extraction
|
||||
func TestUniqWithKeyExtractor(t *testing.T) {
|
||||
t.Run("unique by string length", func(t *testing.T) {
|
||||
seq := From("a", "bb", "c", "dd", "eee", "f")
|
||||
uniqueByLength := Uniq(S.Size)
|
||||
result := toSlice(uniqueByLength(seq))
|
||||
assert.Equal(t, []string{"a", "bb", "eee"}, result)
|
||||
})
|
||||
|
||||
t.Run("unique by absolute value", func(t *testing.T) {
|
||||
seq := From(1, -1, 2, -2, 3, 1, -3)
|
||||
uniqueByAbs := Uniq(func(x int) int {
|
||||
if x < 0 {
|
||||
return -x
|
||||
}
|
||||
return x
|
||||
})
|
||||
result := toSlice(uniqueByAbs(seq))
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
|
||||
t.Run("case-insensitive unique strings", func(t *testing.T) {
|
||||
seq := From("Hello", "world", "HELLO", "World", "test")
|
||||
uniqueCaseInsensitive := Uniq(strings.ToLower)
|
||||
result := toSlice(uniqueCaseInsensitive(seq))
|
||||
assert.Equal(t, []string{"Hello", "world", "test"}, result)
|
||||
})
|
||||
|
||||
t.Run("unique by modulo", func(t *testing.T) {
|
||||
seq := From(1, 4, 7, 2, 5, 8, 3)
|
||||
uniqueByMod3 := Uniq(func(x int) int { return x % 3 })
|
||||
result := toSlice(uniqueByMod3(seq))
|
||||
assert.Equal(t, []int{1, 2, 3}, result) // 1%3=1, 4%3=1 (dup), 7%3=1 (dup), 2%3=2, 5%3=2 (dup), 8%3=2 (dup), 3%3=0
|
||||
})
|
||||
}
|
||||
|
||||
// TestUniqWithComplexTypes tests Uniq with structs and complex types
|
||||
func TestUniqWithComplexTypes(t *testing.T) {
|
||||
type Person struct {
|
||||
ID int
|
||||
Name string
|
||||
}
|
||||
|
||||
t.Run("unique structs by ID", func(t *testing.T) {
|
||||
seq := From(
|
||||
Person{1, "Alice"},
|
||||
Person{2, "Bob"},
|
||||
Person{1, "Alice2"}, // duplicate ID
|
||||
Person{3, "Charlie"},
|
||||
Person{2, "Bob2"}, // duplicate ID
|
||||
)
|
||||
uniqueByID := Uniq(func(p Person) int { return p.ID })
|
||||
result := toSlice(uniqueByID(seq))
|
||||
assert.Equal(t, []Person{
|
||||
{1, "Alice"},
|
||||
{2, "Bob"},
|
||||
{3, "Charlie"},
|
||||
}, result)
|
||||
})
|
||||
|
||||
t.Run("unique structs by name", func(t *testing.T) {
|
||||
seq := From(
|
||||
Person{1, "Alice"},
|
||||
Person{2, "Bob"},
|
||||
Person{3, "Alice"}, // duplicate name
|
||||
)
|
||||
uniqueByName := Uniq(func(p Person) string { return p.Name })
|
||||
result := toSlice(uniqueByName(seq))
|
||||
assert.Equal(t, []Person{
|
||||
{1, "Alice"},
|
||||
{2, "Bob"},
|
||||
}, result)
|
||||
})
|
||||
|
||||
t.Run("unique slices by length", func(t *testing.T) {
|
||||
seq := From([]int{1, 2}, []int{3}, []int{4, 5}, []int{6})
|
||||
uniqueByLength := Uniq(func(s []int) int { return len(s) })
|
||||
result := toSlice(uniqueByLength(seq))
|
||||
assert.Len(t, result, 2)
|
||||
assert.Equal(t, 2, len(result[0]))
|
||||
assert.Equal(t, 1, len(result[1]))
|
||||
})
|
||||
}
|
||||
|
||||
// TestStrictUniq tests StrictUniq functionality
|
||||
func TestStrictUniq(t *testing.T) {
|
||||
t.Run("removes duplicate integers", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 2, 4, 1, 5)
|
||||
result := toSlice(StrictUniq(seq))
|
||||
assert.Equal(t, []int{1, 2, 3, 4, 5}, result)
|
||||
})
|
||||
|
||||
t.Run("removes duplicate strings", func(t *testing.T) {
|
||||
seq := From("apple", "banana", "apple", "cherry", "banana")
|
||||
result := toSlice(StrictUniq(seq))
|
||||
assert.Equal(t, []string{"apple", "banana", "cherry"}, result)
|
||||
})
|
||||
|
||||
t.Run("single element", func(t *testing.T) {
|
||||
seq := From(42)
|
||||
result := toSlice(StrictUniq(seq))
|
||||
assert.Equal(t, []int{42}, result)
|
||||
})
|
||||
|
||||
t.Run("all duplicates", func(t *testing.T) {
|
||||
seq := From("x", "x", "x")
|
||||
result := toSlice(StrictUniq(seq))
|
||||
assert.Equal(t, []string{"x"}, result)
|
||||
})
|
||||
|
||||
t.Run("empty sequence", func(t *testing.T) {
|
||||
seq := Empty[int]()
|
||||
result := toSlice(StrictUniq(seq))
|
||||
assert.Empty(t, result)
|
||||
})
|
||||
|
||||
t.Run("already unique", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
result := toSlice(StrictUniq(seq))
|
||||
assert.Equal(t, []int{1, 2, 3, 4, 5}, result)
|
||||
})
|
||||
|
||||
t.Run("boolean values", func(t *testing.T) {
|
||||
seq := From(true, false, true, false, true)
|
||||
result := toSlice(StrictUniq(seq))
|
||||
assert.Equal(t, []bool{true, false}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestUniqWithChainedOperations tests Uniq combined with other operations
|
||||
func TestUniqWithChainedOperations(t *testing.T) {
|
||||
t.Run("uniq then map", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 2, 4, 1)
|
||||
unique := Uniq(F.Identity[int])
|
||||
mapped := MonadMap(unique(seq), func(x int) int { return x * 2 })
|
||||
result := toSlice(mapped)
|
||||
assert.Equal(t, []int{2, 4, 6, 8}, result)
|
||||
})
|
||||
|
||||
t.Run("map then uniq", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5)
|
||||
mapped := MonadMap(seq, func(x int) int { return x % 3 })
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(mapped))
|
||||
assert.Equal(t, []int{1, 2, 0}, result)
|
||||
})
|
||||
|
||||
t.Run("filter then uniq", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5, 6, 2, 4, 6)
|
||||
filtered := MonadFilter(seq, func(x int) bool { return x%2 == 0 })
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(filtered))
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
})
|
||||
|
||||
t.Run("uniq then filter", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 2, 4, 1, 5, 6)
|
||||
unique := Uniq(F.Identity[int])
|
||||
filtered := MonadFilter(unique(seq), func(x int) bool { return x%2 == 0 })
|
||||
result := toSlice(filtered)
|
||||
assert.Equal(t, []int{2, 4, 6}, result)
|
||||
})
|
||||
|
||||
t.Run("uniq then take", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 2, 4, 1, 5)
|
||||
unique := Uniq(F.Identity[int])
|
||||
taken := Take[int](3)(unique(seq))
|
||||
result := toSlice(taken)
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
|
||||
t.Run("take then uniq", func(t *testing.T) {
|
||||
seq := From(1, 2, 1, 3, 2, 4, 5)
|
||||
taken := Take[int](5)(seq)
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(taken))
|
||||
assert.Equal(t, []int{1, 2, 3}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestUniqEarlyTermination tests that Uniq respects early termination
|
||||
func TestUniqEarlyTermination(t *testing.T) {
|
||||
t.Run("terminates when yield returns false", func(t *testing.T) {
|
||||
seq := From(1, 2, 3, 4, 5, 2, 6, 7)
|
||||
unique := Uniq(F.Identity[int])
|
||||
|
||||
count := 0
|
||||
for v := range unique(seq) {
|
||||
count++
|
||||
if v >= 4 {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
assert.Equal(t, 4, count) // Should stop at 4
|
||||
})
|
||||
}
|
||||
|
||||
// TestUniqLargeSequence tests Uniq with larger sequences
|
||||
func TestUniqLargeSequence(t *testing.T) {
|
||||
t.Run("uniq large sequence with many duplicates", func(t *testing.T) {
|
||||
// Create sequence with repeating pattern
|
||||
data := make([]int, 1000)
|
||||
for i := range data {
|
||||
data[i] = i % 10 // Only 10 unique values
|
||||
}
|
||||
seq := From(data...)
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(seq))
|
||||
|
||||
assert.Len(t, result, 10)
|
||||
for i := 0; i < 10; i++ {
|
||||
assert.Equal(t, i, result[i])
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("uniq large sequence all unique", func(t *testing.T) {
|
||||
data := make([]int, 100)
|
||||
for i := range data {
|
||||
data[i] = i
|
||||
}
|
||||
seq := From(data...)
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(seq))
|
||||
|
||||
assert.Len(t, result, 100)
|
||||
for i := 0; i < 100; i++ {
|
||||
assert.Equal(t, i, result[i])
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// TestUniqPreservesOrder tests that Uniq maintains element order
|
||||
func TestUniqPreservesOrder(t *testing.T) {
|
||||
t.Run("maintains order of first occurrences", func(t *testing.T) {
|
||||
seq := From(5, 3, 5, 1, 3, 2, 1, 4)
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := toSlice(unique(seq))
|
||||
assert.Equal(t, []int{5, 3, 1, 2, 4}, result)
|
||||
})
|
||||
}
|
||||
|
||||
// Benchmark tests
|
||||
func BenchmarkUniq(b *testing.B) {
|
||||
seq := From(1, 2, 3, 2, 4, 1, 5, 3, 6, 4, 7, 5)
|
||||
unique := Uniq(F.Identity[int])
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for range unique(seq) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkStrictUniq(b *testing.B) {
|
||||
seq := From(1, 2, 3, 2, 4, 1, 5, 3, 6, 4, 7, 5)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for range StrictUniq(seq) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkUniqLarge(b *testing.B) {
|
||||
data := make([]int, 1000)
|
||||
for i := range data {
|
||||
data[i] = i % 100
|
||||
}
|
||||
seq := From(data...)
|
||||
unique := Uniq(F.Identity[int])
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
for range unique(seq) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Example tests for documentation
|
||||
func ExampleUniq() {
|
||||
seq := From(1, 2, 3, 2, 4, 1, 5)
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := unique(seq)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 1 2 3 4 5
|
||||
}
|
||||
|
||||
func ExampleUniq_byLength() {
|
||||
seq := From("a", "bb", "c", "dd", "eee")
|
||||
uniqueByLength := Uniq(func(s string) int { return len(s) })
|
||||
result := uniqueByLength(seq)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%s ", v)
|
||||
}
|
||||
// Output: a bb eee
|
||||
}
|
||||
|
||||
func ExampleUniq_caseInsensitive() {
|
||||
seq := From("Hello", "world", "HELLO", "World", "test")
|
||||
uniqueCaseInsensitive := Uniq(func(s string) string {
|
||||
return strings.ToLower(s)
|
||||
})
|
||||
result := uniqueCaseInsensitive(seq)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%s ", v)
|
||||
}
|
||||
// Output: Hello world test
|
||||
}
|
||||
|
||||
func ExampleStrictUniq() {
|
||||
seq := From(1, 2, 3, 2, 4, 1, 5)
|
||||
result := StrictUniq(seq)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%d ", v)
|
||||
}
|
||||
// Output: 1 2 3 4 5
|
||||
}
|
||||
|
||||
func ExampleStrictUniq_strings() {
|
||||
seq := From("apple", "banana", "apple", "cherry", "banana")
|
||||
result := StrictUniq(seq)
|
||||
|
||||
for v := range result {
|
||||
fmt.Printf("%s ", v)
|
||||
}
|
||||
// Output: apple banana cherry
|
||||
}
|
||||
|
||||
func ExampleUniq_empty() {
|
||||
seq := Empty[int]()
|
||||
unique := Uniq(F.Identity[int])
|
||||
result := unique(seq)
|
||||
|
||||
count := 0
|
||||
for range result {
|
||||
count++
|
||||
}
|
||||
fmt.Printf("Count: %d\n", count)
|
||||
// Output: Count: 0
|
||||
}
|
||||
Reference in New Issue
Block a user