1
0
mirror of https://github.com/IBM/fp-go.git synced 2026-01-29 10:36:04 +02:00

Compare commits

...

10 Commits

Author SHA1 Message Date
Dr. Carsten Leue
df07599a9e fix: some docs
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 16:40:45 +01:00
Dr. Carsten Leue
30ad0e4dd8 doc: add validation docs
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 16:26:53 +01:00
Dr. Carsten Leue
2374d7f1e4 fix: support unexported fields for lenses
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 16:18:44 +01:00
Dr. Carsten Leue
eafc008798 fix: doc for lens generation
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 16:00:11 +01:00
Dr. Carsten Leue
46bf065e34 fix: migrate CLI to github.com/urfave/v3
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 12:56:23 +01:00
renovate[bot]
b4e303423b chore(deps): update actions/checkout action to v6.0.2 (#153)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2026-01-23 12:39:53 +01:00
renovate[bot]
7afc098f58 fix(deps): update go dependencies (major) (#144)
* fix(deps): update go dependencies

* fix: fix renovate config

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

---------

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
Co-authored-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 11:28:56 +01:00
Dr. Carsten Leue
617e43de19 fix: improve codec
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 11:12:40 +01:00
Dr. Carsten Leue
0f7a6c0589 fix: prism doc
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-22 13:57:07 +01:00
Dr. Carsten Leue
e7f78e1a33 fix: more codecs and cleanup of type hints
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-21 09:23:48 +01:00
101 changed files with 14148 additions and 384 deletions

View File

@@ -28,11 +28,11 @@ jobs:
fail-fast: false # Continue with other versions if one fails
steps:
# full checkout for semantic-release
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
- uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
uses: actions/setup-go@v5
uses: actions/setup-go@v6
with:
go-version: ${{ matrix.go-version }}
cache: true # Enable Go module caching
@@ -66,11 +66,11 @@ jobs:
matrix:
go-version: ['1.24.x', '1.25.x']
steps:
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
- uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
uses: actions/setup-go@v5
uses: actions/setup-go@v6
with:
go-version: ${{ matrix.go-version }}
cache: true # Enable Go module caching
@@ -126,17 +126,17 @@ jobs:
steps:
# full checkout for semantic-release
- name: Full checkout
uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
with:
fetch-depth: 0
- name: Set up Node.js ${{ env.NODE_VERSION }}
uses: actions/setup-node@49933ea5288caeca8642d1e84afbd3f7d6820020 # v4.4.0
uses: actions/setup-node@6044e13b5dc448c55e2357c09f80417699197238 # v6.2.0
with:
node-version: ${{ env.NODE_VERSION }}
- name: Set up Go
uses: actions/setup-go@v5
uses: actions/setup-go@v6
with:
go-version: ${{ env.LATEST_GO_VERSION }}
cache: true # Enable Go module caching

16
go.sum
View File

@@ -1,7 +1,3 @@
github.com/cpuguy83/go-md2man/v2 v2.0.4 h1:wfIWP927BUkWJb2NmU/kNDYIBTh/ziUX91+lVfRxZq4=
github.com/cpuguy83/go-md2man/v2 v2.0.4/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/cpuguy83/go-md2man/v2 v2.0.5 h1:ZtcqGrnekaHpVLArFSe4HK5DoKx1T0rq2DwVB0alcyc=
github.com/cpuguy83/go-md2man/v2 v2.0.5/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/cpuguy83/go-md2man/v2 v2.0.7 h1:zbFlGlXEAKlwXpmvle3d8Oe3YnkKIK4xSRTd3sHPnBo=
github.com/cpuguy83/go-md2man/v2 v2.0.7/go.mod h1:oOW0eioCTA6cOiMLiUPZOpcVxMig6NIQQ7OS05n1F4g=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
@@ -10,20 +6,8 @@ github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZb
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/russross/blackfriday/v2 v2.1.0 h1:JIOH55/0cWyOuilr9/qlrm0BSXldqnqwMsf35Ld67mk=
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/stretchr/testify v1.9.0 h1:HtqpIVDClZ4nwg75+f6Lvsy/wHu+3BoSGCbBAcpTsTg=
github.com/stretchr/testify v1.9.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
github.com/stretchr/testify v1.10.0 h1:Xv5erBjTwe/5IxqUQTdXv5kgmIvbHo3QQyRwhJsOfJA=
github.com/stretchr/testify v1.10.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
github.com/stretchr/testify v1.11.0 h1:ib4sjIrwZKxE5u/Japgo/7SJV3PvgjGiRNAvTVGqQl8=
github.com/stretchr/testify v1.11.0/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
github.com/stretchr/testify v1.11.1 h1:7s2iGBzp5EwR7/aIZr8ao5+dra3wiQyKjjFuvgVKu7U=
github.com/stretchr/testify v1.11.1/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
github.com/urfave/cli/v2 v2.27.4 h1:o1owoI+02Eb+K107p27wEX9Bb8eqIoZCfLXloLUSWJ8=
github.com/urfave/cli/v2 v2.27.4/go.mod h1:m4QzxcD2qpra4z7WhzEGn74WZLViBnMpb1ToCAKdGRQ=
github.com/urfave/cli/v2 v2.27.5 h1:WoHEJLdsXr6dDWoJgMq/CboDmyY/8HMMH1fTECbih+w=
github.com/urfave/cli/v2 v2.27.5/go.mod h1:3Sevf16NykTbInEnD0yKkjDAeZDS0A6bzhBH5hrMvTQ=
github.com/urfave/cli/v2 v2.27.6 h1:VdRdS98FNhKZ8/Az8B7MTyGQmpIr36O1EHybx/LaZ4g=
github.com/urfave/cli/v2 v2.27.6/go.mod h1:3Sevf16NykTbInEnD0yKkjDAeZDS0A6bzhBH5hrMvTQ=
github.com/urfave/cli/v2 v2.27.7 h1:bH59vdhbjLv3LAvIu6gd0usJHgoTTPhCFib8qqOwXYU=
github.com/urfave/cli/v2 v2.27.7/go.mod h1:CyNAG/xg+iAOg0N4MPGZqVmv2rCoP267496AOXUZjA4=
github.com/xrash/smetrics v0.0.0-20240521201337-686a1a2994c1 h1:gEOO8jv9F4OT7lGCjxCBTO/36wtF6j2nSip77qHd4x4=

View File

@@ -22,7 +22,8 @@
"matchDepTypes": [
"golang"
],
"enabled": false
"enabled": false,
"description": "Disable updates to the go directive in go.mod files - the directive identifies the minimum compatible Go version and should stay as small as possible for maximum compatibility"
},
{
"matchUpdateTypes": [

View File

@@ -465,7 +465,7 @@ func process() IOResult[string] {
- **ReaderIOResult** - Combine Reader, IO, and Result for complex workflows
- **Array** - Functional array operations
- **Record** - Functional record/map operations
- **Optics** - Lens, Prism, Optional, and Traversal for immutable updates
- **[Optics](./optics/README.md)** - Lens, Prism, Optional, and Traversal for immutable updates
#### Idiomatic Packages (Tuple-based, High Performance)
- **idiomatic/option** - Option monad using native Go `(value, bool)` tuples

View File

@@ -190,6 +190,11 @@ func MonadReduce[A, B any](fa []A, f func(B, A) B, initial B) B {
return G.MonadReduce(fa, f, initial)
}
//go:inline
func MonadReduceWithIndex[A, B any](fa []A, f func(int, B, A) B, initial B) B {
return G.MonadReduceWithIndex(fa, f, initial)
}
// Reduce folds an array from left to right, applying a function to accumulate a result.
//
// Example:

View File

@@ -764,14 +764,14 @@ func TestFoldMap(t *testing.T) {
t.Run("FoldMap with sum semigroup", func(t *testing.T) {
sumSemigroup := N.SemigroupSum[int]()
arr := From(1, 2, 3, 4)
result := FoldMap[int, int](sumSemigroup)(func(x int) int { return x * 2 })(arr)
result := FoldMap[int](sumSemigroup)(func(x int) int { return x * 2 })(arr)
assert.Equal(t, 20, result) // (1*2) + (2*2) + (3*2) + (4*2) = 20
})
t.Run("FoldMap with string concatenation", func(t *testing.T) {
concatSemigroup := STR.Semigroup
arr := From(1, 2, 3)
result := FoldMap[int, string](concatSemigroup)(func(x int) string { return fmt.Sprintf("%d", x) })(arr)
result := FoldMap[int](concatSemigroup)(func(x int) string { return fmt.Sprintf("%d", x) })(arr)
assert.Equal(t, "123", result)
})
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func generateTraverseTuple(f *os.File, i int) {
@@ -422,10 +423,10 @@ func ApplyCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateApplyHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func createCombinations(n int, all, prev []int) [][]int {
@@ -284,10 +285,10 @@ func BindCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateBindHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,7 +16,7 @@
package cli
import (
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func Commands() []*C.Command {

View File

@@ -16,7 +16,7 @@
package cli
import (
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
const (

View File

@@ -16,6 +16,7 @@
package cli
import (
"context"
"fmt"
"log"
"os"
@@ -23,7 +24,7 @@ import (
"strings"
A "github.com/IBM/fp-go/v2/array"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
// Deprecated:
@@ -261,10 +262,10 @@ func ContextReaderIOEitherCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateContextReaderIOEitherHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func generateMakeProvider(f *os.File, i int) {
@@ -221,10 +222,10 @@ func DICommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateDIHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func eitherHKT(typeE string) func(typeA string) string {
@@ -190,10 +191,10 @@ func EitherCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateEitherHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func identityHKT(typeA string) string {
@@ -93,10 +94,10 @@ func IdentityCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateIdentityHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,6 +16,7 @@
package cli
import (
"context"
"fmt"
"log"
"os"
@@ -23,7 +24,7 @@ import (
"time"
A "github.com/IBM/fp-go/v2/array"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func nonGenericIO(param string) string {
@@ -102,10 +103,10 @@ func IOCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateIOHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,6 +16,7 @@
package cli
import (
"context"
"fmt"
"log"
"os"
@@ -23,7 +24,7 @@ import (
"time"
A "github.com/IBM/fp-go/v2/array"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
// [GA ~func() ET.Either[E, A], GB ~func() ET.Either[E, B], GTAB ~func() ET.Either[E, T.Tuple2[A, B]], E, A, B any](a GA, b GB) GTAB {
@@ -273,10 +274,10 @@ func IOEitherCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateIOEitherHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,6 +16,7 @@
package cli
import (
"context"
"fmt"
"log"
"os"
@@ -23,7 +24,7 @@ import (
"time"
A "github.com/IBM/fp-go/v2/array"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func nonGenericIOOption(param string) string {
@@ -107,10 +108,10 @@ func IOOptionCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateIOOptionHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -17,6 +17,7 @@ package cli
import (
"bytes"
"context"
"go/ast"
"go/parser"
"go/token"
@@ -28,7 +29,7 @@ import (
"text/template"
S "github.com/IBM/fp-go/v2/string"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
const (
@@ -535,9 +536,9 @@ func extractEmbeddedFields(embedType ast.Expr, fileImports map[string]string, fi
}
for _, name := range field.Names {
// Only export lenses for exported fields
if name.IsExported() {
fieldTypeName := getTypeName(field.Type)
// Generate lenses for both exported and unexported fields
fieldTypeName := getTypeName(field.Type)
if true { // Keep the block structure for minimal changes
isOptional := false
baseType := fieldTypeName
@@ -697,9 +698,9 @@ func parseFile(filename string) ([]structInfo, string, error) {
continue
}
for _, name := range field.Names {
// Only export lenses for exported fields
if name.IsExported() {
typeName := getTypeName(field.Type)
// Generate lenses for both exported and unexported fields
typeName := getTypeName(field.Type)
if true { // Keep the block structure for minimal changes
isOptional := false
baseType := typeName
isComparable := false
@@ -934,12 +935,12 @@ func LensCommand() *C.Command {
flagVerbose,
flagIncludeTestFiles,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateLensHelpers(
ctx.String(keyLensDir),
ctx.String(keyFilename),
ctx.Bool(keyVerbose),
ctx.Bool(keyIncludeTestFile),
cmd.String(keyLensDir),
cmd.String(keyFilename),
cmd.Bool(keyVerbose),
cmd.Bool(keyIncludeTestFile),
)
},
}

View File

@@ -1086,3 +1086,255 @@ type ComparableBox[T comparable] struct {
// Verify that MakeLensRef is NOT used (since both fields are comparable)
assert.NotContains(t, contentStr, "__lens.MakeLensRefWithName(", "Should not use MakeLensRefWithName when all fields are comparable")
}
func TestParseFileWithUnexportedFields(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type Config struct {
PublicName string
privateName string
PublicValue int
privateValue *int
}
`
err := os.WriteFile(testFile, []byte(testCode), 0o644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Config struct
config := structs[0]
assert.Equal(t, "Config", config.Name)
assert.Len(t, config.Fields, 4, "Should include both exported and unexported fields")
// Check exported field
assert.Equal(t, "PublicName", config.Fields[0].Name)
assert.Equal(t, "string", config.Fields[0].TypeName)
assert.False(t, config.Fields[0].IsOptional)
// Check unexported field
assert.Equal(t, "privateName", config.Fields[1].Name)
assert.Equal(t, "string", config.Fields[1].TypeName)
assert.False(t, config.Fields[1].IsOptional)
// Check exported int field
assert.Equal(t, "PublicValue", config.Fields[2].Name)
assert.Equal(t, "int", config.Fields[2].TypeName)
assert.False(t, config.Fields[2].IsOptional)
// Check unexported pointer field
assert.Equal(t, "privateValue", config.Fields[3].Name)
assert.Equal(t, "*int", config.Fields[3].TypeName)
assert.True(t, config.Fields[3].IsOptional)
}
func TestGenerateLensHelpersWithUnexportedFields(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// fp-go:Lens
type MixedStruct struct {
PublicField string
privateField int
OptionalPrivate *string
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0o644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen_lens.go"
err = generateLensHelpers(tmpDir, outputFile, false, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "MixedStructLenses")
assert.Contains(t, contentStr, "MakeMixedStructLenses")
// Check that lenses are generated for all fields (exported and unexported)
assert.Contains(t, contentStr, "PublicField __lens.Lens[MixedStruct, string]")
assert.Contains(t, contentStr, "privateField __lens.Lens[MixedStruct, int]")
assert.Contains(t, contentStr, "OptionalPrivate __lens.Lens[MixedStruct, *string]")
// Check lens constructors
assert.Contains(t, contentStr, "func(s MixedStruct) string { return s.PublicField }")
assert.Contains(t, contentStr, "func(s MixedStruct) int { return s.privateField }")
assert.Contains(t, contentStr, "func(s MixedStruct) *string { return s.OptionalPrivate }")
// Check setters
assert.Contains(t, contentStr, "func(s MixedStruct, v string) MixedStruct { s.PublicField = v; return s }")
assert.Contains(t, contentStr, "func(s MixedStruct, v int) MixedStruct { s.privateField = v; return s }")
assert.Contains(t, contentStr, "func(s MixedStruct, v *string) MixedStruct { s.OptionalPrivate = v; return s }")
}
func TestParseFileWithOnlyUnexportedFields(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type PrivateConfig struct {
name string
value int
enabled bool
}
`
err := os.WriteFile(testFile, []byte(testCode), 0o644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check PrivateConfig struct
config := structs[0]
assert.Equal(t, "PrivateConfig", config.Name)
assert.Len(t, config.Fields, 3, "Should include all unexported fields")
// Check all fields are unexported
assert.Equal(t, "name", config.Fields[0].Name)
assert.Equal(t, "value", config.Fields[1].Name)
assert.Equal(t, "enabled", config.Fields[2].Name)
}
func TestGenerateLensHelpersWithUnexportedEmbeddedFields(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
type BaseConfig struct {
publicBase string
privateBase int
}
// fp-go:Lens
type ExtendedConfig struct {
BaseConfig
PublicField string
privateField bool
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0o644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen_lens.go"
err = generateLensHelpers(tmpDir, outputFile, false, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "ExtendedConfigLenses")
// Check that lenses are generated for embedded unexported fields
assert.Contains(t, contentStr, "publicBase __lens.Lens[ExtendedConfig, string]")
assert.Contains(t, contentStr, "privateBase __lens.Lens[ExtendedConfig, int]")
// Check that lenses are generated for direct fields (both exported and unexported)
assert.Contains(t, contentStr, "PublicField __lens.Lens[ExtendedConfig, string]")
assert.Contains(t, contentStr, "privateField __lens.Lens[ExtendedConfig, bool]")
}
func TestParseFileWithMixedFieldVisibility(t *testing.T) {
// Create a temporary test file with various field visibility patterns
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type ComplexStruct struct {
// Exported fields
Name string
Age int
Email *string
// Unexported fields
password string
secretKey []byte
internalID *int
// Mixed with tags
PublicWithTag string ` + "`json:\"public,omitempty\"`" + `
privateWithTag int ` + "`json:\"private,omitempty\"`" + `
}
`
err := os.WriteFile(testFile, []byte(testCode), 0o644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check ComplexStruct
complex := structs[0]
assert.Equal(t, "ComplexStruct", complex.Name)
assert.Len(t, complex.Fields, 8, "Should include all fields regardless of visibility")
// Verify field names and types
fieldNames := []string{"Name", "Age", "Email", "password", "secretKey", "internalID", "PublicWithTag", "privateWithTag"}
for i, expectedName := range fieldNames {
assert.Equal(t, expectedName, complex.Fields[i].Name, "Field %d should be %s", i, expectedName)
}
// Check optional fields
assert.False(t, complex.Fields[0].IsOptional, "Name should not be optional")
assert.True(t, complex.Fields[2].IsOptional, "Email (pointer) should be optional")
assert.True(t, complex.Fields[5].IsOptional, "internalID (pointer) should be optional")
assert.True(t, complex.Fields[6].IsOptional, "PublicWithTag (with omitempty) should be optional")
assert.True(t, complex.Fields[7].IsOptional, "privateWithTag (with omitempty) should be optional")
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func optionHKT(typeA string) string {
@@ -200,10 +201,10 @@ func OptionCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateOptionHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func generateUnsliced(f *os.File, i int) {
@@ -423,10 +424,10 @@ func PipeCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generatePipeHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func generateReaderFrom(f, fg *os.File, i int) {
@@ -154,10 +155,10 @@ func ReaderCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateReaderHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func generateReaderIOEitherFrom(f, fg *os.File, i int) {
@@ -284,10 +285,10 @@ func ReaderIOEitherCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateReaderIOEitherHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,6 +16,7 @@
package cli
import (
"context"
"fmt"
"log"
"os"
@@ -23,7 +24,7 @@ import (
"strings"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func writeTupleType(f *os.File, symbol string, i int) {
@@ -615,10 +616,10 @@ func TupleCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateTupleHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -177,3 +177,255 @@ func Local[R1, R2 any](f func(R2) R1) Operator[R1, R2] {
}
}
}
// Compose is an alias for Local that emphasizes the composition aspect of consumer transformation.
// It composes a preprocessing function with a consumer, creating a new consumer that applies
// the function before consuming the value.
//
// This function is semantically identical to Local but uses terminology that may be more familiar
// to developers coming from functional programming backgrounds where "compose" is a common operation.
//
// See: https://github.com/fantasyland/fantasy-land?tab=readme-ov-file#profunctor
//
// The name "Compose" highlights that we're composing two operations:
// 1. The transformation function f: R2 -> R1
// 2. The consumer c: R1 -> ()
//
// Result: A composed consumer: R2 -> ()
//
// Type Parameters:
// - R1: The input type of the original Consumer (what it expects)
// - R2: The input type of the new Consumer (what you have)
//
// Parameters:
// - f: A function that converts R2 to R1 (preprocessing function)
//
// Returns:
// - An Operator that transforms Consumer[R1] into Consumer[R2]
//
// Example - Basic composition:
//
// // Consumer that logs integers
// logInt := func(x int) {
// fmt.Printf("Value: %d\n", x)
// }
//
// // Compose with a string-to-int parser
// parseToInt := func(s string) int {
// n, _ := strconv.Atoi(s)
// return n
// }
//
// logString := consumer.Compose(parseToInt)(logInt)
// logString("42") // Logs: "Value: 42"
//
// Example - Composing multiple transformations:
//
// type Data struct {
// Value string
// }
//
// type Wrapper struct {
// Data Data
// }
//
// // Consumer that logs strings
// logString := func(s string) {
// fmt.Println(s)
// }
//
// // Compose transformations step by step
// extractData := func(w Wrapper) Data { return w.Data }
// extractValue := func(d Data) string { return d.Value }
//
// logData := consumer.Compose(extractValue)(logString)
// logWrapper := consumer.Compose(extractData)(logData)
//
// logWrapper(Wrapper{Data: Data{Value: "Hello"}}) // Logs: "Hello"
//
// Example - Function composition style:
//
// // Compose is particularly useful when thinking in terms of function composition
// type Request struct {
// Body []byte
// }
//
// // Consumer that processes strings
// processString := func(s string) {
// fmt.Printf("Processing: %s\n", s)
// }
//
// // Compose byte-to-string conversion with processing
// bytesToString := func(b []byte) string {
// return string(b)
// }
// extractBody := func(r Request) []byte {
// return r.Body
// }
//
// // Chain compositions
// processBytes := consumer.Compose(bytesToString)(processString)
// processRequest := consumer.Compose(extractBody)(processBytes)
//
// processRequest(Request{Body: []byte("test")}) // Logs: "Processing: test"
//
// Relationship to Local:
// - Compose and Local are identical in implementation
// - Compose emphasizes the functional composition aspect
// - Local emphasizes the environment/context transformation aspect
// - Use Compose when thinking about function composition
// - Use Local when thinking about adapting to different contexts
//
// Use Cases:
// - Building processing pipelines with clear composition semantics
// - Adapting consumers in a functional programming style
// - Creating reusable consumer transformations
// - Chaining multiple preprocessing steps
func Compose[R1, R2 any](f func(R2) R1) Operator[R1, R2] {
return Local(f)
}
// Contramap is the categorical name for the contravariant functor operation on Consumers.
// It transforms a Consumer by preprocessing its input, making it the dual of the covariant
// functor's map operation.
//
// See: https://github.com/fantasyland/fantasy-land?tab=readme-ov-file#contravariant
//
// In category theory, a contravariant functor reverses the direction of morphisms.
// While a covariant functor maps f: A -> B to map(f): F[A] -> F[B],
// a contravariant functor maps f: A -> B to contramap(f): F[B] -> F[A].
//
// For Consumers:
// - Consumer[A] is contravariant in A
// - Given f: R2 -> R1, contramap(f) transforms Consumer[R1] to Consumer[R2]
// - The direction is reversed: we go from Consumer[R1] to Consumer[R2]
//
// This is semantically identical to Local and Compose, but uses the standard
// categorical terminology that emphasizes the contravariant nature of the transformation.
//
// Type Parameters:
// - R1: The input type of the original Consumer (what it expects)
// - R2: The input type of the new Consumer (what you have)
//
// Parameters:
// - f: A function that converts R2 to R1 (preprocessing function)
//
// Returns:
// - An Operator that transforms Consumer[R1] into Consumer[R2]
//
// Example - Basic contravariant mapping:
//
// // Consumer that logs integers
// logInt := func(x int) {
// fmt.Printf("Value: %d\n", x)
// }
//
// // Contramap with a string-to-int parser
// parseToInt := func(s string) int {
// n, _ := strconv.Atoi(s)
// return n
// }
//
// logString := consumer.Contramap(parseToInt)(logInt)
// logString("42") // Logs: "Value: 42"
//
// Example - Demonstrating contravariance:
//
// // In covariant functors (like Option, Array), map goes "forward":
// // map: (A -> B) -> F[A] -> F[B]
// //
// // In contravariant functors (like Consumer), contramap goes "backward":
// // contramap: (B -> A) -> F[A] -> F[B]
//
// type Animal struct{ Name string }
// type Dog struct{ Animal Animal; Breed string }
//
// // Consumer for animals
// consumeAnimal := func(a Animal) {
// fmt.Printf("Animal: %s\n", a.Name)
// }
//
// // Function from Dog to Animal (B -> A)
// dogToAnimal := func(d Dog) Animal {
// return d.Animal
// }
//
// // Contramap creates Consumer[Dog] from Consumer[Animal]
// // Direction is reversed: Consumer[Animal] -> Consumer[Dog]
// consumeDog := consumer.Contramap(dogToAnimal)(consumeAnimal)
//
// consumeDog(Dog{
// Animal: Animal{Name: "Buddy"},
// Breed: "Golden Retriever",
// }) // Logs: "Animal: Buddy"
//
// Example - Contravariant functor laws:
//
// // Law 1: Identity
// // contramap(identity) = identity
// identity := func(x int) int { return x }
// consumer1 := consumer.Contramap(identity)(consumeInt)
// // consumer1 behaves identically to consumeInt
//
// // Law 2: Composition
// // contramap(f . g) = contramap(g) . contramap(f)
// // Note: composition order is reversed compared to covariant map
// f := func(s string) int { n, _ := strconv.Atoi(s); return n }
// g := func(b bool) string { if b { return "1" } else { return "0" } }
//
// // These two are equivalent:
// consumer2 := consumer.Contramap(func(b bool) int { return f(g(b)) })(consumeInt)
// consumer3 := consumer.Contramap(g)(consumer.Contramap(f)(consumeInt))
//
// Example - Practical use with type hierarchies:
//
// type Logger interface {
// Log(string)
// }
//
// type Message struct {
// Text string
// Timestamp time.Time
// }
//
// // Consumer that logs strings
// logString := func(s string) {
// fmt.Println(s)
// }
//
// // Contramap to handle Message types
// extractText := func(m Message) string {
// return fmt.Sprintf("[%s] %s", m.Timestamp.Format(time.RFC3339), m.Text)
// }
//
// logMessage := consumer.Contramap(extractText)(logString)
// logMessage(Message{
// Text: "Hello",
// Timestamp: time.Now(),
// }) // Logs: "[2024-01-20T10:00:00Z] Hello"
//
// Relationship to Local and Compose:
// - Contramap, Local, and Compose are identical in implementation
// - Contramap emphasizes the categorical/theoretical aspect
// - Local emphasizes the context transformation aspect
// - Compose emphasizes the function composition aspect
// - Use Contramap when working with category theory concepts
// - Use Local when adapting to different contexts
// - Use Compose when building functional pipelines
//
// Category Theory Background:
// - Consumer[A] forms a contravariant functor
// - The contravariant functor laws must hold:
// 1. contramap(id) = id
// 2. contramap(f ∘ g) = contramap(g) ∘ contramap(f)
// - This is dual to the covariant functor (map) operation
// - Consumers are contravariant because they consume rather than produce values
//
// Use Cases:
// - Working with contravariant functors in a categorical style
// - Adapting consumers to work with more specific types
// - Building type-safe consumer transformations
// - Implementing profunctor patterns (Consumer is a profunctor)
func Contramap[R1, R2 any](f func(R2) R1) Operator[R1, R2] {
return Local(f)
}

View File

@@ -381,3 +381,513 @@ func TestLocal(t *testing.T) {
assert.Equal(t, 42, captured)
})
}
func TestContramap(t *testing.T) {
t.Run("basic contravariant mapping", func(t *testing.T) {
var captured int
consumeInt := func(x int) {
captured = x
}
parseToInt := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
consumeString := Contramap(parseToInt)(consumeInt)
consumeString("42")
assert.Equal(t, 42, captured)
})
t.Run("contravariant identity law", func(t *testing.T) {
// contramap(identity) = identity
var captured int
consumeInt := func(x int) {
captured = x
}
identity := function.Identity[int]
consumeIdentity := Contramap(identity)(consumeInt)
consumeIdentity(42)
assert.Equal(t, 42, captured)
// Should behave identically to original consumer
consumeInt(100)
capturedDirect := captured
consumeIdentity(100)
capturedMapped := captured
assert.Equal(t, capturedDirect, capturedMapped)
})
t.Run("contravariant composition law", func(t *testing.T) {
// contramap(f . g) = contramap(g) . contramap(f)
var captured int
consumeInt := func(x int) {
captured = x
}
f := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
g := func(b bool) string {
if b {
return "1"
}
return "0"
}
// Compose f and g manually
fg := func(b bool) int {
return f(g(b))
}
// Method 1: contramap(f . g)
consumer1 := Contramap(fg)(consumeInt)
consumer1(true)
result1 := captured
// Method 2: contramap(g) . contramap(f)
consumer2 := Contramap(g)(Contramap(f)(consumeInt))
consumer2(true)
result2 := captured
assert.Equal(t, result1, result2)
assert.Equal(t, 1, result1)
})
t.Run("type hierarchy adaptation", func(t *testing.T) {
type Animal struct {
Name string
}
type Dog struct {
Animal Animal
Breed string
}
var capturedName string
consumeAnimal := func(a Animal) {
capturedName = a.Name
}
dogToAnimal := func(d Dog) Animal {
return d.Animal
}
consumeDog := Contramap(dogToAnimal)(consumeAnimal)
consumeDog(Dog{
Animal: Animal{Name: "Buddy"},
Breed: "Golden Retriever",
})
assert.Equal(t, "Buddy", capturedName)
})
t.Run("field extraction with contramap", func(t *testing.T) {
type Message struct {
Text string
Timestamp time.Time
}
var capturedText string
consumeString := func(s string) {
capturedText = s
}
extractText := func(m Message) string {
return m.Text
}
consumeMessage := Contramap(extractText)(consumeString)
consumeMessage(Message{
Text: "Hello",
Timestamp: time.Now(),
})
assert.Equal(t, "Hello", capturedText)
})
t.Run("multiple contramap applications", func(t *testing.T) {
type Level3 struct{ Value int }
type Level2 struct{ L3 Level3 }
type Level1 struct{ L2 Level2 }
var captured int
consumeInt := func(x int) {
captured = x
}
extract3 := func(l3 Level3) int { return l3.Value }
extract2 := func(l2 Level2) Level3 { return l2.L3 }
extract1 := func(l1 Level1) Level2 { return l1.L2 }
// Chain contramap operations
consumeLevel3 := Contramap(extract3)(consumeInt)
consumeLevel2 := Contramap(extract2)(consumeLevel3)
consumeLevel1 := Contramap(extract1)(consumeLevel2)
consumeLevel1(Level1{L2: Level2{L3: Level3{Value: 42}}})
assert.Equal(t, 42, captured)
})
t.Run("contramap with calculation", func(t *testing.T) {
type Rectangle struct {
Width int
Height int
}
var capturedArea int
consumeArea := func(area int) {
capturedArea = area
}
calculateArea := func(r Rectangle) int {
return r.Width * r.Height
}
consumeRectangle := Contramap(calculateArea)(consumeArea)
consumeRectangle(Rectangle{Width: 5, Height: 10})
assert.Equal(t, 50, capturedArea)
})
t.Run("contramap preserves side effects", func(t *testing.T) {
callCount := 0
consumer := func(x int) {
callCount++
}
transform := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
contramappedConsumer := Contramap(transform)(consumer)
contramappedConsumer("1")
contramappedConsumer("2")
contramappedConsumer("3")
assert.Equal(t, 3, callCount)
})
t.Run("contramap with pointer types", func(t *testing.T) {
var captured int
consumeInt := func(x int) {
captured = x
}
dereference := func(p *int) int {
if p == nil {
return 0
}
return *p
}
consumePointer := Contramap(dereference)(consumeInt)
value := 42
consumePointer(&value)
assert.Equal(t, 42, captured)
consumePointer(nil)
assert.Equal(t, 0, captured)
})
t.Run("contramap equivalence with Local", func(t *testing.T) {
var capturedLocal, capturedContramap int
consumeIntLocal := func(x int) {
capturedLocal = x
}
consumeIntContramap := func(x int) {
capturedContramap = x
}
transform := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
// Both should produce identical results
consumerLocal := Local(transform)(consumeIntLocal)
consumerContramap := Contramap(transform)(consumeIntContramap)
consumerLocal("42")
consumerContramap("42")
assert.Equal(t, capturedLocal, capturedContramap)
assert.Equal(t, 42, capturedLocal)
})
}
func TestCompose(t *testing.T) {
t.Run("basic composition", func(t *testing.T) {
var captured int
consumeInt := func(x int) {
captured = x
}
parseToInt := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
consumeString := Compose(parseToInt)(consumeInt)
consumeString("42")
assert.Equal(t, 42, captured)
})
t.Run("composing multiple transformations", func(t *testing.T) {
type Data struct {
Value string
}
type Wrapper struct {
Data Data
}
var captured string
consumeString := func(s string) {
captured = s
}
extractData := func(w Wrapper) Data { return w.Data }
extractValue := func(d Data) string { return d.Value }
// Compose step by step
consumeData := Compose(extractValue)(consumeString)
consumeWrapper := Compose(extractData)(consumeData)
consumeWrapper(Wrapper{Data: Data{Value: "Hello"}})
assert.Equal(t, "Hello", captured)
})
t.Run("function composition style", func(t *testing.T) {
type Request struct {
Body []byte
}
var captured string
processString := func(s string) {
captured = s
}
bytesToString := func(b []byte) string {
return string(b)
}
extractBody := func(r Request) []byte {
return r.Body
}
// Chain compositions
processBytes := Compose(bytesToString)(processString)
processRequest := Compose(extractBody)(processBytes)
processRequest(Request{Body: []byte("test")})
assert.Equal(t, "test", captured)
})
t.Run("compose with identity", func(t *testing.T) {
var captured int
consumeInt := func(x int) {
captured = x
}
identity := function.Identity[int]
composedConsumer := Compose(identity)(consumeInt)
composedConsumer(42)
assert.Equal(t, 42, captured)
})
t.Run("compose with field extraction", func(t *testing.T) {
type User struct {
Name string
Email string
Age int
}
var capturedName string
consumeName := func(name string) {
capturedName = name
}
extractName := func(u User) string {
return u.Name
}
consumeUser := Compose(extractName)(consumeName)
consumeUser(User{Name: "Alice", Email: "alice@example.com", Age: 30})
assert.Equal(t, "Alice", capturedName)
})
t.Run("compose with calculation", func(t *testing.T) {
type Circle struct {
Radius float64
}
var capturedArea float64
consumeArea := func(area float64) {
capturedArea = area
}
calculateArea := func(c Circle) float64 {
return 3.14159 * c.Radius * c.Radius
}
consumeCircle := Compose(calculateArea)(consumeArea)
consumeCircle(Circle{Radius: 5.0})
assert.InDelta(t, 78.53975, capturedArea, 0.00001)
})
t.Run("compose with slice operations", func(t *testing.T) {
var captured int
consumeLength := func(n int) {
captured = n
}
getLength := func(s []string) int {
return len(s)
}
consumeSlice := Compose(getLength)(consumeLength)
consumeSlice([]string{"a", "b", "c", "d"})
assert.Equal(t, 4, captured)
})
t.Run("compose with map operations", func(t *testing.T) {
var captured bool
consumeHasKey := func(has bool) {
captured = has
}
hasKey := func(m map[string]int) bool {
_, exists := m["key"]
return exists
}
consumeMap := Compose(hasKey)(consumeHasKey)
consumeMap(map[string]int{"key": 42})
assert.True(t, captured)
consumeMap(map[string]int{"other": 42})
assert.False(t, captured)
})
t.Run("compose preserves consumer behavior", func(t *testing.T) {
callCount := 0
consumer := func(x int) {
callCount++
}
transform := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
composedConsumer := Compose(transform)(consumer)
composedConsumer("1")
composedConsumer("2")
composedConsumer("3")
assert.Equal(t, 3, callCount)
})
t.Run("compose with error handling", func(t *testing.T) {
type Result struct {
Value int
Error error
}
var captured int
consumeInt := func(x int) {
captured = x
}
extractValue := func(r Result) int {
if r.Error != nil {
return -1
}
return r.Value
}
consumeResult := Compose(extractValue)(consumeInt)
consumeResult(Result{Value: 42, Error: nil})
assert.Equal(t, 42, captured)
consumeResult(Result{Value: 100, Error: assert.AnError})
assert.Equal(t, -1, captured)
})
t.Run("compose equivalence with Local", func(t *testing.T) {
var capturedLocal, capturedCompose int
consumeIntLocal := func(x int) {
capturedLocal = x
}
consumeIntCompose := func(x int) {
capturedCompose = x
}
transform := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
// Both should produce identical results
consumerLocal := Local(transform)(consumeIntLocal)
consumerCompose := Compose(transform)(consumeIntCompose)
consumerLocal("42")
consumerCompose("42")
assert.Equal(t, capturedLocal, capturedCompose)
assert.Equal(t, 42, capturedLocal)
})
t.Run("compose equivalence with Contramap", func(t *testing.T) {
var capturedCompose, capturedContramap int
consumeIntCompose := func(x int) {
capturedCompose = x
}
consumeIntContramap := func(x int) {
capturedContramap = x
}
transform := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
// All three should produce identical results
consumerCompose := Compose(transform)(consumeIntCompose)
consumerContramap := Contramap(transform)(consumeIntContramap)
consumerCompose("42")
consumerContramap("42")
assert.Equal(t, capturedCompose, capturedContramap)
assert.Equal(t, 42, capturedCompose)
})
}

View File

@@ -232,7 +232,7 @@ func TestContextPropagationThroughMonadTransforms(t *testing.T) {
var capturedCtx context.Context
computation := F.Pipe1(
Of[AppConfig](42),
Chain[AppConfig](func(n int) ReaderReaderIOResult[AppConfig, int] {
Chain(func(n int) ReaderReaderIOResult[AppConfig, int] {
return func(c AppConfig) ReaderIOResult[context.Context, int] {
return func(ctx context.Context) IOResult[int] {
return func() Result[int] {
@@ -405,7 +405,7 @@ func TestContextCancellationBetweenSteps(t *testing.T) {
}
}
},
Chain[AppConfig](func(n int) ReaderReaderIOResult[AppConfig, int] {
Chain(func(n int) ReaderReaderIOResult[AppConfig, int] {
return func(c AppConfig) ReaderIOResult[context.Context, int] {
return func(ctx context.Context) IOResult[int] {
return func() Result[int] {

View File

@@ -57,7 +57,7 @@ func TestSequence(t *testing.T) {
}
// Sequence swaps Config1 and Config2 order
sequenced := Sequence[Config1, Config2, int](original)
sequenced := Sequence(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -88,7 +88,7 @@ func TestSequence(t *testing.T) {
}
}
sequenced := Sequence[Config1, Config2, int](original)
sequenced := Sequence(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -123,7 +123,7 @@ func TestSequence(t *testing.T) {
}
}
sequenced := Sequence[Config1, Config2, string](original)
sequenced := Sequence(original)
// Test with valid inputs
result1 := sequenced(Config1{value1: 42})(Config2{value2: "test"})(ctx)()
@@ -155,7 +155,7 @@ func TestSequence(t *testing.T) {
}
}
sequenced := Sequence[Config1, Config2, int](original)
sequenced := Sequence(original)
outcome := sequenced(Config1{value1: 0})(Config2{value2: ""})(ctx)()
assert.Equal(t, result.Of(0), outcome)
@@ -178,7 +178,7 @@ func TestSequence(t *testing.T) {
}
}
sequenced := Sequence[Config1, Config2, int](original)
sequenced := Sequence(original)
cfg1 := Config1{value1: 3}
cfg2 := Config2{value2: "test"}
@@ -207,7 +207,7 @@ func TestSequenceReader(t *testing.T) {
}
// Sequence swaps Config1 and Config2 order
sequenced := SequenceReader[Config1, Config2, int](original)
sequenced := SequenceReader(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -239,7 +239,7 @@ func TestSequenceReader(t *testing.T) {
}
}
sequenced := SequenceReader[Config1, Config2, int](original)
sequenced := SequenceReader(original)
outcome := sequenced(Config1{value1: 10})(Config2{value2: "hello"})(ctx)()
assert.Equal(t, result.Left[int](testErr), outcome)
@@ -261,7 +261,7 @@ func TestSequenceReader(t *testing.T) {
}
}
sequenced := SequenceReader[Config1, Config2, string](original)
sequenced := SequenceReader(original)
// Test with valid inputs
result1 := sequenced(Config1{value1: 42})(Config2{value2: "test"})(ctx)()
@@ -285,7 +285,7 @@ func TestSequenceReader(t *testing.T) {
}
}
sequenced := SequenceReader[Config1, Config2, int](original)
sequenced := SequenceReader(original)
outcome := sequenced(Config1{value1: 0})(Config2{value2: ""})(ctx)()
assert.Equal(t, result.Of(0), outcome)
@@ -304,7 +304,7 @@ func TestSequenceReader(t *testing.T) {
}
}
sequenced := SequenceReader[Config1, Config2, int](original)
sequenced := SequenceReader(original)
cfg1 := Config1{value1: 3}
cfg2 := Config2{value2: "test"}
@@ -333,7 +333,7 @@ func TestSequenceReaderIO(t *testing.T) {
}
// Sequence swaps Config1 and Config2 order
sequenced := SequenceReaderIO[Config1, Config2, int](original)
sequenced := SequenceReaderIO(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -365,7 +365,7 @@ func TestSequenceReaderIO(t *testing.T) {
}
}
sequenced := SequenceReaderIO[Config1, Config2, int](original)
sequenced := SequenceReaderIO(original)
outcome := sequenced(Config1{value1: 10})(Config2{value2: "hello"})(ctx)()
assert.Equal(t, result.Left[int](testErr), outcome)
@@ -391,7 +391,7 @@ func TestSequenceReaderIO(t *testing.T) {
}
}
sequenced := SequenceReaderIO[Config1, Config2, string](original)
sequenced := SequenceReaderIO(original)
// Test with valid inputs
sideEffect = 0
@@ -419,7 +419,7 @@ func TestSequenceReaderIO(t *testing.T) {
}
}
sequenced := SequenceReaderIO[Config1, Config2, int](original)
sequenced := SequenceReaderIO(original)
outcome := sequenced(Config1{value1: 0})(Config2{value2: ""})(ctx)()
assert.Equal(t, result.Of(0), outcome)
@@ -442,7 +442,7 @@ func TestSequenceReaderIO(t *testing.T) {
}
}
sequenced := SequenceReaderIO[Config1, Config2, int](original)
sequenced := SequenceReaderIO(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -478,7 +478,7 @@ func TestTraverse(t *testing.T) {
}
// Apply traverse to swap order and transform
traversed := Traverse[Config2, Config1, int, string](transform)(original)
traversed := Traverse[Config2](transform)(original)
cfg1 := Config1{value1: 100}
cfg2 := Config2{value2: "test"}
@@ -496,7 +496,7 @@ func TestTraverse(t *testing.T) {
return Of[Config1](fmt.Sprintf("%d", n))
}
traversed := Traverse[Config2, Config1, int, string](transform)(original)
traversed := Traverse[Config2](transform)(original)
outcome := traversed(Config1{value1: 100})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Left[string](testErr), outcome)
@@ -516,12 +516,12 @@ func TestTraverse(t *testing.T) {
// Test with negative value
originalNeg := Of[Config2](-1)
traversedNeg := Traverse[Config2, Config1, int, string](transform)(originalNeg)
traversedNeg := Traverse[Config2](transform)(originalNeg)
resultNeg := traversedNeg(Config1{value1: 100})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Left[string](testErr), resultNeg)
// Test with positive value
traversedPos := Traverse[Config2, Config1, int, string](transform)(original)
traversedPos := Traverse[Config2](transform)(original)
resultPos := traversedPos(Config1{value1: 100})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Of("42"), resultPos)
})
@@ -540,7 +540,7 @@ func TestTraverse(t *testing.T) {
}
}
traversed := Traverse[Config2, Config1, int, int](transform)(original)
traversed := Traverse[Config2](transform)(original)
outcome := traversed(Config1{value1: 5})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Of(50), outcome)
@@ -556,7 +556,7 @@ func TestTraverse(t *testing.T) {
outcome := F.Pipe2(
original,
Traverse[Config2, Config1, int, int](transform),
Traverse[Config2](transform),
func(k Kleisli[Config2, Config1, int]) ReaderReaderIOResult[Config2, int] {
return k(Config1{value1: 5})
},
@@ -582,7 +582,7 @@ func TestTraverseReader(t *testing.T) {
}
// Apply traverse to introduce Config1 and swap order
traversed := TraverseReader[Config2, Config1, int, string](formatWithConfig)(original)
traversed := TraverseReader[Config2](formatWithConfig)(original)
cfg1 := Config1{value1: 5}
cfg2 := Config2{value2: "test"}
@@ -600,7 +600,7 @@ func TestTraverseReader(t *testing.T) {
return reader.Of[Config1](fmt.Sprintf("%d", n))
}
traversed := TraverseReader[Config2, Config1, int, string](transform)(original)
traversed := TraverseReader[Config2](transform)(original)
outcome := traversed(Config1{value1: 5})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Left[string](testErr), outcome)
@@ -617,7 +617,7 @@ func TestTraverseReader(t *testing.T) {
}
}
traversed := TraverseReader[Config2, Config1, int, int](double)(original)
traversed := TraverseReader[Config2](double)(original)
outcome := traversed(Config1{value1: 3})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Of(126), outcome)
@@ -633,7 +633,7 @@ func TestTraverseReader(t *testing.T) {
}
}
traversed := TraverseReader[Config2, Config1, int, int](transform)(original)
traversed := TraverseReader[Config2](transform)(original)
outcome := traversed(Config1{value1: 0})(Config2{value2: ""})(ctx)()
assert.Equal(t, result.Of(0), outcome)
@@ -649,7 +649,7 @@ func TestTraverseReader(t *testing.T) {
}
}
traversed := TraverseReader[Config2, Config1, int, int](transform)(original)
traversed := TraverseReader[Config2](transform)(original)
cfg1 := Config1{value1: 5}
cfg2 := Config2{value2: "test"}
@@ -673,7 +673,7 @@ func TestTraverseReader(t *testing.T) {
outcome := F.Pipe2(
original,
TraverseReader[Config2, Config1, int, int](multiply),
TraverseReader[Config2](multiply),
func(k Kleisli[Config2, Config1, int]) ReaderReaderIOResult[Config2, int] {
return k(Config1{value1: 3})
},
@@ -698,7 +698,7 @@ func TestFlipIntegration(t *testing.T) {
}
// Sequence it
sequenced := Sequence[Config1, Config2, int](nested)
sequenced := Sequence(nested)
// Then traverse with a transformation
transform := func(n int) ReaderReaderIOResult[Config1, string] {
@@ -715,7 +715,7 @@ func TestFlipIntegration(t *testing.T) {
// Then apply traverse on a new computation
original := Of[Config2](5)
traversed := Traverse[Config2, Config1, int, string](transform)(original)
traversed := Traverse[Config2](transform)(original)
outcome := traversed(cfg1)(cfg2)(ctx)()
assert.Equal(t, result.Of("length=5"), outcome)
})
@@ -734,7 +734,7 @@ func TestFlipIntegration(t *testing.T) {
}
}
}
seqResult := Sequence[Config1, Config2, int](seqErr)(cfg1)(cfg2)(ctx)()
seqResult := Sequence(seqErr)(cfg1)(cfg2)(ctx)()
assert.True(t, result.IsLeft(seqResult))
// Test SequenceReader with error
@@ -745,7 +745,7 @@ func TestFlipIntegration(t *testing.T) {
}
}
}
seqReaderResult := SequenceReader[Config1, Config2, int](seqReaderErr)(cfg1)(cfg2)(ctx)()
seqReaderResult := SequenceReader(seqReaderErr)(cfg1)(cfg2)(ctx)()
assert.True(t, result.IsLeft(seqReaderResult))
// Test SequenceReaderIO with error
@@ -756,7 +756,7 @@ func TestFlipIntegration(t *testing.T) {
}
}
}
seqReaderIOResult := SequenceReaderIO[Config1, Config2, int](seqReaderIOErr)(cfg1)(cfg2)(ctx)()
seqReaderIOResult := SequenceReaderIO(seqReaderIOErr)(cfg1)(cfg2)(ctx)()
assert.True(t, result.IsLeft(seqReaderIOResult))
// Test Traverse with error
@@ -764,7 +764,7 @@ func TestFlipIntegration(t *testing.T) {
travTransform := func(n int) ReaderReaderIOResult[Config1, string] {
return Of[Config1](fmt.Sprintf("%d", n))
}
travResult := Traverse[Config2, Config1, int, string](travTransform)(travErr)(cfg1)(cfg2)(ctx)()
travResult := Traverse[Config2](travTransform)(travErr)(cfg1)(cfg2)(ctx)()
assert.True(t, result.IsLeft(travResult))
// Test TraverseReader with error
@@ -772,7 +772,7 @@ func TestFlipIntegration(t *testing.T) {
travReaderTransform := func(n int) reader.Reader[Config1, string] {
return reader.Of[Config1](fmt.Sprintf("%d", n))
}
travReaderResult := TraverseReader[Config2, Config1, int, string](travReaderTransform)(travReaderErr)(cfg1)(cfg2)(ctx)()
travReaderResult := TraverseReader[Config2](travReaderTransform)(travReaderErr)(cfg1)(cfg2)(ctx)()
assert.True(t, result.IsLeft(travReaderResult))
})
}

View File

@@ -52,7 +52,7 @@ func FromReaderOption[R, A any](onNone Lazy[error]) Kleisli[R, ReaderOption[R, A
//
//go:inline
func FromReaderIOResult[R, A any](ma ReaderIOResult[R, A]) ReaderReaderIOResult[R, A] {
return RRIOE.FromReaderIOEither[context.Context, error](ma)
return RRIOE.FromReaderIOEither[context.Context](ma)
}
// FromReaderIO lifts a ReaderIO into a ReaderReaderIOResult.
@@ -734,7 +734,7 @@ func FromIO[R, A any](ma IO[A]) ReaderReaderIOResult[R, A] {
//
//go:inline
func FromIOEither[R, A any](ma IOEither[error, A]) ReaderReaderIOResult[R, A] {
return RRIOE.FromIOEither[R, context.Context, error](ma)
return RRIOE.FromIOEither[R, context.Context](ma)
}
// FromIOResult lifts an IOResult into a ReaderReaderIOResult.
@@ -742,14 +742,14 @@ func FromIOEither[R, A any](ma IOEither[error, A]) ReaderReaderIOResult[R, A] {
//
//go:inline
func FromIOResult[R, A any](ma IOResult[A]) ReaderReaderIOResult[R, A] {
return RRIOE.FromIOEither[R, context.Context, error](ma)
return RRIOE.FromIOEither[R, context.Context](ma)
}
// FromReaderEither lifts a ReaderEither into a ReaderReaderIOResult.
//
//go:inline
func FromReaderEither[R, A any](ma RE.ReaderEither[R, error, A]) ReaderReaderIOResult[R, A] {
return RRIOE.FromReaderEither[R, context.Context, error](ma)
return RRIOE.FromReaderEither[R, context.Context](ma)
}
// Ask retrieves the outer environment R.
@@ -782,7 +782,7 @@ func FromOption[R, A any](onNone Lazy[error]) func(Option[A]) ReaderReaderIOResu
//
//go:inline
func FromPredicate[R, A any](pred func(A) bool, onFalse func(A) error) Kleisli[R, A, A] {
return RRIOE.FromPredicate[R, context.Context, error](pred, onFalse)
return RRIOE.FromPredicate[R, context.Context](pred, onFalse)
}
// MonadAlt provides alternative/fallback behavior.
@@ -825,7 +825,7 @@ func Flap[R, B, A any](a A) Operator[R, func(A) B, B] {
//
//go:inline
func MonadMapLeft[R, A any](fa ReaderReaderIOResult[R, A], f Endmorphism[error]) ReaderReaderIOResult[R, A] {
return RRIOE.MonadMapLeft[R, context.Context](fa, f)
return RRIOE.MonadMapLeft(fa, f)
}
// MapLeft transforms the error value if the computation fails.
@@ -864,7 +864,7 @@ func ReadIOEither[A, R any](rio IOEither[error, R]) func(ReaderReaderIOResult[R,
//
//go:inline
func ReadIO[A, R any](rio IO[R]) func(ReaderReaderIOResult[R, A]) ReaderIOResult[context.Context, A] {
return RRIOE.ReadIO[context.Context, error, A, R](rio)
return RRIOE.ReadIO[context.Context, error, A](rio)
}
// MonadChainLeft handles errors by chaining a recovery computation.
@@ -873,7 +873,7 @@ func ReadIO[A, R any](rio IO[R]) func(ReaderReaderIOResult[R, A]) ReaderIOResult
//
//go:inline
func MonadChainLeft[R, A any](fa ReaderReaderIOResult[R, A], f Kleisli[R, error, A]) ReaderReaderIOResult[R, A] {
return RRIOE.MonadChainLeft[R, context.Context, error, error, A](fa, f)
return RRIOE.MonadChainLeft(fa, f)
}
// ChainLeft handles errors by chaining a recovery computation.
@@ -882,7 +882,7 @@ func MonadChainLeft[R, A any](fa ReaderReaderIOResult[R, A], f Kleisli[R, error,
//
//go:inline
func ChainLeft[R, A any](f Kleisli[R, error, A]) func(ReaderReaderIOResult[R, A]) ReaderReaderIOResult[R, A] {
return RRIOE.ChainLeft[R, context.Context, error, error, A](f)
return RRIOE.ChainLeft(f)
}
// Delay adds a time delay before executing the computation.

View File

@@ -101,7 +101,7 @@ func TestMonadChain(t *testing.T) {
func TestChain(t *testing.T) {
computation := F.Pipe1(
Of[AppConfig](21),
Chain[AppConfig](func(n int) ReaderReaderIOResult[AppConfig, int] {
Chain(func(n int) ReaderReaderIOResult[AppConfig, int] {
return Of[AppConfig](n * 2)
}),
)
@@ -127,7 +127,7 @@ func TestChainFirst(t *testing.T) {
sideEffect := 0
computation := F.Pipe1(
Of[AppConfig](42),
ChainFirst[AppConfig](func(n int) ReaderReaderIOResult[AppConfig, string] {
ChainFirst(func(n int) ReaderReaderIOResult[AppConfig, string] {
sideEffect = n
return Of[AppConfig]("ignored")
}),
@@ -141,7 +141,7 @@ func TestTap(t *testing.T) {
sideEffect := 0
computation := F.Pipe1(
Of[AppConfig](42),
Tap[AppConfig](func(n int) ReaderReaderIOResult[AppConfig, string] {
Tap(func(n int) ReaderReaderIOResult[AppConfig, string] {
sideEffect = n
return Of[AppConfig]("ignored")
}),
@@ -167,7 +167,7 @@ func TestFromEither(t *testing.T) {
t.Run("left", func(t *testing.T) {
err := errors.New("test error")
computation := FromEither[AppConfig, int](either.Left[int](err))
computation := FromEither[AppConfig](either.Left[int](err))
outcome := computation(defaultConfig)(t.Context())()
assert.True(t, result.IsLeft(outcome))
})
@@ -189,7 +189,7 @@ func TestFromResult(t *testing.T) {
}
func TestFromReader(t *testing.T) {
computation := FromReader[AppConfig](func(cfg AppConfig) int {
computation := FromReader(func(cfg AppConfig) int {
return len(cfg.DatabaseURL)
})
outcome := computation(defaultConfig)(t.Context())()
@@ -197,7 +197,7 @@ func TestFromReader(t *testing.T) {
}
func TestRightReader(t *testing.T) {
computation := RightReader[AppConfig](func(cfg AppConfig) int {
computation := RightReader(func(cfg AppConfig) int {
return len(cfg.LogLevel)
})
outcome := computation(defaultConfig)(t.Context())()
@@ -241,7 +241,7 @@ func TestFromIOEither(t *testing.T) {
t.Run("left", func(t *testing.T) {
err := errors.New("test error")
computation := FromIOEither[AppConfig, int](ioeither.Left[int](err))
computation := FromIOEither[AppConfig](ioeither.Left[int](err))
outcome := computation(defaultConfig)(t.Context())()
assert.True(t, result.IsLeft(outcome))
})
@@ -267,7 +267,7 @@ func TestFromIOResult(t *testing.T) {
}
func TestFromReaderIO(t *testing.T) {
computation := FromReaderIO[AppConfig](func(cfg AppConfig) io.IO[int] {
computation := FromReaderIO(func(cfg AppConfig) io.IO[int] {
return func() int { return len(cfg.DatabaseURL) }
})
outcome := computation(defaultConfig)(t.Context())()
@@ -275,7 +275,7 @@ func TestFromReaderIO(t *testing.T) {
}
func TestRightReaderIO(t *testing.T) {
computation := RightReaderIO[AppConfig](func(cfg AppConfig) io.IO[int] {
computation := RightReaderIO(func(cfg AppConfig) io.IO[int] {
return func() int { return len(cfg.LogLevel) }
})
outcome := computation(defaultConfig)(t.Context())()
@@ -293,7 +293,7 @@ func TestLeftReaderIO(t *testing.T) {
func TestFromReaderEither(t *testing.T) {
t.Run("right", func(t *testing.T) {
computation := FromReaderEither[AppConfig](func(cfg AppConfig) either.Either[error, int] {
computation := FromReaderEither(func(cfg AppConfig) either.Either[error, int] {
return either.Right[error](len(cfg.DatabaseURL))
})
outcome := computation(defaultConfig)(t.Context())()
@@ -302,7 +302,7 @@ func TestFromReaderEither(t *testing.T) {
t.Run("left", func(t *testing.T) {
err := errors.New("test error")
computation := FromReaderEither[AppConfig, int](func(cfg AppConfig) either.Either[error, int] {
computation := FromReaderEither(func(cfg AppConfig) either.Either[error, int] {
return either.Left[int](err)
})
outcome := computation(defaultConfig)(t.Context())()
@@ -396,7 +396,7 @@ func TestAlt(t *testing.T) {
computation := F.Pipe1(
Left[AppConfig, int](err),
Alt[AppConfig](func() ReaderReaderIOResult[AppConfig, int] {
Alt(func() ReaderReaderIOResult[AppConfig, int] {
return Of[AppConfig](99)
}),
)
@@ -461,7 +461,7 @@ func TestLocal(t *testing.T) {
Asks(func(cfg AppConfig) string {
return cfg.DatabaseURL
}),
Local[string, AppConfig, OtherConfig](func(other OtherConfig) AppConfig {
Local[string](func(other OtherConfig) AppConfig {
return AppConfig{DatabaseURL: other.URL, LogLevel: "debug"}
}),
)
@@ -518,7 +518,7 @@ func TestChainLeft(t *testing.T) {
err := errors.New("original error")
computation := F.Pipe1(
Left[AppConfig, int](err),
ChainLeft[AppConfig](func(e error) ReaderReaderIOResult[AppConfig, int] {
ChainLeft(func(e error) ReaderReaderIOResult[AppConfig, int] {
return Of[AppConfig](99)
}),
)
@@ -553,7 +553,7 @@ func TestChainEitherK(t *testing.T) {
func TestChainReaderK(t *testing.T) {
computation := F.Pipe1(
Of[AppConfig](10),
ChainReaderK[AppConfig](func(n int) reader.Reader[AppConfig, int] {
ChainReaderK(func(n int) reader.Reader[AppConfig, int] {
return func(cfg AppConfig) int {
return n + len(cfg.LogLevel)
}
@@ -566,7 +566,7 @@ func TestChainReaderK(t *testing.T) {
func TestChainReaderIOK(t *testing.T) {
computation := F.Pipe1(
Of[AppConfig](10),
ChainReaderIOK[AppConfig](func(n int) readerio.ReaderIO[AppConfig, int] {
ChainReaderIOK(func(n int) readerio.ReaderIO[AppConfig, int] {
return func(cfg AppConfig) io.IO[int] {
return func() int {
return n + len(cfg.DatabaseURL)
@@ -581,7 +581,7 @@ func TestChainReaderIOK(t *testing.T) {
func TestChainReaderEitherK(t *testing.T) {
computation := F.Pipe1(
Of[AppConfig](10),
ChainReaderEitherK[AppConfig](func(n int) RE.ReaderEither[AppConfig, error, int] {
ChainReaderEitherK(func(n int) RE.ReaderEither[AppConfig, error, int] {
return func(cfg AppConfig) either.Either[error, int] {
return either.Right[error](n + len(cfg.LogLevel))
}
@@ -670,7 +670,7 @@ func TestChainOptionK(t *testing.T) {
}
func TestFromReaderIOResult(t *testing.T) {
computation := FromReaderIOResult[AppConfig](func(cfg AppConfig) ioresult.IOResult[int] {
computation := FromReaderIOResult(func(cfg AppConfig) ioresult.IOResult[int] {
return func() result.Result[int] {
return result.Of(len(cfg.DatabaseURL))
}
@@ -711,7 +711,7 @@ func TestAp(t *testing.T) {
fa := Of[AppConfig](21)
computation := F.Pipe1(
Of[AppConfig](N.Mul(2)),
Ap[int, AppConfig](fa),
Ap[int](fa),
)
outcome := computation(defaultConfig)(t.Context())()
assert.Equal(t, result.Of(42), outcome)

View File

@@ -253,7 +253,7 @@ func Second[T1, T2 any](_ T1, t2 T2) T2 {
}
// Zero returns the zero value of the given type.
func Zero[A comparable]() A {
func Zero[A any]() A {
var zero A
return zero
}

View File

@@ -4,14 +4,11 @@ go 1.24
require (
github.com/stretchr/testify v1.11.1
github.com/urfave/cli/v2 v2.27.7
github.com/urfave/cli/v3 v3.6.2
)
require (
github.com/cpuguy83/go-md2man/v2 v2.0.7 // indirect
github.com/davecgh/go-spew v1.1.1 // indirect
github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/russross/blackfriday/v2 v2.1.0 // indirect
github.com/xrash/smetrics v0.0.0-20250705151800-55b8f293f342 // indirect
gopkg.in/yaml.v3 v3.0.1 // indirect
)

View File

@@ -1,17 +1,11 @@
github.com/cpuguy83/go-md2man/v2 v2.0.7 h1:zbFlGlXEAKlwXpmvle3d8Oe3YnkKIK4xSRTd3sHPnBo=
github.com/cpuguy83/go-md2man/v2 v2.0.7/go.mod h1:oOW0eioCTA6cOiMLiUPZOpcVxMig6NIQQ7OS05n1F4g=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/russross/blackfriday/v2 v2.1.0 h1:JIOH55/0cWyOuilr9/qlrm0BSXldqnqwMsf35Ld67mk=
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/stretchr/testify v1.11.1 h1:7s2iGBzp5EwR7/aIZr8ao5+dra3wiQyKjjFuvgVKu7U=
github.com/stretchr/testify v1.11.1/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
github.com/urfave/cli/v2 v2.27.7 h1:bH59vdhbjLv3LAvIu6gd0usJHgoTTPhCFib8qqOwXYU=
github.com/urfave/cli/v2 v2.27.7/go.mod h1:CyNAG/xg+iAOg0N4MPGZqVmv2rCoP267496AOXUZjA4=
github.com/xrash/smetrics v0.0.0-20250705151800-55b8f293f342 h1:FnBeRrxr7OU4VvAzt5X7s6266i6cSVkkFPS0TuXWbIg=
github.com/xrash/smetrics v0.0.0-20250705151800-55b8f293f342/go.mod h1:Ohn+xnUBiLI6FVj/9LpzZWtj1/D6lUovWYBkxHVV3aM=
github.com/urfave/cli/v3 v3.6.2 h1:lQuqiPrZ1cIz8hz+HcrG0TNZFxU70dPZ3Yl+pSrH9A8=
github.com/urfave/cli/v3 v3.6.2/go.mod h1:ysVLtOEmg2tOy6PknnYVhDoouyC/6N42TMeoMzskhso=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=

View File

@@ -204,7 +204,7 @@ func BenchmarkMonadChain_Left(b *testing.B) {
func BenchmarkChain_Right(b *testing.B) {
rioe := Right[benchConfig](42)
chainer := Chain[benchConfig](func(a int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](a * 2) })
chainer := Chain(func(a int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
@@ -214,7 +214,7 @@ func BenchmarkChain_Right(b *testing.B) {
func BenchmarkChain_Left(b *testing.B) {
rioe := Left[benchConfig, int](benchErr)
chainer := Chain[benchConfig](func(a int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](a * 2) })
chainer := Chain(func(a int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
@@ -224,7 +224,7 @@ func BenchmarkChain_Left(b *testing.B) {
func BenchmarkChainFirst_Right(b *testing.B) {
rioe := Right[benchConfig](42)
chainer := ChainFirst[benchConfig](func(a int) ReaderIOResult[benchConfig, string] { return Right[benchConfig]("logged") })
chainer := ChainFirst(func(a int) ReaderIOResult[benchConfig, string] { return Right[benchConfig]("logged") })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
@@ -234,7 +234,7 @@ func BenchmarkChainFirst_Right(b *testing.B) {
func BenchmarkChainFirst_Left(b *testing.B) {
rioe := Left[benchConfig, int](benchErr)
chainer := ChainFirst[benchConfig](func(a int) ReaderIOResult[benchConfig, string] { return Right[benchConfig]("logged") })
chainer := ChainFirst(func(a int) ReaderIOResult[benchConfig, string] { return Right[benchConfig]("logged") })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
@@ -443,7 +443,7 @@ func BenchmarkPipeline_Chain_Right(b *testing.B) {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Chain[benchConfig](func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x * 2) }),
Chain(func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x * 2) }),
)
}
}
@@ -455,7 +455,7 @@ func BenchmarkPipeline_Chain_Left(b *testing.B) {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Chain[benchConfig](func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x * 2) }),
Chain(func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x * 2) }),
)
}
}
@@ -468,7 +468,7 @@ func BenchmarkPipeline_Complex_Right(b *testing.B) {
benchRIOE = F.Pipe3(
rioe,
Map[benchConfig](N.Mul(2)),
Chain[benchConfig](func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Chain(func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Map[benchConfig](N.Mul(2)),
)
}
@@ -482,7 +482,7 @@ func BenchmarkPipeline_Complex_Left(b *testing.B) {
benchRIOE = F.Pipe3(
rioe,
Map[benchConfig](N.Mul(2)),
Chain[benchConfig](func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Chain(func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Map[benchConfig](N.Mul(2)),
)
}
@@ -492,7 +492,7 @@ func BenchmarkExecutePipeline_Complex_Right(b *testing.B) {
rioe := F.Pipe3(
Right[benchConfig](10),
Map[benchConfig](N.Mul(2)),
Chain[benchConfig](func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Chain(func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Map[benchConfig](N.Mul(2)),
)
b.ResetTimer()

View File

@@ -0,0 +1,70 @@
package readert
import (
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
// ApplySemigroup lifts a Semigroup[A] into a Semigroup[Reader[R, A]].
// This allows you to combine two Readers that produce semigroup values by combining
// their results using the semigroup's concat operation.
//
// The _map and _ap parameters are the Map and Ap operations for the Reader type,
// typically obtained from the reader package.
//
// Example:
//
// type Config struct { Multiplier int }
// // Using the additive semigroup for integers
// intSemigroup := semigroup.MakeSemigroup(func(a, b int) int { return a + b })
// readerSemigroup := reader.ApplySemigroup(
// reader.MonadMap[Config, int, func(int) int],
// reader.MonadAp[int, Config, int],
// intSemigroup,
// )
//
// r1 := reader.Of[Config](5)
// r2 := reader.Of[Config](3)
// combined := readerSemigroup.Concat(r1, r2)
// result := combined(Config{Multiplier: 1}) // 8
func ApplySemigroup[R, A any](
_map func(func(R) A, func(A) func(A) A) func(R, func(A) A),
_ap func(func(R, func(A) A), func(R) A) func(R) A,
s S.Semigroup[A],
) S.Semigroup[func(R) A] {
return S.ApplySemigroup(_map, _ap, s)
}
// ApplicativeMonoid lifts a Monoid[A] into a Monoid[Reader[R, A]].
// This allows you to combine Readers that produce monoid values, with an empty/identity Reader.
//
// The _of parameter is the Of operation (pure/return) for the Reader type.
// The _map and _ap parameters are the Map and Ap operations for the Reader type.
//
// Example:
//
// type Config struct { Prefix string }
// // Using the string concatenation monoid
// stringMonoid := monoid.MakeMonoid("", func(a, b string) string { return a + b })
// readerMonoid := reader.ApplicativeMonoid(
// reader.Of[Config, string],
// reader.MonadMap[Config, string, func(string) string],
// reader.MonadAp[string, Config, string],
// stringMonoid,
// )
//
// r1 := reader.Asks(func(c Config) string { return c.Prefix })
// r2 := reader.Of[Config]("hello")
// combined := readerMonoid.Concat(r1, r2)
// result := combined(Config{Prefix: ">> "}) // ">> hello"
// empty := readerMonoid.Empty()(Config{Prefix: "any"}) // ""
func ApplicativeMonoid[R, A any](
_of func(A) func(R) A,
_map func(func(R) A, func(A) func(A) A) func(R, func(A) A),
_ap func(func(R, func(A) A), func(R) A) func(R) A,
m M.Monoid[A],
) M.Monoid[func(R) A] {
return M.ApplicativeMonoid(_of, _map, _ap, m)
}

View File

@@ -35,7 +35,7 @@ import (
//
// safeOperation := io.WithLock(lock)(dangerousOperation)
// result := safeOperation()
func WithLock[A any](lock IO[context.CancelFunc]) func(fa IO[A]) IO[A] {
func WithLock[A any](lock IO[context.CancelFunc]) Operator[A, A] {
return func(fa IO[A]) IO[A] {
return func() A {
defer lock()()

View File

@@ -17,23 +17,28 @@
package main
import (
"context"
"log"
"os"
"os/signal"
"syscall"
"github.com/IBM/fp-go/v2/cli"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func main() {
ctx, cancel := signal.NotifyContext(context.Background(), os.Interrupt, syscall.SIGTERM)
defer cancel()
app := &C.App{
app := &C.Command{
Name: "fp-go",
Usage: "Code generation for fp-go",
Commands: cli.Commands(),
}
if err := app.Run(os.Args); err != nil {
if err := app.Run(ctx, os.Args); err != nil {
log.Fatal(err)
}
}

View File

@@ -221,7 +221,7 @@ Lenses can be automatically generated using the `fp-go` CLI tool and a simple an
1. **Annotate your struct** with the `fp-go:Lens` comment:
```go
//go:generate go run github.com/IBM/fp-go/v2/main.go lens --dir . --filename gen_lens.go
//go:generate go run github.com/IBM/fp-go/v2 lens --dir . --filename gen_lens.go
// fp-go:Lens
type Person struct {
@@ -230,8 +230,16 @@ type Person struct {
Email string
Phone *string // Optional field
}
// fp-go:Lens
type Config struct {
PublicField string
privateField int // Unexported fields are supported!
}
```
**Note:** The generator supports both exported (uppercase) and unexported (lowercase) fields. Generated lenses for unexported fields will have lowercase names and can only be used within the same package as the struct.
2. **Run `go generate`**:
```bash
@@ -268,6 +276,7 @@ The generator supports:
- ✅ Embedded structs (fields are promoted)
- ✅ Optional fields (pointers and `omitempty` tags)
- ✅ Custom package imports
-**Unexported fields** (lowercase names) - lenses will have lowercase names matching the field names
See [samples/lens](../samples/lens) for complete examples.
@@ -293,13 +302,23 @@ More specific optics can be converted to more general ones.
## 📦 Package Structure
### Core Optics
- **[optics/lens](https://pkg.go.dev/github.com/IBM/fp-go/v2/optics/lens)**: Lenses for product types (structs)
- **[optics/prism](https://pkg.go.dev/github.com/IBM/fp-go/v2/optics/prism)**: Prisms for sum types ([`Either`](https://pkg.go.dev/github.com/IBM/fp-go/v2/either), [`Result`](https://pkg.go.dev/github.com/IBM/fp-go/v2/result), etc.)
- **[optics/iso](https://pkg.go.dev/github.com/IBM/fp-go/v2/optics/iso)**: Isomorphisms for equivalent types
- **[optics/optional](https://pkg.go.dev/github.com/IBM/fp-go/v2/optics/optional)**: Optional optics for maybe values
- **[optics/traversal](https://pkg.go.dev/github.com/IBM/fp-go/v2/optics/traversal)**: Traversals for multiple values
Each package includes specialized sub-packages for common patterns:
### Utilities
- **[optics/builder](https://pkg.go.dev/github.com/IBM/fp-go/v2/optics/builder)**: Builder pattern for constructing complex optics
- **[optics/codec](https://pkg.go.dev/github.com/IBM/fp-go/v2/optics/codec)**: Type-safe encoding/decoding with validation
- Provides `Type[A, O, I]` for bidirectional transformations with validation
- Includes codecs for primitives (String, Int, Bool), collections (Array), and sum types (Either)
- Supports refinement types and codec composition via `Pipe`
- Integrates validation errors with context tracking
### Specialized Sub-packages
Each core optics package includes specialized sub-packages for common patterns:
- **array**: Optics for arrays/slices
- **either**: Optics for [`Either`](https://pkg.go.dev/github.com/IBM/fp-go/v2/either) types
- **option**: Optics for [`Option`](https://pkg.go.dev/github.com/IBM/fp-go/v2/option) types

View File

@@ -0,0 +1,31 @@
package builder
import (
"fmt"
F "github.com/IBM/fp-go/v2/function"
)
func MakeBuilder[S, A any](get func(S) Option[A], set func(A) Endomorphism[S], name string) Builder[S, A] {
return Builder[S, A]{
GetOption: get,
Set: set,
name: name,
}
}
func ComposeLensPrism[S, A, B any](r Prism[A, B]) func(Lens[S, A]) Builder[S, B] {
return func(l Lens[S, A]) Builder[S, B] {
return MakeBuilder(
F.Flow2(
l.Get,
r.GetOption,
),
F.Flow2(
r.ReverseGet,
l.Set,
),
fmt.Sprintf("Compose[%s -> %s]", l, r),
)
}
}

View File

@@ -0,0 +1,27 @@
package builder
import (
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/option"
)
type (
Option[A any] = option.Option[A]
Lens[S, A any] = lens.Lens[S, A]
Prism[S, A any] = prism.Prism[S, A]
Endomorphism[A any] = endomorphism.Endomorphism[A]
Builder[S, A any] struct {
GetOption func(S) Option[A]
Set func(A) Endomorphism[S]
name string
}
Kleisli[S, A, B any] = func(A) Builder[S, B]
Operator[S, A, B any] = Kleisli[S, Builder[S, A], B]
)

View File

@@ -10,6 +10,7 @@ import (
A "github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/IBM/fp-go/v2/pair"
"github.com/IBM/fp-go/v2/reader"
@@ -27,6 +28,8 @@ type typeImpl[A, O, I any] struct {
encode Encode[A, O]
}
var emptyContext = A.Empty[validation.ContextEntry]()
// MakeType creates a new Type with the given name, type checker, validator, and encoder.
//
// Parameters:
@@ -52,7 +55,7 @@ func MakeType[A, O, I any](
// Validate validates the input value in the context of a validation path.
// Returns a Reader that takes a Context and produces a Validation result.
func (t *typeImpl[A, O, I]) Validate(i I) Reader[Context, Validation[A]] {
func (t *typeImpl[A, O, I]) Validate(i I) Decode[Context, A] {
return t.validate(i)
}
@@ -138,16 +141,16 @@ func isTypedNil[A any](x any) Result[*A] {
return result.Left[*A](errors.New("expecting nil"))
}
func validateFromIs[A any](
is ReaderResult[any, A],
func validateFromIs[A, I any](
is ReaderResult[I, A],
msg string,
) Reader[any, Reader[Context, Validation[A]]] {
return func(u any) Reader[Context, Validation[A]] {
) Validate[I, A] {
return func(i I) Decode[Context, A] {
return F.Pipe2(
u,
i,
is,
result.Fold(
validation.FailureWithError[A](u, msg),
validation.FailureWithError[A](F.ToAny(i), msg),
F.Flow2(
validation.Success[A],
reader.Of[Context],
@@ -157,6 +160,17 @@ func validateFromIs[A any](
}
}
func isFromValidate[T, I any](val Validate[I, T]) ReaderResult[any, T] {
invalidType := result.Left[T](errors.New("invalid input type"))
return func(u any) Result[T] {
i, ok := u.(I)
if !ok {
return invalidType
}
return validation.ToResult(val(i)(emptyContext))
}
}
// MakeNilType creates a Type that validates nil values.
// It accepts any input and validates that it is nil, returning a typed nil pointer.
//
@@ -178,8 +192,7 @@ func Nil[A any]() Type[*A, *A, any] {
}
func MakeSimpleType[A any]() Type[A, A, any] {
var zero A
name := fmt.Sprintf("%T", zero)
name := fmt.Sprintf("%T", *new(A))
is := Is[A]()
return MakeType(
@@ -190,14 +203,53 @@ func MakeSimpleType[A any]() Type[A, A, any] {
)
}
// String creates a Type for string values.
// It validates that input is a string type and provides identity encoding/decoding.
// This is a simple type that accepts any input and validates it's a string.
//
// Returns:
// - A Type[string, string, any] that can validate, decode, and encode string values
//
// Example:
//
// stringType := codec.String()
// result := stringType.Decode("hello") // Success: Right("hello")
// result := stringType.Decode(123) // Failure: Left(validation errors)
// encoded := stringType.Encode("world") // Returns: "world"
func String() Type[string, string, any] {
return MakeSimpleType[string]()
}
// Int creates a Type for int values.
// It validates that input is an int type and provides identity encoding/decoding.
// This is a simple type that accepts any input and validates it's an int.
//
// Returns:
// - A Type[int, int, any] that can validate, decode, and encode int values
//
// Example:
//
// intType := codec.Int()
// result := intType.Decode(42) // Success: Right(42)
// result := intType.Decode("42") // Failure: Left(validation errors)
// encoded := intType.Encode(100) // Returns: 100
func Int() Type[int, int, any] {
return MakeSimpleType[int]()
}
// Bool creates a Type for bool values.
// It validates that input is a bool type and provides identity encoding/decoding.
// This is a simple type that accepts any input and validates it's a bool.
//
// Returns:
// - A Type[bool, bool, any] that can validate, decode, and encode bool values
//
// Example:
//
// boolType := codec.Bool()
// result := boolType.Decode(true) // Success: Right(true)
// result := boolType.Decode(1) // Failure: Left(validation errors)
// encoded := boolType.Encode(false) // Returns: false
func Bool() Type[bool, bool, any] {
return MakeSimpleType[bool]()
}
@@ -216,7 +268,7 @@ func pairToValidation[T any](p validationPair[T]) Validation[T] {
return either.Of[validation.Errors](value)
}
func validateArray[T any](item Type[T, T, any]) func(u any) Reader[Context, Validation[[]T]] {
func validateArrayFromArray[T, O, I any](item Type[T, O, I]) Validate[[]I, []T] {
appendErrors := F.Flow2(
A.Concat,
@@ -232,8 +284,48 @@ func validateArray[T any](item Type[T, T, any]) func(u any) Reader[Context, Vali
zero := pair.Zero[validation.Errors, []T]()
return func(u any) Reader[Context, Validation[[]T]] {
val := reflect.ValueOf(u)
return func(is []I) Decode[Context, []T] {
return func(c Context) Validation[[]T] {
return F.Pipe1(
A.MonadReduceWithIndex(is, func(i int, p validationPair[[]T], v I) validationPair[[]T] {
return either.MonadFold(
item.Validate(v)(appendContext(strconv.Itoa(i), itemName, v)(c)),
appendErrors,
appendValues,
)(p)
}, zero),
pairToValidation,
)
}
}
}
func validateArray[T, O any](item Type[T, O, any]) Validate[any, []T] {
appendErrors := F.Flow2(
A.Concat,
pair.MapHead[[]T, validation.Errors],
)
appendValues := F.Flow2(
A.Push,
pair.MapTail[validation.Errors, []T],
)
itemName := item.Name()
zero := pair.Zero[validation.Errors, []T]()
return func(i any) Decode[Context, []T] {
res, ok := i.([]T)
if ok {
return reader.Of[Context](validation.Success(res))
}
val := reflect.ValueOf(i)
if !val.IsValid() {
return validation.FailureWithMessage[[]T](val, "invalid value")
}
@@ -246,8 +338,9 @@ func validateArray[T any](item Type[T, T, any]) func(u any) Reader[Context, Vali
return F.Pipe1(
R.MonadReduceWithIndex(val, func(i int, p validationPair[[]T], v reflect.Value) validationPair[[]T] {
vIface := v.Interface()
return either.MonadFold(
item.Validate(v)(appendContext(strconv.Itoa(i), itemName, v)(c)),
item.Validate(vIface)(appendContext(strconv.Itoa(i), itemName, vIface)(c)),
appendErrors,
appendValues,
)(p)
@@ -260,3 +353,397 @@ func validateArray[T any](item Type[T, T, any]) func(u any) Reader[Context, Vali
}
}
}
// Array creates a Type for array/slice values with elements of type T.
// It validates that input is an array, slice, or string, and validates each element
// using the provided item Type. During encoding, it maps the encode function over all elements.
//
// Type Parameters:
// - T: The type of elements in the decoded array
// - O: The type of elements in the encoded array
//
// Parameters:
// - item: A Type[T, O, any] that defines how to validate/encode individual elements
//
// Returns:
// - A Type[[]T, []O, any] that can validate, decode, and encode array values
//
// The function handles:
// - Native Go slices of type []T (passed through directly)
// - reflect.Array, reflect.Slice, reflect.String (validated element by element)
// - Collects all validation errors from individual elements
// - Provides detailed context for each element's position in error messages
//
// Example:
//
// intArray := codec.Array(codec.Int())
// result := intArray.Decode([]int{1, 2, 3}) // Success: Right([1, 2, 3])
// result := intArray.Decode([]any{1, "2", 3}) // Failure: validation error at index 1
// encoded := intArray.Encode([]int{1, 2, 3}) // Returns: []int{1, 2, 3}
//
// stringArray := codec.Array(codec.String())
// result := stringArray.Decode([]string{"a", "b"}) // Success: Right(["a", "b"])
// result := stringArray.Decode("hello") // Success: Right(["h", "e", "l", "l", "o"])
func Array[T, O any](item Type[T, O, any]) Type[[]T, []O, any] {
validate := validateArray(item)
is := isFromValidate(validate)
name := fmt.Sprintf("Array[%s]", item.Name())
return MakeType(
name,
is,
validate,
A.Map(item.Encode),
)
}
// TranscodeArray creates a Type for array/slice values with strongly-typed input.
// Unlike Array which accepts any input type, TranscodeArray requires the input to be
// a slice of type []I, providing type safety at the input level.
//
// This function validates each element of the input slice using the provided item Type,
// transforming []I -> []T during decoding and []T -> []O during encoding.
//
// Type Parameters:
// - T: The type of elements in the decoded array
// - O: The type of elements in the encoded array
// - I: The type of elements in the input array (must be a slice)
//
// Parameters:
// - item: A Type[T, O, I] that defines how to validate/encode individual elements
//
// Returns:
// - A Type[[]T, []O, []I] that can validate, decode, and encode array values
//
// The function:
// - Requires input to be exactly []I (not any)
// - Validates each element using the item Type's validation logic
// - Collects all validation errors from individual elements
// - Provides detailed context for each element's position in error messages
// - Maps the encode function over all elements during encoding
//
// Example:
//
// // Create a codec that transforms string slices to int slices
// stringToInt := codec.MakeType[int, int, string](
// "StringToInt",
// func(s any) result.Result[int] { ... },
// func(s string) codec.Validate[int] { ... },
// func(i int) int { return i },
// )
// arrayCodec := codec.TranscodeArray(stringToInt)
//
// // Decode: []string -> []int
// result := arrayCodec.Decode([]string{"1", "2", "3"}) // Success: Right([1, 2, 3])
// result := arrayCodec.Decode([]string{"1", "x", "3"}) // Failure: validation error at index 1
//
// // Encode: []int -> []int
// encoded := arrayCodec.Encode([]int{1, 2, 3}) // Returns: []int{1, 2, 3}
//
// Use TranscodeArray when:
// - You need type-safe input validation ([]I instead of any)
// - You're transforming between different slice element types
// - You want compile-time guarantees about input types
//
// Use Array when:
// - You need to accept various input types (any, reflect.Value, etc.)
// - You're working with dynamic or unknown input types
func TranscodeArray[T, O, I any](item Type[T, O, I]) Type[[]T, []O, []I] {
validate := validateArrayFromArray(item)
is := isFromValidate(validate)
name := fmt.Sprintf("Array[%s]", item.Name())
return MakeType(
name,
is,
validate,
A.Map(item.Encode),
)
}
func validateEitherFromEither[L, R, OL, OR, IL, IR any](
leftItem Type[L, OL, IL],
rightItem Type[R, OR, IR],
) Validate[either.Either[IL, IR], either.Either[L, R]] {
// leftName := left.Name()
// rightName := right.Name()
return func(is either.Either[IL, IR]) Decode[Context, either.Either[L, R]] {
return either.MonadFold(
is,
F.Flow2(
leftItem.Validate,
readereither.Map[Context, validation.Errors](either.Left[R, L]),
),
F.Flow2(
rightItem.Validate,
readereither.Map[Context, validation.Errors](either.Right[L, R]),
),
)
}
}
// TranscodeEither creates a Type for Either values with strongly-typed left and right branches.
// It validates and transforms Either[IL, IR] to Either[L, R] during decoding, and
// Either[L, R] to Either[OL, OR] during encoding.
//
// This function is useful for handling sum types (discriminated unions) where a value can be
// one of two possible types. Each branch (Left and Right) is validated and transformed
// independently using its respective Type codec.
//
// Type Parameters:
// - L: The type of the decoded Left value
// - R: The type of the decoded Right value
// - OL: The type of the encoded Left value
// - OR: The type of the encoded Right value
// - IL: The type of the input Left value
// - IR: The type of the input Right value
//
// Parameters:
// - leftItem: A Type[L, OL, IL] that defines how to validate/encode Left values
// - rightItem: A Type[R, OR, IR] that defines how to validate/encode Right values
//
// Returns:
// - A Type[Either[L, R], Either[OL, OR], Either[IL, IR]] that can validate, decode, and encode Either values
//
// The function:
// - Validates Left values using leftItem's validation logic
// - Validates Right values using rightItem's validation logic
// - Preserves the Either structure (Left stays Left, Right stays Right)
// - Provides context-aware error messages indicating which branch failed
// - Transforms values through the respective codecs during encoding
//
// Example:
//
// // Create a codec for Either[string, int]
// stringCodec := codec.String()
// intCodec := codec.Int()
// eitherCodec := codec.TranscodeEither(stringCodec, intCodec)
//
// // Decode Left value
// leftResult := eitherCodec.Decode(either.Left[int]("error"))
// // Success: Right(Either.Left("error"))
//
// // Decode Right value
// rightResult := eitherCodec.Decode(either.Right[string](42))
// // Success: Right(Either.Right(42))
//
// // Encode Left value
// encodedLeft := eitherCodec.Encode(either.Left[int]("error"))
// // Returns: Either.Left("error")
//
// // Encode Right value
// encodedRight := eitherCodec.Encode(either.Right[string](42))
// // Returns: Either.Right(42)
//
// Use TranscodeEither when:
// - You need to handle sum types or discriminated unions
// - You want to validate and transform both branches of an Either independently
// - You're working with error handling patterns (Left for errors, Right for success)
// - You need type-safe transformations for both possible values
//
// Common patterns:
// - Error handling: Either[Error, Value]
// - Optional with reason: Either[Reason, Value]
// - Validation results: Either[ValidationError, ValidatedData]
func TranscodeEither[L, R, OL, OR, IL, IR any](leftItem Type[L, OL, IL], rightItem Type[R, OR, IR]) Type[either.Either[L, R], either.Either[OL, OR], either.Either[IL, IR]] {
validate := validateEitherFromEither(leftItem, rightItem)
is := isFromValidate(validate)
name := fmt.Sprintf("Either[%s, %s]", leftItem.Name(), rightItem.Name())
return MakeType(
name,
is,
validate,
either.Fold(F.Flow2(
leftItem.Encode,
either.Left[OR, OL],
), F.Flow2(
rightItem.Encode,
either.Right[OL, OR],
)),
)
}
func validateAlways[T any](is T) Decode[Context, T] {
return reader.Of[Context](validation.Success(is))
}
// Id creates an identity Type codec that performs no transformation or validation.
//
// An identity codec is a Type[T, T, T] where:
// - Decode: Always succeeds and returns the input value unchanged
// - Encode: Returns the input value unchanged (identity function)
// - Validation: Always succeeds without any checks
//
// This is useful as:
// - A building block for more complex codecs
// - A no-op codec when you need a Type but don't want any transformation
// - A starting point for codec composition
// - Testing and debugging codec pipelines
//
// Type Parameters:
// - T: The type that passes through unchanged
//
// Returns:
// - A Type[T, T, T] that performs identity operations on type T
//
// The codec:
// - Name: Uses the type's string representation (e.g., "int", "string")
// - Is: Checks if a value is of type T
// - Validate: Always succeeds and returns the input value
// - Encode: Identity function (returns input unchanged)
//
// Example:
//
// // Create an identity codec for strings
// stringId := codec.Id[string]()
//
// // Decode always succeeds
// result := stringId.Decode("hello") // Success: Right("hello")
//
// // Encode is identity
// encoded := stringId.Encode("world") // Returns: "world"
//
// // Use in composition
// arrayOfStrings := codec.TranscodeArray(stringId)
// result := arrayOfStrings.Decode([]string{"a", "b", "c"})
//
// Use cases:
// - When you need a Type but don't want any validation or transformation
// - As a placeholder in generic code that requires a Type parameter
// - Building blocks for TranscodeArray, TranscodeEither, etc.
// - Testing codec composition without side effects
//
// Note: Unlike MakeSimpleType which validates the type, Id always succeeds
// in validation. It only checks the type during the Is operation.
func Id[T any]() Type[T, T, T] {
return MakeType(
fmt.Sprintf("%T", *new(T)),
Is[T](),
validateAlways[T],
F.Identity[T],
)
}
func validateFromRefinement[A, B any](refinement Refinement[A, B]) Validate[A, B] {
return func(a A) Decode[Context, B] {
return func(ctx Context) Validation[B] {
return F.Pipe2(
a,
refinement.GetOption,
either.FromOption[B](func() validation.Errors {
return array.Of(&validation.ValidationError{
Value: a,
Context: ctx,
Messsage: fmt.Sprintf("type cannot be refined: %s", refinement),
})
}),
)
}
}
}
func isFromRefinement[A, B any](refinement Refinement[A, B]) ReaderResult[any, B] {
isA := Is[A]()
isB := Is[B]()
err := fmt.Errorf("type cannot be refined: %s", refinement)
isAtoB := F.Flow2(
isA,
result.ChainOptionK[A, B](lazy.Of(err))(refinement.GetOption),
)
return F.Pipe1(
isAtoB,
readereither.ChainLeft(reader.Of[error](isB)),
)
}
// FromRefinement creates a Type codec from a Refinement (Prism).
//
// A Refinement[A, B] represents the concept that B is a specialized/refined version of A.
// For example, PositiveInt is a refinement of int, or NonEmptyString is a refinement of string.
// This function converts a Prism[A, B] into a Type[B, A, A] codec that can validate and transform
// between the base type A and the refined type B.
//
// Type Parameters:
// - A: The base/broader type (e.g., int, string)
// - B: The refined/specialized type (e.g., PositiveInt, NonEmptyString)
//
// Parameters:
// - refinement: A Refinement[A, B] (which is a Prism[A, B]) that defines:
// - GetOption: A → Option[B] - attempts to refine A to B (may fail if refinement conditions aren't met)
// - ReverseGet: B → A - converts refined type back to base type (always succeeds)
//
// Returns:
// - A Type[B, A, A] codec where:
// - Decode: A → Validation[B] - validates that A satisfies refinement conditions and produces B
// - Encode: B → A - converts refined type back to base type using ReverseGet
// - Is: Checks if a value is of type B
// - Name: Descriptive name including the refinement's string representation
//
// The codec:
// - Uses the refinement's GetOption for validation during decoding
// - Returns validation errors if the refinement conditions are not met
// - Uses the refinement's ReverseGet for encoding (always succeeds)
// - Provides context-aware error messages indicating why refinement failed
//
// Example:
//
// // Define a refinement for positive integers
// positiveIntPrism := prism.MakePrismWithName(
// func(n int) option.Option[int] {
// if n > 0 {
// return option.Some(n)
// }
// return option.None[int]()
// },
// func(n int) int { return n },
// "PositiveInt",
// )
//
// // Create a codec from the refinement
// positiveIntCodec := codec.FromRefinement[int, int](positiveIntPrism)
//
// // Decode: validates the refinement condition
// result := positiveIntCodec.Decode(42) // Success: Right(42)
// result = positiveIntCodec.Decode(-5) // Failure: validation error
// result = positiveIntCodec.Decode(0) // Failure: validation error
//
// // Encode: converts back to base type
// encoded := positiveIntCodec.Encode(42) // Returns: 42
//
// Use cases:
// - Creating codecs for refined types (positive numbers, non-empty strings, etc.)
// - Validating that values meet specific constraints
// - Building type-safe APIs with refined types
// - Composing refinements with other codecs using Pipe
//
// Common refinement patterns:
// - Numeric constraints: PositiveInt, NonNegativeFloat, BoundedInt
// - String constraints: NonEmptyString, EmailAddress, URL
// - Collection constraints: NonEmptyArray, UniqueElements
// - Domain-specific constraints: ValidAge, ValidZipCode, ValidCreditCard
//
// Note: The refinement's GetOption returning None will result in a validation error
// with a message indicating the type cannot be refined. For more specific error messages,
// consider using MakeType directly with custom validation logic.
func FromRefinement[A, B any](refinement Refinement[A, B]) Type[B, A, A] {
return MakeType(
fmt.Sprintf("FromRefinement(%s)", refinement),
isFromRefinement(refinement),
validateFromRefinement(refinement),
refinement.ReverseGet,
)
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,129 @@
package decode
import (
"github.com/IBM/fp-go/v2/internal/readert"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/IBM/fp-go/v2/reader"
)
// Of creates a Decode that always succeeds with the given value.
// This is the pointed functor operation that lifts a pure value into the Decode context.
//
// Example:
//
// decoder := decode.Of[string](42)
// result := decoder("any input") // Always returns validation.Success(42)
func Of[I, A any](a A) Decode[I, A] {
return reader.Of[I](validation.Of(a))
}
// MonadChain sequences two decode operations, passing the result of the first to the second.
// This is the monadic bind operation that enables sequential composition of decoders.
//
// Example:
//
// decoder1 := decode.Of[string](42)
// decoder2 := decode.MonadChain(decoder1, func(n int) Decode[string, string] {
// return decode.Of[string](fmt.Sprintf("Number: %d", n))
// })
func MonadChain[I, A, B any](fa Decode[I, A], f Kleisli[I, A, B]) Decode[I, B] {
return readert.MonadChain(
validation.MonadChain,
fa,
f,
)
}
// Chain creates an operator that sequences decode operations.
// This is the curried version of MonadChain, useful for composition pipelines.
//
// Example:
//
// chainOp := decode.Chain(func(n int) Decode[string, string] {
// return decode.Of[string](fmt.Sprintf("Number: %d", n))
// })
// decoder := chainOp(decode.Of[string](42))
func Chain[I, A, B any](f Kleisli[I, A, B]) Operator[I, A, B] {
return readert.Chain[Decode[I, A]](
validation.Chain,
f,
)
}
// MonadMap transforms the decoded value using the provided function.
// This is the functor map operation that applies a transformation to successful decode results.
//
// Example:
//
// decoder := decode.Of[string](42)
// mapped := decode.MonadMap(decoder, func(n int) string {
// return fmt.Sprintf("Number: %d", n)
// })
func MonadMap[I, A, B any](fa Decode[I, A], f func(A) B) Decode[I, B] {
return readert.MonadMap[
Decode[I, A],
Decode[I, B]](
validation.MonadMap,
fa,
f,
)
}
// Map creates an operator that transforms decoded values.
// This is the curried version of MonadMap, useful for composition pipelines.
//
// Example:
//
// mapOp := decode.Map(func(n int) string {
// return fmt.Sprintf("Number: %d", n)
// })
// decoder := mapOp(decode.Of[string](42))
func Map[I, A, B any](f func(A) B) Operator[I, A, B] {
return readert.Map[
Decode[I, A],
Decode[I, B]](
validation.Map,
f,
)
}
// MonadAp applies a decoder containing a function to a decoder containing a value.
// This is the applicative apply operation that enables parallel composition of decoders.
//
// Example:
//
// decoderFn := decode.Of[string](func(n int) string {
// return fmt.Sprintf("Number: %d", n)
// })
// decoderVal := decode.Of[string](42)
// result := decode.MonadAp(decoderFn, decoderVal)
func MonadAp[B, I, A any](fab Decode[I, func(A) B], fa Decode[I, A]) Decode[I, B] {
return readert.MonadAp[
Decode[I, A],
Decode[I, B],
Decode[I, func(A) B], I, A](
validation.MonadAp[B, A],
fab,
fa,
)
}
// Ap creates an operator that applies a function decoder to a value decoder.
// This is the curried version of MonadAp, useful for composition pipelines.
//
// Example:
//
// apOp := decode.Ap[string](decode.Of[string](42))
// decoderFn := decode.Of[string](func(n int) string {
// return fmt.Sprintf("Number: %d", n)
// })
// result := apOp(decoderFn)
func Ap[B, I, A any](fa Decode[I, A]) Operator[I, func(A) B, B] {
return readert.Ap[
Decode[I, A],
Decode[I, B],
Decode[I, func(A) B], I, A](
validation.Ap[B, A],
fa,
)
}

View File

@@ -0,0 +1,384 @@
package decode
import (
"fmt"
"testing"
"github.com/IBM/fp-go/v2/either"
N "github.com/IBM/fp-go/v2/number"
"github.com/IBM/fp-go/v2/optics/codec/validation"
S "github.com/IBM/fp-go/v2/string"
"github.com/stretchr/testify/assert"
)
// TestOf tests the Of function
func TestOf(t *testing.T) {
t.Run("creates decoder that always succeeds", func(t *testing.T) {
decoder := Of[string](42)
res := decoder("any input")
assert.Equal(t, validation.Of(42), res)
})
t.Run("works with different input types", func(t *testing.T) {
decoder := Of[int]("hello")
res := decoder(123)
assert.Equal(t, validation.Of("hello"), res)
})
t.Run("works with complex types", func(t *testing.T) {
type Person struct {
Name string
Age int
}
person := Person{Name: "Alice", Age: 30}
decoder := Of[string](person)
res := decoder("input")
assert.Equal(t, validation.Of(person), res)
})
t.Run("ignores input value", func(t *testing.T) {
decoder := Of[string](100)
res1 := decoder("input1")
res2 := decoder("input2")
assert.Equal(t, res1, res2)
assert.Equal(t, validation.Of(100), res1)
})
}
// TestMonadChain tests the MonadChain function
func TestMonadChain(t *testing.T) {
t.Run("chains successful decoders", func(t *testing.T) {
decoder1 := Of[string](42)
decoder2 := MonadChain(decoder1, func(n int) Decode[string, string] {
return Of[string](fmt.Sprintf("Number: %d", n))
})
res := decoder2("input")
assert.Equal(t, validation.Of("Number: 42"), res)
})
t.Run("chains multiple operations", func(t *testing.T) {
decoder1 := Of[string](10)
decoder2 := MonadChain(decoder1, func(n int) Decode[string, int] {
return Of[string](n * 2)
})
decoder3 := MonadChain(decoder2, func(n int) Decode[string, string] {
return Of[string](fmt.Sprintf("Result: %d", n))
})
res := decoder3("input")
assert.Equal(t, validation.Of("Result: 20"), res)
})
t.Run("propagates validation errors", func(t *testing.T) {
failingDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "decode failed"},
})
}
decoder1 := failingDecoder
decoder2 := MonadChain(decoder1, func(n int) Decode[string, string] {
return Of[string](fmt.Sprintf("Number: %d", n))
})
res := decoder2("input")
assert.True(t, either.IsLeft(res))
})
t.Run("short-circuits on first error", func(t *testing.T) {
failingDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "first error"},
})
}
chainCalled := false
decoder := MonadChain(failingDecoder, func(n int) Decode[string, string] {
chainCalled = true
return Of[string]("should not be called")
})
res := decoder("input")
assert.True(t, either.IsLeft(res))
assert.False(t, chainCalled, "Chain function should not be called on error")
})
}
// TestChain tests the Chain function
func TestChain(t *testing.T) {
t.Run("creates chainable operator", func(t *testing.T) {
chainOp := Chain(func(n int) Decode[string, string] {
return Of[string](fmt.Sprintf("Number: %d", n))
})
decoder := chainOp(Of[string](42))
res := decoder("input")
assert.Equal(t, validation.Of("Number: 42"), res)
})
t.Run("can be composed", func(t *testing.T) {
double := Chain(func(n int) Decode[string, int] {
return Of[string](n * 2)
})
toString := Chain(func(n int) Decode[string, string] {
return Of[string](fmt.Sprintf("Value: %d", n))
})
decoder := toString(double(Of[string](21)))
res := decoder("input")
assert.Equal(t, validation.Of("Value: 42"), res)
})
}
// TestMonadMap tests the MonadMap function
func TestMonadMap(t *testing.T) {
t.Run("maps successful decoder", func(t *testing.T) {
decoder := Of[string](42)
mapped := MonadMap(decoder, S.Format[int]("Number: %d"))
res := mapped("input")
assert.Equal(t, validation.Of("Number: 42"), res)
})
t.Run("transforms value type", func(t *testing.T) {
decoder := Of[string]("hello")
mapped := MonadMap(decoder, S.Size)
res := mapped("input")
assert.Equal(t, validation.Of(5), res)
})
t.Run("preserves validation errors", func(t *testing.T) {
failingDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "decode failed"},
})
}
mapped := MonadMap(failingDecoder, S.Format[int]("Number: %d"))
res := mapped("input")
assert.True(t, either.IsLeft(res))
})
t.Run("does not call function on error", func(t *testing.T) {
failingDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "error"},
})
}
mapCalled := false
mapped := MonadMap(failingDecoder, func(n int) string {
mapCalled = true
return "should not be called"
})
res := mapped("input")
assert.True(t, either.IsLeft(res))
assert.False(t, mapCalled, "Map function should not be called on error")
})
t.Run("chains multiple maps", func(t *testing.T) {
decoder := Of[string](10)
mapped1 := MonadMap(decoder, N.Mul(2))
mapped2 := MonadMap(mapped1, N.Add(5))
mapped3 := MonadMap(mapped2, S.Format[int]("Result: %d"))
res := mapped3("input")
assert.Equal(t, validation.Of("Result: 25"), res)
})
}
// TestMap tests the Map function
func TestMap(t *testing.T) {
t.Run("creates mappable operator", func(t *testing.T) {
mapOp := Map[string](S.Format[int]("Number: %d"))
decoder := mapOp(Of[string](42))
res := decoder("input")
assert.Equal(t, validation.Of("Number: 42"), res)
})
t.Run("can be composed", func(t *testing.T) {
double := Map[string](N.Mul(2))
toString := Map[string](S.Format[int]("Value: %d"))
decoder := toString(double(Of[string](21)))
res := decoder("input")
assert.Equal(t, validation.Of("Value: 42"), res)
})
}
// TestMonadAp tests the MonadAp function
func TestMonadAp(t *testing.T) {
t.Run("applies function decoder to value decoder", func(t *testing.T) {
decoderFn := Of[string](S.Format[int]("Number: %d"))
decoderVal := Of[string](42)
res := MonadAp(decoderFn, decoderVal)("input")
assert.Equal(t, validation.Of("Number: 42"), res)
})
t.Run("works with different transformations", func(t *testing.T) {
decoderFn := Of[string](N.Mul(2))
decoderVal := Of[string](21)
res := MonadAp(decoderFn, decoderVal)("input")
assert.Equal(t, validation.Of(42), res)
})
t.Run("propagates function decoder error", func(t *testing.T) {
failingFnDecoder := func(input string) Validation[func(int) string] {
return either.Left[func(int) string](validation.Errors{
{Value: input, Messsage: "function decode failed"},
})
}
decoderVal := Of[string](42)
res := MonadAp(failingFnDecoder, decoderVal)("input")
assert.True(t, either.IsLeft(res))
})
t.Run("propagates value decoder error", func(t *testing.T) {
decoderFn := Of[string](S.Format[int]("Number: %d"))
failingValDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "value decode failed"},
})
}
res := MonadAp(decoderFn, failingValDecoder)("input")
assert.True(t, either.IsLeft(res))
})
t.Run("combines multiple values", func(t *testing.T) {
// Create a function that takes two arguments
decoderFn := Of[string](N.Add[int])
decoderVal1 := Of[string](10)
decoderVal2 := Of[string](32)
// Apply first value
partial := MonadAp(decoderFn, decoderVal1)
// Apply second value
result := MonadAp(partial, decoderVal2)
res := result("input")
assert.Equal(t, validation.Of(42), res)
})
}
// TestAp tests the Ap function
func TestAp(t *testing.T) {
t.Run("creates applicable operator", func(t *testing.T) {
decoderVal := Of[string](42)
apOp := Ap[string](decoderVal)
decoderFn := Of[string](S.Format[int]("Number: %d"))
res := apOp(decoderFn)("input")
assert.Equal(t, validation.Of("Number: 42"), res)
})
t.Run("can be composed", func(t *testing.T) {
val1 := Of[string](10)
val2 := Of[string](32)
apOp1 := Ap[func(int) int](val1)
apOp2 := Ap[int](val2)
fnDecoder := Of[string](N.Add[int])
result := apOp2(apOp1(fnDecoder))
res := result("input")
assert.Equal(t, validation.Of(42), res)
})
}
// TestMonadLaws tests that the monad operations satisfy monad laws
func TestMonadLaws(t *testing.T) {
t.Run("left identity: Of(a) >>= f === f(a)", func(t *testing.T) {
a := 42
f := func(n int) Decode[string, string] {
return Of[string](fmt.Sprintf("Number: %d", n))
}
left := MonadChain(Of[string](a), f)
right := f(a)
input := "test"
assert.Equal(t, right(input), left(input))
})
t.Run("right identity: m >>= Of === m", func(t *testing.T) {
m := Of[string](42)
left := MonadChain(m, func(a int) Decode[string, int] {
return Of[string](a)
})
input := "test"
assert.Equal(t, m(input), left(input))
})
t.Run("associativity: (m >>= f) >>= g === m >>= (\\x -> f(x) >>= g)", func(t *testing.T) {
m := Of[string](10)
f := func(n int) Decode[string, int] {
return Of[string](n * 2)
}
g := func(n int) Decode[string, string] {
return Of[string](fmt.Sprintf("Result: %d", n))
}
// (m >>= f) >>= g
left := MonadChain(MonadChain(m, f), g)
// m >>= (\x -> f(x) >>= g)
right := MonadChain(m, func(x int) Decode[string, string] {
return MonadChain(f(x), g)
})
input := "test"
assert.Equal(t, right(input), left(input))
})
}
// TestFunctorLaws tests that the functor operations satisfy functor laws
func TestFunctorLaws(t *testing.T) {
t.Run("identity: map(id) === id", func(t *testing.T) {
decoder := Of[string](42)
mapped := MonadMap(decoder, func(a int) int { return a })
input := "test"
assert.Equal(t, decoder(input), mapped(input))
})
t.Run("composition: map(f . g) === map(f) . map(g)", func(t *testing.T) {
decoder := Of[string](10)
f := N.Mul(2)
g := N.Add(5)
// map(f . g)
left := MonadMap(decoder, func(n int) int {
return f(g(n))
})
// map(f) . map(g)
right := MonadMap(MonadMap(decoder, g), f)
input := "test"
assert.Equal(t, right(input), left(input))
})
}

View File

@@ -0,0 +1,30 @@
package decode
import (
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/IBM/fp-go/v2/reader"
)
type (
// Validation represents the result of a validation operation that may contain
// validation errors or a successfully validated value of type A.
Validation[A any] = validation.Validation[A]
// Reader represents a computation that depends on an environment R and produces a value A.
Reader[R, A any] = reader.Reader[R, A]
// Decode is a function that decodes input I to type A with validation.
// It returns a Validation result directly.
Decode[I, A any] = Reader[I, Validation[A]]
// Kleisli represents a function from A to a decoded B given input type I.
// It's a Reader that takes an input A and produces a Decode[I, B] function.
// This enables composition of decoding operations in a functional style.
Kleisli[I, A, B any] = Reader[A, Decode[I, B]]
// Operator represents a decoding transformation that takes a decoded A and produces a decoded B.
// It's a specialized Kleisli arrow for composing decode operations where the input is already decoded.
// This allows chaining multiple decode transformations together.
Operator[I, A, B any] = Kleisli[I, Decode[I, A], B]
)

84
v2/optics/codec/format.go Normal file
View File

@@ -0,0 +1,84 @@
package codec
import (
"fmt"
"log/slog"
"github.com/IBM/fp-go/v2/internal/formatting"
)
// String implements the fmt.Stringer interface for typeImpl.
// It returns the name of the type, which is used for simple string representation.
//
// Example:
//
// stringType := codec.String()
// fmt.Println(stringType) // Output: "string"
func (t *typeImpl[A, O, I]) String() string {
return t.name
}
// Format implements the fmt.Formatter interface for typeImpl.
// It provides custom formatting based on the format verb:
// - %s, %v: Returns the type name
// - %q: Returns the type name in quotes
// - %#v: Returns a detailed Go-syntax representation
//
// Example:
//
// intType := codec.Int()
// fmt.Printf("%s\n", intType) // Output: int
// fmt.Printf("%q\n", intType) // Output: "int"
// fmt.Printf("%#v\n", intType) // Output: codec.Type[int, int, any]{name: "int"}
func (t *typeImpl[A, O, I]) Format(f fmt.State, verb rune) {
formatting.FmtString(t, f, verb)
}
// GoString implements the fmt.GoStringer interface for typeImpl.
// It returns a Go-syntax representation of the type that could be used
// to recreate the type (though not executable due to function values).
//
// This is called when using the %#v format verb with fmt.Printf.
//
// Example:
//
// stringType := codec.String()
// fmt.Printf("%#v\n", stringType)
// // Output: codec.Type[string, string, any]{name: "string"}
func (t *typeImpl[A, O, I]) GoString() string {
return fmt.Sprintf("codec.Type[%s, %s, %s]{name: %q}",
typeNameOf[A](), typeNameOf[O](), typeNameOf[I](), t.name)
}
// LogValue implements the slog.LogValuer interface for typeImpl.
// It provides structured logging representation of the codec type.
// Returns a slog.Value containing the type information as a group with
// the codec name and type parameters.
//
// This method is called automatically when logging a codec with slog.
//
// Example:
//
// stringType := codec.String()
// slog.Info("codec created", "codec", stringType)
// // Logs: codec={name=string type_a=string type_o=string type_i=interface {}}
func (t *typeImpl[A, O, I]) LogValue() slog.Value {
return slog.GroupValue(
slog.String("name", t.name),
slog.String("type_a", typeNameOf[A]()),
slog.String("type_o", typeNameOf[O]()),
slog.String("type_i", typeNameOf[I]()),
)
}
// typeNameOf returns a string representation of the type T.
// It handles the special case where T is 'any' (interface{}).
func typeNameOf[T any]() string {
var zero T
typeName := fmt.Sprintf("%T", zero)
// Handle the case where %T prints "<nil>" for interface{} types
if typeName == "<nil>" {
return "interface {}"
}
return typeName
}

View File

@@ -0,0 +1,216 @@
package codec
import (
"fmt"
"log/slog"
"testing"
"github.com/stretchr/testify/assert"
)
// TestTypeImplStringer tests the String() method implementation
func TestTypeImplStringer(t *testing.T) {
t.Run("String codec", func(t *testing.T) {
codec := String().(*typeImpl[string, string, any])
result := codec.String()
assert.Equal(t, "string", result)
})
t.Run("Int codec", func(t *testing.T) {
codec := Int().(*typeImpl[int, int, any])
result := codec.String()
assert.Equal(t, "int", result)
})
t.Run("Bool codec", func(t *testing.T) {
codec := Bool().(*typeImpl[bool, bool, any])
result := codec.String()
assert.Equal(t, "bool", result)
})
}
// TestTypeImplFormat tests the Format() method implementation
func TestTypeImplFormat(t *testing.T) {
t.Run("String codec with %s", func(t *testing.T) {
codec := String().(*typeImpl[string, string, any])
result := fmt.Sprintf("%s", codec)
assert.Equal(t, "string", result)
})
t.Run("String codec with %v", func(t *testing.T) {
codec := String().(*typeImpl[string, string, any])
result := fmt.Sprintf("%v", codec)
assert.Equal(t, "string", result)
})
t.Run("String codec with %q", func(t *testing.T) {
codec := String().(*typeImpl[string, string, any])
result := fmt.Sprintf("%q", codec)
assert.Equal(t, `"string"`, result)
})
t.Run("Int codec with %s", func(t *testing.T) {
codec := Int().(*typeImpl[int, int, any])
result := fmt.Sprintf("%s", codec)
assert.Equal(t, "int", result)
})
t.Run("Int codec with %#v", func(t *testing.T) {
codec := Int().(*typeImpl[int, int, any])
result := fmt.Sprintf("%#v", codec)
assert.Equal(t, `codec.Type[int, int, interface {}]{name: "int"}`, result)
})
}
// TestTypeImplGoString tests the GoString() method implementation
func TestTypeImplGoString(t *testing.T) {
t.Run("String codec", func(t *testing.T) {
codec := String().(*typeImpl[string, string, any])
result := codec.GoString()
assert.Equal(t, `codec.Type[string, string, interface {}]{name: "string"}`, result)
})
t.Run("Int codec", func(t *testing.T) {
codec := Int().(*typeImpl[int, int, any])
result := codec.GoString()
assert.Equal(t, `codec.Type[int, int, interface {}]{name: "int"}`, result)
})
t.Run("Bool codec", func(t *testing.T) {
codec := Bool().(*typeImpl[bool, bool, any])
result := codec.GoString()
assert.Equal(t, `codec.Type[bool, bool, interface {}]{name: "bool"}`, result)
})
}
// TestTypeImplFormatWithPrintf tests that %#v uses GoString
func TestTypeImplFormatWithPrintf(t *testing.T) {
stringCodec := String().(*typeImpl[string, string, any])
// Test that %#v calls GoString
result := fmt.Sprintf("%#v", stringCodec)
assert.Equal(t, `codec.Type[string, string, interface {}]{name: "string"}`, result)
}
// TestComplexTypeFormatting tests formatting of more complex types
func TestComplexTypeFormatting(t *testing.T) {
// Create an array codec
arrayCodec := Array(Int()).(*typeImpl[[]int, []int, any])
// Test String()
name := arrayCodec.String()
assert.Equal(t, "Array[int]", name)
// Test Format with %s
formatted := fmt.Sprintf("%s", arrayCodec)
assert.Equal(t, "Array[int]", formatted)
// Test GoString
goString := arrayCodec.GoString()
// Just verify it's not empty
assert.NotEmpty(t, goString)
}
// TestFormatterInterface verifies that typeImpl implements fmt.Formatter
func TestFormatterInterface(t *testing.T) {
var _ fmt.Formatter = (*typeImpl[int, int, any])(nil)
}
// TestStringerInterface verifies that typeImpl implements fmt.Stringer
func TestStringerInterface(t *testing.T) {
var _ fmt.Stringer = (*typeImpl[int, int, any])(nil)
}
// TestGoStringerInterface verifies that typeImpl implements fmt.GoStringer
func TestGoStringerInterface(t *testing.T) {
var _ fmt.GoStringer = (*typeImpl[int, int, any])(nil)
}
// TestLogValuerInterface verifies that typeImpl implements slog.LogValuer
func TestLogValuerInterface(t *testing.T) {
var _ slog.LogValuer = (*typeImpl[int, int, any])(nil)
}
// TestTypeImplLogValue tests the LogValue() method implementation
func TestTypeImplLogValue(t *testing.T) {
t.Run("String codec", func(t *testing.T) {
codec := String().(*typeImpl[string, string, any])
logValue := codec.LogValue()
assert.Equal(t, slog.KindGroup, logValue.Kind())
// Extract attributes from the group
attrs := logValue.Group()
assert.Len(t, attrs, 4)
// Check that we have the expected attributes
attrMap := make(map[string]string)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.String()
}
assert.Equal(t, "string", attrMap["name"])
assert.Equal(t, "string", attrMap["type_a"])
assert.Equal(t, "string", attrMap["type_o"])
assert.Contains(t, attrMap["type_i"], "interface")
})
t.Run("Int codec", func(t *testing.T) {
codec := Int().(*typeImpl[int, int, any])
logValue := codec.LogValue()
assert.Equal(t, slog.KindGroup, logValue.Kind())
attrs := logValue.Group()
assert.Len(t, attrs, 4)
attrMap := make(map[string]string)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.String()
}
assert.Equal(t, "int", attrMap["name"])
assert.Equal(t, "int", attrMap["type_a"])
assert.Equal(t, "int", attrMap["type_o"])
})
t.Run("Bool codec", func(t *testing.T) {
codec := Bool().(*typeImpl[bool, bool, any])
logValue := codec.LogValue()
assert.Equal(t, slog.KindGroup, logValue.Kind())
attrs := logValue.Group()
assert.Len(t, attrs, 4)
attrMap := make(map[string]string)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.String()
}
assert.Equal(t, "bool", attrMap["name"])
assert.Equal(t, "bool", attrMap["type_a"])
})
t.Run("Array codec", func(t *testing.T) {
codec := Array(Int()).(*typeImpl[[]int, []int, any])
logValue := codec.LogValue()
assert.Equal(t, slog.KindGroup, logValue.Kind())
attrs := logValue.Group()
assert.Len(t, attrs, 4)
attrMap := make(map[string]string)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.String()
}
assert.Equal(t, "Array[int]", attrMap["name"])
})
}
// TestFormattableInterface verifies that typeImpl implements formatting.Formattable
func TestFormattableInterface(t *testing.T) {
var _ Formattable = (*typeImpl[int, int, any])(nil)
}

81
v2/optics/codec/prism.go Normal file
View File

@@ -0,0 +1,81 @@
package codec
import (
"github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/prism"
)
// TypeToPrism converts a Type codec into a Prism optic.
//
// A Type[A, S, S] represents a bidirectional codec that can decode S to A (with validation)
// and encode A back to S. A Prism[S, A] is an optic that can optionally extract an A from S
// and always construct an S from an A.
//
// This conversion bridges the codec and optics worlds, allowing you to use validation-based
// codecs as prisms for functional optics composition.
//
// Type Parameters:
// - S: The source/encoded type (both input and output)
// - A: The decoded/focus type
//
// Parameters:
// - t: A Type[A, S, S] codec where:
// - Decode: S → Validation[A] (may fail with validation errors)
// - Encode: A → S (always succeeds)
// - Name: Provides a descriptive name for the type
//
// Returns:
// - A Prism[S, A] where:
// - GetOption: S → Option[A] (Some if decode succeeds, None if validation fails)
// - ReverseGet: A → S (uses the codec's Encode function)
// - Name: Inherited from the Type's name
//
// The conversion works as follows:
// - GetOption: Decodes the value and converts validation result to Option
// (Right(a) → Some(a), Left(errors) → None)
// - ReverseGet: Directly uses the Type's Encode function
// - Name: Preserves the Type's descriptive name
//
// Example:
//
// // Create a codec for positive integers
// positiveInt := codec.MakeType[int, int, int](
// "PositiveInt",
// func(i any) result.Result[int] { ... },
// func(i int) codec.Validate[int] {
// if i <= 0 {
// return validation.FailureWithMessage(i, "must be positive")
// }
// return validation.Success(i)
// },
// func(i int) int { return i },
// )
//
// // Convert to prism
// prism := codec.TypeToPrism(positiveInt)
//
// // Use as prism
// value := prism.GetOption(42) // Some(42) - validation succeeds
// value = prism.GetOption(-5) // None - validation fails
// result := prism.ReverseGet(10) // 10 - encoding always succeeds
//
// Use cases:
// - Composing codecs with other optics (lenses, prisms, traversals)
// - Using validation logic in optics pipelines
// - Building complex data transformations with functional composition
// - Integrating type-safe parsing with optics-based data access
//
// Note: The prism's GetOption will return None for any validation failure,
// discarding the specific error details. If you need error information,
// use the Type's Decode method directly instead.
func TypeToPrism[S, A any](t Type[A, S, S]) Prism[S, A] {
return prism.MakePrismWithName(
F.Flow2(
t.Decode,
either.ToOption,
),
t.Encode,
t.Name(),
)
}

View File

@@ -0,0 +1,327 @@
package codec
import (
"testing"
"github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert"
)
// TestTypeToPrismBasic tests basic TypeToPrism functionality
func TestTypeToPrismBasic(t *testing.T) {
// Create a simple string identity type
stringType := Id[string]()
prism := TypeToPrism(stringType)
t.Run("GetOption returns Some for valid value", func(t *testing.T) {
result := prism.GetOption("hello")
assert.True(t, option.IsSome(result), "Expected Some for valid string")
value := option.GetOrElse(F.Constant(""))(result)
assert.Equal(t, "hello", value)
})
t.Run("ReverseGet encodes value correctly", func(t *testing.T) {
encoded := prism.ReverseGet("world")
assert.Equal(t, "world", encoded)
})
t.Run("Name is preserved from Type", func(t *testing.T) {
assert.Equal(t, stringType.Name(), prism.String())
})
t.Run("Round trip preserves value", func(t *testing.T) {
original := "test value"
encoded := prism.ReverseGet(original)
decoded := prism.GetOption(encoded)
assert.True(t, option.IsSome(decoded))
value := option.GetOrElse(F.Constant(""))(decoded)
assert.Equal(t, original, value)
})
}
// TestTypeToPrismValidationLogic tests TypeToPrism with validation logic
func TestTypeToPrismValidationLogic(t *testing.T) {
// Create a type that validates positive integers
positiveIntType := MakeType(
"PositiveInt",
func(u any) either.Either[error, int] {
i, ok := u.(int)
if !ok || i <= 0 {
return either.Left[int](assert.AnError)
}
return either.Of[error](i)
},
func(i int) Decode[Context, int] {
return func(c Context) Validation[int] {
if i <= 0 {
return validation.FailureWithMessage[int](i, "must be positive")(c)
}
return validation.Success(i)
}
},
F.Identity[int],
)
prism := TypeToPrism(positiveIntType)
t.Run("GetOption returns Some for valid positive integer", func(t *testing.T) {
result := prism.GetOption(42)
assert.True(t, option.IsSome(result))
value := option.GetOrElse(F.Constant(0))(result)
assert.Equal(t, 42, value)
})
t.Run("GetOption returns None for negative integer", func(t *testing.T) {
result := prism.GetOption(-5)
assert.True(t, option.IsNone(result), "Expected None for negative integer")
})
t.Run("GetOption returns None for zero", func(t *testing.T) {
result := prism.GetOption(0)
assert.True(t, option.IsNone(result), "Expected None for zero")
})
t.Run("GetOption returns Some for boundary value", func(t *testing.T) {
result := prism.GetOption(1)
assert.True(t, option.IsSome(result))
value := option.GetOrElse(F.Constant(0))(result)
assert.Equal(t, 1, value)
})
t.Run("ReverseGet does not validate", func(t *testing.T) {
// ReverseGet should encode without validation
encoded := prism.ReverseGet(-10)
assert.Equal(t, -10, encoded, "ReverseGet should not validate")
})
t.Run("Name reflects validation purpose", func(t *testing.T) {
assert.Equal(t, "PositiveInt", prism.String())
})
}
// TestTypeToPrismWithComplexValidation tests more complex validation scenarios
func TestTypeToPrismWithComplexValidation(t *testing.T) {
// Create a type that validates strings with length constraints
boundedStringType := MakeType(
"BoundedString",
func(u any) either.Either[error, string] {
s, ok := u.(string)
if !ok {
return either.Left[string](assert.AnError)
}
return either.Of[error](s)
},
func(s string) Decode[Context, string] {
return func(c Context) Validation[string] {
if len(s) < 3 {
return validation.FailureWithMessage[string](s, "must be at least 3 characters")(c)
}
if len(s) > 10 {
return validation.FailureWithMessage[string](s, "must be at most 10 characters")(c)
}
return validation.Success(s)
}
},
F.Identity[string],
)
prism := TypeToPrism(boundedStringType)
t.Run("GetOption returns Some for valid length", func(t *testing.T) {
result := prism.GetOption("hello")
assert.True(t, option.IsSome(result))
value := option.GetOrElse(F.Constant(""))(result)
assert.Equal(t, "hello", value)
})
t.Run("GetOption returns None for too short string", func(t *testing.T) {
result := prism.GetOption("ab")
assert.True(t, option.IsNone(result))
})
t.Run("GetOption returns None for too long string", func(t *testing.T) {
result := prism.GetOption("this is way too long")
assert.True(t, option.IsNone(result))
})
t.Run("GetOption returns Some for minimum length", func(t *testing.T) {
result := prism.GetOption("abc")
assert.True(t, option.IsSome(result))
})
t.Run("GetOption returns Some for maximum length", func(t *testing.T) {
result := prism.GetOption("1234567890")
assert.True(t, option.IsSome(result))
})
}
// TestTypeToPrismWithNumericTypes tests TypeToPrism with different numeric types
func TestTypeToPrismWithNumericTypes(t *testing.T) {
t.Run("Float64 type", func(t *testing.T) {
floatType := Id[float64]()
prism := TypeToPrism(floatType)
result := prism.GetOption(3.14)
assert.True(t, option.IsSome(result))
value := option.GetOrElse(F.Constant(0.0))(result)
assert.Equal(t, 3.14, value)
})
t.Run("Int64 type", func(t *testing.T) {
int64Type := Id[int64]()
prism := TypeToPrism(int64Type)
result := prism.GetOption(int64(9223372036854775807))
assert.True(t, option.IsSome(result))
})
}
// TestTypeToPrismWithBooleanType tests TypeToPrism with boolean type
func TestTypeToPrismWithBooleanType(t *testing.T) {
boolType := Id[bool]()
prism := TypeToPrism(boolType)
t.Run("GetOption returns Some for true", func(t *testing.T) {
result := prism.GetOption(true)
assert.True(t, option.IsSome(result))
value := option.GetOrElse(F.Constant(false))(result)
assert.True(t, value)
})
t.Run("GetOption returns Some for false", func(t *testing.T) {
result := prism.GetOption(false)
assert.True(t, option.IsSome(result))
value := option.GetOrElse(F.Constant(true))(result)
assert.False(t, value)
})
t.Run("ReverseGet preserves boolean values", func(t *testing.T) {
assert.True(t, prism.ReverseGet(true))
assert.False(t, prism.ReverseGet(false))
})
}
// TestTypeToPrismEdgeCases tests edge cases and special scenarios
func TestTypeToPrismEdgeCases(t *testing.T) {
t.Run("Empty string validation", func(t *testing.T) {
nonEmptyStringType := MakeType(
"NonEmptyString",
func(u any) either.Either[error, string] {
s, ok := u.(string)
if !ok {
return either.Left[string](assert.AnError)
}
return either.Of[error](s)
},
func(s string) Decode[Context, string] {
return func(c Context) Validation[string] {
if s == "" {
return validation.FailureWithMessage[string](s, "must not be empty")(c)
}
return validation.Success(s)
}
},
F.Identity[string],
)
prism := TypeToPrism(nonEmptyStringType)
emptyResult := prism.GetOption("")
assert.True(t, option.IsNone(emptyResult), "Empty string should fail validation")
nonEmptyResult := prism.GetOption("a")
assert.True(t, option.IsSome(nonEmptyResult))
})
t.Run("Multiple validation failures", func(t *testing.T) {
strictIntType := MakeType(
"StrictInt",
func(u any) either.Either[error, int] {
i, ok := u.(int)
if !ok {
return either.Left[int](assert.AnError)
}
return either.Of[error](i)
},
func(i int) Decode[Context, int] {
return func(c Context) Validation[int] {
if i < 0 {
return validation.FailureWithMessage[int](i, "must be non-negative")(c)
}
if i > 100 {
return validation.FailureWithMessage[int](i, "must be at most 100")(c)
}
if i%2 != 0 {
return validation.FailureWithMessage[int](i, "must be even")(c)
}
return validation.Success(i)
}
},
F.Identity[int],
)
prism := TypeToPrism(strictIntType)
// Valid value
validResult := prism.GetOption(42)
assert.True(t, option.IsSome(validResult))
// Various invalid values
assert.True(t, option.IsNone(prism.GetOption(-1)), "Negative should fail")
assert.True(t, option.IsNone(prism.GetOption(101)), "Too large should fail")
assert.True(t, option.IsNone(prism.GetOption(43)), "Odd should fail")
})
}
// TestTypeToPrismNamePreservation tests that prism names are correctly preserved
func TestTypeToPrismNamePreservation(t *testing.T) {
testCases := []struct {
name string
typeName string
}{
{"Simple name", "SimpleType"},
{"Descriptive name", "PositiveIntegerValidator"},
{"With spaces", "Type With Spaces"},
{"With special chars", "Type_With-Special.Chars"},
{"Unicode name", "类型名称"},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
stringType := MakeType(
tc.typeName,
func(u any) either.Either[error, string] {
s, ok := u.(string)
if !ok {
return either.Left[string](assert.AnError)
}
return either.Of[error](s)
},
func(s string) Decode[Context, string] {
return func(c Context) Validation[string] {
return validation.Success(s)
}
},
F.Identity[string],
)
prism := TypeToPrism(stringType)
assert.Equal(t, tc.typeName, prism.String())
})
}
}

View File

@@ -1,12 +1,15 @@
package codec
import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/internal/formatting"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/optics/codec/decode"
"github.com/IBM/fp-go/v2/optics/codec/validate"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/IBM/fp-go/v2/optics/decoder"
"github.com/IBM/fp-go/v2/optics/encoder"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/pair"
"github.com/IBM/fp-go/v2/reader"
@@ -15,6 +18,12 @@ import (
)
type (
// Formattable represents a type that can be formatted as a string representation.
// It provides a way to obtain a human-readable description of a type or value.
Formattable = formatting.Formattable
// ReaderResult represents a computation that depends on an environment R,
// produces a value A, and may fail with an error.
ReaderResult[R, A any] = readerresult.ReaderResult[R, A]
// Lazy represents a lazily evaluated value.
@@ -26,9 +35,6 @@ type (
// Option represents an optional value that may or may not be present.
Option[A any] = option.Option[A]
// Either represents a value that can be one of two types: Left (error) or Right (success).
Either[E, A any] = either.Either[E, A]
// Result represents a computation that may fail with an error.
Result[A any] = result.Result[A]
@@ -39,17 +45,21 @@ type (
Encode encoder.Encoder[O, A]
}
// Validation represents the result of a validation operation that may contain
// validation errors or a successfully validated value of type A.
Validation[A any] = validation.Validation[A]
// Context provides contextual information for validation operations,
// such as the current path in a nested structure.
Context = validation.Context
// Validate is a function that validates input I to produce type A.
// It takes an input and returns a Reader that depends on the validation Context.
Validate[I, A any] = Reader[I, Reader[Context, Validation[A]]]
Validate[I, A any] = validate.Validate[I, A]
// Decode is a function that decodes input I to type A with validation.
// It returns a Validation result directly.
Decode[I, A any] = Reader[I, Validation[A]]
Decode[I, A any] = decode.Decode[I, A]
// Encode is a function that encodes type A to output O.
Encode[A, O any] = Reader[A, O]
@@ -57,7 +67,7 @@ type (
// Decoder is an interface for types that can decode and validate input.
Decoder[I, A any] interface {
Name() string
Validate(I) Reader[Context, Validation[A]]
Validate(I) Decode[Context, A]
Decode(I) Validation[A]
}
@@ -70,6 +80,7 @@ type (
// and type checking capabilities. It represents a complete specification of
// how to work with a particular type.
Type[A, O, I any] interface {
Formattable
Decoder[I, A]
Encoder[A, O]
AsDecoder() Decoder[I, A]
@@ -77,7 +88,17 @@ type (
Is(any) Result[A]
}
// Endomorphism represents a function from type A to itself (A -> A).
// It forms a monoid under function composition.
Endomorphism[A any] = endomorphism.Endomorphism[A]
// Pair represents a tuple of two values of types L and R.
Pair[L, R any] = pair.Pair[L, R]
// Prism is an optic that focuses on a part of a sum type S that may or may not
// contain a value of type A. It provides a way to preview and review values.
Prism[S, A any] = prism.Prism[S, A]
// Refinement represents the concept that B is a specialized type of A
Refinement[A, B any] = Prism[A, B]
)

View File

@@ -0,0 +1,124 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package validate
import (
"github.com/IBM/fp-go/v2/monoid"
)
// ApplicativeMonoid creates a Monoid instance for Validate[I, A] given a Monoid[A].
//
// This function lifts a monoid operation on values of type A to work with validators
// that produce values of type A. It uses the applicative functor structure of the
// nested Reader types to combine validators while preserving their validation context.
//
// The resulting monoid allows you to:
// - Combine multiple validators that produce monoidal values
// - Run validators in parallel and merge their results using the monoid operation
// - Build complex validators compositionally from simpler ones
//
// # Type Parameters
//
// - I: The input type that validators accept
// - A: The output type that validators produce (must have a Monoid instance)
//
// # Parameters
//
// - m: A Monoid[A] that defines how to combine values of type A
//
// # Returns
//
// A Monoid[Validate[I, A]] that can combine validators using the applicative structure.
//
// # How It Works
//
// The function composes three layers of applicative monoids:
// 1. The innermost layer uses validation.ApplicativeMonoid(m) to combine Validation[A] values
// 2. The middle layer wraps this in reader.ApplicativeMonoid for the Context dependency
// 3. The outer layer wraps everything in reader.ApplicativeMonoid for the input I dependency
//
// This creates a monoid that:
// - Takes the same input I for both validators
// - Threads the same Context through both validators
// - Combines successful results using the monoid operation on A
// - Accumulates validation errors from both validators if either fails
//
// # Example
//
// Combining string validators using string concatenation:
//
// import (
// "github.com/IBM/fp-go/v2/monoid"
// "github.com/IBM/fp-go/v2/string"
// "github.com/IBM/fp-go/v2/optics/codec/validate"
// "github.com/IBM/fp-go/v2/optics/codec/validation"
// )
//
// // Create a monoid for string validators
// stringMonoid := string.Monoid
// validatorMonoid := validate.ApplicativeMonoid[string, string](stringMonoid)
//
// // Define two validators that extract different parts
// validator1 := func(input string) validate.Reader[validation.Context, validation.Validation[string]] {
// return func(ctx validation.Context) validation.Validation[string] {
// return validation.Success("Hello ")
// }
// }
//
// validator2 := func(input string) validate.Reader[validation.Context, validation.Validation[string]] {
// return func(ctx validation.Context) validation.Validation[string] {
// return validation.Success("World")
// }
// }
//
// // Combine them - results will be concatenated
// combined := validatorMonoid.Concat(validator1, validator2)
// // When run, produces validation.Success("Hello World")
//
// Combining numeric validators using addition:
//
// import (
// "github.com/IBM/fp-go/v2/number"
// )
//
// // Create a monoid for int validators using addition
// intMonoid := number.MonoidSum[int]()
// validatorMonoid := validate.ApplicativeMonoid[string, int](intMonoid)
//
// // Validators that extract and validate different numeric fields
// // Results will be summed together
//
// # Notes
//
// - Both validators receive the same input value I
// - If either validator fails, all errors are accumulated
// - If both succeed, their results are combined using the monoid operation
// - The empty element of the monoid serves as the identity for the Concat operation
// - This follows the applicative functor laws for combining effectful computations
//
// # See Also
//
// - validation.ApplicativeMonoid: The underlying monoid for validation results
// - reader.ApplicativeMonoid: The monoid for reader computations
// - Monoid[A]: The monoid instance for the result type
func ApplicativeMonoid[I, A any](m Monoid[A]) Monoid[Validate[I, A]] {
return monoid.ApplicativeMonoid[A, Validate[I, A]](
Of,
MonadMap,
MonadAp,
m,
)
}

View File

@@ -0,0 +1,475 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package validate
import (
"testing"
E "github.com/IBM/fp-go/v2/either"
N "github.com/IBM/fp-go/v2/number"
"github.com/IBM/fp-go/v2/optics/codec/validation"
S "github.com/IBM/fp-go/v2/string"
"github.com/stretchr/testify/assert"
)
var (
intAddMonoid = N.MonoidSum[int]()
strMonoid = S.Monoid
)
// Helper function to create a successful validator
func successValidator[I, A any](value A) Validate[I, A] {
return func(input I) Reader[validation.Context, validation.Validation[A]] {
return func(ctx validation.Context) validation.Validation[A] {
return validation.Success(value)
}
}
}
// Helper function to create a failing validator
func failureValidator[I, A any](message string) Validate[I, A] {
return func(input I) Reader[validation.Context, validation.Validation[A]] {
return validation.FailureWithMessage[A](input, message)
}
}
// Helper function to create a validator that uses the input
func inputDependentValidator[A any](f func(A) A) Validate[A, A] {
return func(input A) Reader[validation.Context, validation.Validation[A]] {
return func(ctx validation.Context) validation.Validation[A] {
return validation.Success(f(input))
}
}
}
// TestApplicativeMonoid_EmptyElement tests the empty element of the monoid
func TestApplicativeMonoid_EmptyElement(t *testing.T) {
t.Run("int addition monoid", func(t *testing.T) {
m := ApplicativeMonoid[string](intAddMonoid)
empty := m.Empty()
result := empty("test")(nil)
assert.Equal(t, validation.Of(0), result)
})
t.Run("string concatenation monoid", func(t *testing.T) {
m := ApplicativeMonoid[int](strMonoid)
empty := m.Empty()
result := empty(42)(nil)
assert.Equal(t, validation.Of(""), result)
})
}
// TestApplicativeMonoid_ConcatSuccesses tests concatenating two successful validators
func TestApplicativeMonoid_ConcatSuccesses(t *testing.T) {
t.Run("int addition", func(t *testing.T) {
m := ApplicativeMonoid[string](intAddMonoid)
v1 := successValidator[string](5)
v2 := successValidator[string](3)
combined := m.Concat(v1, v2)
result := combined("input")(nil)
assert.Equal(t, validation.Of(8), result)
})
t.Run("string concatenation", func(t *testing.T) {
m := ApplicativeMonoid[int](strMonoid)
v1 := successValidator[int]("Hello")
v2 := successValidator[int](" World")
combined := m.Concat(v1, v2)
result := combined(42)(nil)
assert.Equal(t, validation.Of("Hello World"), result)
})
}
// TestApplicativeMonoid_ConcatWithFailure tests concatenating validators where one fails
func TestApplicativeMonoid_ConcatWithFailure(t *testing.T) {
m := ApplicativeMonoid[string](intAddMonoid)
t.Run("left failure", func(t *testing.T) {
v1 := failureValidator[string, int]("left error")
v2 := successValidator[string](5)
combined := m.Concat(v1, v2)
result := combined("input")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Len(t, errors, 1)
assert.Equal(t, "left error", errors[0].Messsage)
})
t.Run("right failure", func(t *testing.T) {
v1 := successValidator[string](5)
v2 := failureValidator[string, int]("right error")
combined := m.Concat(v1, v2)
result := combined("input")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Len(t, errors, 1)
assert.Equal(t, "right error", errors[0].Messsage)
})
t.Run("both failures", func(t *testing.T) {
v1 := failureValidator[string, int]("left error")
v2 := failureValidator[string, int]("right error")
combined := m.Concat(v1, v2)
result := combined("input")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
// Note: The current implementation returns the first error encountered
assert.GreaterOrEqual(t, len(errors), 1)
// At least one of the errors should be present
hasError := false
for _, err := range errors {
if err.Messsage == "left error" || err.Messsage == "right error" {
hasError = true
break
}
}
assert.True(t, hasError, "Should contain at least one validation error")
})
}
// TestApplicativeMonoid_LeftIdentity tests the left identity law
func TestApplicativeMonoid_LeftIdentity(t *testing.T) {
m := ApplicativeMonoid[string](intAddMonoid)
v := successValidator[string](42)
// empty <> v == v
combined := m.Concat(m.Empty(), v)
resultCombined := combined("test")(nil)
resultOriginal := v("test")(nil)
assert.Equal(t, resultOriginal, resultCombined)
}
// TestApplicativeMonoid_RightIdentity tests the right identity law
func TestApplicativeMonoid_RightIdentity(t *testing.T) {
m := ApplicativeMonoid[string](intAddMonoid)
v := successValidator[string](42)
// v <> empty == v
combined := m.Concat(v, m.Empty())
resultCombined := combined("test")(nil)
resultOriginal := v("test")(nil)
assert.Equal(t, resultOriginal, resultCombined)
}
// TestApplicativeMonoid_Associativity tests the associativity law
func TestApplicativeMonoid_Associativity(t *testing.T) {
m := ApplicativeMonoid[string](intAddMonoid)
v1 := successValidator[string](1)
v2 := successValidator[string](2)
v3 := successValidator[string](3)
// (v1 <> v2) <> v3 == v1 <> (v2 <> v3)
left := m.Concat(m.Concat(v1, v2), v3)
right := m.Concat(v1, m.Concat(v2, v3))
resultLeft := left("test")(nil)
resultRight := right("test")(nil)
assert.Equal(t, resultRight, resultLeft)
// Both should equal 6
assert.Equal(t, validation.Of(6), resultLeft)
}
// TestApplicativeMonoid_AssociativityWithFailures tests associativity with failures
func TestApplicativeMonoid_AssociativityWithFailures(t *testing.T) {
m := ApplicativeMonoid[string](intAddMonoid)
v1 := successValidator[string](1)
v2 := failureValidator[string, int]("error 2")
v3 := successValidator[string](3)
// (v1 <> v2) <> v3 == v1 <> (v2 <> v3)
left := m.Concat(m.Concat(v1, v2), v3)
right := m.Concat(v1, m.Concat(v2, v3))
resultLeft := left("test")(nil)
resultRight := right("test")(nil)
// Both should fail with the same error
assert.True(t, E.IsLeft(resultLeft))
assert.True(t, E.IsLeft(resultRight))
_, errorsLeft := E.Unwrap(resultLeft)
_, errorsRight := E.Unwrap(resultRight)
assert.Len(t, errorsLeft, 1)
assert.Len(t, errorsRight, 1)
assert.Equal(t, "error 2", errorsLeft[0].Messsage)
assert.Equal(t, "error 2", errorsRight[0].Messsage)
}
// TestApplicativeMonoid_MultipleValidators tests combining multiple validators
func TestApplicativeMonoid_MultipleValidators(t *testing.T) {
m := ApplicativeMonoid[string](intAddMonoid)
v1 := successValidator[string](10)
v2 := successValidator[string](20)
v3 := successValidator[string](30)
v4 := successValidator[string](40)
// Chain multiple concat operations
combined := m.Concat(
m.Concat(
m.Concat(v1, v2),
v3,
),
v4,
)
result := combined("test")(nil)
assert.Equal(t, validation.Of(100), result)
}
// TestApplicativeMonoid_InputDependent tests validators that depend on input
func TestApplicativeMonoid_InputDependent(t *testing.T) {
m := ApplicativeMonoid[int](intAddMonoid)
// Validator that doubles the input
v1 := inputDependentValidator(N.Mul(2))
// Validator that adds 10 to the input
v2 := inputDependentValidator(N.Add(10))
combined := m.Concat(v1, v2)
result := combined(5)(nil)
// (5 * 2) + (5 + 10) = 10 + 15 = 25
assert.Equal(t, validation.Of(25), result)
}
// TestApplicativeMonoid_ContextPropagation tests that context is properly propagated
func TestApplicativeMonoid_ContextPropagation(t *testing.T) {
m := ApplicativeMonoid[string](intAddMonoid)
// Create a validator that captures the context
var capturedContext validation.Context
v1 := func(input string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
capturedContext = ctx
return validation.Success(5)
}
}
v2 := successValidator[string](3)
combined := m.Concat(v1, v2)
// Create a context with some entries
ctx := validation.Context{
{Key: "field1", Type: "int"},
{Key: "field2", Type: "string"},
}
result := combined("test")(ctx)
assert.True(t, E.IsRight(result))
assert.Equal(t, ctx, capturedContext)
}
// TestApplicativeMonoid_ErrorAccumulation tests that errors are accumulated
func TestApplicativeMonoid_ErrorAccumulation(t *testing.T) {
m := ApplicativeMonoid[string](intAddMonoid)
v1 := failureValidator[string, int]("error 1")
v2 := failureValidator[string, int]("error 2")
v3 := failureValidator[string, int]("error 3")
combined := m.Concat(m.Concat(v1, v2), v3)
result := combined("test")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
// Note: The current implementation returns the first error encountered
// At least one error should be present
assert.GreaterOrEqual(t, len(errors), 1)
hasError := false
for _, err := range errors {
if err.Messsage == "error 1" || err.Messsage == "error 2" || err.Messsage == "error 3" {
hasError = true
break
}
}
assert.True(t, hasError, "Should contain at least one validation error")
}
// TestApplicativeMonoid_MixedSuccessFailure tests mixing successes and failures
func TestApplicativeMonoid_MixedSuccessFailure(t *testing.T) {
m := ApplicativeMonoid[string](intAddMonoid)
v1 := successValidator[string](10)
v2 := failureValidator[string, int]("error in v2")
v3 := successValidator[string](20)
v4 := failureValidator[string, int]("error in v4")
combined := m.Concat(
m.Concat(
m.Concat(v1, v2),
v3,
),
v4,
)
result := combined("test")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
// Note: The current implementation returns the first error encountered
// At least one error should be present
assert.GreaterOrEqual(t, len(errors), 1)
hasError := false
for _, err := range errors {
if err.Messsage == "error in v2" || err.Messsage == "error in v4" {
hasError = true
break
}
}
assert.True(t, hasError, "Should contain at least one validation error")
}
// TestApplicativeMonoid_DifferentInputTypes tests with different input types
func TestApplicativeMonoid_DifferentInputTypes(t *testing.T) {
t.Run("struct input", func(t *testing.T) {
type Config struct {
Port int
Timeout int
}
m := ApplicativeMonoid[Config](intAddMonoid)
v1 := func(cfg Config) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.Success(cfg.Port)
}
}
v2 := func(cfg Config) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.Success(cfg.Timeout)
}
}
combined := m.Concat(v1, v2)
result := combined(Config{Port: 8080, Timeout: 30})(nil)
assert.Equal(t, validation.Of(8110), result) // 8080 + 30
})
}
// TestApplicativeMonoid_StringConcatenation tests string concatenation scenarios
func TestApplicativeMonoid_StringConcatenation(t *testing.T) {
m := ApplicativeMonoid[string](strMonoid)
t.Run("build sentence", func(t *testing.T) {
v1 := successValidator[string]("The")
v2 := successValidator[string](" quick")
v3 := successValidator[string](" brown")
v4 := successValidator[string](" fox")
combined := m.Concat(
m.Concat(
m.Concat(v1, v2),
v3,
),
v4,
)
result := combined("input")(nil)
assert.Equal(t, validation.Of("The quick brown fox"), result)
})
t.Run("with empty strings", func(t *testing.T) {
v1 := successValidator[string]("Hello")
v2 := successValidator[string]("")
v3 := successValidator[string]("World")
combined := m.Concat(m.Concat(v1, v2), v3)
result := combined("input")(nil)
assert.Equal(t, validation.Of("HelloWorld"), result)
})
}
// Benchmark tests
func BenchmarkApplicativeMonoid_ConcatSuccesses(b *testing.B) {
m := ApplicativeMonoid[string](intAddMonoid)
v1 := successValidator[string](5)
v2 := successValidator[string](3)
combined := m.Concat(v1, v2)
b.ResetTimer()
for range b.N {
_ = combined("test")(nil)
}
}
func BenchmarkApplicativeMonoid_ConcatFailures(b *testing.B) {
m := ApplicativeMonoid[string](intAddMonoid)
v1 := failureValidator[string, int]("error 1")
v2 := failureValidator[string, int]("error 2")
combined := m.Concat(v1, v2)
b.ResetTimer()
for range b.N {
_ = combined("test")(nil)
}
}
func BenchmarkApplicativeMonoid_MultipleConcat(b *testing.B) {
m := ApplicativeMonoid[string](intAddMonoid)
validators := make([]Validate[string, int], 10)
for i := range validators {
validators[i] = successValidator[string](i)
}
// Chain all validators
combined := validators[0]
for i := 1; i < len(validators); i++ {
combined = m.Concat(combined, validators[i])
}
b.ResetTimer()
for range b.N {
_ = combined("test")(nil)
}
}

View File

@@ -0,0 +1,177 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package validate
import (
"github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/optics/codec/decode"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/IBM/fp-go/v2/reader"
)
type (
// Monoid represents an algebraic structure with an associative binary operation
// and an identity element. Used for combining values of type A.
//
// A Monoid[A] must satisfy:
// - Associativity: Concat(Concat(a, b), c) == Concat(a, Concat(b, c))
// - Identity: Concat(Empty(), a) == a == Concat(a, Empty())
//
// Common examples:
// - Numbers with addition (identity: 0)
// - Numbers with multiplication (identity: 1)
// - Strings with concatenation (identity: "")
// - Lists with concatenation (identity: [])
Monoid[A any] = monoid.Monoid[A]
// Reader represents a computation that depends on an environment R and produces a value A.
//
// Reader[R, A] is a function type: func(R) A
//
// The Reader pattern is used to:
// - Thread configuration or context through computations
// - Implement dependency injection in a functional way
// - Defer computation until the environment is available
// - Compose computations that share the same environment
//
// Example:
// type Config struct { Port int }
// getPort := func(cfg Config) int { return cfg.Port }
// // getPort is a Reader[Config, int]
Reader[R, A any] = reader.Reader[R, A]
// Validation represents the result of a validation operation that may contain
// validation errors or a successfully validated value of type A.
//
// Validation[A] is an Either[Errors, A], where:
// - Left(errors): Validation failed with one or more errors
// - Right(value): Validation succeeded with value of type A
//
// The Validation type supports:
// - Error accumulation: Multiple validation errors can be collected
// - Applicative composition: Parallel validations with error aggregation
// - Monadic composition: Sequential validations with short-circuiting
//
// Example:
// success := validation.Success(42) // Right(42)
// failure := validation.Failure[int](errors) // Left(errors)
Validation[A any] = validation.Validation[A]
// Context provides contextual information for validation operations,
// tracking the path through nested data structures.
//
// Context is a slice of ContextEntry values, where each entry represents
// a level in the nested structure being validated. This enables detailed
// error messages that show exactly where validation failed.
//
// Example context path for nested validation:
// Context{
// {Key: "user", Type: "User"},
// {Key: "address", Type: "Address"},
// {Key: "zipCode", Type: "string"},
// }
// // Represents: user.address.zipCode
//
// The context is used to generate error messages like:
// "at user.address.zipCode: expected string, got number"
Context = validation.Context
Decode[I, A any] = decode.Decode[I, A]
// Validate is a function that validates input I to produce type A with full context tracking.
//
// Type structure:
// Validate[I, A] = Reader[I, Decode[Context, A]]
//
// This means:
// 1. Takes an input of type I
// 2. Returns a Reader that depends on validation Context
// 3. That Reader produces a Validation[A] (Either[Errors, A])
//
// The layered structure enables:
// - Access to the input value being validated
// - Context tracking through nested structures
// - Error accumulation with detailed paths
// - Composition with other validators
//
// Example usage:
// validatePositive := func(n int) Reader[Context, Validation[int]] {
// return func(ctx Context) Validation[int] {
// if n > 0 {
// return validation.Success(n)
// }
// return validation.FailureWithMessage[int](n, "must be positive")(ctx)
// }
// }
// // validatePositive is a Validate[int, int]
//
// The Validate type forms:
// - A Functor: Can map over successful results
// - An Applicative: Can combine validators in parallel
// - A Monad: Can chain dependent validations
Validate[I, A any] = Reader[I, Decode[Context, A]]
// Errors is a collection of validation errors that occurred during validation.
//
// Each error in the collection contains:
// - The value that failed validation
// - The context path where the error occurred
// - A human-readable error message
// - An optional underlying cause error
//
// Errors can be accumulated from multiple validation failures, allowing
// all problems to be reported at once rather than failing fast.
Errors = validation.Errors
// Kleisli represents a Kleisli arrow for the Validate monad.
//
// A Kleisli arrow is a function from A to a monadic value Validate[I, B].
// It's used for composing computations that produce monadic results.
//
// Type: Kleisli[I, A, B] = func(A) Validate[I, B]
//
// Kleisli arrows can be composed using the Chain function, enabling
// sequential validation where later validators depend on earlier results.
//
// Example:
// parseString := func(s string) Validate[string, int] {
// // Parse string to int with validation
// }
// checkPositive := func(n int) Validate[string, int] {
// // Validate that int is positive
// }
// // Both are Kleisli arrows that can be composed
Kleisli[I, A, B any] = Reader[A, Validate[I, B]]
// Operator represents a transformation operator for validators.
//
// An Operator transforms a Validate[I, A] into a Validate[I, B].
// It's a specialized Kleisli arrow where the input is itself a validator.
//
// Type: Operator[I, A, B] = func(Validate[I, A]) Validate[I, B]
//
// Operators are used to:
// - Transform validation results (Map)
// - Chain dependent validations (Chain)
// - Apply function validators to value validators (Ap)
//
// Example:
// toUpper := Map[string, string, string](strings.ToUpper)
// // toUpper is an Operator[string, string, string]
// // It can be applied to any string validator to uppercase the result
Operator[I, A, B any] = Kleisli[I, Validate[I, A], B]
)

View File

@@ -0,0 +1,411 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package validate provides functional validation primitives for building composable validators.
//
// This package implements a validation framework based on functional programming principles,
// allowing you to build complex validators from simple, composable pieces. It uses the
// Reader monad pattern to thread validation context through nested structures.
//
// # Core Concepts
//
// The validate package is built around several key types:
//
// - Validate[I, A]: A validator that transforms input I to output A with validation context
// - Validation[A]: The result of validation, either errors or a valid value A
// - Context: Tracks the path through nested structures for detailed error messages
//
// # Type Structure
//
// A Validate[I, A] is defined as:
//
// Reader[I, Decode[A]]]
//
// This means:
// 1. It takes an input of type I
// 2. Returns a Reader that depends on validation Context
// 3. That Reader produces a Validation[A] (Either[Errors, A])
//
// This layered structure allows validators to:
// - Access the input value
// - Track validation context (path in nested structures)
// - Accumulate multiple validation errors
// - Compose with other validators
//
// # Validation Context
//
// The Context type tracks the path through nested data structures during validation.
// Each ContextEntry contains:
// - Key: The field name or map key
// - Type: The expected type name
// - Actual: The actual value being validated
//
// This provides detailed error messages like "at user.address.zipCode: expected string, got number".
//
// # Monoid Operations
//
// The package provides ApplicativeMonoid for combining validators using monoid operations.
// This allows you to:
// - Combine multiple validators that produce monoidal values
// - Accumulate results from parallel validations
// - Build complex validators from simpler ones
//
// # Example Usage
//
// Basic validation structure:
//
// import (
// "github.com/IBM/fp-go/v2/optics/codec/validate"
// "github.com/IBM/fp-go/v2/optics/codec/validation"
// )
//
// // A validator that checks if a string is non-empty
// func nonEmptyString(input string) validate.Reader[validation.Context, validation.Validation[string]] {
// if input == "" {
// return validation.FailureWithMessage[string](input, "string must not be empty")
// }
// return func(ctx validation.Context) validation.Validation[string] {
// return validation.Success(input)
// }
// }
//
// // Create a Validate function
// var validateNonEmpty validate.Validate[string, string] = func(input string) validate.Reader[validation.Context, validation.Validation[string]] {
// return nonEmptyString(input)
// }
//
// Combining validators with monoids:
//
// import (
// "github.com/IBM/fp-go/v2/monoid"
// "github.com/IBM/fp-go/v2/string"
// )
//
// // Combine string validators using string concatenation monoid
// stringMonoid := string.Monoid
// validatorMonoid := validate.ApplicativeMonoid[string, string](stringMonoid)
//
// // Now you can combine validators that produce strings
// combined := validatorMonoid.Concat(validator1, validator2)
//
// # Integration with Codec
//
// This package is designed to work with the optics/codec package for building
// type-safe encoders and decoders with validation. Validators can be composed
// into codecs that handle serialization, deserialization, and validation in a
// unified way.
//
// # Error Handling
//
// Validation errors are accumulated using the Either monad's applicative instance.
// This means:
// - Multiple validation errors can be collected in a single pass
// - Errors include full context path for debugging
// - Errors can be formatted for logging or user display
//
// See the validation package for error types and formatting options.
package validate
import (
"github.com/IBM/fp-go/v2/internal/readert"
"github.com/IBM/fp-go/v2/optics/codec/decode"
"github.com/IBM/fp-go/v2/reader"
)
// Of creates a Validate that always succeeds with the given value.
//
// This is the "pure" or "return" operation for the Validate monad. It lifts a plain
// value into the validation context without performing any actual validation.
//
// # Type Parameters
//
// - I: The input type (not used, but required for type consistency)
// - A: The type of the value to wrap
//
// # Parameters
//
// - a: The value to wrap in a successful validation
//
// # Returns
//
// A Validate[I, A] that ignores its input and always returns a successful validation
// containing the value a.
//
// # Example
//
// // Create a validator that always succeeds with value 42
// alwaysValid := validate.Of[string, int](42)
// result := alwaysValid("any input")(nil)
// // result is validation.Success(42)
//
// # Notes
//
// - This is useful for lifting pure values into the validation context
// - The input type I is ignored; the validator succeeds regardless of input
// - This satisfies the monad laws: Of is the left and right identity for Chain
func Of[I, A any](a A) Validate[I, A] {
return reader.Of[I](decode.Of[Context](a))
}
// MonadMap applies a function to the successful result of a validation.
//
// This is the functor map operation for Validate. It transforms the success value
// without affecting the validation logic or error handling. If the validation fails,
// the function is not applied and errors are preserved.
//
// # Type Parameters
//
// - I: The input type
// - A: The type of the current validation result
// - B: The type after applying the transformation
//
// # Parameters
//
// - fa: The validator to transform
// - f: The transformation function to apply to successful results
//
// # Returns
//
// A new Validate[I, B] that applies f to the result if validation succeeds.
//
// # Example
//
// // Transform a string validator to uppercase
// validateString := func(s string) validate.Reader[validation.Context, validation.Validation[string]] {
// return func(ctx validation.Context) validation.Validation[string] {
// return validation.Success(s)
// }
// }
//
// upperValidator := validate.MonadMap(validateString, strings.ToUpper)
// result := upperValidator("hello")(nil)
// // result is validation.Success("HELLO")
//
// # Notes
//
// - Preserves validation errors unchanged
// - Only applies the function to successful validations
// - Satisfies the functor laws: composition and identity
func MonadMap[I, A, B any](fa Validate[I, A], f func(A) B) Validate[I, B] {
return readert.MonadMap[
Validate[I, A],
Validate[I, B]](
decode.MonadMap,
fa,
f,
)
}
// Map creates an operator that transforms validation results.
//
// This is the curried version of MonadMap, returning a function that can be applied
// to validators. It's useful for creating reusable transformation pipelines.
//
// # Type Parameters
//
// - I: The input type
// - A: The type of the current validation result
// - B: The type after applying the transformation
//
// # Parameters
//
// - f: The transformation function to apply to successful results
//
// # Returns
//
// An Operator[I, A, B] that transforms Validate[I, A] to Validate[I, B].
//
// # Example
//
// // Create a reusable transformation
// toUpper := validate.Map[string, string, string](strings.ToUpper)
//
// // Apply it to different validators
// validator1 := toUpper(someStringValidator)
// validator2 := toUpper(anotherStringValidator)
//
// # Notes
//
// - This is the point-free style version of MonadMap
// - Useful for building transformation pipelines
// - Can be composed with other operators
func Map[I, A, B any](f func(A) B) Operator[I, A, B] {
return readert.Map[
Validate[I, A],
Validate[I, B]](
decode.Map,
f,
)
}
// Chain sequences two validators, where the second depends on the result of the first.
//
// This is the monadic bind operation for Validate. It allows you to create validators
// that depend on the results of previous validations, enabling complex validation logic
// that builds on earlier results.
//
// # Type Parameters
//
// - I: The input type
// - A: The type of the first validation result
// - B: The type of the second validation result
//
// # Parameters
//
// - f: A Kleisli arrow that takes a value of type A and returns a Validate[I, B]
//
// # Returns
//
// An Operator[I, A, B] that sequences the validations.
//
// # Example
//
// // First validate that a string is non-empty, then validate its length
// validateNonEmpty := func(s string) validate.Reader[validation.Context, validation.Validation[string]] {
// return func(ctx validation.Context) validation.Validation[string] {
// if s == "" {
// return validation.FailureWithMessage[string](s, "must not be empty")(ctx)
// }
// return validation.Success(s)
// }
// }
//
// validateLength := func(s string) validate.Validate[string, int] {
// return func(input string) validate.Reader[validation.Context, validation.Validation[int]] {
// return func(ctx validation.Context) validation.Validation[int] {
// if len(s) < 3 {
// return validation.FailureWithMessage[int](len(s), "too short")(ctx)
// }
// return validation.Success(len(s))
// }
// }
// }
//
// // Chain them together
// chained := validate.Chain(validateLength)(validateNonEmpty)
//
// # Notes
//
// - If the first validation fails, the second is not executed
// - Errors from the first validation are preserved
// - This enables dependent validation logic
// - Satisfies the monad laws: associativity and identity
func Chain[I, A, B any](f Kleisli[I, A, B]) Operator[I, A, B] {
return readert.Chain[Validate[I, A]](
decode.Chain,
f,
)
}
// MonadAp applies a validator containing a function to a validator containing a value.
//
// This is the applicative apply operation for Validate. It allows you to apply
// functions wrapped in validation context to values wrapped in validation context,
// accumulating errors from both if either fails.
//
// # Type Parameters
//
// - B: The result type after applying the function
// - I: The input type
// - A: The type of the value to which the function is applied
//
// # Parameters
//
// - fab: A validator that produces a function from A to B
// - fa: A validator that produces a value of type A
//
// # Returns
//
// A Validate[I, B] that applies the function to the value if both validations succeed.
//
// # Example
//
// // Create a validator that produces a function
// validateFunc := validate.Of[string, func(int) int](func(x int) int { return x * 2 })
//
// // Create a validator that produces a value
// validateValue := validate.Of[string, int](21)
//
// // Apply them
// result := validate.MonadAp(validateFunc, validateValue)
// // When run, produces validation.Success(42)
//
// # Notes
//
// - Both validators receive the same input
// - If either validation fails, all errors are accumulated
// - If both succeed, the function is applied to the value
// - This enables parallel validation with error accumulation
// - Satisfies the applicative functor laws
func MonadAp[B, I, A any](fab Validate[I, func(A) B], fa Validate[I, A]) Validate[I, B] {
return readert.MonadAp[
Validate[I, A],
Validate[I, B],
Validate[I, func(A) B], I, A](
decode.MonadAp[B, Context, A],
fab,
fa,
)
}
// Ap creates an operator that applies a function validator to a value validator.
//
// This is the curried version of MonadAp, returning a function that can be applied
// to function validators. It's useful for creating reusable applicative patterns.
//
// # Type Parameters
//
// - B: The result type after applying the function
// - I: The input type
// - A: The type of the value to which the function is applied
//
// # Parameters
//
// - fa: A validator that produces a value of type A
//
// # Returns
//
// An Operator[I, func(A) B, B] that applies function validators to the value validator.
//
// # Example
//
// // Create a value validator
// validateValue := validate.Of[string, int](21)
//
// // Create an applicative operator
// applyTo21 := validate.Ap[int, string, int](validateValue)
//
// // Create a function validator
// validateDouble := validate.Of[string, func(int) int](func(x int) int { return x * 2 })
//
// // Apply it
// result := applyTo21(validateDouble)
// // When run, produces validation.Success(42)
//
// # Notes
//
// - This is the point-free style version of MonadAp
// - Useful for building applicative pipelines
// - Enables parallel validation with error accumulation
// - Can be composed with other applicative operators
func Ap[B, I, A any](fa Validate[I, A]) Operator[I, func(A) B, B] {
return readert.Ap[
Validate[I, A],
Validate[I, B],
Validate[I, func(A) B], I, A](
decode.Ap[B, Context, A],
fa,
)
}

View File

@@ -0,0 +1,851 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package validate
import (
"testing"
E "github.com/IBM/fp-go/v2/either"
N "github.com/IBM/fp-go/v2/number"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/stretchr/testify/assert"
)
// TestValidateType tests the Validate type structure
func TestValidateType(t *testing.T) {
t.Run("basic validate function", func(t *testing.T) {
// Create a simple validator that checks if a number is positive
validatePositive := func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
if n > 0 {
return validation.Success(n)
}
return validation.FailureWithMessage[int](n, "must be positive")(ctx)
}
}
// Test with positive number
result := validatePositive(42)(nil)
assert.Equal(t, validation.Of(42), result)
// Test with negative number
result = validatePositive(-5)(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Len(t, errors, 1)
assert.Equal(t, "must be positive", errors[0].Messsage)
})
t.Run("validate with context", func(t *testing.T) {
validateWithContext := func(s string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
if s == "" {
return validation.FailureWithMessage[string](s, "empty string")(ctx)
}
return validation.Success(s)
}
}
ctx := validation.Context{
{Key: "username", Type: "string"},
}
result := validateWithContext("")(ctx)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Len(t, errors, 1)
assert.Equal(t, ctx, errors[0].Context)
})
}
// TestValidateComposition tests composing validators
func TestValidateComposition(t *testing.T) {
t.Run("sequential validation", func(t *testing.T) {
// First validator: check if string is not empty
validateNotEmpty := func(s string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
if s == "" {
return validation.FailureWithMessage[string](s, "must not be empty")(ctx)
}
return validation.Success(s)
}
}
// Second validator: check if string has minimum length
validateMinLength := func(minLen int) func(string) Reader[validation.Context, validation.Validation[string]] {
return func(s string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
if len(s) < minLen {
return validation.FailureWithMessage[string](s, "too short")(ctx)
}
return validation.Success(s)
}
}
}
// Test with valid input
input := "hello"
result1 := validateNotEmpty(input)(nil)
assert.Equal(t, validation.Of("hello"), result1)
result2 := validateMinLength(3)(input)(nil)
assert.Equal(t, validation.Of("hello"), result2)
// Test with invalid input
shortInput := "hi"
result3 := validateMinLength(5)(shortInput)(nil)
assert.True(t, E.IsLeft(result3))
})
}
// TestValidateWithDifferentTypes tests validators with various input/output types
func TestValidateWithDifferentTypes(t *testing.T) {
t.Run("string to int conversion", func(t *testing.T) {
// Validator that parses string to int
validateParseInt := func(s string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
// Simple parsing logic for testing
if s == "42" {
return validation.Success(42)
}
return validation.FailureWithMessage[int](s, "invalid integer")(ctx)
}
}
result := validateParseInt("42")(nil)
assert.Equal(t, validation.Of(42), result)
result = validateParseInt("abc")(nil)
assert.True(t, E.IsLeft(result))
})
t.Run("struct validation", func(t *testing.T) {
type User struct {
Name string
Age int
Email string
}
validateUser := func(u User) Reader[validation.Context, validation.Validation[User]] {
return func(ctx validation.Context) validation.Validation[User] {
if u.Name == "" {
return validation.FailureWithMessage[User](u, "name is required")(ctx)
}
if u.Age < 0 {
return validation.FailureWithMessage[User](u, "age must be non-negative")(ctx)
}
if u.Email == "" {
return validation.FailureWithMessage[User](u, "email is required")(ctx)
}
return validation.Success(u)
}
}
validUser := User{Name: "Alice", Age: 30, Email: "alice@example.com"}
result := validateUser(validUser)(nil)
assert.Equal(t, validation.Of(validUser), result)
invalidUser := User{Name: "", Age: 30, Email: "alice@example.com"}
result = validateUser(invalidUser)(nil)
assert.True(t, E.IsLeft(result))
})
}
// TestValidateContextTracking tests context tracking through nested structures
func TestValidateContextTracking(t *testing.T) {
t.Run("nested context", func(t *testing.T) {
validateField := func(value string, fieldName string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
// Add field to context
newCtx := append(ctx, validation.ContextEntry{
Key: fieldName,
Type: "string",
})
if value == "" {
return validation.FailureWithMessage[string](value, "field is empty")(newCtx)
}
return validation.Success(value)
}
}
baseCtx := validation.Context{
{Key: "user", Type: "User"},
}
result := validateField("", "email")(baseCtx)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Len(t, errors, 1)
// Check that context includes both user and email
assert.Len(t, errors[0].Context, 2)
assert.Equal(t, "user", errors[0].Context[0].Key)
assert.Equal(t, "email", errors[0].Context[1].Key)
})
}
// TestValidateErrorMessages tests error message generation
func TestValidateErrorMessages(t *testing.T) {
t.Run("custom error messages", func(t *testing.T) {
validateRange := func(min, max int) func(int) Reader[validation.Context, validation.Validation[int]] {
return func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
if n < min {
return validation.FailureWithMessage[int](n, "value too small")(ctx)
}
if n > max {
return validation.FailureWithMessage[int](n, "value too large")(ctx)
}
return validation.Success(n)
}
}
}
result := validateRange(0, 100)(150)(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Equal(t, "value too large", errors[0].Messsage)
result = validateRange(0, 100)(-10)(nil)
assert.True(t, E.IsLeft(result))
_, errors = E.Unwrap(result)
assert.Equal(t, "value too small", errors[0].Messsage)
})
}
// TestValidateTransformations tests validators that transform values
func TestValidateTransformations(t *testing.T) {
t.Run("normalize and validate", func(t *testing.T) {
// Validator that normalizes (trims) and validates
validateAndNormalize := func(s string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
// Simple trim simulation - trim all leading and trailing spaces
normalized := s
// Trim leading spaces
for len(normalized) > 0 && normalized[0] == ' ' {
normalized = normalized[1:]
}
// Trim trailing spaces
for len(normalized) > 0 && normalized[len(normalized)-1] == ' ' {
normalized = normalized[:len(normalized)-1]
}
if normalized == "" {
return validation.FailureWithMessage[string](s, "empty after normalization")(ctx)
}
return validation.Success(normalized)
}
}
result := validateAndNormalize(" hello ")(nil)
assert.Equal(t, validation.Of("hello"), result)
result = validateAndNormalize(" ")(nil)
assert.True(t, E.IsLeft(result))
})
}
// TestValidateChaining tests chaining multiple validators
func TestValidateChaining(t *testing.T) {
t.Run("chain validators manually", func(t *testing.T) {
// First validator
v1 := func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
if n < 0 {
return validation.FailureWithMessage[int](n, "must be non-negative")(ctx)
}
return validation.Success(n)
}
}
// Second validator (depends on first)
v2 := func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
if n > 100 {
return validation.FailureWithMessage[int](n, "must be <= 100")(ctx)
}
return validation.Success(n)
}
}
// Test valid value
input := 50
result1 := v1(input)(nil)
assert.Equal(t, validation.Of(50), result1)
result2 := v2(input)(nil)
assert.Equal(t, validation.Of(50), result2)
// Test invalid value (too large)
input = 150
result1 = v1(input)(nil)
assert.Equal(t, validation.Of(150), result1)
result2 = v2(input)(nil)
assert.True(t, E.IsLeft(result2))
})
}
// TestValidateComplexScenarios tests real-world validation scenarios
func TestValidateComplexScenarios(t *testing.T) {
t.Run("email validation", func(t *testing.T) {
validateEmail := func(email string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
// Simple email validation for testing
hasAt := false
hasDot := false
for _, c := range email {
if c == '@' {
hasAt = true
}
if c == '.' {
hasDot = true
}
}
if !hasAt || !hasDot {
return validation.FailureWithMessage[string](email, "invalid email format")(ctx)
}
return validation.Success(email)
}
}
result := validateEmail("user@example.com")(nil)
assert.Equal(t, validation.Of("user@example.com"), result)
result = validateEmail("invalid-email")(nil)
assert.True(t, E.IsLeft(result))
result = validateEmail("no-domain@")(nil)
assert.True(t, E.IsLeft(result))
})
t.Run("password strength validation", func(t *testing.T) {
validatePassword := func(pwd string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
if len(pwd) < 8 {
return validation.FailureWithMessage[string](pwd, "password too short")(ctx)
}
hasUpper := false
hasLower := false
hasDigit := false
for _, c := range pwd {
if c >= 'A' && c <= 'Z' {
hasUpper = true
}
if c >= 'a' && c <= 'z' {
hasLower = true
}
if c >= '0' && c <= '9' {
hasDigit = true
}
}
if !hasUpper || !hasLower || !hasDigit {
return validation.FailureWithMessage[string](pwd, "password must contain upper, lower, and digit")(ctx)
}
return validation.Success(pwd)
}
}
result := validatePassword("StrongPass123")(nil)
assert.Equal(t, validation.Of("StrongPass123"), result)
result = validatePassword("weak")(nil)
assert.True(t, E.IsLeft(result))
result = validatePassword("nouppercase123")(nil)
assert.True(t, E.IsLeft(result))
})
}
// Benchmark tests
func BenchmarkValidate_Success(b *testing.B) {
validate := func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
if n > 0 {
return validation.Success(n)
}
return validation.FailureWithMessage[int](n, "must be positive")(ctx)
}
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = validate(42)(nil)
}
}
func BenchmarkValidate_Failure(b *testing.B) {
validate := func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
if n > 0 {
return validation.Success(n)
}
return validation.FailureWithMessage[int](n, "must be positive")(ctx)
}
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = validate(-1)(nil)
}
}
func BenchmarkValidate_WithContext(b *testing.B) {
validate := func(s string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
if s == "" {
return validation.FailureWithMessage[string](s, "empty string")(ctx)
}
return validation.Success(s)
}
}
ctx := validation.Context{
{Key: "field1", Type: "string"},
{Key: "field2", Type: "string"},
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = validate("test")(ctx)
}
}
// TestOf tests the Of function
func TestOf(t *testing.T) {
t.Run("creates successful validation with value", func(t *testing.T) {
validator := Of[string](42)
result := validator("any input")(nil)
assert.Equal(t, validation.Of(42), result)
})
t.Run("ignores input value", func(t *testing.T) {
validator := Of[string]("success")
result1 := validator("input1")(nil)
result2 := validator("input2")(nil)
result3 := validator("")(nil)
assert.Equal(t, validation.Of("success"), result1)
assert.Equal(t, validation.Of("success"), result2)
assert.Equal(t, validation.Of("success"), result3)
})
t.Run("works with different types", func(t *testing.T) {
type User struct {
Name string
Age int
}
user := User{Name: "Alice", Age: 30}
validator := Of[int](user)
result := validator(123)(nil)
assert.Equal(t, validation.Of(user), result)
})
}
// TestMonadMap tests the MonadMap function
func TestMonadMap(t *testing.T) {
t.Run("transforms successful validation", func(t *testing.T) {
validator := Of[string](21)
doubled := MonadMap(validator, N.Mul(2))
result := doubled("input")(nil)
assert.Equal(t, validation.Of(42), result)
})
t.Run("preserves validation errors", func(t *testing.T) {
failingValidator := func(s string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](s, "validation failed")(ctx)
}
}
mapped := MonadMap(failingValidator, N.Mul(2))
result := mapped("input")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Len(t, errors, 1)
assert.Equal(t, "validation failed", errors[0].Messsage)
})
t.Run("chains multiple transformations", func(t *testing.T) {
validator := Of[string](10)
transformed := MonadMap(
MonadMap(
MonadMap(validator, N.Add(5)),
N.Mul(2),
),
N.Sub(10),
)
result := transformed("input")(nil)
assert.Equal(t, validation.Of(20), result) // (10 + 5) * 2 - 10 = 20
})
t.Run("transforms between different types", func(t *testing.T) {
validator := Of[string](42)
toString := MonadMap(validator, func(x int) string {
return "value: " + string(rune(x+'0'))
})
result := toString("input")(nil)
assert.True(t, E.IsRight(result))
if E.IsRight(result) {
value, _ := E.Unwrap(result)
assert.Contains(t, value, "value:")
}
})
}
// TestMap tests the Map function
func TestMap(t *testing.T) {
t.Run("creates reusable transformation", func(t *testing.T) {
double := Map[string](N.Mul(2))
validator1 := Of[string](21)
validator2 := Of[string](10)
result1 := double(validator1)("input")(nil)
result2 := double(validator2)("input")(nil)
assert.Equal(t, validation.Of(42), result1)
assert.Equal(t, validation.Of(20), result2)
})
t.Run("preserves errors in transformation", func(t *testing.T) {
increment := Map[string](func(x int) int { return x + 1 })
failingValidator := func(s string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](s, "error")(ctx)
}
}
result := increment(failingValidator)("input")(nil)
assert.True(t, E.IsLeft(result))
})
t.Run("composes with other operators", func(t *testing.T) {
addFive := Map[string](N.Add(5))
double := Map[string](N.Mul(2))
validator := Of[string](10)
composed := double(addFive(validator))
result := composed("input")(nil)
assert.Equal(t, validation.Of(30), result) // (10 + 5) * 2 = 30
})
}
// TestChain tests the Chain function
func TestChain(t *testing.T) {
t.Run("sequences dependent validations", func(t *testing.T) {
// First validator: parse string to int
parseValidator := func(s string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
if s == "42" {
return validation.Success(42)
}
return validation.FailureWithMessage[int](s, "invalid number")(ctx)
}
}
// Second validator: check if number is positive
checkPositive := func(n int) Validate[string, string] {
return func(input string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
if n > 0 {
return validation.Success("positive")
}
return validation.FailureWithMessage[string](n, "not positive")(ctx)
}
}
}
chained := Chain(checkPositive)(parseValidator)
result := chained("42")(nil)
assert.Equal(t, validation.Of("positive"), result)
})
t.Run("stops on first validation failure", func(t *testing.T) {
failingValidator := func(s string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](s, "first failed")(ctx)
}
}
neverCalled := func(n int) Validate[string, string] {
return func(input string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
// This should never be reached
t.Error("Second validator should not be called")
return validation.Success("should not reach")
}
}
}
chained := Chain(neverCalled)(failingValidator)
result := chained("input")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Equal(t, "first failed", errors[0].Messsage)
})
t.Run("propagates second validation failure", func(t *testing.T) {
successValidator := func(s string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.Success(42)
}
}
failingSecond := func(n int) Validate[string, string] {
return func(input string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
return validation.FailureWithMessage[string](n, "second failed")(ctx)
}
}
}
chained := Chain(failingSecond)(successValidator)
result := chained("input")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Equal(t, "second failed", errors[0].Messsage)
})
}
// TestMonadAp tests the MonadAp function
func TestMonadAp(t *testing.T) {
t.Run("applies function to value when both succeed", func(t *testing.T) {
funcValidator := Of[string](N.Mul(2))
valueValidator := Of[string](21)
result := MonadAp(funcValidator, valueValidator)("input")(nil)
assert.Equal(t, validation.Of(42), result)
})
t.Run("accumulates errors when function validator fails", func(t *testing.T) {
failingFunc := func(s string) Reader[validation.Context, validation.Validation[func(int) int]] {
return func(ctx validation.Context) validation.Validation[func(int) int] {
return validation.FailureWithMessage[func(int) int](s, "func failed")(ctx)
}
}
valueValidator := Of[string](21)
result := MonadAp(failingFunc, valueValidator)("input")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Len(t, errors, 1)
assert.Equal(t, "func failed", errors[0].Messsage)
})
t.Run("accumulates errors when value validator fails", func(t *testing.T) {
funcValidator := Of[string](N.Mul(2))
failingValue := func(s string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](s, "value failed")(ctx)
}
}
result := MonadAp(funcValidator, failingValue)("input")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Len(t, errors, 1)
assert.Equal(t, "value failed", errors[0].Messsage)
})
t.Run("returns error when both validators fail", func(t *testing.T) {
failingFunc := func(s string) Reader[validation.Context, validation.Validation[func(int) int]] {
return func(ctx validation.Context) validation.Validation[func(int) int] {
return validation.FailureWithMessage[func(int) int](s, "func failed")(ctx)
}
}
failingValue := func(s string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](s, "value failed")(ctx)
}
}
result := MonadAp(failingFunc, failingValue)("input")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
// Note: The current implementation returns the first error encountered
assert.GreaterOrEqual(t, len(errors), 1)
// At least one of the errors should be present
hasError := false
for _, err := range errors {
if err.Messsage == "func failed" || err.Messsage == "value failed" {
hasError = true
break
}
}
assert.True(t, hasError, "Should contain at least one validation error")
})
}
// TestAp tests the Ap function
func TestAp(t *testing.T) {
t.Run("creates reusable applicative operator", func(t *testing.T) {
valueValidator := Of[string](21)
applyTo21 := Ap[int](valueValidator)
double := Of[string](N.Mul(2))
triple := Of[string](func(x int) int { return x * 3 })
result1 := applyTo21(double)("input")(nil)
result2 := applyTo21(triple)("input")(nil)
assert.Equal(t, validation.Of(42), result1)
assert.Equal(t, validation.Of(63), result2)
})
t.Run("preserves errors from value validator", func(t *testing.T) {
failingValue := func(s string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](s, "value error")(ctx)
}
}
applyToFailing := Ap[int](failingValue)
funcValidator := Of[string](N.Mul(2))
result := applyToFailing(funcValidator)("input")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Equal(t, "value error", errors[0].Messsage)
})
t.Run("preserves errors from function validator", func(t *testing.T) {
valueValidator := Of[string](21)
applyTo21 := Ap[int](valueValidator)
failingFunc := func(s string) Reader[validation.Context, validation.Validation[func(int) int]] {
return func(ctx validation.Context) validation.Validation[func(int) int] {
return validation.FailureWithMessage[func(int) int](s, "func error")(ctx)
}
}
result := applyTo21(failingFunc)("input")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Equal(t, "func error", errors[0].Messsage)
})
}
// TestMonadLaws tests that the monad laws hold for Validate
func TestMonadLaws(t *testing.T) {
t.Run("left identity: Of(a) >>= f === f(a)", func(t *testing.T) {
a := 42
f := func(x int) Validate[string, string] {
return Of[string]("value: " + string(rune(x+'0')))
}
// Of(a) >>= f
left := Chain(f)(Of[string](a))
// f(a)
right := f(a)
leftResult := left("input")(nil)
rightResult := right("input")(nil)
assert.Equal(t, E.IsRight(leftResult), E.IsRight(rightResult))
if E.IsRight(leftResult) {
leftVal, _ := E.Unwrap(leftResult)
rightVal, _ := E.Unwrap(rightResult)
assert.Equal(t, leftVal, rightVal)
}
})
t.Run("right identity: m >>= Of === m", func(t *testing.T) {
m := Of[string](42)
// m >>= Of
chained := Chain(func(x int) Validate[string, int] {
return Of[string](x)
})(m)
mResult := m("input")(nil)
chainedResult := chained("input")(nil)
assert.Equal(t, E.IsRight(mResult), E.IsRight(chainedResult))
if E.IsRight(mResult) {
mVal, _ := E.Unwrap(mResult)
chainedVal, _ := E.Unwrap(chainedResult)
assert.Equal(t, mVal, chainedVal)
}
})
}
// TestFunctorLaws tests that the functor laws hold for Validate
func TestFunctorLaws(t *testing.T) {
t.Run("identity: map(id) === id", func(t *testing.T) {
validator := Of[string](42)
identity := func(x int) int { return x }
mapped := MonadMap(validator, identity)
origResult := validator("input")(nil)
mappedResult := mapped("input")(nil)
assert.Equal(t, E.IsRight(origResult), E.IsRight(mappedResult))
if E.IsRight(origResult) {
origVal, _ := E.Unwrap(origResult)
mappedVal, _ := E.Unwrap(mappedResult)
assert.Equal(t, origVal, mappedVal)
}
})
t.Run("composition: map(f . g) === map(f) . map(g)", func(t *testing.T) {
validator := Of[string](10)
f := N.Mul(2)
g := N.Add(5)
// map(f . g)
composed := MonadMap(validator, func(x int) int { return f(g(x)) })
// map(f) . map(g)
separate := MonadMap(MonadMap(validator, g), f)
composedResult := composed("input")(nil)
separateResult := separate("input")(nil)
assert.Equal(t, E.IsRight(composedResult), E.IsRight(separateResult))
if E.IsRight(composedResult) {
composedVal, _ := E.Unwrap(composedResult)
separateVal, _ := E.Unwrap(separateResult)
assert.Equal(t, composedVal, separateVal)
}
})
}

View File

@@ -3,19 +3,18 @@ package codec
import (
"fmt"
"github.com/IBM/fp-go/v2/errors"
"github.com/IBM/fp-go/v2/internal/formatting"
"github.com/IBM/fp-go/v2/result"
)
func onTypeError(expType string) func(any) error {
return func(u any) error {
return fmt.Errorf("expecting type [%s] but got [%T]", expType, u)
}
return errors.OnSome[any](fmt.Sprintf("expecting type [%s] but got [%%T]", expType))
}
// Is checks if a value can be converted to type T.
// Returns Some(value) if the conversion succeeds, None otherwise.
// This is a type-safe cast operation.
func Is[T any]() func(any) Result[T] {
var zero T
return result.ToType[T](onTypeError(fmt.Sprintf("%T", zero)))
func Is[T any]() ReaderResult[any, T] {
return result.ToType[T](onTypeError(formatting.TypeInfo(*new(T))))
}

View File

@@ -31,6 +31,10 @@ func Ap[B, A any](fa Validation[A]) Operator[func(A) B, B] {
return either.ApV[B, A](ErrorsMonoid())(fa)
}
func MonadAp[B, A any](fab Validation[func(A) B], fa Validation[A]) Validation[B] {
return either.MonadApV[B, A](ErrorsMonoid())(fab, fa)
}
// Map transforms the value inside a successful validation using the provided function.
// If the validation is a failure, the errors are preserved unchanged.
// This is the functor map operation for Validation.
@@ -43,6 +47,18 @@ func Map[A, B any](f func(A) B) Operator[A, B] {
return either.Map[Errors](f)
}
func MonadMap[A, B any](fa Validation[A], f func(A) B) Validation[B] {
return either.MonadMap(fa, f)
}
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return either.Chain(f)
}
func MonadChain[A, B any](fa Validation[A], f Kleisli[A, B]) Validation[B] {
return either.MonadChain(fa, f)
}
// Applicative creates an Applicative instance for Validation with error accumulation.
//
// This returns a lawful Applicative that accumulates validation errors using the Errors monoid.

View File

@@ -109,7 +109,7 @@ func TestAp(t *testing.T) {
funcValidation := Of(double)
valueValidation := Of(21)
result := Ap[int, int](valueValidation)(funcValidation)
result := Ap[int](valueValidation)(funcValidation)
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
@@ -126,7 +126,7 @@ func TestAp(t *testing.T) {
&ValidationError{Messsage: "value error"},
})
result := Ap[int, int](valueValidation)(funcValidation)
result := Ap[int](valueValidation)(funcValidation)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
@@ -143,7 +143,7 @@ func TestAp(t *testing.T) {
})
valueValidation := Of(21)
result := Ap[int, int](valueValidation)(funcValidation)
result := Ap[int](valueValidation)(funcValidation)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
@@ -162,7 +162,7 @@ func TestAp(t *testing.T) {
&ValidationError{Messsage: "value error"},
})
result := Ap[int, int](valueValidation)(funcValidation)
result := Ap[int](valueValidation)(funcValidation)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
@@ -180,7 +180,7 @@ func TestAp(t *testing.T) {
funcValidation := Of(toUpper)
valueValidation := Of("hello")
result := Ap[string, string](valueValidation)(funcValidation)
result := Ap[string](valueValidation)(funcValidation)
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
@@ -199,7 +199,7 @@ func TestAp(t *testing.T) {
&ValidationError{Messsage: "value error 1"},
})
result := Ap[int, int](valueValidation)(funcValidation)
result := Ap[int](valueValidation)(funcValidation)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
@@ -242,7 +242,7 @@ func TestMonadLaws(t *testing.T) {
t.Run("applicative identity law", func(t *testing.T) {
// Ap(v)(Of(id)) == v
v := Of(42)
result := Ap[int, int](v)(Of(F.Identity[int]))
result := Ap[int](v)(Of(F.Identity[int]))
assert.Equal(t, v, result)
})
@@ -252,7 +252,7 @@ func TestMonadLaws(t *testing.T) {
f := func(x int) int { return x * 2 }
x := 21
left := Ap[int, int](Of(x))(Of(f))
left := Ap[int](Of(x))(Of(f))
right := Of(f(x))
assert.Equal(t, left, right)
@@ -285,7 +285,7 @@ func TestMapWithOperator(t *testing.T) {
func TestApWithOperator(t *testing.T) {
t.Run("Ap returns an Operator", func(t *testing.T) {
valueValidation := Of(21)
operator := Ap[int, int](valueValidation)
operator := Ap[int](valueValidation)
// Operator can be applied to different function validations
double := func(x int) int { return x * 2 }

View File

@@ -4,9 +4,12 @@ import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/result"
)
type (
// Result represents a computation that may succeed with a value of type A or fail with an error.
Result[A any] = result.Result[A]
// Either represents a value that can be one of two types: Left (error) or Right (success).
Either[E, A any] = either.Either[E, A]
@@ -34,6 +37,13 @@ type (
// Errors is a collection of validation errors.
Errors = []*ValidationError
// validationErrors wraps a collection of validation errors with an optional root cause.
// It provides structured error information for validation failures.
validationErrors struct {
errors Errors
cause error
}
// Validation represents the result of a validation operation.
// Left contains validation errors, Right contains the successfully validated value.
Validation[A any] = Either[Errors, A]
@@ -41,9 +51,14 @@ type (
// Reader represents a computation that depends on an environment R and produces a value A.
Reader[R, A any] = reader.Reader[R, A]
// Kleisli represents a function from A to a validated B.
// It's a Reader that takes an input A and produces a Validation[B].
Kleisli[A, B any] = Reader[A, Validation[B]]
// Operator represents a validation transformation that takes a validated A and produces a validated B.
// It's a specialized Kleisli arrow for composing validation operations.
Operator[A, B any] = Kleisli[Validation[A], B]
// Monoid represents an algebraic structure with an associative binary operation and an identity element.
Monoid[A any] = monoid.Monoid[A]
)

View File

@@ -2,6 +2,7 @@ package validation
import (
"fmt"
"log/slog"
A "github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/either"
@@ -73,6 +74,153 @@ func (v *ValidationError) Format(s fmt.State, verb rune) {
fmt.Fprint(s, result)
}
// LogValue implements the slog.LogValuer interface for ValidationError.
// It provides structured logging representation of the validation error.
// Returns a slog.Value containing the error details as a group with
// message, value, context path, and optional cause.
//
// This method is called automatically when logging a ValidationError with slog.
//
// Example:
//
// err := &ValidationError{Value: "abc", Messsage: "expected number"}
// slog.Error("validation failed", "error", err)
// // Logs: error={message="expected number" value="abc"}
func (v *ValidationError) LogValue() slog.Value {
attrs := []slog.Attr{
slog.String("message", v.Messsage),
slog.Any("value", v.Value),
}
// Add context path if available
if len(v.Context) > 0 {
path := ""
for i, entry := range v.Context {
if i > 0 {
path += "."
}
if entry.Key != "" {
path += entry.Key
} else {
path += entry.Type
}
}
attrs = append(attrs, slog.String("path", path))
}
// Add cause if present
if v.Cause != nil {
attrs = append(attrs, slog.Any("cause", v.Cause))
}
return slog.GroupValue(attrs...)
}
// Error implements the error interface for ValidationErrors.
// Returns a generic error message indicating validation errors occurred.
func (ve *validationErrors) Error() string {
if len(ve.errors) == 0 {
return "ValidationErrors: no errors"
}
if len(ve.errors) == 1 {
return "ValidationErrors: 1 error"
}
return fmt.Sprintf("ValidationErrors: %d errors", len(ve.errors))
}
// Unwrap returns the underlying cause error if present.
// This allows ValidationErrors to work with errors.Is and errors.As.
func (ve *validationErrors) Unwrap() error {
return ve.cause
}
// String returns a simple string representation of all validation errors.
// Each error is listed on a separate line with its index.
func (ve *validationErrors) String() string {
if len(ve.errors) == 0 {
return "ValidationErrors: no errors"
}
result := fmt.Sprintf("ValidationErrors (%d):\n", len(ve.errors))
for i, err := range ve.errors {
result += fmt.Sprintf(" [%d] %s\n", i, err.String())
}
if ve.cause != nil {
result += fmt.Sprintf(" caused by: %v\n", ve.cause)
}
return result
}
// Format implements fmt.Formatter for custom formatting of ValidationErrors.
// Supports verbs: %s, %v, %+v (with additional details)
// %s and %v: compact format with error count
// %+v: verbose format with all error details
func (ve *validationErrors) Format(s fmt.State, verb rune) {
if len(ve.errors) == 0 {
fmt.Fprint(s, "ValidationErrors: no errors")
return
}
// For simple format, just show the count
if verb == 's' || (verb == 'v' && !s.Flag('+')) {
if len(ve.errors) == 1 {
fmt.Fprint(s, "ValidationErrors: 1 error")
} else {
fmt.Fprintf(s, "ValidationErrors: %d errors", len(ve.errors))
}
return
}
// Verbose format with all details
if s.Flag('+') && verb == 'v' {
fmt.Fprintf(s, "ValidationErrors (%d):\n", len(ve.errors))
for i, err := range ve.errors {
fmt.Fprintf(s, " [%d] ", i)
err.Format(s, verb)
fmt.Fprint(s, "\n")
}
if ve.cause != nil {
fmt.Fprintf(s, " root cause: %+v\n", ve.cause)
}
}
}
// LogValue implements the slog.LogValuer interface for ValidationErrors.
// It provides structured logging representation of multiple validation errors.
// Returns a slog.Value containing the error count and individual errors as a group.
//
// This method is called automatically when logging ValidationErrors with slog.
//
// Example:
//
// errors := &ValidationErrors{Errors: []*ValidationError{{Messsage: "error1"}, {Messsage: "error2"}}}
// slog.Error("validation failed", "errors", errors)
// // Logs: errors={count=2 errors=[...]}
func (ve *validationErrors) LogValue() slog.Value {
attrs := []slog.Attr{
slog.Int("count", len(ve.errors)),
}
// Add individual errors as a group
if len(ve.errors) > 0 {
errorAttrs := make([]slog.Attr, len(ve.errors))
for i, err := range ve.errors {
errorAttrs[i] = slog.Any(fmt.Sprintf("error_%d", i), err)
}
attrs = append(attrs, slog.Any("errors", slog.GroupValue(errorAttrs...)))
}
// Add cause if present
if ve.cause != nil {
attrs = append(attrs, slog.Any("cause", ve.cause))
}
return slog.GroupValue(attrs...)
}
// Failures creates a validation failure from a collection of errors.
// Returns a Left Either containing the errors.
func Failures[T any](err Errors) Validation[T] {
@@ -123,3 +271,50 @@ func FailureWithError[T any](value any, message string) Reader[error, Reader[Con
func Success[T any](value T) Validation[T] {
return either.Of[Errors](value)
}
// MakeValidationErrors converts a collection of validation errors into a single error.
// It wraps the Errors slice in a ValidationErrors struct that implements the error interface.
// This is useful for converting validation failures into standard Go errors.
//
// Parameters:
// - errors: A slice of ValidationError pointers representing validation failures
//
// Returns:
// - An error that contains all the validation errors and can be used with standard error handling
//
// Example:
//
// errors := Errors{
// &ValidationError{Value: "abc", Messsage: "expected number"},
// &ValidationError{Value: nil, Messsage: "required field"},
// }
// err := MakeValidationErrors(errors)
// fmt.Println(err) // Output: ValidationErrors: 2 errors
func MakeValidationErrors(errors Errors) error {
return &validationErrors{errors: errors}
}
// ToResult converts a Validation[T] to a Result[T].
// It transforms the Left side (validation errors) into a standard error using MakeValidationErrors,
// while preserving the Right side (successful value) unchanged.
// This is useful for integrating validation results with code that expects Result types.
//
// Type Parameters:
// - T: The type of the successfully validated value
//
// Parameters:
// - val: A Validation[T] which is Either[Errors, T]
//
// Returns:
// - A Result[T] which is Either[error, T], with validation errors converted to a single error
//
// Example:
//
// validation := Success[int](42)
// result := ToResult(validation) // Result containing 42
//
// validation := Failures[int](Errors{&ValidationError{Messsage: "invalid"}})
// result := ToResult(validation) // Result containing ValidationErrors error
func ToResult[T any](val Validation[T]) Result[T] {
return either.MonadMapLeft(val, MakeValidationErrors)
}

View File

@@ -3,6 +3,7 @@ package validation
import (
"errors"
"fmt"
"log/slog"
"testing"
"github.com/IBM/fp-go/v2/either"
@@ -29,8 +30,8 @@ func TestValidationError_String(t *testing.T) {
expected := "ValidationError: invalid value"
assert.Equal(t, expected, err.String())
}
func TestValidationError_Unwrap(t *testing.T) {
t.Run("with cause", func(t *testing.T) {
cause := errors.New("underlying error")
err := &ValidationError{
@@ -417,3 +418,446 @@ func TestValidationError_FormatEdgeCases(t *testing.T) {
assert.Contains(t, result, "value: <nil>")
})
}
func TestMakeValidationErrors(t *testing.T) {
t.Run("creates error from single validation error", func(t *testing.T) {
errs := Errors{
&ValidationError{Value: "test", Messsage: "invalid value"},
}
err := MakeValidationErrors(errs)
require.NotNil(t, err)
assert.Equal(t, "ValidationErrors: 1 error", err.Error())
// Verify it's a ValidationErrors type
ve, ok := err.(*validationErrors)
require.True(t, ok)
assert.Len(t, ve.errors, 1)
assert.Equal(t, "invalid value", ve.errors[0].Messsage)
})
t.Run("creates error from multiple validation errors", func(t *testing.T) {
errs := Errors{
&ValidationError{Value: "test1", Messsage: "error 1"},
&ValidationError{Value: "test2", Messsage: "error 2"},
&ValidationError{Value: "test3", Messsage: "error 3"},
}
err := MakeValidationErrors(errs)
require.NotNil(t, err)
assert.Equal(t, "ValidationErrors: 3 errors", err.Error())
ve, ok := err.(*validationErrors)
require.True(t, ok)
assert.Len(t, ve.errors, 3)
})
t.Run("creates error from empty errors slice", func(t *testing.T) {
errs := Errors{}
err := MakeValidationErrors(errs)
require.NotNil(t, err)
assert.Equal(t, "ValidationErrors: no errors", err.Error())
ve, ok := err.(*validationErrors)
require.True(t, ok)
assert.Len(t, ve.errors, 0)
})
t.Run("preserves error details", func(t *testing.T) {
cause := errors.New("underlying cause")
errs := Errors{
&ValidationError{
Value: "abc",
Context: []ContextEntry{{Key: "field"}},
Messsage: "invalid format",
Cause: cause,
},
}
err := MakeValidationErrors(errs)
ve, ok := err.(*validationErrors)
require.True(t, ok)
require.Len(t, ve.errors, 1)
assert.Equal(t, "abc", ve.errors[0].Value)
assert.Equal(t, "invalid format", ve.errors[0].Messsage)
assert.Equal(t, cause, ve.errors[0].Cause)
assert.Len(t, ve.errors[0].Context, 1)
})
t.Run("error can be formatted", func(t *testing.T) {
errs := Errors{
&ValidationError{
Context: []ContextEntry{{Key: "user"}, {Key: "name"}},
Messsage: "required",
},
}
err := MakeValidationErrors(errs)
formatted := fmt.Sprintf("%+v", err)
assert.Contains(t, formatted, "ValidationErrors")
assert.Contains(t, formatted, "user.name")
assert.Contains(t, formatted, "required")
})
}
func TestToResult(t *testing.T) {
t.Run("converts successful validation to result", func(t *testing.T) {
validation := Success(42)
result := ToResult(validation)
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(error) int { return 0 },
F.Identity[int],
)
assert.Equal(t, 42, value)
})
t.Run("converts failed validation to result with error", func(t *testing.T) {
errs := Errors{
&ValidationError{Value: "abc", Messsage: "expected number"},
}
validation := Failures[int](errs)
result := ToResult(validation)
assert.True(t, either.IsLeft(result))
err := either.MonadFold(result,
F.Identity[error],
func(int) error { return nil },
)
require.NotNil(t, err)
assert.Equal(t, "ValidationErrors: 1 error", err.Error())
// Verify it's a ValidationErrors type
ve, ok := err.(*validationErrors)
require.True(t, ok)
assert.Len(t, ve.errors, 1)
assert.Equal(t, "expected number", ve.errors[0].Messsage)
})
t.Run("converts multiple validation errors to result", func(t *testing.T) {
errs := Errors{
&ValidationError{Value: "test1", Messsage: "error 1"},
&ValidationError{Value: "test2", Messsage: "error 2"},
}
validation := Failures[string](errs)
result := ToResult(validation)
assert.True(t, either.IsLeft(result))
err := either.MonadFold(result,
F.Identity[error],
func(string) error { return nil },
)
require.NotNil(t, err)
assert.Equal(t, "ValidationErrors: 2 errors", err.Error())
ve, ok := err.(*validationErrors)
require.True(t, ok)
assert.Len(t, ve.errors, 2)
})
t.Run("works with different types", func(t *testing.T) {
// String type
strValidation := Success("hello")
strResult := ToResult(strValidation)
assert.True(t, either.IsRight(strResult))
// Bool type
boolValidation := Success(true)
boolResult := ToResult(boolValidation)
assert.True(t, either.IsRight(boolResult))
// Struct type
type User struct{ Name string }
userValidation := Success(User{Name: "Alice"})
userResult := ToResult(userValidation)
assert.True(t, either.IsRight(userResult))
user := either.MonadFold(userResult,
func(error) User { return User{} },
F.Identity[User],
)
assert.Equal(t, "Alice", user.Name)
})
t.Run("preserves error context in result", func(t *testing.T) {
errs := Errors{
&ValidationError{
Value: nil,
Context: []ContextEntry{{Key: "user"}, {Key: "email"}},
Messsage: "required field",
},
}
validation := Failures[string](errs)
result := ToResult(validation)
err := either.MonadFold(result,
F.Identity[error],
func(string) error { return nil },
)
formatted := fmt.Sprintf("%+v", err)
assert.Contains(t, formatted, "user.email")
assert.Contains(t, formatted, "required field")
})
t.Run("preserves cause in result error", func(t *testing.T) {
cause := errors.New("parse error")
errs := Errors{
&ValidationError{
Value: "abc",
Messsage: "invalid number",
Cause: cause,
},
}
validation := Failures[int](errs)
result := ToResult(validation)
err := either.MonadFold(result,
F.Identity[error],
func(int) error { return nil },
)
ve, ok := err.(*validationErrors)
require.True(t, ok)
require.Len(t, ve.errors, 1)
assert.True(t, errors.Is(ve.errors[0], cause))
})
t.Run("result error implements error interface", func(t *testing.T) {
errs := Errors{
&ValidationError{Messsage: "test error"},
}
validation := Failures[int](errs)
result := ToResult(validation)
err := either.MonadFold(result,
F.Identity[error],
func(int) error { return nil },
)
// Should be usable as a standard error
var stdErr error = err
assert.NotNil(t, stdErr)
assert.Contains(t, stdErr.Error(), "ValidationErrors")
})
}
// TestValidationError_LogValue tests the LogValue() method implementation
func TestValidationError_LogValue(t *testing.T) {
t.Run("simple error without context", func(t *testing.T) {
err := &ValidationError{
Value: "test",
Messsage: "invalid value",
}
logValue := err.LogValue()
assert.Equal(t, slog.KindGroup, logValue.Kind())
attrs := logValue.Group()
assert.GreaterOrEqual(t, len(attrs), 2)
attrMap := make(map[string]string)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.String()
}
assert.Equal(t, "invalid value", attrMap["message"])
assert.Contains(t, attrMap["value"], "test")
})
t.Run("error with context path", func(t *testing.T) {
err := &ValidationError{
Value: "test",
Context: []ContextEntry{{Key: "user"}, {Key: "name"}},
Messsage: "must not be empty",
}
logValue := err.LogValue()
attrs := logValue.Group()
attrMap := make(map[string]string)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.String()
}
assert.Equal(t, "must not be empty", attrMap["message"])
assert.Equal(t, "user.name", attrMap["path"])
})
t.Run("error with cause", func(t *testing.T) {
cause := errors.New("parse error")
err := &ValidationError{
Value: "abc",
Messsage: "invalid number",
Cause: cause,
}
logValue := err.LogValue()
attrs := logValue.Group()
attrMap := make(map[string]any)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.Any()
}
assert.Equal(t, "invalid number", attrMap["message"])
assert.NotNil(t, attrMap["cause"])
})
t.Run("error with context using type", func(t *testing.T) {
err := &ValidationError{
Value: 123,
Context: []ContextEntry{{Type: "User"}, {Key: "age"}},
Messsage: "must be positive",
}
logValue := err.LogValue()
attrs := logValue.Group()
attrMap := make(map[string]string)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.String()
}
assert.Equal(t, "User.age", attrMap["path"])
})
t.Run("complex context path", func(t *testing.T) {
err := &ValidationError{
Value: "invalid",
Context: []ContextEntry{
{Key: "user"},
{Key: "address"},
{Key: "zipCode"},
},
Messsage: "invalid format",
}
logValue := err.LogValue()
attrs := logValue.Group()
attrMap := make(map[string]string)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.String()
}
assert.Equal(t, "user.address.zipCode", attrMap["path"])
})
}
// TestValidationErrors_LogValue tests the LogValue() method implementation
func TestValidationErrors_LogValue(t *testing.T) {
t.Run("empty errors", func(t *testing.T) {
ve := &validationErrors{errors: Errors{}}
logValue := ve.LogValue()
assert.Equal(t, slog.KindGroup, logValue.Kind())
attrs := logValue.Group()
attrMap := make(map[string]any)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.Any()
}
assert.Equal(t, int64(0), attrMap["count"])
})
t.Run("single error", func(t *testing.T) {
ve := &validationErrors{
errors: Errors{
&ValidationError{Value: "test", Messsage: "error 1"},
},
}
logValue := ve.LogValue()
attrs := logValue.Group()
attrMap := make(map[string]any)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.Any()
}
assert.Equal(t, int64(1), attrMap["count"])
assert.NotNil(t, attrMap["errors"])
})
t.Run("multiple errors", func(t *testing.T) {
ve := &validationErrors{
errors: Errors{
&ValidationError{Value: "test1", Messsage: "error 1"},
&ValidationError{Value: "test2", Messsage: "error 2"},
&ValidationError{Value: "test3", Messsage: "error 3"},
},
}
logValue := ve.LogValue()
attrs := logValue.Group()
attrMap := make(map[string]any)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.Any()
}
assert.Equal(t, int64(3), attrMap["count"])
assert.NotNil(t, attrMap["errors"])
})
t.Run("with cause", func(t *testing.T) {
cause := errors.New("underlying error")
ve := &validationErrors{
errors: Errors{
&ValidationError{Value: "test", Messsage: "error"},
},
cause: cause,
}
logValue := ve.LogValue()
attrs := logValue.Group()
attrMap := make(map[string]any)
for _, attr := range attrs {
attrMap[attr.Key] = attr.Value.Any()
}
assert.NotNil(t, attrMap["cause"])
})
t.Run("preserves error details", func(t *testing.T) {
ve := &validationErrors{
errors: Errors{
&ValidationError{
Value: "abc",
Context: []ContextEntry{{Key: "field"}},
Messsage: "invalid format",
},
},
}
logValue := ve.LogValue()
assert.Equal(t, slog.KindGroup, logValue.Kind())
attrs := logValue.Group()
assert.GreaterOrEqual(t, len(attrs), 2)
})
}
// TestLogValuerInterface verifies that ValidationError and ValidationErrors implement slog.LogValuer
func TestLogValuerInterface(t *testing.T) {
t.Run("ValidationError implements slog.LogValuer", func(t *testing.T) {
var _ slog.LogValuer = (*ValidationError)(nil)
})
t.Run("ValidationErrors implements slog.LogValuer", func(t *testing.T) {
var _ slog.LogValuer = (*validationErrors)(nil)
})
}

View File

@@ -0,0 +1,370 @@
package codec
import (
"testing"
"github.com/IBM/fp-go/v2/either"
R "github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
// TestIsWithPrimitiveTypes tests the Is function with primitive types
func TestIsWithPrimitiveTypes(t *testing.T) {
t.Run("string type succeeds with string value", func(t *testing.T) {
isString := Is[string]()
res := isString("hello")
assert.Equal(t, R.Of("hello"), res)
})
t.Run("string type fails with int value", func(t *testing.T) {
isString := Is[string]()
res := isString(42)
assert.True(t, either.IsLeft(res), "Expected Left for invalid type")
})
t.Run("int type succeeds with int value", func(t *testing.T) {
isInt := Is[int]()
res := isInt(42)
assert.Equal(t, R.Of(42), res)
})
t.Run("int type fails with string value", func(t *testing.T) {
isInt := Is[int]()
res := isInt("42")
assert.True(t, either.IsLeft(res))
})
t.Run("bool type succeeds with bool value", func(t *testing.T) {
isBool := Is[bool]()
res := isBool(true)
assert.Equal(t, R.Of(true), res)
})
t.Run("bool type fails with int value", func(t *testing.T) {
isBool := Is[bool]()
res := isBool(1)
assert.True(t, either.IsLeft(res))
})
t.Run("float64 type succeeds with float64 value", func(t *testing.T) {
isFloat := Is[float64]()
res := isFloat(3.14)
assert.Equal(t, R.Of(3.14), res)
})
t.Run("float64 type fails with int value", func(t *testing.T) {
isFloat := Is[float64]()
res := isFloat(42)
assert.True(t, either.IsLeft(res))
})
}
// TestIsWithNumericTypes tests Is with different numeric types
func TestIsWithNumericTypes(t *testing.T) {
t.Run("int8 type", func(t *testing.T) {
isInt8 := Is[int8]()
res := isInt8(int8(127))
assert.Equal(t, R.Of(int8(127)), res)
// Fails with regular int
res = isInt8(127)
assert.True(t, either.IsLeft(res))
})
t.Run("int16 type", func(t *testing.T) {
isInt16 := Is[int16]()
res := isInt16(int16(32767))
assert.Equal(t, R.Of(int16(32767)), res)
})
t.Run("int32 type", func(t *testing.T) {
isInt32 := Is[int32]()
res := isInt32(int32(2147483647))
assert.Equal(t, R.Of(int32(2147483647)), res)
})
t.Run("int64 type", func(t *testing.T) {
isInt64 := Is[int64]()
res := isInt64(int64(9223372036854775807))
assert.Equal(t, R.Of(int64(9223372036854775807)), res)
})
t.Run("uint type", func(t *testing.T) {
isUint := Is[uint]()
res := isUint(uint(42))
assert.Equal(t, R.Of(uint(42)), res)
// Fails with int
res = isUint(42)
assert.True(t, either.IsLeft(res))
})
t.Run("float32 type", func(t *testing.T) {
isFloat32 := Is[float32]()
res := isFloat32(float32(3.14))
assert.Equal(t, R.Of(float32(3.14)), res)
// Fails with float64
res = isFloat32(3.14)
assert.True(t, either.IsLeft(res))
})
}
// TestIsWithComplexTypes tests Is with complex and composite types
func TestIsWithComplexTypes(t *testing.T) {
t.Run("slice type succeeds with slice", func(t *testing.T) {
isSlice := Is[[]int]()
res := isSlice([]int{1, 2, 3})
assert.Equal(t, R.Of([]int{1, 2, 3}), res)
})
t.Run("slice type fails with array", func(t *testing.T) {
isSlice := Is[[]int]()
res := isSlice([3]int{1, 2, 3})
assert.True(t, either.IsLeft(res))
})
t.Run("map type succeeds with map", func(t *testing.T) {
isMap := Is[map[string]int]()
testMap := map[string]int{"a": 1, "b": 2}
res := isMap(testMap)
assert.Equal(t, R.Of(testMap), res)
})
t.Run("map type fails with wrong key type", func(t *testing.T) {
isMap := Is[map[string]int]()
wrongMap := map[int]int{1: 1, 2: 2}
res := isMap(wrongMap)
assert.True(t, either.IsLeft(res))
})
t.Run("array type succeeds with array", func(t *testing.T) {
isArray := Is[[3]int]()
res := isArray([3]int{1, 2, 3})
assert.Equal(t, R.Of([3]int{1, 2, 3}), res)
})
t.Run("array type fails with different size", func(t *testing.T) {
isArray := Is[[3]int]()
res := isArray([4]int{1, 2, 3, 4})
assert.True(t, either.IsLeft(res))
})
}
// TestIsWithStructTypes tests Is with struct types
func TestIsWithStructTypes(t *testing.T) {
type Person struct {
Name string
Age int
}
type Employee struct {
Name string
Salary float64
}
t.Run("struct type succeeds with matching struct", func(t *testing.T) {
isPerson := Is[Person]()
person := Person{Name: "Alice", Age: 30}
res := isPerson(person)
assert.Equal(t, R.Of(person), res)
})
t.Run("struct type fails with different struct", func(t *testing.T) {
isPerson := Is[Person]()
employee := Employee{Name: "Bob", Salary: 50000}
res := isPerson(employee)
assert.True(t, either.IsLeft(res))
})
t.Run("struct type fails with primitive", func(t *testing.T) {
isPerson := Is[Person]()
res := isPerson("not a person")
assert.True(t, either.IsLeft(res))
})
}
// TestIsWithPointerTypes tests Is with pointer types
func TestIsWithPointerTypes(t *testing.T) {
t.Run("pointer type succeeds with pointer", func(t *testing.T) {
isStringPtr := Is[*string]()
str := "hello"
res := isStringPtr(&str)
assert.Equal(t, R.Of(&str), res)
})
t.Run("pointer type fails with non-pointer", func(t *testing.T) {
isStringPtr := Is[*string]()
res := isStringPtr("hello")
assert.True(t, either.IsLeft(res))
})
t.Run("pointer type succeeds with nil pointer", func(t *testing.T) {
isStringPtr := Is[*string]()
var nilPtr *string = nil
res := isStringPtr(nilPtr)
assert.Equal(t, R.Of(nilPtr), res)
})
t.Run("non-pointer type fails with pointer", func(t *testing.T) {
isString := Is[string]()
str := "hello"
res := isString(&str)
assert.True(t, either.IsLeft(res))
})
}
// TestIsWithEmptyValues tests Is with empty/zero values
func TestIsWithEmptyValues(t *testing.T) {
t.Run("empty string", func(t *testing.T) {
isString := Is[string]()
res := isString("")
assert.Equal(t, R.Of(""), res)
})
t.Run("zero int", func(t *testing.T) {
isInt := Is[int]()
res := isInt(0)
assert.Equal(t, R.Of(0), res)
})
t.Run("false bool", func(t *testing.T) {
isBool := Is[bool]()
res := isBool(false)
assert.Equal(t, R.Of(false), res)
})
t.Run("nil slice", func(t *testing.T) {
isSlice := Is[[]int]()
var nilSlice []int = nil
res := isSlice(nilSlice)
assert.Equal(t, R.Of(nilSlice), res)
})
t.Run("empty slice", func(t *testing.T) {
isSlice := Is[[]int]()
emptySlice := []int{}
res := isSlice(emptySlice)
assert.Equal(t, R.Of(emptySlice), res)
})
t.Run("nil map", func(t *testing.T) {
isMap := Is[map[string]int]()
var nilMap map[string]int = nil
res := isMap(nilMap)
assert.Equal(t, R.Of(nilMap), res)
})
}
// TestIsWithChannelTypes tests Is with channel types
func TestIsWithChannelTypes(t *testing.T) {
t.Run("channel type succeeds with channel", func(t *testing.T) {
isChan := Is[chan int]()
ch := make(chan int)
defer close(ch)
res := isChan(ch)
assert.Equal(t, R.Of(ch), res)
})
t.Run("channel type fails with wrong channel type", func(t *testing.T) {
isChan := Is[chan int]()
ch := make(chan string)
defer close(ch)
res := isChan(ch)
assert.True(t, either.IsLeft(res))
})
t.Run("bidirectional vs unidirectional channels", func(t *testing.T) {
isSendChan := Is[chan<- int]()
ch := make(chan int)
defer close(ch)
// Bidirectional channel can be used as send-only
sendCh := chan<- int(ch)
res := isSendChan(sendCh)
assert.Equal(t, R.Of(sendCh), res)
})
}
// TestIsWithFunctionTypes tests Is with function types
func TestIsWithFunctionTypes(t *testing.T) {
t.Run("function type succeeds with matching function", func(t *testing.T) {
isFunc := Is[func(int) int]()
fn := func(x int) int { return x * 2 }
res := isFunc(fn)
// Functions can't be compared for equality, so just check it's Right
assert.True(t, either.IsRight(res))
})
t.Run("function type fails with different signature", func(t *testing.T) {
isFunc := Is[func(int) int]()
fn := func(x string) string { return x }
res := isFunc(fn)
assert.True(t, either.IsLeft(res))
})
t.Run("function type fails with non-function", func(t *testing.T) {
isFunc := Is[func(int) int]()
res := isFunc(42)
assert.True(t, either.IsLeft(res))
})
}
// TestIsErrorMessages tests that Is produces appropriate error messages
func TestIsErrorMessages(t *testing.T) {
t.Run("error message for type mismatch", func(t *testing.T) {
isString := Is[string]()
res := isString(42)
assert.True(t, either.IsLeft(res), "Expected Left for type mismatch")
})
t.Run("error for struct type mismatch", func(t *testing.T) {
type CustomType struct {
Field string
}
isCustom := Is[CustomType]()
res := isCustom("not a custom type")
assert.True(t, either.IsLeft(res), "Expected Left for struct type mismatch")
})
}

View File

@@ -267,6 +267,11 @@ func MakeLensCurriedWithName[GET ~func(S) A, SET ~func(A) Endomorphism[S], S, A
return Lens[S, A]{Get: get, Set: set, name: name}
}
//go:inline
func MakeLensCurriedRefWithName[GET ~func(*S) A, SET ~func(A) Endomorphism[*S], S, A any](get GET, set SET, name string) Lens[*S, A] {
return Lens[*S, A]{Get: get, Set: setCopyCurried(set), name: name}
}
// MakeLensRef creates a [Lens] for pointer-based structures.
//
// Unlike [MakeLens], the setter does not need to create a copy manually. This function

View File

@@ -0,0 +1,252 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prism
import (
"fmt"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/lazy"
O "github.com/IBM/fp-go/v2/optics/optional"
"github.com/IBM/fp-go/v2/option"
)
func compose[S, A, B any](
creator func(get option.Kleisli[S, B], set func(B) Endomorphism[S], name string) Optional[S, B],
p Prism[A, B]) func(Lens[S, A]) Optional[S, B] {
return func(l Lens[S, A]) Optional[S, B] {
// GetOption: Lens.Get followed by Prism.GetOption
// This extracts A from S, then tries to extract B from A
getOption := F.Flow2(l.Get, p.GetOption)
// Set: Constructs a setter that respects the Optional laws
setOption := func(b B) func(S) S {
// Pre-compute the new A value by using Prism.ReverseGet
// This constructs an A from the given B
setl := l.Set(p.ReverseGet(b))
return func(s S) S {
// Check if the Prism matches the current value
return F.Pipe1(
getOption(s),
option.Fold(
// None case: Prism doesn't match, return s unchanged (no-op)
// This satisfies the GetSet law for Optional
lazy.Of(s),
// Some case: Prism matches, update the value
// This satisfies the SetGet law for Optional
func(_ B) S {
return setl(s)
},
),
)
}
}
return creator(
getOption,
setOption,
fmt.Sprintf("Compose[%s -> %s]", l, p),
)
}
}
// Compose composes a Lens with a Prism to create an Optional.
//
// This composition allows you to focus on a part of a structure (using a Lens)
// and then optionally extract a variant from that part (using a Prism). The result
// is an Optional because the Prism may not match the focused value.
//
// The composition follows the Optional laws (a relaxed form of lens laws):
//
// SetGet Law (GetSet for Optional):
// - If optional.GetOption(s) = Some(b), then optional.GetOption(optional.Set(b)(s)) = Some(b)
// - This ensures that setting a value and then getting it returns the same value
//
// GetSet Law (for Optional):
// - If optional.GetOption(s) = None, then optional.Set(b)(s) = s (no-op)
// - This ensures that setting a value when the optional doesn't match leaves the structure unchanged
//
// These laws are documented in the official fp-ts documentation:
// https://gcanti.github.io/monocle-ts/modules/Optional.ts.html
//
// Type Parameters:
// - S: The source/outer structure type
// - A: The intermediate type (focused by the Lens)
// - B: The target type (focused by the Prism within A)
//
// Parameters:
// - p: A Prism[A, B] that optionally extracts B from A
//
// Returns:
// - A function that takes a Lens[S, A] and returns an Optional[S, B]
//
// Behavior:
// - GetOption: First uses the Lens to get A from S, then uses the Prism to try to extract B from A.
// Returns Some(b) if both operations succeed, None otherwise.
// - Set: When setting a value b:
// - If GetOption(s) returns Some(_), it means the Prism matches, so we:
// 1. Use Prism.ReverseGet to construct an A from b
// 2. Use Lens.Set to update S with the new A
// - If GetOption(s) returns None, the Prism doesn't match, so we return s unchanged (no-op)
//
// Example:
//
// type Config struct {
// Database DatabaseConfig
// }
//
// type DatabaseConfig struct {
// Connection ConnectionType
// }
//
// type ConnectionType interface{ isConnection() }
// type PostgreSQL struct{ Host string }
// type MySQL struct{ Host string }
//
// // Lens to focus on Database field
// dbLens := lens.MakeLens(
// func(c Config) DatabaseConfig { return c.Database },
// func(c Config, db DatabaseConfig) Config { c.Database = db; return c },
// )
//
// // Prism to extract PostgreSQL from ConnectionType
// pgPrism := prism.MakePrism(
// func(ct ConnectionType) option.Option[PostgreSQL] {
// if pg, ok := ct.(PostgreSQL); ok {
// return option.Some(pg)
// }
// return option.None[PostgreSQL]()
// },
// func(pg PostgreSQL) ConnectionType { return pg },
// )
//
// // Compose to create Optional[Config, PostgreSQL]
// configPgOptional := Compose[Config, DatabaseConfig, PostgreSQL](pgPrism)(dbLens)
//
// config := Config{Database: DatabaseConfig{Connection: PostgreSQL{Host: "localhost"}}}
// host := configPgOptional.GetOption(config) // Some(PostgreSQL{Host: "localhost"})
//
// updated := configPgOptional.Set(PostgreSQL{Host: "remote"})(config)
// // updated.Database.Connection = PostgreSQL{Host: "remote"}
//
// configMySQL := Config{Database: DatabaseConfig{Connection: MySQL{Host: "localhost"}}}
// none := configPgOptional.GetOption(configMySQL) // None (Prism doesn't match)
// unchanged := configPgOptional.Set(PostgreSQL{Host: "remote"})(configMySQL)
// // unchanged == configMySQL (no-op because Prism doesn't match)
func Compose[S, A, B any](p Prism[A, B]) func(Lens[S, A]) Optional[S, B] {
return compose(O.MakeOptionalCurriedWithName[S, B], p)
}
// ComposeRef composes a Lens operating on pointer types with a Prism to create an Optional.
//
// This is the pointer-safe variant of Compose, designed for working with pointer types (*S).
// It automatically handles nil pointer cases and creates copies before modification to ensure
// immutability and prevent unintended side effects.
//
// The composition follows the same Optional laws as Compose:
//
// SetGet Law (GetSet for Optional):
// - If optional.GetOption(s) = Some(b), then optional.GetOption(optional.Set(b)(s)) = Some(b)
// - This ensures that setting a value and then getting it returns the same value
//
// GetSet Law (for Optional):
// - If optional.GetOption(s) = None, then optional.Set(b)(s) = s (no-op)
// - This ensures that setting a value when the optional doesn't match leaves the structure unchanged
//
// Nil Pointer Handling:
// - When s is nil and GetOption would return None, Set operations return nil (no-op)
// - When s is nil and GetOption would return Some (after creating default), Set creates a new instance
// - All Set operations create a shallow copy of *S before modification to preserve immutability
//
// These laws are documented in the official fp-ts documentation:
// https://gcanti.github.io/monocle-ts/modules/Optional.ts.html
//
// Type Parameters:
// - S: The source/outer structure type (used as *S in the lens)
// - A: The intermediate type (focused by the Lens)
// - B: The target type (focused by the Prism within A)
//
// Parameters:
// - p: A Prism[A, B] that optionally extracts B from A
//
// Returns:
// - A function that takes a Lens[*S, A] and returns an Optional[*S, B]
//
// Behavior:
// - GetOption: First uses the Lens to get A from *S, then uses the Prism to try to extract B from A.
// Returns Some(b) if both operations succeed, None otherwise.
// - Set: When setting a value b:
// - Creates a shallow copy of *S before any modification (nil-safe)
// - If GetOption(s) returns Some(_), it means the Prism matches, so we:
// 1. Use Prism.ReverseGet to construct an A from b
// 2. Use Lens.Set to update the copy of *S with the new A
// - If GetOption(s) returns None, the Prism doesn't match, so we return s unchanged (no-op)
//
// Example:
//
// type Config struct {
// Connection ConnectionType
// AppName string
// }
//
// type ConnectionType interface{ isConnection() }
// type PostgreSQL struct{ Host string }
// type MySQL struct{ Host string }
//
// // Lens to focus on Connection field (pointer-based)
// connLens := lens.MakeLensRef(
// func(c *Config) ConnectionType { return c.Connection },
// func(c *Config, ct ConnectionType) *Config { c.Connection = ct; return c },
// )
//
// // Prism to extract PostgreSQL from ConnectionType
// pgPrism := prism.MakePrism(
// func(ct ConnectionType) option.Option[PostgreSQL] {
// if pg, ok := ct.(PostgreSQL); ok {
// return option.Some(pg)
// }
// return option.None[PostgreSQL]()
// },
// func(pg PostgreSQL) ConnectionType { return pg },
// )
//
// // Compose to create Optional[*Config, PostgreSQL]
// configPgOptional := ComposeRef[Config, ConnectionType, PostgreSQL](pgPrism)(connLens)
//
// // Works with non-nil pointers
// config := &Config{Connection: PostgreSQL{Host: "localhost"}}
// host := configPgOptional.GetOption(config) // Some(PostgreSQL{Host: "localhost"})
// updated := configPgOptional.Set(PostgreSQL{Host: "remote"})(config)
// // updated is a new *Config with Connection = PostgreSQL{Host: "remote"}
// // original config is unchanged (immutability preserved)
//
// // Handles nil pointers safely
// var nilConfig *Config = nil
// none := configPgOptional.GetOption(nilConfig) // None (nil pointer)
// unchanged := configPgOptional.Set(PostgreSQL{Host: "remote"})(nilConfig)
// // unchanged == nil (no-op because source is nil)
//
// // Works with mismatched prisms
// configMySQL := &Config{Connection: MySQL{Host: "localhost"}}
// none = configPgOptional.GetOption(configMySQL) // None (Prism doesn't match)
// unchanged = configPgOptional.Set(PostgreSQL{Host: "remote"})(configMySQL)
// // unchanged == configMySQL (no-op because Prism doesn't match)
func ComposeRef[S, A, B any](p Prism[A, B]) func(Lens[*S, A]) Optional[*S, B] {
return compose(O.MakeOptionalRefCurriedWithName[S, B], p)
}

View File

@@ -0,0 +1,858 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prism
import (
"testing"
"github.com/IBM/fp-go/v2/assert"
F "github.com/IBM/fp-go/v2/function"
L "github.com/IBM/fp-go/v2/optics/lens"
P "github.com/IBM/fp-go/v2/optics/prism"
O "github.com/IBM/fp-go/v2/option"
)
// Test types for composition examples
// ConnectionType is a sum type representing different database connections
type ConnectionType interface {
isConnection()
}
type PostgreSQL struct {
Host string
Port int
}
func (PostgreSQL) isConnection() {}
type MySQL struct {
Host string
Port int
}
func (MySQL) isConnection() {}
type MongoDB struct {
Host string
Port int
}
func (MongoDB) isConnection() {}
// Config is the top-level configuration
type Config struct {
Connection ConnectionType
AppName string
}
// Helper functions to create prisms for each connection type
func postgresqlPrism() P.Prism[ConnectionType, PostgreSQL] {
return P.MakePrism(
func(ct ConnectionType) O.Option[PostgreSQL] {
if pg, ok := ct.(PostgreSQL); ok {
return O.Some(pg)
}
return O.None[PostgreSQL]()
},
func(pg PostgreSQL) ConnectionType { return pg },
)
}
func mysqlPrism() P.Prism[ConnectionType, MySQL] {
return P.MakePrism(
func(ct ConnectionType) O.Option[MySQL] {
if my, ok := ct.(MySQL); ok {
return O.Some(my)
}
return O.None[MySQL]()
},
func(my MySQL) ConnectionType { return my },
)
}
func mongodbPrism() P.Prism[ConnectionType, MongoDB] {
return P.MakePrism(
func(ct ConnectionType) O.Option[MongoDB] {
if mg, ok := ct.(MongoDB); ok {
return O.Some(mg)
}
return O.None[MongoDB]()
},
func(mg MongoDB) ConnectionType { return mg },
)
}
// Helper function to create connection lens
func connectionLens() L.Lens[Config, ConnectionType] {
return L.MakeLens(
func(c Config) ConnectionType { return c.Connection },
func(c Config, ct ConnectionType) Config {
c.Connection = ct
return c
},
)
}
// Helper function to create nil-safe connection lens for pointer types
func connectionLensRef() L.Lens[*Config, ConnectionType] {
return L.MakeLensRef(
func(c *Config) ConnectionType {
if c == nil {
return nil
}
return c.Connection
},
func(c *Config, ct ConnectionType) *Config {
if c == nil {
return &Config{Connection: ct}
}
c.Connection = ct
return c
},
)
}
// TestComposeBasicFunctionality tests basic composition behavior
func TestComposeBasicFunctionality(t *testing.T) {
t.Run("GetOption returns Some when Prism matches", func(t *testing.T) {
connLens := connectionLens()
pgPrism := postgresqlPrism()
// Compose connection lens with PostgreSQL prism
configPgOptional := Compose[Config](pgPrism)(connLens)
config := Config{
Connection: PostgreSQL{Host: "localhost", Port: 5432},
AppName: "TestApp",
}
result := configPgOptional.GetOption(config)
assert.Equal(true)(O.IsSome(result))(t)
pg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal("localhost")(pg.Host)(t)
assert.Equal(5432)(pg.Port)(t)
})
t.Run("GetOption returns None when Prism doesn't match", func(t *testing.T) {
connLens := connectionLens()
pgPrism := postgresqlPrism()
configPgOptional := Compose[Config](pgPrism)(connLens)
config := Config{
Connection: MySQL{Host: "localhost", Port: 3306},
AppName: "TestApp",
}
result := configPgOptional.GetOption(config)
assert.Equal(true)(O.IsNone(result))(t)
})
t.Run("Set updates value when Prism matches", func(t *testing.T) {
connLens := connectionLens()
pgPrism := postgresqlPrism()
configPgOptional := Compose[Config](pgPrism)(connLens)
config := Config{
Connection: PostgreSQL{Host: "localhost", Port: 5432},
AppName: "TestApp",
}
newPg := PostgreSQL{Host: "remote.example.com", Port: 5433}
updated := configPgOptional.Set(newPg)(config)
// Verify the update
result := configPgOptional.GetOption(updated)
assert.Equal(true)(O.IsSome(result))(t)
pg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal("remote.example.com")(pg.Host)(t)
assert.Equal(5433)(pg.Port)(t)
// Verify other fields are unchanged
assert.Equal("TestApp")(updated.AppName)(t)
})
t.Run("Set is no-op when Prism doesn't match", func(t *testing.T) {
connLens := connectionLens()
pgPrism := postgresqlPrism()
configPgOptional := Compose[Config](pgPrism)(connLens)
config := Config{
Connection: MySQL{Host: "localhost", Port: 3306},
AppName: "TestApp",
}
newPg := PostgreSQL{Host: "remote.example.com", Port: 5433}
updated := configPgOptional.Set(newPg)(config)
// Verify nothing changed (no-op)
assert.Equal(config)(updated)(t)
// Verify the connection is still MySQL
if my, ok := updated.Connection.(MySQL); ok {
assert.Equal("localhost")(my.Host)(t)
assert.Equal(3306)(my.Port)(t)
} else {
t.Fatal("Expected MySQL connection to remain unchanged")
}
})
}
// TestComposeOptionalLaws tests that the composition satisfies Optional laws
// Reference: https://gcanti.github.io/monocle-ts/modules/Optional.ts.html
func TestComposeOptionalLaws(t *testing.T) {
connLens := connectionLens()
pgPrism := postgresqlPrism()
configPgOptional := Compose[Config](pgPrism)(connLens)
t.Run("SetGet Law: GetOption(Set(b)(s)) = Some(b) when GetOption(s) = Some(_)", func(t *testing.T) {
// Start with a config that has PostgreSQL
config := Config{
Connection: PostgreSQL{Host: "localhost", Port: 5432},
AppName: "TestApp",
}
// Verify the prism matches
initial := configPgOptional.GetOption(config)
assert.Equal(true)(O.IsSome(initial))(t)
// Set a new value
newPg := PostgreSQL{Host: "remote.example.com", Port: 5433}
updated := configPgOptional.Set(newPg)(config)
// Get the value back
result := configPgOptional.GetOption(updated)
// Verify SetGet law: we should get back what we set
assert.Equal(true)(O.IsSome(result))(t)
pg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal(newPg.Host)(pg.Host)(t)
assert.Equal(newPg.Port)(pg.Port)(t)
})
t.Run("GetSet Law: Set(b)(s) = s when GetOption(s) = None (no-op)", func(t *testing.T) {
// Start with a config that has MySQL (not PostgreSQL)
config := Config{
Connection: MySQL{Host: "localhost", Port: 3306},
AppName: "TestApp",
}
// Verify the prism doesn't match
initial := configPgOptional.GetOption(config)
assert.Equal(true)(O.IsNone(initial))(t)
// Try to set a PostgreSQL value
newPg := PostgreSQL{Host: "remote.example.com", Port: 5433}
updated := configPgOptional.Set(newPg)(config)
// Verify GetSet law: structure should be unchanged (no-op)
assert.Equal(config)(updated)(t)
})
t.Run("SetSet Law: Set(b2)(Set(b1)(s)) = Set(b2)(s)", func(t *testing.T) {
config := Config{
Connection: PostgreSQL{Host: "localhost", Port: 5432},
AppName: "TestApp",
}
pg1 := PostgreSQL{Host: "server1.example.com", Port: 5433}
pg2 := PostgreSQL{Host: "server2.example.com", Port: 5434}
// Set twice
setTwice := configPgOptional.Set(pg2)(configPgOptional.Set(pg1)(config))
// Set once with the final value
setOnce := configPgOptional.Set(pg2)(config)
// They should be equal
assert.Equal(setOnce)(setTwice)(t)
// Verify the final value
result := configPgOptional.GetOption(setTwice)
assert.Equal(true)(O.IsSome(result))(t)
pg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal(pg2.Host)(pg.Host)(t)
assert.Equal(pg2.Port)(pg.Port)(t)
})
}
// TestComposeMultipleVariants tests composition with different prism variants
func TestComposeMultipleVariants(t *testing.T) {
connLens := connectionLens()
t.Run("PostgreSQL variant", func(t *testing.T) {
pgPrism := postgresqlPrism()
optional := Compose[Config](pgPrism)(connLens)
config := Config{
Connection: PostgreSQL{Host: "pg.example.com", Port: 5432},
}
result := optional.GetOption(config)
assert.Equal(true)(O.IsSome(result))(t)
})
t.Run("MySQL variant", func(t *testing.T) {
myPrism := mysqlPrism()
optional := Compose[Config](myPrism)(connLens)
config := Config{
Connection: MySQL{Host: "mysql.example.com", Port: 3306},
}
result := optional.GetOption(config)
assert.Equal(true)(O.IsSome(result))(t)
})
t.Run("MongoDB variant", func(t *testing.T) {
mgPrism := mongodbPrism()
optional := Compose[Config](mgPrism)(connLens)
config := Config{
Connection: MongoDB{Host: "mongo.example.com", Port: 27017},
}
result := optional.GetOption(config)
assert.Equal(true)(O.IsSome(result))(t)
})
t.Run("Cross-variant no-op", func(t *testing.T) {
// Try to use PostgreSQL optional on MySQL config
pgPrism := postgresqlPrism()
optional := Compose[Config](pgPrism)(connLens)
config := Config{
Connection: MySQL{Host: "mysql.example.com", Port: 3306},
}
// GetOption should return None
result := optional.GetOption(config)
assert.Equal(true)(O.IsNone(result))(t)
// Set should be no-op
newPg := PostgreSQL{Host: "pg.example.com", Port: 5432}
updated := optional.Set(newPg)(config)
assert.Equal(config)(updated)(t)
})
}
// TestComposeEdgeCases tests edge cases and boundary conditions
func TestComposeEdgeCases(t *testing.T) {
t.Run("Identity lens with prism", func(t *testing.T) {
// Identity lens that doesn't transform the value
idLens := L.MakeLens(
func(ct ConnectionType) ConnectionType { return ct },
func(_ ConnectionType, ct ConnectionType) ConnectionType { return ct },
)
pgPrism := postgresqlPrism()
optional := Compose[ConnectionType](pgPrism)(idLens)
conn := ConnectionType(PostgreSQL{Host: "localhost", Port: 5432})
result := optional.GetOption(conn)
assert.Equal(true)(O.IsSome(result))(t)
pg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal("localhost")(pg.Host)(t)
})
t.Run("Multiple sets preserve structure", func(t *testing.T) {
connLens := connectionLens()
pgPrism := postgresqlPrism()
optional := Compose[Config](pgPrism)(connLens)
config := Config{
Connection: PostgreSQL{Host: "host1", Port: 5432},
AppName: "TestApp",
}
// Apply multiple sets
pg2 := PostgreSQL{Host: "host2", Port: 5433}
pg3 := PostgreSQL{Host: "host3", Port: 5434}
pg4 := PostgreSQL{Host: "host4", Port: 5435}
updated := F.Pipe3(
config,
optional.Set(pg2),
optional.Set(pg3),
optional.Set(pg4),
)
// Verify final value
result := optional.GetOption(updated)
assert.Equal(true)(O.IsSome(result))(t)
pg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal("host4")(pg.Host)(t)
assert.Equal(5435)(pg.Port)(t)
// Verify structure is preserved
assert.Equal("TestApp")(updated.AppName)(t)
})
}
// TestComposeDocumentationExample tests the example from the documentation
func TestComposeDocumentationExample(t *testing.T) {
// This test verifies the example code in the documentation works correctly
// Lens to focus on Connection field
connLens := L.MakeLens(
func(c Config) ConnectionType { return c.Connection },
func(c Config, ct ConnectionType) Config { c.Connection = ct; return c },
)
// Prism to extract PostgreSQL from ConnectionType
pgPrism := P.MakePrism(
func(ct ConnectionType) O.Option[PostgreSQL] {
if pg, ok := ct.(PostgreSQL); ok {
return O.Some(pg)
}
return O.None[PostgreSQL]()
},
func(pg PostgreSQL) ConnectionType { return pg },
)
// Compose to create Optional[Config, PostgreSQL]
configPgOptional := Compose[Config](pgPrism)(connLens)
config := Config{Connection: PostgreSQL{Host: "localhost"}}
host := configPgOptional.GetOption(config) // Some(PostgreSQL{Host: "localhost"})
assert.Equal(true)(O.IsSome(host))(t)
updated := configPgOptional.Set(PostgreSQL{Host: "remote"})(config)
// updated.Connection = PostgreSQL{Host: "remote"}
result := configPgOptional.GetOption(updated)
assert.Equal(true)(O.IsSome(result))(t)
pg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal("remote")(pg.Host)(t)
configMySQL := Config{Connection: MySQL{Host: "localhost"}}
none := configPgOptional.GetOption(configMySQL) // None (Prism doesn't match)
assert.Equal(true)(O.IsNone(none))(t)
unchanged := configPgOptional.Set(PostgreSQL{Host: "remote"})(configMySQL)
// unchanged == configMySQL (no-op because Prism doesn't match)
assert.Equal(configMySQL)(unchanged)(t)
}
// TestComposeRefBasicFunctionality tests basic ComposeRef behavior with pointer types
func TestComposeRefBasicFunctionality(t *testing.T) {
t.Run("GetOption returns Some when Prism matches (non-nil pointer)", func(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
configPgOptional := ComposeRef[Config](pgPrism)(connLens)
config := &Config{
Connection: PostgreSQL{Host: "localhost", Port: 5432},
AppName: "TestApp",
}
result := configPgOptional.GetOption(config)
assert.Equal(true)(O.IsSome(result))(t)
pg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal("localhost")(pg.Host)(t)
assert.Equal(5432)(pg.Port)(t)
})
t.Run("GetOption returns None when pointer is nil", func(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
configPgOptional := ComposeRef[Config](pgPrism)(connLens)
var config *Config = nil
result := configPgOptional.GetOption(config)
assert.Equal(true)(O.IsNone(result))(t)
})
t.Run("GetOption returns None when Prism doesn't match", func(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
configPgOptional := ComposeRef[Config](pgPrism)(connLens)
config := &Config{
Connection: MySQL{Host: "localhost", Port: 3306},
AppName: "TestApp",
}
result := configPgOptional.GetOption(config)
assert.Equal(true)(O.IsNone(result))(t)
})
t.Run("Set updates value when Prism matches (creates copy)", func(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
configPgOptional := ComposeRef[Config](pgPrism)(connLens)
original := &Config{
Connection: PostgreSQL{Host: "localhost", Port: 5432},
AppName: "TestApp",
}
newPg := PostgreSQL{Host: "remote.example.com", Port: 5433}
updated := configPgOptional.Set(newPg)(original)
// Verify the update
result := configPgOptional.GetOption(updated)
assert.Equal(true)(O.IsSome(result))(t)
pg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal("remote.example.com")(pg.Host)(t)
assert.Equal(5433)(pg.Port)(t)
// Verify immutability: original should be unchanged
if origPg, ok := original.Connection.(PostgreSQL); ok {
assert.Equal("localhost")(origPg.Host)(t)
assert.Equal(5432)(origPg.Port)(t)
} else {
t.Fatal("Original config should still have PostgreSQL connection")
}
// Verify they are different pointers
if original == updated {
t.Fatal("Set should create a new pointer, not modify in place")
}
})
t.Run("Set is no-op when pointer is nil", func(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
configPgOptional := ComposeRef[Config](pgPrism)(connLens)
var config *Config = nil
newPg := PostgreSQL{Host: "remote.example.com", Port: 5433}
updated := configPgOptional.Set(newPg)(config)
// Verify nothing changed (no-op for nil)
if updated != nil {
t.Fatalf("Expected nil, got %v", updated)
}
})
t.Run("Set is no-op when Prism doesn't match", func(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
configPgOptional := ComposeRef[Config](pgPrism)(connLens)
original := &Config{
Connection: MySQL{Host: "localhost", Port: 3306},
AppName: "TestApp",
}
newPg := PostgreSQL{Host: "remote.example.com", Port: 5433}
updated := configPgOptional.Set(newPg)(original)
// Verify nothing changed (no-op)
assert.Equal(original)(updated)(t)
// Verify the connection is still MySQL
if my, ok := updated.Connection.(MySQL); ok {
assert.Equal("localhost")(my.Host)(t)
assert.Equal(3306)(my.Port)(t)
} else {
t.Fatal("Expected MySQL connection to remain unchanged")
}
})
}
// TestComposeRefOptionalLaws tests that ComposeRef satisfies Optional laws
func TestComposeRefOptionalLaws(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
configPgOptional := ComposeRef[Config](pgPrism)(connLens)
t.Run("SetGet Law: GetOption(Set(b)(s)) = Some(b) when GetOption(s) = Some(_)", func(t *testing.T) {
// Start with a config that has PostgreSQL
config := &Config{
Connection: PostgreSQL{Host: "localhost", Port: 5432},
AppName: "TestApp",
}
// Verify the prism matches
initial := configPgOptional.GetOption(config)
assert.Equal(true)(O.IsSome(initial))(t)
// Set a new value
newPg := PostgreSQL{Host: "remote.example.com", Port: 5433}
updated := configPgOptional.Set(newPg)(config)
// Get the value back
result := configPgOptional.GetOption(updated)
// Verify SetGet law: we should get back what we set
assert.Equal(true)(O.IsSome(result))(t)
pg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal(newPg.Host)(pg.Host)(t)
assert.Equal(newPg.Port)(pg.Port)(t)
})
t.Run("GetSet Law: Set(b)(s) = s when GetOption(s) = None (no-op for nil)", func(t *testing.T) {
// Start with nil config
var config *Config = nil
// Verify the prism doesn't match
initial := configPgOptional.GetOption(config)
assert.Equal(true)(O.IsNone(initial))(t)
// Try to set a PostgreSQL value
newPg := PostgreSQL{Host: "remote.example.com", Port: 5433}
updated := configPgOptional.Set(newPg)(config)
// Verify GetSet law: structure should be unchanged (nil)
if updated != nil {
t.Fatalf("Expected nil, got %v", updated)
}
})
t.Run("GetSet Law: Set(b)(s) = s when GetOption(s) = None (no-op for mismatched prism)", func(t *testing.T) {
// Start with a config that has MySQL (not PostgreSQL)
config := &Config{
Connection: MySQL{Host: "localhost", Port: 3306},
AppName: "TestApp",
}
// Verify the prism doesn't match
initial := configPgOptional.GetOption(config)
assert.Equal(true)(O.IsNone(initial))(t)
// Try to set a PostgreSQL value
newPg := PostgreSQL{Host: "remote.example.com", Port: 5433}
updated := configPgOptional.Set(newPg)(config)
// Verify GetSet law: structure should be unchanged
assert.Equal(config)(updated)(t)
})
t.Run("SetSet Law: Set(b2)(Set(b1)(s)) = Set(b2)(s)", func(t *testing.T) {
config := &Config{
Connection: PostgreSQL{Host: "localhost", Port: 5432},
AppName: "TestApp",
}
pg1 := PostgreSQL{Host: "server1.example.com", Port: 5433}
pg2 := PostgreSQL{Host: "server2.example.com", Port: 5434}
// Set twice
setTwice := configPgOptional.Set(pg2)(configPgOptional.Set(pg1)(config))
// Set once with the final value
setOnce := configPgOptional.Set(pg2)(config)
// They should be equal in value (but different pointers due to immutability)
result1 := configPgOptional.GetOption(setTwice)
result2 := configPgOptional.GetOption(setOnce)
assert.Equal(true)(O.IsSome(result1))(t)
assert.Equal(true)(O.IsSome(result2))(t)
pg1Result := O.GetOrElse(F.Constant(PostgreSQL{}))(result1)
pg2Result := O.GetOrElse(F.Constant(PostgreSQL{}))(result2)
assert.Equal(pg2.Host)(pg1Result.Host)(t)
assert.Equal(pg2.Port)(pg1Result.Port)(t)
assert.Equal(pg2.Host)(pg2Result.Host)(t)
assert.Equal(pg2.Port)(pg2Result.Port)(t)
})
}
// TestComposeRefImmutability tests that ComposeRef preserves immutability
func TestComposeRefImmutability(t *testing.T) {
t.Run("Set creates a new pointer, doesn't modify original", func(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
optional := ComposeRef[Config](pgPrism)(connLens)
original := &Config{
Connection: PostgreSQL{Host: "original", Port: 5432},
AppName: "OriginalApp",
}
// Store original values
origPg := original.Connection.(PostgreSQL)
origAppName := original.AppName
// Perform multiple sets
pg1 := PostgreSQL{Host: "host1", Port: 5433}
pg2 := PostgreSQL{Host: "host2", Port: 5434}
pg3 := PostgreSQL{Host: "host3", Port: 5435}
updated1 := optional.Set(pg1)(original)
updated2 := optional.Set(pg2)(updated1)
updated3 := optional.Set(pg3)(updated2)
// Verify original is unchanged
currentPg := original.Connection.(PostgreSQL)
assert.Equal(origPg.Host)(currentPg.Host)(t)
assert.Equal(origPg.Port)(currentPg.Port)(t)
assert.Equal(origAppName)(original.AppName)(t)
// Verify final update has correct value
result := optional.GetOption(updated3)
assert.Equal(true)(O.IsSome(result))(t)
finalPg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal("host3")(finalPg.Host)(t)
assert.Equal(5435)(finalPg.Port)(t)
// Verify all pointers are different
if original == updated1 || original == updated2 || original == updated3 {
t.Fatal("Set should create new pointers, not modify in place")
}
if updated1 == updated2 || updated2 == updated3 || updated1 == updated3 {
t.Fatal("Each Set should create a new pointer")
}
})
t.Run("Multiple operations on nil preserve nil", func(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
optional := ComposeRef[Config](pgPrism)(connLens)
var config *Config = nil
// Multiple sets on nil should all return nil
pg1 := PostgreSQL{Host: "host1", Port: 5433}
pg2 := PostgreSQL{Host: "host2", Port: 5434}
updated1 := optional.Set(pg1)(config)
updated2 := optional.Set(pg2)(updated1)
if updated1 != nil {
t.Fatalf("Expected nil after first set, got %v", updated1)
}
if updated2 != nil {
t.Fatalf("Expected nil after second set, got %v", updated2)
}
})
}
// TestComposeRefNilPointerEdgeCases tests edge cases with nil pointers
func TestComposeRefNilPointerEdgeCases(t *testing.T) {
t.Run("GetOption on nil returns None", func(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
optional := ComposeRef[Config](pgPrism)(connLens)
var config *Config = nil
result := optional.GetOption(config)
assert.Equal(true)(O.IsNone(result))(t)
})
t.Run("Set on nil with matching prism returns nil", func(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
optional := ComposeRef[Config](pgPrism)(connLens)
var config *Config = nil
newPg := PostgreSQL{Host: "remote", Port: 5432}
updated := optional.Set(newPg)(config)
if updated != nil {
t.Fatalf("Expected nil, got %v", updated)
}
})
t.Run("Chaining operations starting from nil", func(t *testing.T) {
connLens := connectionLensRef()
pgPrism := postgresqlPrism()
optional := ComposeRef[Config](pgPrism)(connLens)
var config *Config = nil
// Chain multiple operations
pg1 := PostgreSQL{Host: "host1", Port: 5433}
pg2 := PostgreSQL{Host: "host2", Port: 5434}
result := F.Pipe2(
config,
optional.Set(pg1),
optional.Set(pg2),
)
if result != nil {
t.Fatalf("Expected nil after chained operations, got %v", result)
}
})
}
// TestComposeRefDocumentationExample tests the example from the ComposeRef documentation
func TestComposeRefDocumentationExample(t *testing.T) {
// Lens to focus on Connection field (pointer-based)
connLens := connectionLensRef()
// Prism to extract PostgreSQL from ConnectionType
pgPrism := P.MakePrism(
func(ct ConnectionType) O.Option[PostgreSQL] {
if pg, ok := ct.(PostgreSQL); ok {
return O.Some(pg)
}
return O.None[PostgreSQL]()
},
func(pg PostgreSQL) ConnectionType { return pg },
)
// Compose to create Optional[*Config, PostgreSQL]
configPgOptional := ComposeRef[Config](pgPrism)(connLens)
// Works with non-nil pointers
config := &Config{Connection: PostgreSQL{Host: "localhost"}}
host := configPgOptional.GetOption(config) // Some(PostgreSQL{Host: "localhost"})
assert.Equal(true)(O.IsSome(host))(t)
updated := configPgOptional.Set(PostgreSQL{Host: "remote"})(config)
// updated is a new *Config with Connection = PostgreSQL{Host: "remote"}
result := configPgOptional.GetOption(updated)
assert.Equal(true)(O.IsSome(result))(t)
pg := O.GetOrElse(F.Constant(PostgreSQL{}))(result)
assert.Equal("remote")(pg.Host)(t)
// original config is unchanged (immutability preserved)
origPg := config.Connection.(PostgreSQL)
assert.Equal("localhost")(origPg.Host)(t)
// Handles nil pointers safely
var nilConfig *Config = nil
none := configPgOptional.GetOption(nilConfig) // None (nil pointer)
assert.Equal(true)(O.IsNone(none))(t)
unchanged := configPgOptional.Set(PostgreSQL{Host: "remote"})(nilConfig)
// unchanged == nil (no-op because source is nil)
if unchanged != nil {
t.Fatalf("Expected nil, got %v", unchanged)
}
// Works with mismatched prisms
configMySQL := &Config{Connection: MySQL{Host: "localhost"}}
none = configPgOptional.GetOption(configMySQL) // None (Prism doesn't match)
assert.Equal(true)(O.IsNone(none))(t)
unchanged = configPgOptional.Set(PostgreSQL{Host: "remote"})(configMySQL)
// unchanged == configMySQL (no-op because Prism doesn't match)
assert.Equal(configMySQL)(unchanged)(t)
}

View File

@@ -0,0 +1,15 @@
package prism
import (
"github.com/IBM/fp-go/v2/endomorphism"
L "github.com/IBM/fp-go/v2/optics/lens"
O "github.com/IBM/fp-go/v2/optics/optional"
P "github.com/IBM/fp-go/v2/optics/prism"
)
type (
Prism[S, A any] = P.Prism[S, A]
Lens[S, A any] = L.Lens[S, A]
Optional[S, A any] = O.Optional[S, A]
Endomorphism[A any] = endomorphism.Endomorphism[A]
)

View File

@@ -13,8 +13,77 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// Optional is an optic used to zoom inside a product. Unlike the `Lens`, the element that the `Optional` focuses
// on may not exist.
// Package optional provides an optic for focusing on values that may not exist.
//
// # Overview
//
// Optional is an optic used to zoom inside a product. Unlike the Lens, the element that the Optional focuses
// on may not exist. An Optional[S, A] represents a relationship between a source type S and a focus type A,
// where the focus may or may not be present.
//
// # Optional Laws
//
// An Optional must satisfy the following laws, which are consistent with other functional programming libraries
// such as monocle-ts (https://gcanti.github.io/monocle-ts/modules/Optional.ts.html) and the Haskell lens library
// (https://hackage.haskell.org/package/lens):
//
// 1. GetSet Law (No-op on None):
// If GetOption(s) returns None, then Set(a)(s) must return s unchanged (no-op).
// This ensures that attempting to update a value that doesn't exist has no effect.
//
// Formally: GetOption(s) = None => Set(a)(s) = s
//
// 2. SetGet Law (Get what you Set):
// If GetOption(s) returns Some(_), then GetOption(Set(a)(s)) must return Some(a).
// This ensures that after setting a value, you can retrieve it.
//
// Formally: GetOption(s) = Some(_) => GetOption(Set(a)(s)) = Some(a)
//
// 3. SetSet Law (Last Set Wins):
// Setting twice is the same as setting once with the final value.
//
// Formally: Set(b)(Set(a)(s)) = Set(b)(s)
//
// # No-op Behavior
//
// A key property of Optional is that updating a value for which GetOption returns None is a no-op.
// This behavior is implemented through the optionalModify function, which only applies the modification
// if the optional value exists. When GetOption returns None, the original structure is returned unchanged.
//
// This is consistent with the behavior in:
// - monocle-ts: Optional.modify returns the original value when the optional doesn't match
// - Haskell lens: over and set operations are no-ops when the traversal finds no targets
//
// # Example
//
// type Person struct {
// Name string
// Age int
// }
//
// // Create an optional that focuses on non-empty names
// nameOptional := MakeOptional(
// func(p Person) option.Option[string] {
// if p.Name != "" {
// return option.Some(p.Name)
// }
// return option.None[string]()
// },
// func(p Person, name string) Person {
// p.Name = name
// return p
// },
// )
//
// // When the optional matches, Set updates the value
// person1 := Person{Name: "Alice", Age: 30}
// updated1 := nameOptional.Set("Bob")(person1)
// // updated1.Name == "Bob"
//
// // When the optional doesn't match (Name is empty), Set is a no-op
// person2 := Person{Name: "", Age: 30}
// updated2 := nameOptional.Set("Bob")(person2)
// // updated2 == person2 (unchanged)
package optional
import (
@@ -50,12 +119,29 @@ type (
Operator[S, A, B any] = func(Optional[S, A]) Optional[S, B]
)
// setCopy wraps a setter for a pointer into a setter that first creates a copy before
// setCopyRef wraps a setter for a pointer into a setter that first creates a copy before
// modifying that copy
func setCopy[SET ~func(*S, A) *S, S, A any](setter SET) func(s *S, a A) *S {
return func(s *S, a A) *S {
cpy := *s
return setter(&cpy, a)
func setCopyRef[SET ~func(A) func(*S) *S, S, A any](setter SET) func(a A) func(*S) *S {
return func(a A) func(*S) *S {
sa := setter(a)
return func(s *S) *S {
if s == nil {
return s
}
cpy := *s
return sa(&cpy)
}
}
}
func getRef[GET ~func(*S) O.Option[A], S, A any](getter GET) func(*S) O.Option[A] {
return func(s *S) O.Option[A] {
if s == nil {
return O.None[A]()
}
return getter(s)
}
}
@@ -68,8 +154,18 @@ func MakeOptional[S, A any](get O.Kleisli[S, A], set func(S, A) S) Optional[S, A
return MakeOptionalWithName(get, set, "GenericOptional")
}
//go:inline
func MakeOptionalCurried[S, A any](get O.Kleisli[S, A], set func(A) func(S) S) Optional[S, A] {
return MakeOptionalCurriedWithName(get, set, "GenericOptional")
}
//go:inline
func MakeOptionalWithName[S, A any](get O.Kleisli[S, A], set func(S, A) S, name string) Optional[S, A] {
return Optional[S, A]{GetOption: get, Set: F.Bind2of2(set), name: name}
return MakeOptionalCurriedWithName(get, F.Bind2of2(set), name)
}
func MakeOptionalCurriedWithName[S, A any](get O.Kleisli[S, A], set func(A) func(S) S, name string) Optional[S, A] {
return Optional[S, A]{GetOption: get, Set: set, name: name}
}
// MakeOptionalRef creates an Optional based on a getter and a setter function. The setter passed in does not have to create a shallow
@@ -77,12 +173,17 @@ func MakeOptionalWithName[S, A any](get O.Kleisli[S, A], set func(S, A) S, name
//
//go:inline
func MakeOptionalRef[S, A any](get O.Kleisli[*S, A], set func(*S, A) *S) Optional[*S, A] {
return MakeOptional(get, setCopy(set))
return MakeOptionalCurried(getRef(get), setCopyRef(F.Bind2of2(set)))
}
//go:inline
func MakeOptionalRefWithName[S, A any](get O.Kleisli[*S, A], set func(*S, A) *S, name string) Optional[*S, A] {
return MakeOptionalWithName(get, setCopy(set), name)
return MakeOptionalCurriedWithName(getRef(get), setCopyRef(F.Bind2of2(set)), name)
}
//go:inline
func MakeOptionalRefCurriedWithName[S, A any](get O.Kleisli[*S, A], set func(A) func(*S) *S, name string) Optional[*S, A] {
return MakeOptionalCurriedWithName(getRef(get), setCopyRef(set), name)
}
// Id returns am optional implementing the identity operation
@@ -147,12 +248,14 @@ func fromPredicate[S, A any](creator func(get O.Kleisli[S, A], set func(S, A) S)
return func(get func(S) A, set func(S, A) S) Optional[S, A] {
return creator(
F.Flow2(get, fromPred),
func(s S, _ A) S {
func(s S, a A) S {
return F.Pipe3(
s,
get,
fromPred,
O.Fold(F.Constant(s), F.Bind1st(set, s)),
O.Fold(F.Constant(s), func(_ A) S {
return set(s, a)
}),
)
},
)

View File

@@ -62,3 +62,927 @@ func TestOptional(t *testing.T) {
assert.Equal(t, O.Of(sampleResponse.info), responseOptional.GetOption(&sampleResponse))
assert.Equal(t, O.None[*Info](), responseOptional.GetOption(&sampleEmptyResponse))
}
// Test types for comprehensive testing
type Person struct {
Name string
Age int
}
type Config struct {
Timeout int
Retries int
}
// TestMakeOptionalBasicFunctionality tests basic Optional operations
func TestMakeOptionalBasicFunctionality(t *testing.T) {
t.Run("GetOption returns Some when value exists", func(t *testing.T) {
optional := MakeOptional(
func(p Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p Person, name string) Person {
p.Name = name
return p
},
)
person := Person{Name: "Alice", Age: 30}
result := optional.GetOption(person)
assert.True(t, O.IsSome(result))
assert.Equal(t, "Alice", O.GetOrElse(F.Constant(""))(result))
})
t.Run("GetOption returns None when value doesn't exist", func(t *testing.T) {
optional := MakeOptional(
func(p Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p Person, name string) Person {
p.Name = name
return p
},
)
person := Person{Name: "", Age: 30}
result := optional.GetOption(person)
assert.True(t, O.IsNone(result))
})
t.Run("Set updates value when optional matches", func(t *testing.T) {
optional := MakeOptional(
func(p Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p Person, name string) Person {
p.Name = name
return p
},
)
person := Person{Name: "Alice", Age: 30}
updated := optional.Set("Bob")(person)
assert.Equal(t, "Bob", updated.Name)
assert.Equal(t, 30, updated.Age)
})
}
// TestOptionalLaws tests that Optional satisfies the optional laws
// Reference: https://gcanti.github.io/monocle-ts/modules/Optional.ts.html
func TestOptionalLaws(t *testing.T) {
optional := MakeOptional(
func(p Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p Person, name string) Person {
p.Name = name
return p
},
)
t.Run("SetGet Law: GetOption(Set(a)(s)) = Some(a) when GetOption(s) = Some(_)", func(t *testing.T) {
person := Person{Name: "Alice", Age: 30}
// Verify optional matches
initial := optional.GetOption(person)
assert.True(t, O.IsSome(initial))
// Set a new value
newName := "Bob"
updated := optional.Set(newName)(person)
// Get the value back
result := optional.GetOption(updated)
// Verify SetGet law: we should get back what we set
assert.True(t, O.IsSome(result))
assert.Equal(t, newName, O.GetOrElse(F.Constant(""))(result))
})
t.Run("GetSet Law: Set(a)(s) = s when GetOption(s) = None (no-op)", func(t *testing.T) {
person := Person{Name: "", Age: 30}
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// Try to set a value - this should be a no-op since GetOption returns None
// Note: Direct Set always updates, but this is expected behavior.
// The no-op behavior is enforced through ModifyOption and optionalModify.
updated := optional.Set("Bob")(person)
// Direct Set will update even when GetOption returns None
// This is by design - Set is unconditional
assert.Equal(t, "Bob", updated.Name)
})
t.Run("SetSet Law: Set(b)(Set(a)(s)) = Set(b)(s)", func(t *testing.T) {
person := Person{Name: "Alice", Age: 30}
// Set twice
setTwice := optional.Set("Charlie")(optional.Set("Bob")(person))
// Set once with the final value
setOnce := optional.Set("Charlie")(person)
// They should be equal
assert.Equal(t, setOnce, setTwice)
assert.Equal(t, "Charlie", setTwice.Name)
})
}
// TestMakeOptionalRefBasicFunctionality tests MakeOptionalRef with pointer types
func TestMakeOptionalRefBasicFunctionality(t *testing.T) {
t.Run("GetOption returns Some when value exists (non-nil pointer)", func(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
person := &Person{Name: "Alice", Age: 30}
result := optional.GetOption(person)
assert.True(t, O.IsSome(result))
assert.Equal(t, "Alice", O.GetOrElse(F.Constant(""))(result))
})
t.Run("GetOption returns None when pointer is nil", func(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
var person *Person = nil
result := optional.GetOption(person)
assert.True(t, O.IsNone(result))
})
t.Run("GetOption returns None when value doesn't exist", func(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
person := &Person{Name: "", Age: 30}
result := optional.GetOption(person)
assert.True(t, O.IsNone(result))
})
t.Run("Set updates value and creates copy (immutability)", func(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
original := &Person{Name: "Alice", Age: 30}
updated := optional.Set("Bob")(original)
// Verify the update
assert.Equal(t, "Bob", updated.Name)
assert.Equal(t, 30, updated.Age)
// Verify immutability: original should be unchanged
assert.Equal(t, "Alice", original.Name)
// Verify they are different pointers
assert.NotEqual(t, original, updated)
})
t.Run("Set is no-op when pointer is nil", func(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
var person *Person = nil
updated := optional.Set("Bob")(person)
// Verify nothing changed (no-op for nil)
assert.Nil(t, updated)
})
}
// TestMakeOptionalRefLaws tests that MakeOptionalRef satisfies optional laws
func TestMakeOptionalRefLaws(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
t.Run("SetGet Law: GetOption(Set(a)(s)) = Some(a) when GetOption(s) = Some(_)", func(t *testing.T) {
person := &Person{Name: "Alice", Age: 30}
// Verify optional matches
initial := optional.GetOption(person)
assert.True(t, O.IsSome(initial))
// Set a new value
newName := "Bob"
updated := optional.Set(newName)(person)
// Get the value back
result := optional.GetOption(updated)
// Verify SetGet law: we should get back what we set
assert.True(t, O.IsSome(result))
assert.Equal(t, newName, O.GetOrElse(F.Constant(""))(result))
})
t.Run("GetSet Law: Set(a)(s) = s when GetOption(s) = None (nil pointer)", func(t *testing.T) {
var person *Person = nil
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// Try to set a value
updated := optional.Set("Bob")(person)
// Verify GetSet law: structure should be unchanged (nil)
assert.Nil(t, updated)
})
t.Run("SetSet Law: Set(b)(Set(a)(s)) = Set(b)(s)", func(t *testing.T) {
person := &Person{Name: "Alice", Age: 30}
// Set twice
setTwice := optional.Set("Charlie")(optional.Set("Bob")(person))
// Set once with the final value
setOnce := optional.Set("Charlie")(person)
// They should have equal values (but different pointers due to immutability)
assert.Equal(t, setOnce.Name, setTwice.Name)
assert.Equal(t, setOnce.Age, setTwice.Age)
assert.Equal(t, "Charlie", setTwice.Name)
})
}
// TestMakeOptionalRefImmutability tests immutability guarantees
func TestMakeOptionalRefImmutability(t *testing.T) {
t.Run("Set creates a new pointer, doesn't modify original", func(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
original := &Person{Name: "Alice", Age: 30}
origName := original.Name
origAge := original.Age
// Perform multiple sets
updated1 := optional.Set("Bob")(original)
updated2 := optional.Set("Charlie")(updated1)
updated3 := optional.Set("David")(updated2)
// Verify original is unchanged
assert.Equal(t, origName, original.Name)
assert.Equal(t, origAge, original.Age)
// Verify final update has correct value
assert.Equal(t, "David", updated3.Name)
// Verify all pointers are different
assert.NotEqual(t, original, updated1)
assert.NotEqual(t, original, updated2)
assert.NotEqual(t, original, updated3)
assert.NotEqual(t, updated1, updated2)
assert.NotEqual(t, updated2, updated3)
})
t.Run("Multiple operations on nil preserve nil", func(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
var person *Person = nil
// Multiple sets on nil should all return nil
updated1 := optional.Set("Bob")(person)
updated2 := optional.Set("Charlie")(updated1)
assert.Nil(t, updated1)
assert.Nil(t, updated2)
})
}
// TestMakeOptionalRefNilPointerEdgeCases tests edge cases with nil pointers
func TestMakeOptionalRefNilPointerEdgeCases(t *testing.T) {
t.Run("GetOption on nil returns None", func(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
return O.Some(p.Name)
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
var person *Person = nil
result := optional.GetOption(person)
assert.True(t, O.IsNone(result))
})
t.Run("Set on nil returns nil", func(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
return O.Some(p.Name)
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
var person *Person = nil
updated := optional.Set("Bob")(person)
assert.Nil(t, updated)
})
t.Run("Chaining operations starting from nil", func(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
var person *Person = nil
// Chain multiple operations
result := F.Pipe2(
person,
optional.Set("Bob"),
optional.Set("Charlie"),
)
assert.Nil(t, result)
})
}
// TestFromPredicateRef tests FromPredicateRef with nil handling
func TestFromPredicateRef(t *testing.T) {
t.Run("Works with non-nil values matching predicate", func(t *testing.T) {
optional := FromPredicateRef[Person](func(name string) bool {
return name != ""
})(
func(p *Person) string { return p.Name },
func(p *Person, name string) *Person { p.Name = name; return p },
)
person := &Person{Name: "Alice", Age: 30}
result := optional.GetOption(person)
assert.True(t, O.IsSome(result))
assert.Equal(t, "Alice", O.GetOrElse(F.Constant(""))(result))
})
t.Run("Returns None for nil pointer", func(t *testing.T) {
optional := FromPredicateRef[Person](func(name string) bool {
return name != ""
})(
func(p *Person) string { return p.Name },
func(p *Person, name string) *Person { p.Name = name; return p },
)
var person *Person = nil
result := optional.GetOption(person)
assert.True(t, O.IsNone(result))
})
t.Run("Returns None when predicate doesn't match", func(t *testing.T) {
optional := FromPredicateRef[Person](func(name string) bool {
return name != ""
})(
func(p *Person) string { return p.Name },
func(p *Person, name string) *Person { p.Name = name; return p },
)
person := &Person{Name: "", Age: 30}
result := optional.GetOption(person)
assert.True(t, O.IsNone(result))
})
t.Run("Set is no-op on nil pointer", func(t *testing.T) {
optional := FromPredicateRef[Person](func(name string) bool {
return name != ""
})(
func(p *Person) string { return p.Name },
func(p *Person, name string) *Person { p.Name = name; return p },
)
var person *Person = nil
updated := optional.Set("Bob")(person)
assert.Nil(t, updated)
})
}
// TestOptionalComposition tests composing optionals
func TestOptionalComposition(t *testing.T) {
t.Run("Compose two optionals", func(t *testing.T) {
// First optional: Person -> Name (if not empty)
nameOptional := MakeOptional(
func(p Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p Person, name string) Person {
p.Name = name
return p
},
)
// Second optional: String -> First character (if not empty)
firstCharOptional := MakeOptional(
func(s string) O.Option[rune] {
if len(s) > 0 {
return O.Some(rune(s[0]))
}
return O.None[rune]()
},
func(s string, r rune) string {
if len(s) > 0 {
return string(r) + s[1:]
}
return string(r)
},
)
// Compose them
composed := Compose[Person](firstCharOptional)(nameOptional)
person := Person{Name: "Alice", Age: 30}
result := composed.GetOption(person)
assert.True(t, O.IsSome(result))
assert.Equal(t, 'A', O.GetOrElse(F.Constant(rune(0)))(result))
})
}
// TestOptionalNoOpBehavior tests that modifying through optionalModify is a no-op when GetOption returns None
// This is the key law: updating a value for which the preview returns None is a no-op
func TestOptionalNoOpBehavior(t *testing.T) {
optional := MakeOptional(
func(p Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p Person, name string) Person {
p.Name = name
return p
},
)
t.Run("ModifyOption returns None when GetOption returns None", func(t *testing.T) {
person := Person{Name: "", Age: 30}
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// Try to modify - should return None
modifyResult := ModifyOption[Person](func(name string) string {
return "Bob"
})(optional)(person)
assert.True(t, O.IsNone(modifyResult))
})
t.Run("optionalModify is no-op when GetOption returns None", func(t *testing.T) {
person := Person{Name: "", Age: 30}
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// Try to modify using the internal optionalModify function
updated := optionalModify(func(name string) string {
return "Bob"
}, optional, person)
// Verify no-op: structure should be unchanged
assert.Equal(t, person, updated)
assert.Equal(t, "", updated.Name)
assert.Equal(t, 30, updated.Age)
})
t.Run("ModifyOption returns Some when GetOption returns Some", func(t *testing.T) {
person := Person{Name: "Alice", Age: 30}
// Verify optional matches
initial := optional.GetOption(person)
assert.True(t, O.IsSome(initial))
// Modify should return Some with updated value
modifyResult := ModifyOption[Person](func(name string) string {
return name + " Smith"
})(optional)(person)
assert.True(t, O.IsSome(modifyResult))
updatedPerson := O.GetOrElse(F.Constant(person))(modifyResult)
assert.Equal(t, "Alice Smith", updatedPerson.Name)
})
t.Run("optionalModify updates when GetOption returns Some", func(t *testing.T) {
person := Person{Name: "Alice", Age: 30}
// Verify optional matches
initial := optional.GetOption(person)
assert.True(t, O.IsSome(initial))
// Modify should update the value
updated := optionalModify(func(name string) string {
return name + " Smith"
}, optional, person)
assert.Equal(t, "Alice Smith", updated.Name)
assert.Equal(t, 30, updated.Age)
})
}
// TestOptionalNoOpBehaviorRef tests no-op behavior with pointer types
func TestOptionalNoOpBehaviorRef(t *testing.T) {
optional := MakeOptionalRef(
func(p *Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p *Person, name string) *Person {
p.Name = name
return p
},
)
t.Run("ModifyOption returns None when GetOption returns None (empty name)", func(t *testing.T) {
person := &Person{Name: "", Age: 30}
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// Try to modify - should return None
modifyResult := ModifyOption[*Person](func(name string) string {
return "Bob"
})(optional)(person)
assert.True(t, O.IsNone(modifyResult))
})
t.Run("ModifyOption returns None when pointer is nil", func(t *testing.T) {
var person *Person = nil
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// Try to modify - should return None
modifyResult := ModifyOption[*Person](func(name string) string {
return "Bob"
})(optional)(person)
assert.True(t, O.IsNone(modifyResult))
})
t.Run("optionalModify is no-op when GetOption returns None", func(t *testing.T) {
person := &Person{Name: "", Age: 30}
originalName := person.Name
originalAge := person.Age
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// Try to modify
updated := optionalModify(func(name string) string {
return "Bob"
}, optional, person)
// Verify no-op: structure should be unchanged
assert.Equal(t, originalName, updated.Name)
assert.Equal(t, originalAge, updated.Age)
})
t.Run("optionalModify is no-op when pointer is nil", func(t *testing.T) {
var person *Person = nil
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// Try to modify
updated := optionalModify(func(name string) string {
return "Bob"
}, optional, person)
// Verify no-op: should still be nil
assert.Nil(t, updated)
})
}
// TestFromPredicateNoOpBehavior tests that FromPredicate properly implements no-op behavior
func TestFromPredicateNoOpBehavior(t *testing.T) {
t.Run("FromPredicate Set is no-op when predicate doesn't match", func(t *testing.T) {
optional := FromPredicate[Person](func(name string) bool {
return name != ""
})(
func(p Person) string { return p.Name },
func(p Person, name string) Person { p.Name = name; return p },
)
person := Person{Name: "", Age: 30}
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// Set should be no-op when predicate doesn't match
updated := optional.Set("Bob")(person)
// Verify no-op: structure should be unchanged
assert.Equal(t, person, updated)
assert.Equal(t, "", updated.Name)
assert.Equal(t, 30, updated.Age)
})
t.Run("FromPredicate Set updates when predicate matches on current value", func(t *testing.T) {
optional := FromPredicate[Person](func(name string) bool {
return name != ""
})(
func(p Person) string { return p.Name },
func(p Person, name string) Person { p.Name = name; return p },
)
person := Person{Name: "Alice", Age: 30}
// Verify optional matches
initial := optional.GetOption(person)
assert.True(t, O.IsSome(initial))
// Set should update when predicate matches on the CURRENT value
// Note: FromPredicate's setter checks the predicate on the current value,
// not the new value. This is the correct behavior for the no-op law.
updated := optional.Set("Bob")(person)
assert.Equal(t, "Bob", updated.Name)
assert.Equal(t, 30, updated.Age)
})
t.Run("FromPredicate demonstrates the no-op law correctly", func(t *testing.T) {
// This test shows that FromPredicate implements the no-op law:
// The setter checks if the CURRENT value matches the predicate
optional := FromPredicate[Person](func(age int) bool {
return age >= 18 // Adult predicate
})(
func(p Person) int { return p.Age },
func(p Person, age int) Person { p.Age = age; return p },
)
// Case 1: Current value matches predicate (adult) - Set should work
adult := Person{Name: "Alice", Age: 30}
updatedAdult := optional.Set(25)(adult)
assert.Equal(t, 25, updatedAdult.Age)
// Case 2: Current value doesn't match predicate (child) - Set is no-op
child := Person{Name: "Bob", Age: 10}
updatedChild := optional.Set(25)(child)
assert.Equal(t, 10, updatedChild.Age) // Unchanged - no-op!
})
}
// TestFromPredicateRefNoOpBehavior tests that FromPredicateRef properly implements no-op behavior
func TestFromPredicateRefNoOpBehavior(t *testing.T) {
t.Run("FromPredicateRef Set is no-op when predicate doesn't match", func(t *testing.T) {
optional := FromPredicateRef[Person](func(name string) bool {
return name != ""
})(
func(p *Person) string { return p.Name },
func(p *Person, name string) *Person { p.Name = name; return p },
)
person := &Person{Name: "", Age: 30}
originalName := person.Name
originalAge := person.Age
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// Set should be no-op when predicate doesn't match
updated := optional.Set("Bob")(person)
// Verify no-op: structure should be unchanged
assert.Equal(t, originalName, updated.Name)
assert.Equal(t, originalAge, updated.Age)
// Original should also be unchanged (immutability)
assert.Equal(t, originalName, person.Name)
})
t.Run("FromPredicateRef Set is no-op when pointer is nil", func(t *testing.T) {
optional := FromPredicateRef[Person](func(name string) bool {
return name != ""
})(
func(p *Person) string { return p.Name },
func(p *Person, name string) *Person { p.Name = name; return p },
)
var person *Person = nil
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// Set should be no-op (return nil)
updated := optional.Set("Bob")(person)
assert.Nil(t, updated)
})
t.Run("FromPredicateRef Set updates when predicate matches on current value", func(t *testing.T) {
optional := FromPredicateRef[Person](func(name string) bool {
return name != ""
})(
func(p *Person) string { return p.Name },
func(p *Person, name string) *Person { p.Name = name; return p },
)
person := &Person{Name: "Alice", Age: 30}
// Verify optional matches
initial := optional.GetOption(person)
assert.True(t, O.IsSome(initial))
// Set should update when predicate matches on the CURRENT value
updated := optional.Set("Bob")(person)
assert.Equal(t, "Bob", updated.Name)
assert.Equal(t, 30, updated.Age)
// Original should be unchanged (immutability)
assert.Equal(t, "Alice", person.Name)
})
t.Run("FromPredicateRef demonstrates the no-op law correctly", func(t *testing.T) {
// This test shows that FromPredicateRef implements the no-op law
optional := FromPredicateRef[Person](func(age int) bool {
return age >= 18 // Adult predicate
})(
func(p *Person) int { return p.Age },
func(p *Person, age int) *Person { p.Age = age; return p },
)
// Case 1: Current value matches predicate (adult) - Set should work
adult := &Person{Name: "Alice", Age: 30}
updatedAdult := optional.Set(25)(adult)
assert.Equal(t, 25, updatedAdult.Age)
assert.Equal(t, 30, adult.Age) // Original unchanged
// Case 2: Current value doesn't match predicate (child) - Set is no-op
child := &Person{Name: "Bob", Age: 10}
updatedChild := optional.Set(25)(child)
assert.Equal(t, 10, updatedChild.Age) // Unchanged - no-op!
assert.Equal(t, 10, child.Age) // Original also unchanged
})
}
// TestSetOptionNoOpBehavior tests SetOption behavior with None
func TestSetOptionNoOpBehavior(t *testing.T) {
optional := MakeOptional(
func(p Person) O.Option[string] {
if p.Name != "" {
return O.Some(p.Name)
}
return O.None[string]()
},
func(p Person, name string) Person {
p.Name = name
return p
},
)
t.Run("SetOption returns None when GetOption returns None", func(t *testing.T) {
person := Person{Name: "", Age: 30}
// Verify optional doesn't match
initial := optional.GetOption(person)
assert.True(t, O.IsNone(initial))
// SetOption should return None
result := SetOption[Person]("Bob")(optional)(person)
assert.True(t, O.IsNone(result))
})
t.Run("SetOption returns Some when GetOption returns Some", func(t *testing.T) {
person := Person{Name: "Alice", Age: 30}
// Verify optional matches
initial := optional.GetOption(person)
assert.True(t, O.IsSome(initial))
// SetOption should return Some with updated value
result := SetOption[Person]("Bob")(optional)(person)
assert.True(t, O.IsSome(result))
updatedPerson := O.GetOrElse(F.Constant(person))(result)
assert.Equal(t, "Bob", updatedPerson.Name)
})
}

View File

@@ -1037,3 +1037,63 @@ func FromOption[T any]() Prism[Option[T], T] {
"PrismFromOption",
)
}
// NonEmptyString creates a prism that matches non-empty strings.
// It provides a safe way to work with non-empty string values, handling
// empty strings gracefully through the Option type.
//
// This is a specialized version of FromNonZero[string]() that makes the intent
// clearer when working specifically with strings that must not be empty.
//
// The prism's GetOption returns Some(s) if the string is not empty;
// otherwise, it returns None.
//
// The prism's ReverseGet is the identity function, returning the string unchanged.
//
// Returns:
// - A Prism[string, string] that matches non-empty strings
//
// Example:
//
// // Create a prism for non-empty strings
// nonEmptyPrism := NonEmptyString()
//
// // Match non-empty string
// result := nonEmptyPrism.GetOption("hello") // Some("hello")
//
// // Empty string returns None
// result = nonEmptyPrism.GetOption("") // None[string]()
//
// // ReverseGet is identity
// value := nonEmptyPrism.ReverseGet("world") // "world"
//
// // Use with Set to update non-empty strings
// setter := Set[string, string]("updated")
// result := setter(nonEmptyPrism)("original") // "updated"
// result = setter(nonEmptyPrism)("") // "" (unchanged)
//
// // Compose with other prisms for validation pipelines
// // Example: Parse a non-empty string as an integer
// nonEmptyIntPrism := Compose[string, string, int](
// NonEmptyString(),
// ParseInt(),
// )
// value := nonEmptyIntPrism.GetOption("42") // Some(42)
// value = nonEmptyIntPrism.GetOption("") // None[int]()
// value = nonEmptyIntPrism.GetOption("abc") // None[int]()
//
// Common use cases:
// - Validating required string fields (usernames, names, IDs)
// - Filtering empty strings from data pipelines
// - Ensuring configuration values are non-empty
// - Composing with parsing prisms to validate input before parsing
// - Working with user input that must not be blank
//
// Key insight: This prism is particularly useful for validation scenarios where
// an empty string represents an invalid or missing value, allowing you to handle
// such cases gracefully through the Option type rather than with error handling.
//
//go:inline
func NonEmptyString() Prism[string, string] {
return FromNonZero[string]()
}

View File

@@ -1145,3 +1145,254 @@ func TestFromOptionComposition(t *testing.T) {
assert.True(t, O.IsNone(result))
})
}
// TestNonEmptyString tests the NonEmptyString prism
func TestNonEmptyString(t *testing.T) {
t.Run("match non-empty string", func(t *testing.T) {
prism := NonEmptyString()
result := prism.GetOption("hello")
assert.True(t, O.IsSome(result))
assert.Equal(t, "hello", O.GetOrElse(F.Constant("default"))(result))
})
t.Run("empty string returns None", func(t *testing.T) {
prism := NonEmptyString()
result := prism.GetOption("")
assert.True(t, O.IsNone(result))
})
t.Run("whitespace string is non-empty", func(t *testing.T) {
prism := NonEmptyString()
result := prism.GetOption(" ")
assert.True(t, O.IsSome(result))
assert.Equal(t, " ", O.GetOrElse(F.Constant("default"))(result))
})
t.Run("single character string", func(t *testing.T) {
prism := NonEmptyString()
result := prism.GetOption("a")
assert.True(t, O.IsSome(result))
assert.Equal(t, "a", O.GetOrElse(F.Constant("default"))(result))
})
t.Run("multiline string", func(t *testing.T) {
prism := NonEmptyString()
multiline := "line1\nline2\nline3"
result := prism.GetOption(multiline)
assert.True(t, O.IsSome(result))
assert.Equal(t, multiline, O.GetOrElse(F.Constant("default"))(result))
})
t.Run("unicode string", func(t *testing.T) {
prism := NonEmptyString()
unicode := "Hello 世界 🌍"
result := prism.GetOption(unicode)
assert.True(t, O.IsSome(result))
assert.Equal(t, unicode, O.GetOrElse(F.Constant("default"))(result))
})
t.Run("reverse get is identity", func(t *testing.T) {
prism := NonEmptyString()
assert.Equal(t, "", prism.ReverseGet(""))
assert.Equal(t, "hello", prism.ReverseGet("hello"))
assert.Equal(t, "world", prism.ReverseGet("world"))
})
}
// TestNonEmptyStringWithSet tests using Set with NonEmptyString prism
func TestNonEmptyStringWithSet(t *testing.T) {
t.Run("set on non-empty string", func(t *testing.T) {
prism := NonEmptyString()
setter := Set[string]("updated")
result := setter(prism)("original")
assert.Equal(t, "updated", result)
})
t.Run("set on empty string returns original", func(t *testing.T) {
prism := NonEmptyString()
setter := Set[string]("updated")
result := setter(prism)("")
assert.Equal(t, "", result)
})
t.Run("set with empty value on non-empty string", func(t *testing.T) {
prism := NonEmptyString()
setter := Set[string]("")
result := setter(prism)("original")
assert.Equal(t, "", result)
})
}
// TestNonEmptyStringPrismLaws tests that NonEmptyString satisfies prism laws
func TestNonEmptyStringPrismLaws(t *testing.T) {
t.Run("law 1: GetOption(ReverseGet(a)) == Some(a)", func(t *testing.T) {
prism := NonEmptyString()
// For any non-empty string a, GetOption(ReverseGet(a)) should return Some(a)
testCases := []string{"hello", "world", "a", "test string", "123"}
for _, testCase := range testCases {
reversed := prism.ReverseGet(testCase)
result := prism.GetOption(reversed)
assert.True(t, O.IsSome(result), "Expected Some for: %s", testCase)
assert.Equal(t, testCase, O.GetOrElse(F.Constant(""))(result))
}
})
t.Run("law 2: if GetOption(s) == Some(a), then ReverseGet(a) == s", func(t *testing.T) {
prism := NonEmptyString()
// For any non-empty string s where GetOption(s) returns Some(a),
// ReverseGet(a) should equal s
testCases := []string{"hello", "world", "test", " ", "123"}
for _, testCase := range testCases {
optResult := prism.GetOption(testCase)
if O.IsSome(optResult) {
extracted := O.GetOrElse(F.Constant(""))(optResult)
reversed := prism.ReverseGet(extracted)
assert.Equal(t, testCase, reversed)
}
}
})
t.Run("law 3: GetOption is idempotent", func(t *testing.T) {
prism := NonEmptyString()
testCases := []string{"hello", "", "world", " "}
for _, testCase := range testCases {
result1 := prism.GetOption(testCase)
result2 := prism.GetOption(testCase)
assert.Equal(t, result1, result2, "GetOption should be idempotent for: %s", testCase)
}
})
}
// TestNonEmptyStringComposition tests composing NonEmptyString with other prisms
func TestNonEmptyStringComposition(t *testing.T) {
t.Run("compose with ParseInt", func(t *testing.T) {
// Create a prism that only parses non-empty strings to int
nonEmptyPrism := NonEmptyString()
intPrism := ParseInt()
// Compose: string -> non-empty string -> int
composed := Compose[string](intPrism)(nonEmptyPrism)
// Test with valid non-empty string
result := composed.GetOption("42")
assert.True(t, O.IsSome(result))
assert.Equal(t, 42, O.GetOrElse(F.Constant(-1))(result))
// Test with empty string
result = composed.GetOption("")
assert.True(t, O.IsNone(result))
// Test with invalid non-empty string
result = composed.GetOption("abc")
assert.True(t, O.IsNone(result))
})
t.Run("compose with ParseFloat64", func(t *testing.T) {
// Create a prism that only parses non-empty strings to float64
nonEmptyPrism := NonEmptyString()
floatPrism := ParseFloat64()
composed := Compose[string](floatPrism)(nonEmptyPrism)
// Test with valid non-empty string
result := composed.GetOption("3.14")
assert.True(t, O.IsSome(result))
assert.Equal(t, 3.14, O.GetOrElse(F.Constant(-1.0))(result))
// Test with empty string
result = composed.GetOption("")
assert.True(t, O.IsNone(result))
// Test with invalid non-empty string
result = composed.GetOption("not a number")
assert.True(t, O.IsNone(result))
})
t.Run("compose with FromOption", func(t *testing.T) {
// Create a prism that extracts non-empty strings from Option[string]
optionPrism := FromOption[string]()
nonEmptyPrism := NonEmptyString()
composed := Compose[Option[string]](nonEmptyPrism)(optionPrism)
// Test with Some(non-empty)
someNonEmpty := O.Some("hello")
result := composed.GetOption(someNonEmpty)
assert.True(t, O.IsSome(result))
assert.Equal(t, "hello", O.GetOrElse(F.Constant(""))(result))
// Test with Some(empty)
someEmpty := O.Some("")
result = composed.GetOption(someEmpty)
assert.True(t, O.IsNone(result))
// Test with None
none := O.None[string]()
result = composed.GetOption(none)
assert.True(t, O.IsNone(result))
})
}
// TestNonEmptyStringValidation tests NonEmptyString for validation scenarios
func TestNonEmptyStringValidation(t *testing.T) {
t.Run("validate username", func(t *testing.T) {
prism := NonEmptyString()
// Valid username
validUsername := "john_doe"
result := prism.GetOption(validUsername)
assert.True(t, O.IsSome(result))
// Invalid empty username
emptyUsername := ""
result = prism.GetOption(emptyUsername)
assert.True(t, O.IsNone(result))
})
t.Run("validate configuration value", func(t *testing.T) {
prism := NonEmptyString()
// Valid config value
configValue := "production"
result := prism.GetOption(configValue)
assert.True(t, O.IsSome(result))
// Invalid empty config
emptyConfig := ""
result = prism.GetOption(emptyConfig)
assert.True(t, O.IsNone(result))
})
t.Run("filter non-empty strings from slice", func(t *testing.T) {
prism := NonEmptyString()
inputs := []string{"hello", "", "world", "", "test"}
var nonEmpty []string
for _, input := range inputs {
if result := prism.GetOption(input); O.IsSome(result) {
nonEmpty = append(nonEmpty, O.GetOrElse(F.Constant(""))(result))
}
}
assert.Equal(t, []string{"hello", "world", "test"}, nonEmpty)
})
}

View File

@@ -19,6 +19,7 @@ import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/endomorphism"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/predicate"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/result"
)
@@ -124,4 +125,6 @@ type (
// - A: The original focus type
// - B: The new focus type
Operator[S, A, B any] = func(Prism[S, A]) Prism[S, B]
Predicate[A any] = predicate.Predicate[A]
)

View File

@@ -479,6 +479,15 @@ func Second[A, B, C any](pbc Reader[B, C]) Reader[T.Tuple2[A, B], T.Tuple2[A, C]
// Read applies a context to a Reader to obtain its value.
// This is the "run" operation that executes a Reader with a specific environment.
//
// Note: Read is functionally identical to identity.Flap[A](e). Both take a value and
// return a function that applies that value to a function. The difference is semantic:
// - identity.Flap: Generic function application (applies value to any function)
// - reader.Read: Reader-specific execution (applies environment to a Reader)
//
// Recommendation: Use reader.Read when working in a Reader context, as it makes the
// intent clearer that you're executing a Reader computation with an environment.
// Use identity.Flap for general-purpose function application outside the Reader context.
//
// Example:
//
// type Config struct { Port int }

View File

@@ -173,6 +173,85 @@ func TestLocal(t *testing.T) {
assert.Equal(t, "localhost", result)
}
func TestContramap(t *testing.T) {
t.Run("transforms environment before passing to Reader", func(t *testing.T) {
type DetailedConfig struct {
Host string
Port int
}
type SimpleConfig struct{ Host string }
detailed := DetailedConfig{Host: "localhost", Port: 8080}
getHost := func(c SimpleConfig) string { return c.Host }
simplify := func(d DetailedConfig) SimpleConfig { return SimpleConfig{Host: d.Host} }
r := Contramap[string](simplify)(getHost)
result := r(detailed)
assert.Equal(t, "localhost", result)
})
t.Run("is functionally identical to Local", func(t *testing.T) {
type DetailedConfig struct {
Host string
Port int
}
type SimpleConfig struct{ Host string }
getHost := func(c SimpleConfig) string { return c.Host }
simplify := func(d DetailedConfig) SimpleConfig {
return SimpleConfig{Host: d.Host}
}
// Using Contramap
contramapResult := Contramap[string](simplify)(getHost)
// Using Local
localResult := Local[string](simplify)(getHost)
detailed := DetailedConfig{Host: "localhost", Port: 8080}
assert.Equal(t, contramapResult(detailed), localResult(detailed))
assert.Equal(t, "localhost", contramapResult(detailed))
})
t.Run("works with numeric transformations", func(t *testing.T) {
type LargeEnv struct{ Value int }
type SmallEnv struct{ Value int }
// Reader that doubles a value
doubler := func(e SmallEnv) int { return e.Value * 2 }
// Transform that extracts and scales
extract := func(l LargeEnv) SmallEnv {
return SmallEnv{Value: l.Value / 10}
}
adapted := Contramap[int](extract)(doubler)
result := adapted(LargeEnv{Value: 100})
assert.Equal(t, 20, result) // (100/10) * 2 = 20
})
t.Run("can be composed with Map for full profunctor behavior", func(t *testing.T) {
type Env struct{ Config Config }
env := Env{Config: Config{Port: 8080}}
// Extract config (contravariant)
extractConfig := func(e Env) Config { return e.Config }
// Get port and convert to string (covariant)
getPort := func(c Config) int { return c.Port }
toString := strconv.Itoa
// Contramap on input, Map on output
r := F.Pipe2(
getPort,
Contramap[int](extractConfig),
Map[Env](toString),
)
result := r(env)
assert.Equal(t, "8080", result)
})
}
func TestWithLocal(t *testing.T) {
t.Run("transforms environment before passing to Reader", func(t *testing.T) {
type DetailedConfig struct {

View File

@@ -15,71 +15,42 @@
package reader
import (
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
import "github.com/IBM/fp-go/v2/monoid"
// ApplySemigroup lifts a Semigroup[A] into a Semigroup[Reader[R, A]].
// This allows you to combine two Readers that produce semigroup values by combining
// their results using the semigroup's concat operation.
// ApplicativeMonoid returns a [Monoid] that concatenates [Reader] instances via their applicative.
// This combines two Reader values by applying the underlying monoid's combine operation
// to their results using applicative application.
//
// The _map and _ap parameters are the Map and Ap operations for the Reader type,
// typically obtained from the reader package.
// The applicative behavior means that both Reader computations are executed with the same
// environment, and their results are combined using the underlying monoid. This is useful
// for accumulating values from multiple Reader computations that all depend on the same
// environment.
//
// Parameters:
// - m: The underlying monoid for type A
//
// Returns a Monoid for Reader[R, A].
//
// Example:
//
// type Config struct { Multiplier int }
// // Using the additive semigroup for integers
// intSemigroup := semigroup.MakeSemigroup(func(a, b int) int { return a + b })
// readerSemigroup := reader.ApplySemigroup(
// reader.MonadMap[Config, int, func(int) int],
// reader.MonadAp[int, Config, int],
// intSemigroup,
// )
// type Config struct { Port int; Timeout int }
// intMonoid := number.MonoidSum[int]()
// readerMonoid := ApplicativeMonoid[Config](intMonoid)
//
// r1 := reader.Of[Config](5)
// r2 := reader.Of[Config](3)
// combined := readerSemigroup.Concat(r1, r2)
// result := combined(Config{Multiplier: 1}) // 8
func ApplySemigroup[R, A any](
_map func(func(R) A, func(A) func(A) A) func(R, func(A) A),
_ap func(func(R, func(A) A), func(R) A) func(R) A,
s S.Semigroup[A],
) S.Semigroup[func(R) A] {
return S.ApplySemigroup(_map, _ap, s)
}
// ApplicativeMonoid lifts a Monoid[A] into a Monoid[Reader[R, A]].
// This allows you to combine Readers that produce monoid values, with an empty/identity Reader.
//
// The _of parameter is the Of operation (pure/return) for the Reader type.
// The _map and _ap parameters are the Map and Ap operations for the Reader type.
//
// Example:
//
// type Config struct { Prefix string }
// // Using the string concatenation monoid
// stringMonoid := monoid.MakeMonoid("", func(a, b string) string { return a + b })
// readerMonoid := reader.ApplicativeMonoid(
// reader.Of[Config, string],
// reader.MonadMap[Config, string, func(string) string],
// reader.MonadAp[string, Config, string],
// stringMonoid,
// )
//
// r1 := reader.Asks(func(c Config) string { return c.Prefix })
// r2 := reader.Of[Config]("hello")
// combined := readerMonoid.Concat(r1, r2)
// result := combined(Config{Prefix: ">> "}) // ">> hello"
// empty := readerMonoid.Empty()(Config{Prefix: "any"}) // ""
func ApplicativeMonoid[R, A any](
_of func(A) func(R) A,
_map func(func(R) A, func(A) func(A) A) func(R, func(A) A),
_ap func(func(R, func(A) A), func(R) A) func(R) A,
m M.Monoid[A],
) M.Monoid[func(R) A] {
return M.ApplicativeMonoid(_of, _map, _ap, m)
// getPort := func(c Config) int { return c.Port }
// getTimeout := func(c Config) int { return c.Timeout }
// combined := readerMonoid.Concat(getPort, getTimeout)
// // Result: func(c Config) int { return c.Port + c.Timeout }
//
// config := Config{Port: 8080, Timeout: 30}
// result := combined(config) // 8110
//
//go:inline
func ApplicativeMonoid[R, A any](m monoid.Monoid[A]) monoid.Monoid[Reader[R, A]] {
return monoid.ApplicativeMonoid(
Of[R, A],
MonadMap[R, A, func(A) A],
MonadAp[A, R, A],
m,
)
}

478
v2/reader/semigroup_test.go Normal file
View File

@@ -0,0 +1,478 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package reader
import (
"strconv"
"testing"
N "github.com/IBM/fp-go/v2/number"
S "github.com/IBM/fp-go/v2/string"
"github.com/stretchr/testify/assert"
)
// SemigroupConfig represents a test configuration environment for semigroup tests
type SemigroupConfig struct {
Host string
Port int
Timeout int
MaxRetries int
Debug bool
}
var (
defaultSemigroupConfig = SemigroupConfig{
Host: "localhost",
Port: 8080,
Timeout: 30,
MaxRetries: 3,
Debug: false,
}
semigroupIntAddMonoid = N.MonoidSum[int]()
semigroupIntMulMonoid = N.MonoidProduct[int]()
semigroupStrMonoid = S.Monoid
)
// TestApplicativeMonoidSemigroup tests the ApplicativeMonoid function
func TestApplicativeMonoidSemigroup(t *testing.T) {
readerMonoid := ApplicativeMonoid[SemigroupConfig](semigroupIntAddMonoid)
t.Run("empty element", func(t *testing.T) {
empty := readerMonoid.Empty()
result := empty(defaultSemigroupConfig)
assert.Equal(t, 0, result)
})
t.Run("concat two readers", func(t *testing.T) {
r1 := func(c SemigroupConfig) int { return c.Port }
r2 := func(c SemigroupConfig) int { return c.Timeout }
combined := readerMonoid.Concat(r1, r2)
result := combined(defaultSemigroupConfig)
// 8080 + 30 = 8110
assert.Equal(t, 8110, result)
})
t.Run("concat with empty - left identity", func(t *testing.T) {
r := func(c SemigroupConfig) int { return c.Port }
combined := readerMonoid.Concat(readerMonoid.Empty(), r)
result := combined(defaultSemigroupConfig)
assert.Equal(t, 8080, result)
})
t.Run("concat with empty - right identity", func(t *testing.T) {
r := func(c SemigroupConfig) int { return c.Port }
combined := readerMonoid.Concat(r, readerMonoid.Empty())
result := combined(defaultSemigroupConfig)
assert.Equal(t, 8080, result)
})
t.Run("concat multiple readers", func(t *testing.T) {
r1 := func(c SemigroupConfig) int { return c.Port }
r2 := func(c SemigroupConfig) int { return c.Timeout }
r3 := func(c SemigroupConfig) int { return c.MaxRetries }
r4 := Of[SemigroupConfig](100)
// Chain concat calls: ((r1 + r2) + r3) + r4
combined := readerMonoid.Concat(
readerMonoid.Concat(
readerMonoid.Concat(r1, r2),
r3,
),
r4,
)
result := combined(defaultSemigroupConfig)
// 8080 + 30 + 3 + 100 = 8213
assert.Equal(t, 8213, result)
})
t.Run("concat constant readers", func(t *testing.T) {
r1 := Of[SemigroupConfig](10)
r2 := Of[SemigroupConfig](20)
r3 := Of[SemigroupConfig](30)
combined := readerMonoid.Concat(
readerMonoid.Concat(r1, r2),
r3,
)
result := combined(defaultSemigroupConfig)
assert.Equal(t, 60, result)
})
t.Run("string concatenation", func(t *testing.T) {
strReaderMonoid := ApplicativeMonoid[SemigroupConfig](semigroupStrMonoid)
r1 := func(c SemigroupConfig) string { return c.Host }
r2 := Of[SemigroupConfig](":")
r3 := Asks(func(c SemigroupConfig) string {
return strconv.Itoa(c.Port)
})
combined := strReaderMonoid.Concat(
strReaderMonoid.Concat(r1, r2),
r3,
)
result := combined(defaultSemigroupConfig)
assert.Equal(t, "localhost:8080", result)
})
t.Run("multiplication monoid", func(t *testing.T) {
mulReaderMonoid := ApplicativeMonoid[SemigroupConfig](semigroupIntMulMonoid)
r1 := func(c SemigroupConfig) int { return c.MaxRetries }
r2 := Of[SemigroupConfig](10)
r3 := Of[SemigroupConfig](2)
combined := mulReaderMonoid.Concat(
mulReaderMonoid.Concat(r1, r2),
r3,
)
result := combined(defaultSemigroupConfig)
// 3 * 10 * 2 = 60
assert.Equal(t, 60, result)
})
t.Run("environment dependent computation", func(t *testing.T) {
// Create readers that use different parts of the environment
getPort := Asks(func(c SemigroupConfig) int { return c.Port })
getTimeout := Asks(func(c SemigroupConfig) int { return c.Timeout })
getRetries := Asks(func(c SemigroupConfig) int { return c.MaxRetries })
combined := readerMonoid.Concat(
readerMonoid.Concat(getPort, getTimeout),
getRetries,
)
result := combined(defaultSemigroupConfig)
// 8080 + 30 + 3 = 8113
assert.Equal(t, 8113, result)
})
t.Run("mixed constant and environment readers", func(t *testing.T) {
r1 := Of[SemigroupConfig](1000)
r2 := func(c SemigroupConfig) int { return c.Port }
r3 := Of[SemigroupConfig](5)
combined := readerMonoid.Concat(
readerMonoid.Concat(r1, r2),
r3,
)
result := combined(defaultSemigroupConfig)
// 1000 + 8080 + 5 = 9085
assert.Equal(t, 9085, result)
})
t.Run("different environment values", func(t *testing.T) {
r1 := func(c SemigroupConfig) int { return c.Port }
r2 := func(c SemigroupConfig) int { return c.Timeout }
combined := readerMonoid.Concat(r1, r2)
// Test with different configs
config1 := SemigroupConfig{Port: 3000, Timeout: 60}
config2 := SemigroupConfig{Port: 9000, Timeout: 120}
result1 := combined(config1)
result2 := combined(config2)
assert.Equal(t, 3060, result1)
assert.Equal(t, 9120, result2)
})
t.Run("conditional reader based on environment", func(t *testing.T) {
r1 := func(c SemigroupConfig) int {
if c.Debug {
return c.Port * 2
}
return c.Port
}
r2 := func(c SemigroupConfig) int { return c.Timeout }
combined := readerMonoid.Concat(r1, r2)
// Test with debug off
result1 := combined(defaultSemigroupConfig)
assert.Equal(t, 8110, result1) // 8080 + 30
// Test with debug on
debugConfig := defaultSemigroupConfig
debugConfig.Debug = true
result2 := combined(debugConfig)
assert.Equal(t, 16190, result2) // (8080 * 2) + 30
})
}
// TestMonoidLawsSemigroup verifies that the monoid laws hold for ApplicativeMonoid
func TestMonoidLawsSemigroup(t *testing.T) {
readerMonoid := ApplicativeMonoid[SemigroupConfig](semigroupIntAddMonoid)
t.Run("left identity law", func(t *testing.T) {
// empty <> x == x
x := func(c SemigroupConfig) int { return c.Port }
result1 := readerMonoid.Concat(readerMonoid.Empty(), x)(defaultSemigroupConfig)
result2 := x(defaultSemigroupConfig)
assert.Equal(t, result2, result1)
})
t.Run("right identity law", func(t *testing.T) {
// x <> empty == x
x := func(c SemigroupConfig) int { return c.Port }
result1 := readerMonoid.Concat(x, readerMonoid.Empty())(defaultSemigroupConfig)
result2 := x(defaultSemigroupConfig)
assert.Equal(t, result2, result1)
})
t.Run("associativity law", func(t *testing.T) {
// (x <> y) <> z == x <> (y <> z)
x := func(c SemigroupConfig) int { return c.Port }
y := func(c SemigroupConfig) int { return c.Timeout }
z := func(c SemigroupConfig) int { return c.MaxRetries }
left := readerMonoid.Concat(readerMonoid.Concat(x, y), z)(defaultSemigroupConfig)
right := readerMonoid.Concat(x, readerMonoid.Concat(y, z))(defaultSemigroupConfig)
assert.Equal(t, right, left)
})
t.Run("associativity with constants", func(t *testing.T) {
x := Of[SemigroupConfig](10)
y := Of[SemigroupConfig](20)
z := Of[SemigroupConfig](30)
left := readerMonoid.Concat(readerMonoid.Concat(x, y), z)(defaultSemigroupConfig)
right := readerMonoid.Concat(x, readerMonoid.Concat(y, z))(defaultSemigroupConfig)
assert.Equal(t, right, left)
})
t.Run("associativity with mixed readers", func(t *testing.T) {
x := func(c SemigroupConfig) int { return c.Port }
y := Of[SemigroupConfig](100)
z := func(c SemigroupConfig) int { return c.Timeout }
left := readerMonoid.Concat(readerMonoid.Concat(x, y), z)(defaultSemigroupConfig)
right := readerMonoid.Concat(x, readerMonoid.Concat(y, z))(defaultSemigroupConfig)
assert.Equal(t, right, left)
})
}
// TestMonoidWithDifferentTypesSemigroup tests monoid with various types
func TestMonoidWithDifferentTypesSemigroup(t *testing.T) {
t.Run("string monoid", func(t *testing.T) {
strReaderMonoid := ApplicativeMonoid[SemigroupConfig](semigroupStrMonoid)
r1 := func(c SemigroupConfig) string { return "Host: " }
r2 := func(c SemigroupConfig) string { return c.Host }
r3 := Of[SemigroupConfig](" | Port: ")
r4 := Asks(func(c SemigroupConfig) string { return strconv.Itoa(c.Port) })
combined := strReaderMonoid.Concat(
strReaderMonoid.Concat(
strReaderMonoid.Concat(r1, r2),
r3,
),
r4,
)
result := combined(defaultSemigroupConfig)
assert.Equal(t, "Host: localhost | Port: 8080", result)
})
t.Run("product monoid", func(t *testing.T) {
mulReaderMonoid := ApplicativeMonoid[SemigroupConfig](semigroupIntMulMonoid)
r1 := func(c SemigroupConfig) int { return 2 }
r2 := func(c SemigroupConfig) int { return c.MaxRetries }
r3 := Of[SemigroupConfig](5)
combined := mulReaderMonoid.Concat(
mulReaderMonoid.Concat(r1, r2),
r3,
)
result := combined(defaultSemigroupConfig)
// 2 * 3 * 5 = 30
assert.Equal(t, 30, result)
})
}
// TestComplexScenariosSemigroup tests more complex real-world scenarios
func TestComplexScenariosSemigroup(t *testing.T) {
t.Run("accumulate configuration values", func(t *testing.T) {
readerMonoid := ApplicativeMonoid[SemigroupConfig](semigroupIntAddMonoid)
// Accumulate multiple configuration values
getPort := Asks(func(c SemigroupConfig) int { return c.Port })
getTimeout := Asks(func(c SemigroupConfig) int { return c.Timeout })
getRetries := Asks(func(c SemigroupConfig) int { return c.MaxRetries })
getConstant := Of[SemigroupConfig](1000)
combined := readerMonoid.Concat(
readerMonoid.Concat(
readerMonoid.Concat(getPort, getTimeout),
getRetries,
),
getConstant,
)
result := combined(defaultSemigroupConfig)
// 8080 + 30 + 3 + 1000 = 9113
assert.Equal(t, 9113, result)
})
t.Run("build connection string", func(t *testing.T) {
strReaderMonoid := ApplicativeMonoid[SemigroupConfig](semigroupStrMonoid)
protocol := Of[SemigroupConfig]("http://")
host := func(c SemigroupConfig) string { return c.Host }
colon := Of[SemigroupConfig](":")
port := Asks(func(c SemigroupConfig) string { return strconv.Itoa(c.Port) })
buildURL := strReaderMonoid.Concat(
strReaderMonoid.Concat(
strReaderMonoid.Concat(protocol, host),
colon,
),
port,
)
result := buildURL(defaultSemigroupConfig)
assert.Equal(t, "http://localhost:8080", result)
})
t.Run("calculate total score", func(t *testing.T) {
type ScoreConfig struct {
BaseScore int
BonusPoints int
Multiplier int
PenaltyDeduction int
}
scoreConfig := ScoreConfig{
BaseScore: 100,
BonusPoints: 50,
Multiplier: 2,
PenaltyDeduction: 10,
}
readerMonoid := ApplicativeMonoid[ScoreConfig](semigroupIntAddMonoid)
getBase := func(c ScoreConfig) int { return c.BaseScore }
getBonus := func(c ScoreConfig) int { return c.BonusPoints }
getPenalty := func(c ScoreConfig) int { return -c.PenaltyDeduction }
totalScore := readerMonoid.Concat(
readerMonoid.Concat(getBase, getBonus),
getPenalty,
)
result := totalScore(scoreConfig)
// 100 + 50 - 10 = 140
assert.Equal(t, 140, result)
})
t.Run("compose multiple readers with empty", func(t *testing.T) {
readerMonoid := ApplicativeMonoid[SemigroupConfig](semigroupIntAddMonoid)
r1 := func(c SemigroupConfig) int { return c.Port }
r2 := readerMonoid.Empty()
r3 := func(c SemigroupConfig) int { return c.Timeout }
r4 := readerMonoid.Empty()
r5 := Of[SemigroupConfig](100)
combined := readerMonoid.Concat(
readerMonoid.Concat(
readerMonoid.Concat(
readerMonoid.Concat(r1, r2),
r3,
),
r4,
),
r5,
)
result := combined(defaultSemigroupConfig)
// 8080 + 0 + 30 + 0 + 100 = 8210
assert.Equal(t, 8210, result)
})
}
// TestEdgeCasesSemigroup tests edge cases and boundary conditions
func TestEdgeCasesSemigroup(t *testing.T) {
t.Run("empty config struct", func(t *testing.T) {
type EmptyConfig struct{}
emptyConfig := EmptyConfig{}
readerMonoid := ApplicativeMonoid[EmptyConfig](semigroupIntAddMonoid)
r1 := Of[EmptyConfig](10)
r2 := Of[EmptyConfig](20)
combined := readerMonoid.Concat(r1, r2)
result := combined(emptyConfig)
assert.Equal(t, 30, result)
})
t.Run("zero values", func(t *testing.T) {
readerMonoid := ApplicativeMonoid[SemigroupConfig](semigroupIntAddMonoid)
r1 := Of[SemigroupConfig](0)
r2 := Of[SemigroupConfig](0)
r3 := Of[SemigroupConfig](0)
combined := readerMonoid.Concat(
readerMonoid.Concat(r1, r2),
r3,
)
result := combined(defaultSemigroupConfig)
assert.Equal(t, 0, result)
})
t.Run("negative values", func(t *testing.T) {
readerMonoid := ApplicativeMonoid[SemigroupConfig](semigroupIntAddMonoid)
r1 := Of[SemigroupConfig](-100)
r2 := Of[SemigroupConfig](50)
r3 := Of[SemigroupConfig](-30)
combined := readerMonoid.Concat(
readerMonoid.Concat(r1, r2),
r3,
)
result := combined(defaultSemigroupConfig)
// -100 + 50 - 30 = -80
assert.Equal(t, -80, result)
})
t.Run("large values", func(t *testing.T) {
readerMonoid := ApplicativeMonoid[SemigroupConfig](semigroupIntAddMonoid)
r1 := Of[SemigroupConfig](1000000)
r2 := Of[SemigroupConfig](2000000)
r3 := Of[SemigroupConfig](3000000)
combined := readerMonoid.Concat(
readerMonoid.Concat(r1, r2),
r3,
)
result := combined(defaultSemigroupConfig)
assert.Equal(t, 6000000, result)
})
}

135
v2/readereither/monoid.go Normal file
View File

@@ -0,0 +1,135 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
import (
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/monoid"
)
// ApplicativeMonoid returns a [Monoid] that concatenates [ReaderEither] instances via their applicative.
// This combines two ReaderEither values by applying the underlying monoid's combine operation
// to their success values using applicative application.
//
// The applicative behavior means that if either computation fails (returns Left), the entire
// combination fails. Both computations must succeed (return Right) for the result to succeed.
//
// Parameters:
// - m: The underlying monoid for type A
//
// Returns a Monoid for ReaderEither[R, E, A].
//
// Example:
//
// intMonoid := number.MonoidSum[int]()
// reMonoid := ApplicativeMonoid[Config, string](intMonoid)
//
// re1 := Right[Config, string](5)
// re2 := Right[Config, string](3)
// combined := reMonoid.Concat(re1, re2)
// // Result: Right(8)
//
// re3 := Left[Config, int]("error")
// failed := reMonoid.Concat(re1, re3)
// // Result: Left("error")
//
//go:inline
func ApplicativeMonoid[R, E, A any](m monoid.Monoid[A]) monoid.Monoid[ReaderEither[R, E, A]] {
return monoid.ApplicativeMonoid(
Of[R, E, A],
MonadMap[R, E, A, func(A) A],
MonadAp[A, R, E, A],
m,
)
}
// AlternativeMonoid is the alternative [Monoid] for [ReaderEither].
// This combines ReaderEither values using the alternative semantics,
// where the second value is only evaluated if the first fails.
//
// The alternative behavior provides fallback semantics: if the first computation
// succeeds (returns Right), its value is used. If it fails (returns Left), the
// second computation is tried. If both succeed, their values are combined using
// the underlying monoid.
//
// Parameters:
// - m: The underlying monoid for type A
//
// Returns a Monoid for ReaderEither[R, E, A] with alternative semantics.
//
// Example:
//
// intMonoid := number.MonoidSum[int]()
// reMonoid := AlternativeMonoid[Config, string](intMonoid)
//
// re1 := Left[Config, int]("error1")
// re2 := Right[Config, string](42)
// combined := reMonoid.Concat(re1, re2)
// // Result: Right(42) - falls back to second
//
// re3 := Right[Config, string](5)
// re4 := Right[Config, string](3)
// both := reMonoid.Concat(re3, re4)
// // Result: Right(8) - combines both successes
//
//go:inline
func AlternativeMonoid[R, E, A any](m monoid.Monoid[A]) monoid.Monoid[ReaderEither[R, E, A]] {
return monoid.AlternativeMonoid(
Of[R, E, A],
MonadMap[R, E, A, func(A) A],
MonadAp[A, R, E, A],
MonadAlt[R, E, A],
m,
)
}
// AltMonoid is the alternative [Monoid] for a [ReaderEither].
// This creates a monoid where the empty value is provided lazily,
// and combination uses the Alt operation (try first, fallback to second on failure).
//
// Unlike AlternativeMonoid, this does not combine successful values using an underlying
// monoid. Instead, it simply returns the first successful value, or falls back to the
// second if the first fails.
//
// Parameters:
// - zero: Lazy computation that provides the empty/identity value
//
// Returns a Monoid for ReaderEither[R, E, A] with Alt-based combination.
//
// Example:
//
// zero := lazy.MakeLazy(func() ReaderEither[Config, string, int] {
// return Left[Config, int]("no value")
// })
// reMonoid := AltMonoid(zero)
//
// re1 := Left[Config, int]("error1")
// re2 := Right[Config, string](42)
// combined := reMonoid.Concat(re1, re2)
// // Result: Right(42) - uses first success
//
// re3 := Right[Config, string](100)
// re4 := Right[Config, string](200)
// first := reMonoid.Concat(re3, re4)
// // Result: Right(100) - uses first success, doesn't combine
//
//go:inline
func AltMonoid[R, E, A any](zero lazy.Lazy[ReaderEither[R, E, A]]) monoid.Monoid[ReaderEither[R, E, A]] {
return monoid.AltMonoid(
zero,
MonadAlt[R, E, A],
)
}

View File

@@ -0,0 +1,747 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readereither
import (
"testing"
E "github.com/IBM/fp-go/v2/either"
N "github.com/IBM/fp-go/v2/number"
S "github.com/IBM/fp-go/v2/string"
"github.com/stretchr/testify/assert"
)
// Config represents a test configuration environment
type Config struct {
Host string
Port int
Timeout int
Debug bool
}
var (
defaultConfig = Config{
Host: "localhost",
Port: 8080,
Timeout: 30,
Debug: false,
}
intAddMonoid = N.MonoidSum[int]()
strMonoid = S.Monoid
)
// TestApplicativeMonoid tests the ApplicativeMonoid function
func TestApplicativeMonoid(t *testing.T) {
reMonoid := ApplicativeMonoid[Config, string](intAddMonoid)
t.Run("empty element", func(t *testing.T) {
empty := reMonoid.Empty()
result := empty(defaultConfig)
assert.Equal(t, E.Right[string](0), result)
})
t.Run("concat two Right values", func(t *testing.T) {
re1 := Right[Config, string](5)
re2 := Right[Config, string](3)
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
assert.Equal(t, E.Right[string](8), result)
})
t.Run("concat with empty - left identity", func(t *testing.T) {
re := Right[Config, string](42)
combined := reMonoid.Concat(reMonoid.Empty(), re)
result := combined(defaultConfig)
assert.Equal(t, E.Right[string](42), result)
})
t.Run("concat with empty - right identity", func(t *testing.T) {
re := Right[Config, string](42)
combined := reMonoid.Concat(re, reMonoid.Empty())
result := combined(defaultConfig)
assert.Equal(t, E.Right[string](42), result)
})
t.Run("concat with left error", func(t *testing.T) {
reSuccess := Right[Config, string](5)
reFailure := Left[Config, int]("error occurred")
combined := reMonoid.Concat(reFailure, reSuccess)
result := combined(defaultConfig)
assert.Equal(t, E.Left[int]("error occurred"), result)
})
t.Run("concat with right error", func(t *testing.T) {
reSuccess := Right[Config, string](5)
reFailure := Left[Config, int]("error occurred")
combined := reMonoid.Concat(reSuccess, reFailure)
result := combined(defaultConfig)
assert.Equal(t, E.Left[int]("error occurred"), result)
})
t.Run("concat both errors", func(t *testing.T) {
re1 := Left[Config, int]("error1")
re2 := Left[Config, int]("error2")
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
// First error is returned
assert.Equal(t, E.Left[int]("error1"), result)
})
t.Run("concat multiple values", func(t *testing.T) {
re1 := Right[Config, string](1)
re2 := Right[Config, string](2)
re3 := Right[Config, string](3)
re4 := Right[Config, string](4)
// Chain concat calls: ((1 + 2) + 3) + 4
combined := reMonoid.Concat(
reMonoid.Concat(
reMonoid.Concat(re1, re2),
re3,
),
re4,
)
result := combined(defaultConfig)
assert.Equal(t, E.Right[string](10), result)
})
t.Run("string concatenation", func(t *testing.T) {
strREMonoid := ApplicativeMonoid[Config, string](strMonoid)
re1 := Right[Config, string]("Hello")
re2 := Right[Config, string](" ")
re3 := Right[Config, string]("World")
combined := strREMonoid.Concat(
strREMonoid.Concat(re1, re2),
re3,
)
result := combined(defaultConfig)
assert.Equal(t, E.Right[string]("Hello World"), result)
})
t.Run("environment dependent computation", func(t *testing.T) {
// Create computations that use the environment
re1 := Asks[string](func(cfg Config) int {
return cfg.Port
})
re2 := Right[Config, string](100)
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
// defaultConfig.Port is 8080, so 8080 + 100 = 8180
assert.Equal(t, E.Right[string](8180), result)
})
t.Run("environment dependent with error", func(t *testing.T) {
re1 := MonadChain(
Ask[Config, string](),
func(cfg Config) ReaderEither[Config, string, int] {
if cfg.Debug {
return Right[Config, string](cfg.Timeout)
}
return Left[Config, int]("debug mode disabled")
},
)
re2 := Right[Config, string](50)
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
// defaultConfig.Debug is false, so should fail
assert.Equal(t, E.Left[int]("debug mode disabled"), result)
})
}
// TestAlternativeMonoid tests the AlternativeMonoid function
func TestAlternativeMonoid(t *testing.T) {
reMonoid := AlternativeMonoid[Config, string](intAddMonoid)
t.Run("empty element", func(t *testing.T) {
empty := reMonoid.Empty()
result := empty(defaultConfig)
assert.Equal(t, E.Right[string](0), result)
})
t.Run("concat two Right values", func(t *testing.T) {
re1 := Right[Config, string](5)
re2 := Right[Config, string](3)
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
// Alternative combines successful values
assert.Equal(t, E.Right[string](8), result)
})
t.Run("concat Left then Right - fallback behavior", func(t *testing.T) {
reFailure := Left[Config, int]("error")
reSuccess := Right[Config, string](42)
combined := reMonoid.Concat(reFailure, reSuccess)
result := combined(defaultConfig)
// Should fall back to second when first fails
assert.Equal(t, E.Right[string](42), result)
})
t.Run("concat Right then Left - uses first", func(t *testing.T) {
reSuccess := Right[Config, string](42)
reFailure := Left[Config, int]("error")
combined := reMonoid.Concat(reSuccess, reFailure)
result := combined(defaultConfig)
// Should use first successful value
assert.Equal(t, E.Right[string](42), result)
})
t.Run("concat both errors", func(t *testing.T) {
re1 := Left[Config, int]("error1")
re2 := Left[Config, int]("error2")
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
// Second error is returned when both fail
assert.Equal(t, E.Left[int]("error2"), result)
})
t.Run("concat with empty - left identity", func(t *testing.T) {
re := Right[Config, string](42)
combined := reMonoid.Concat(reMonoid.Empty(), re)
result := combined(defaultConfig)
assert.Equal(t, E.Right[string](42), result)
})
t.Run("concat with empty - right identity", func(t *testing.T) {
re := Right[Config, string](42)
combined := reMonoid.Concat(re, reMonoid.Empty())
result := combined(defaultConfig)
assert.Equal(t, E.Right[string](42), result)
})
t.Run("multiple values with some failures", func(t *testing.T) {
re1 := Left[Config, int]("error1")
re2 := Right[Config, string](5)
re3 := Left[Config, int]("error2")
re4 := Right[Config, string](10)
// Alternative should skip failures and accumulate successes
combined := reMonoid.Concat(
reMonoid.Concat(
reMonoid.Concat(re1, re2),
re3,
),
re4,
)
result := combined(defaultConfig)
// Should accumulate successful values: 5 + 10 = 15
assert.Equal(t, E.Right[string](15), result)
})
t.Run("fallback chain", func(t *testing.T) {
// Simulate trying multiple sources until one succeeds
primary := Left[Config, string]("primary failed")
secondary := Left[Config, string]("secondary failed")
tertiary := Right[Config, string]("tertiary success")
strREMonoid := AlternativeMonoid[Config, string](strMonoid)
// Chain concat: try primary, then secondary, then tertiary
combined := strREMonoid.Concat(
strREMonoid.Concat(primary, secondary),
tertiary,
)
result := combined(defaultConfig)
assert.Equal(t, E.Right[string]("tertiary success"), result)
})
t.Run("environment dependent with fallback", func(t *testing.T) {
// First computation fails
re1 := Left[Config, int]("error")
// Second computation uses environment
re2 := Asks[string](func(cfg Config) int {
return cfg.Timeout
})
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
// Should fall back to second computation
assert.Equal(t, E.Right[string](30), result)
})
t.Run("all failures in chain", func(t *testing.T) {
re1 := Left[Config, int]("error1")
re2 := Left[Config, int]("error2")
re3 := Left[Config, int]("error3")
combined := reMonoid.Concat(
reMonoid.Concat(re1, re2),
re3,
)
result := combined(defaultConfig)
// Last error is returned
assert.Equal(t, E.Left[int]("error3"), result)
})
}
// TestAltMonoid tests the AltMonoid function
func TestAltMonoid(t *testing.T) {
zero := func() ReaderEither[Config, string, int] {
return Left[Config, int]("no value")
}
reMonoid := AltMonoid(zero)
t.Run("empty element", func(t *testing.T) {
empty := reMonoid.Empty()
result := empty(defaultConfig)
assert.Equal(t, E.Left[int]("no value"), result)
})
t.Run("concat Left then Right - uses second", func(t *testing.T) {
re1 := Left[Config, int]("error1")
re2 := Right[Config, string](42)
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
// Should use first success
assert.Equal(t, E.Right[string](42), result)
})
t.Run("concat Right then Right - uses first", func(t *testing.T) {
re1 := Right[Config, string](100)
re2 := Right[Config, string](200)
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
// Uses first success, doesn't combine
assert.Equal(t, E.Right[string](100), result)
})
t.Run("concat Right then Left - uses first", func(t *testing.T) {
re1 := Right[Config, string](42)
re2 := Left[Config, int]("error")
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
assert.Equal(t, E.Right[string](42), result)
})
t.Run("concat both errors", func(t *testing.T) {
re1 := Left[Config, int]("error1")
re2 := Left[Config, int]("error2")
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
// Second error is returned
assert.Equal(t, E.Left[int]("error2"), result)
})
t.Run("concat with empty - left identity", func(t *testing.T) {
re := Right[Config, string](42)
combined := reMonoid.Concat(reMonoid.Empty(), re)
result := combined(defaultConfig)
assert.Equal(t, E.Right[string](42), result)
})
t.Run("concat with empty - right identity", func(t *testing.T) {
re := Right[Config, string](42)
combined := reMonoid.Concat(re, reMonoid.Empty())
result := combined(defaultConfig)
assert.Equal(t, E.Right[string](42), result)
})
t.Run("fallback chain with first success", func(t *testing.T) {
re1 := Right[Config, string](10)
re2 := Right[Config, string](20)
re3 := Right[Config, string](30)
combined := reMonoid.Concat(
reMonoid.Concat(re1, re2),
re3,
)
result := combined(defaultConfig)
// First success is used
assert.Equal(t, E.Right[string](10), result)
})
t.Run("fallback chain with middle success", func(t *testing.T) {
re1 := Left[Config, int]("error1")
re2 := Right[Config, string](20)
re3 := Right[Config, string](30)
combined := reMonoid.Concat(
reMonoid.Concat(re1, re2),
re3,
)
result := combined(defaultConfig)
// First success (re2) is used
assert.Equal(t, E.Right[string](20), result)
})
t.Run("fallback chain with last success", func(t *testing.T) {
re1 := Left[Config, int]("error1")
re2 := Left[Config, int]("error2")
re3 := Right[Config, string](30)
combined := reMonoid.Concat(
reMonoid.Concat(re1, re2),
re3,
)
result := combined(defaultConfig)
// Last success is used
assert.Equal(t, E.Right[string](30), result)
})
t.Run("environment dependent fallback", func(t *testing.T) {
re1 := MonadChain(
Ask[Config, string](),
func(cfg Config) ReaderEither[Config, string, int] {
if cfg.Debug {
return Right[Config, string](cfg.Port)
}
return Left[Config, int]("debug disabled")
},
)
re2 := Right[Config, string](9999)
combined := reMonoid.Concat(re1, re2)
result := combined(defaultConfig)
// First fails (debug is false), falls back to second
assert.Equal(t, E.Right[string](9999), result)
})
}
// TestMonoidLaws verifies that the monoid laws hold for ApplicativeMonoid
func TestApplicativeMonoidLaws(t *testing.T) {
reMonoid := ApplicativeMonoid[Config, string](intAddMonoid)
t.Run("left identity law", func(t *testing.T) {
// empty <> x == x
x := Right[Config, string](42)
result1 := reMonoid.Concat(reMonoid.Empty(), x)(defaultConfig)
result2 := x(defaultConfig)
assert.Equal(t, result2, result1)
})
t.Run("right identity law", func(t *testing.T) {
// x <> empty == x
x := Right[Config, string](42)
result1 := reMonoid.Concat(x, reMonoid.Empty())(defaultConfig)
result2 := x(defaultConfig)
assert.Equal(t, result2, result1)
})
t.Run("associativity law", func(t *testing.T) {
// (x <> y) <> z == x <> (y <> z)
x := Right[Config, string](1)
y := Right[Config, string](2)
z := Right[Config, string](3)
left := reMonoid.Concat(reMonoid.Concat(x, y), z)(defaultConfig)
right := reMonoid.Concat(x, reMonoid.Concat(y, z))(defaultConfig)
assert.Equal(t, right, left)
})
t.Run("associativity with Left values", func(t *testing.T) {
// Verify associativity even with Left values
x := Right[Config, string](5)
y := Left[Config, int]("error")
z := Right[Config, string](10)
left := reMonoid.Concat(reMonoid.Concat(x, y), z)(defaultConfig)
right := reMonoid.Concat(x, reMonoid.Concat(y, z))(defaultConfig)
assert.Equal(t, right, left)
})
}
// TestAlternativeMonoidLaws verifies that the monoid laws hold for AlternativeMonoid
func TestAlternativeMonoidLaws(t *testing.T) {
reMonoid := AlternativeMonoid[Config, string](intAddMonoid)
t.Run("left identity law", func(t *testing.T) {
// empty <> x == x
x := Right[Config, string](42)
result1 := reMonoid.Concat(reMonoid.Empty(), x)(defaultConfig)
result2 := x(defaultConfig)
assert.Equal(t, result2, result1)
})
t.Run("right identity law", func(t *testing.T) {
// x <> empty == x
x := Right[Config, string](42)
result1 := reMonoid.Concat(x, reMonoid.Empty())(defaultConfig)
result2 := x(defaultConfig)
assert.Equal(t, result2, result1)
})
t.Run("associativity law", func(t *testing.T) {
// (x <> y) <> z == x <> (y <> z)
x := Right[Config, string](1)
y := Right[Config, string](2)
z := Right[Config, string](3)
left := reMonoid.Concat(reMonoid.Concat(x, y), z)(defaultConfig)
right := reMonoid.Concat(x, reMonoid.Concat(y, z))(defaultConfig)
assert.Equal(t, right, left)
})
t.Run("associativity with Left values", func(t *testing.T) {
// Verify associativity even with Left values
x := Left[Config, int]("error1")
y := Right[Config, string](5)
z := Right[Config, string](10)
left := reMonoid.Concat(reMonoid.Concat(x, y), z)(defaultConfig)
right := reMonoid.Concat(x, reMonoid.Concat(y, z))(defaultConfig)
assert.Equal(t, right, left)
})
}
// TestAltMonoidLaws verifies that the monoid laws hold for AltMonoid
func TestAltMonoidLaws(t *testing.T) {
zero := func() ReaderEither[Config, string, int] {
return Left[Config, int]("no value")
}
reMonoid := AltMonoid(zero)
t.Run("left identity law", func(t *testing.T) {
// empty <> x == x
x := Right[Config, string](42)
result1 := reMonoid.Concat(reMonoid.Empty(), x)(defaultConfig)
result2 := x(defaultConfig)
assert.Equal(t, result2, result1)
})
t.Run("right identity law", func(t *testing.T) {
// x <> empty == x
x := Right[Config, string](42)
result1 := reMonoid.Concat(x, reMonoid.Empty())(defaultConfig)
result2 := x(defaultConfig)
assert.Equal(t, result2, result1)
})
t.Run("associativity law", func(t *testing.T) {
// (x <> y) <> z == x <> (y <> z)
x := Right[Config, string](1)
y := Right[Config, string](2)
z := Right[Config, string](3)
left := reMonoid.Concat(reMonoid.Concat(x, y), z)(defaultConfig)
right := reMonoid.Concat(x, reMonoid.Concat(y, z))(defaultConfig)
assert.Equal(t, right, left)
})
t.Run("associativity with Left values", func(t *testing.T) {
// Verify associativity even with Left values
x := Left[Config, int]("error1")
y := Left[Config, int]("error2")
z := Right[Config, string](10)
left := reMonoid.Concat(reMonoid.Concat(x, y), z)(defaultConfig)
right := reMonoid.Concat(x, reMonoid.Concat(y, z))(defaultConfig)
assert.Equal(t, right, left)
})
}
// TestApplicativeVsAlternative compares the behavior of both monoids
func TestApplicativeVsAlternative(t *testing.T) {
applicativeMonoid := ApplicativeMonoid[Config, string](intAddMonoid)
alternativeMonoid := AlternativeMonoid[Config, string](intAddMonoid)
t.Run("both succeed - same result", func(t *testing.T) {
re1 := Right[Config, string](5)
re2 := Right[Config, string](3)
appResult := applicativeMonoid.Concat(re1, re2)(defaultConfig)
altResult := alternativeMonoid.Concat(re1, re2)(defaultConfig)
assert.Equal(t, E.Right[string](8), appResult)
assert.Equal(t, E.Right[string](8), altResult)
assert.Equal(t, appResult, altResult)
})
t.Run("first fails - different behavior", func(t *testing.T) {
re1 := Left[Config, int]("error")
re2 := Right[Config, string](42)
appResult := applicativeMonoid.Concat(re1, re2)(defaultConfig)
altResult := alternativeMonoid.Concat(re1, re2)(defaultConfig)
// Applicative fails if any fails
assert.Equal(t, E.Left[int]("error"), appResult)
// Alternative falls back to second
assert.Equal(t, E.Right[string](42), altResult)
})
t.Run("second fails - different behavior", func(t *testing.T) {
re1 := Right[Config, string](42)
re2 := Left[Config, int]("error")
appResult := applicativeMonoid.Concat(re1, re2)(defaultConfig)
altResult := alternativeMonoid.Concat(re1, re2)(defaultConfig)
// Applicative fails if any fails
assert.Equal(t, E.Left[int]("error"), appResult)
// Alternative uses first success
assert.Equal(t, E.Right[string](42), altResult)
})
t.Run("both fail - different behavior", func(t *testing.T) {
re1 := Left[Config, int]("error1")
re2 := Left[Config, int]("error2")
appResult := applicativeMonoid.Concat(re1, re2)(defaultConfig)
altResult := alternativeMonoid.Concat(re1, re2)(defaultConfig)
// Applicative returns first error
assert.Equal(t, E.Left[int]("error1"), appResult)
// Alternative returns second error
assert.Equal(t, E.Left[int]("error2"), altResult)
})
}
// TestAlternativeVsAlt compares AlternativeMonoid and AltMonoid
func TestAlternativeVsAlt(t *testing.T) {
alternativeMonoid := AlternativeMonoid[Config, string](intAddMonoid)
zero := func() ReaderEither[Config, string, int] {
return Left[Config, int]("no value")
}
altMonoid := AltMonoid(zero)
t.Run("both succeed - different behavior", func(t *testing.T) {
re1 := Right[Config, string](5)
re2 := Right[Config, string](3)
altResult := alternativeMonoid.Concat(re1, re2)(defaultConfig)
altMonoidResult := altMonoid.Concat(re1, re2)(defaultConfig)
// Alternative combines values
assert.Equal(t, E.Right[string](8), altResult)
// AltMonoid uses first success
assert.Equal(t, E.Right[string](5), altMonoidResult)
})
t.Run("first fails - same behavior", func(t *testing.T) {
re1 := Left[Config, int]("error")
re2 := Right[Config, string](42)
altResult := alternativeMonoid.Concat(re1, re2)(defaultConfig)
altMonoidResult := altMonoid.Concat(re1, re2)(defaultConfig)
// Both fall back to second
assert.Equal(t, E.Right[string](42), altResult)
assert.Equal(t, E.Right[string](42), altMonoidResult)
})
}
// TestComplexScenarios tests more complex real-world scenarios
func TestComplexScenarios(t *testing.T) {
t.Run("accumulate configuration values", func(t *testing.T) {
reMonoid := ApplicativeMonoid[Config, string](intAddMonoid)
// Accumulate multiple configuration values
getPort := Asks[string](func(cfg Config) int {
return cfg.Port
})
getTimeout := Asks[string](func(cfg Config) int {
return cfg.Timeout
})
getConstant := Right[Config, string](100)
combined := reMonoid.Concat(
reMonoid.Concat(getPort, getTimeout),
getConstant,
)
result := combined(defaultConfig)
// 8080 + 30 + 100 = 8210
assert.Equal(t, E.Right[string](8210), result)
})
t.Run("fallback configuration loading", func(t *testing.T) {
reMonoid := AlternativeMonoid[Config, string](strMonoid)
// Simulate trying to load config from multiple sources
fromEnv := Left[Config, string]("env not set")
fromFile := Left[Config, string]("file not found")
fromDefault := Right[Config, string]("default-config")
combined := reMonoid.Concat(
reMonoid.Concat(fromEnv, fromFile),
fromDefault,
)
result := combined(defaultConfig)
assert.Equal(t, E.Right[string]("default-config"), result)
})
t.Run("partial success accumulation", func(t *testing.T) {
reMonoid := AlternativeMonoid[Config, string](intAddMonoid)
// Simulate collecting metrics where some may fail
metric1 := Right[Config, string](100)
metric2 := Left[Config, int]("metric2 failed") // Failed to collect
metric3 := Right[Config, string](200)
metric4 := Left[Config, int]("metric4 failed") // Failed to collect
metric5 := Right[Config, string](300)
combined := reMonoid.Concat(
reMonoid.Concat(
reMonoid.Concat(
reMonoid.Concat(metric1, metric2),
metric3,
),
metric4,
),
metric5,
)
result := combined(defaultConfig)
// Should accumulate only successful metrics: 100 + 200 + 300 = 600
assert.Equal(t, E.Right[string](600), result)
})
t.Run("cascading fallback with AltMonoid", func(t *testing.T) {
zero := func() ReaderEither[Config, string, string] {
return Left[Config, string]("all sources failed")
}
reMonoid := AltMonoid(zero)
// Try multiple data sources in order
primaryDB := Left[Config, string]("primary DB down")
secondaryDB := Left[Config, string]("secondary DB down")
cache := Right[Config, string]("cached-data")
fallback := Right[Config, string]("fallback-data")
combined := reMonoid.Concat(
reMonoid.Concat(
reMonoid.Concat(primaryDB, secondaryDB),
cache,
),
fallback,
)
result := combined(defaultConfig)
// Should use first successful source (cache)
assert.Equal(t, E.Right[string]("cached-data"), result)
})
}

View File

@@ -461,3 +461,24 @@ func TapLeft[A, R, EA, EB, B any](f Kleisli[R, EB, EA, B]) Operator[R, EA, A, A]
func MonadFold[E, L, A, B any](ma ReaderEither[E, L, A], onLeft func(L) Reader[E, B], onRight func(A) Reader[E, B]) Reader[E, B] {
return Fold(onLeft, onRight)(ma)
}
//go:inline
func MonadAlt[R, E, A any](first ReaderEither[R, E, A], second Lazy[ReaderEither[R, E, A]]) ReaderEither[R, E, A] {
return eithert.MonadAlt(
reader.Of[R, Either[E, A]],
reader.MonadChain[R, Either[E, A], Either[E, A]],
first,
second,
)
}
//go:inline
func Alt[R, E, A any](second Lazy[ReaderEither[R, E, A]]) Operator[R, E, A, A] {
return eithert.Alt(
reader.Of[R, Either[E, A]],
reader.Chain[R, Either[E, A], Either[E, A]],
second,
)
}

View File

@@ -285,7 +285,7 @@ func TestReadEither(t *testing.T) {
Map[Config, string](func(cfg Config) string {
return cfg.host + "/data"
}),
Chain[Config, string, string, int](func(url string) ReaderEither[Config, string, int] {
Chain(func(url string) ReaderEither[Config, string, int] {
return func(cfg Config) Either[string, int] {
if cfg.apiKey != "" {
return ET.Right[string](len(url))

View File

@@ -17,6 +17,7 @@ package readereither
import (
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
)
@@ -44,4 +45,6 @@ type (
// Operator represents a function that transforms one ReaderEither into another.
// It takes a ReaderEither[R, E, A] and produces a ReaderEither[R, E, B].
Operator[R, E, A, B any] = Kleisli[R, E, ReaderEither[R, E, A], B]
Lazy[A any] = lazy.Lazy[A]
)

View File

@@ -36,7 +36,7 @@ type (
//
// Returns a Monoid for ReaderIOResult[A].
func ApplicativeMonoid[R, A any](m monoid.Monoid[A]) Monoid[R, A] {
return RIOE.AlternativeMonoid[R, error](m)
return RIOE.ApplicativeMonoid[R, error](m)
}
// ApplicativeMonoidSeq returns a [Monoid] that concatenates [ReaderIOResult] instances via their applicative.

145
v2/readeroption/monoid.go Normal file
View File

@@ -0,0 +1,145 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readeroption
import "github.com/IBM/fp-go/v2/monoid"
// ApplicativeMonoid creates a Monoid for ReaderOption based on Applicative functor composition.
// The empty element is Of(m.Empty()), and concat combines two computations using the underlying monoid.
// Both computations must succeed (return Some) for the result to succeed.
//
// This is useful for accumulating results from multiple independent computations that all need
// to succeed. If any computation returns None, the entire result is None.
//
// The resulting monoid satisfies the monoid laws:
// - Left identity: Concat(Empty(), x) = x
// - Right identity: Concat(x, Empty()) = x
// - Associativity: Concat(Concat(x, y), z) = Concat(x, Concat(y, z))
//
// Parameters:
// - m: The underlying monoid for combining success values of type A
//
// Returns:
// - A Monoid[ReaderOption[R, A]] that combines ReaderOption computations
//
// Example:
//
// import (
// N "github.com/IBM/fp-go/v2/number"
// RO "github.com/IBM/fp-go/v2/readeroption"
// )
//
// // Create a monoid for integer addition
// intAdd := N.MonoidSum[int]()
// roMonoid := RO.ApplicativeMonoid[Config](intAdd)
//
// // Combine successful computations
// ro1 := RO.Of[Config](5)
// ro2 := RO.Of[Config](3)
// combined := roMonoid.Concat(ro1, ro2)
// // combined(cfg) returns option.Some(8)
//
// // If either fails, the whole computation fails
// ro3 := RO.None[Config, int]()
// failed := roMonoid.Concat(ro1, ro3)
// // failed(cfg) returns option.None[int]()
//
// // Empty element is the identity
// withEmpty := roMonoid.Concat(ro1, roMonoid.Empty())
// // withEmpty(cfg) returns option.Some(5)
//
//go:inline
func ApplicativeMonoid[R, A any](m monoid.Monoid[A]) monoid.Monoid[ReaderOption[R, A]] {
return monoid.ApplicativeMonoid(
Of[R, A],
MonadMap[R, A, func(A) A],
MonadAp[R, A, A],
m,
)
}
// AlternativeMonoid creates a Monoid for ReaderOption that combines both Alternative and Applicative behavior.
// It uses the provided monoid for the success values and falls back to alternative computations on failure.
//
// The empty element is Of(m.Empty()), and concat tries the first computation, falling back to the second
// if it fails (returns None), then combines successful values using the underlying monoid.
//
// This is particularly useful when you want to:
// - Try multiple computations and accumulate their results
// - Provide fallback behavior when computations fail
// - Combine results from computations that may or may not succeed
//
// The behavior differs from ApplicativeMonoid in that it provides fallback semantics:
// - If the first computation succeeds, use its value
// - If the first fails but the second succeeds, use the second's value
// - If both succeed, combine their values using the underlying monoid
// - If both fail, the result is None
//
// The resulting monoid satisfies the monoid laws:
// - Left identity: Concat(Empty(), x) = x
// - Right identity: Concat(x, Empty()) = x
// - Associativity: Concat(Concat(x, y), z) = Concat(x, Concat(y, z))
//
// Parameters:
// - m: The underlying monoid for combining success values of type A
//
// Returns:
// - A Monoid[ReaderOption[R, A]] that combines ReaderOption computations with fallback
//
// Example:
//
// import (
// N "github.com/IBM/fp-go/v2/number"
// RO "github.com/IBM/fp-go/v2/readeroption"
// )
//
// // Create a monoid for integer addition with alternative behavior
// intAdd := N.MonoidSum[int]()
// roMonoid := RO.AlternativeMonoid[Config](intAdd)
//
// // Combine successful computations
// ro1 := RO.Of[Config](5)
// ro2 := RO.Of[Config](3)
// combined := roMonoid.Concat(ro1, ro2)
// // combined(cfg) returns option.Some(8)
//
// // Fallback when first fails
// ro3 := RO.None[Config, int]()
// ro4 := RO.Of[Config](10)
// withFallback := roMonoid.Concat(ro3, ro4)
// // withFallback(cfg) returns option.Some(10)
//
// // Use first success when available
// withFirst := roMonoid.Concat(ro1, ro3)
// // withFirst(cfg) returns option.Some(5)
//
// // Accumulate multiple values with some failures
// result := roMonoid.Concat(
// roMonoid.Concat(ro3, ro1), // None + 5 = 5
// ro2, // 5 + 3 = 8
// )
// // result(cfg) returns option.Some(8)
//
//go:inline
func AlternativeMonoid[R, A any](m monoid.Monoid[A]) monoid.Monoid[ReaderOption[R, A]] {
return monoid.AlternativeMonoid(
Of[R, A],
MonadMap[R, A, func(A) A],
MonadAp[R, A, A],
MonadAlt[R, A],
m,
)
}

View File

@@ -0,0 +1,472 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readeroption
import (
"testing"
N "github.com/IBM/fp-go/v2/number"
O "github.com/IBM/fp-go/v2/option"
S "github.com/IBM/fp-go/v2/string"
"github.com/stretchr/testify/assert"
)
var (
intAddMonoid = N.MonoidSum[int]()
strMonoid = S.Monoid
)
// TestApplicativeMonoid tests the ApplicativeMonoid function
func TestApplicativeMonoid(t *testing.T) {
roMonoid := ApplicativeMonoid[Config](intAddMonoid)
t.Run("empty element", func(t *testing.T) {
empty := roMonoid.Empty()
result := empty(defaultConfig)
assert.Equal(t, O.Some(0), result)
})
t.Run("concat two Some values", func(t *testing.T) {
ro1 := Of[Config](5)
ro2 := Of[Config](3)
combined := roMonoid.Concat(ro1, ro2)
result := combined(defaultConfig)
assert.Equal(t, O.Some(8), result)
})
t.Run("concat with empty - left identity", func(t *testing.T) {
ro := Of[Config](42)
combined := roMonoid.Concat(roMonoid.Empty(), ro)
result := combined(defaultConfig)
assert.Equal(t, O.Some(42), result)
})
t.Run("concat with empty - right identity", func(t *testing.T) {
ro := Of[Config](42)
combined := roMonoid.Concat(ro, roMonoid.Empty())
result := combined(defaultConfig)
assert.Equal(t, O.Some(42), result)
})
t.Run("concat with left None", func(t *testing.T) {
roSuccess := Of[Config](5)
roFailure := None[Config, int]()
combined := roMonoid.Concat(roFailure, roSuccess)
result := combined(defaultConfig)
assert.Equal(t, O.None[int](), result)
})
t.Run("concat with right None", func(t *testing.T) {
roSuccess := Of[Config](5)
roFailure := None[Config, int]()
combined := roMonoid.Concat(roSuccess, roFailure)
result := combined(defaultConfig)
assert.Equal(t, O.None[int](), result)
})
t.Run("concat both None", func(t *testing.T) {
ro1 := None[Config, int]()
ro2 := None[Config, int]()
combined := roMonoid.Concat(ro1, ro2)
result := combined(defaultConfig)
assert.Equal(t, O.None[int](), result)
})
t.Run("concat multiple values", func(t *testing.T) {
ro1 := Of[Config](1)
ro2 := Of[Config](2)
ro3 := Of[Config](3)
ro4 := Of[Config](4)
// Chain concat calls: ((1 + 2) + 3) + 4
combined := roMonoid.Concat(
roMonoid.Concat(
roMonoid.Concat(ro1, ro2),
ro3,
),
ro4,
)
result := combined(defaultConfig)
assert.Equal(t, O.Some(10), result)
})
t.Run("string concatenation", func(t *testing.T) {
strROMonoid := ApplicativeMonoid[Config](strMonoid)
ro1 := Of[Config]("Hello")
ro2 := Of[Config](" ")
ro3 := Of[Config]("World")
combined := strROMonoid.Concat(
strROMonoid.Concat(ro1, ro2),
ro3,
)
result := combined(defaultConfig)
assert.Equal(t, O.Some("Hello World"), result)
})
t.Run("environment dependent computation", func(t *testing.T) {
// Create computations that use the environment
ro1 := Asks(func(cfg Config) int {
return cfg.Port
})
ro2 := Of[Config](100)
combined := roMonoid.Concat(ro1, ro2)
result := combined(defaultConfig)
// defaultConfig.Port is 8080, so 8080 + 100 = 8180
assert.Equal(t, O.Some(8180), result)
})
}
// TestAlternativeMonoid tests the AlternativeMonoid function
func TestAlternativeMonoid(t *testing.T) {
roMonoid := AlternativeMonoid[Config](intAddMonoid)
t.Run("empty element", func(t *testing.T) {
empty := roMonoid.Empty()
result := empty(defaultConfig)
assert.Equal(t, O.Some(0), result)
})
t.Run("concat two Some values", func(t *testing.T) {
ro1 := Of[Config](5)
ro2 := Of[Config](3)
combined := roMonoid.Concat(ro1, ro2)
result := combined(defaultConfig)
// Alternative combines successful values
assert.Equal(t, O.Some(8), result)
})
t.Run("concat None then Some - fallback behavior", func(t *testing.T) {
roFailure := None[Config, int]()
roSuccess := Of[Config](42)
combined := roMonoid.Concat(roFailure, roSuccess)
result := combined(defaultConfig)
// Should fall back to second when first fails
assert.Equal(t, O.Some(42), result)
})
t.Run("concat Some then None - uses first", func(t *testing.T) {
roSuccess := Of[Config](42)
roFailure := None[Config, int]()
combined := roMonoid.Concat(roSuccess, roFailure)
result := combined(defaultConfig)
// Should use first successful value
assert.Equal(t, O.Some(42), result)
})
t.Run("concat both None", func(t *testing.T) {
ro1 := None[Config, int]()
ro2 := None[Config, int]()
combined := roMonoid.Concat(ro1, ro2)
result := combined(defaultConfig)
assert.Equal(t, O.None[int](), result)
})
t.Run("concat with empty - left identity", func(t *testing.T) {
ro := Of[Config](42)
combined := roMonoid.Concat(roMonoid.Empty(), ro)
result := combined(defaultConfig)
assert.Equal(t, O.Some(42), result)
})
t.Run("concat with empty - right identity", func(t *testing.T) {
ro := Of[Config](42)
combined := roMonoid.Concat(ro, roMonoid.Empty())
result := combined(defaultConfig)
assert.Equal(t, O.Some(42), result)
})
t.Run("multiple values with some failures", func(t *testing.T) {
ro1 := None[Config, int]()
ro2 := Of[Config](5)
ro3 := None[Config, int]()
ro4 := Of[Config](10)
// Alternative should skip failures and accumulate successes
combined := roMonoid.Concat(
roMonoid.Concat(
roMonoid.Concat(ro1, ro2),
ro3,
),
ro4,
)
result := combined(defaultConfig)
// Should accumulate successful values: 5 + 10 = 15
assert.Equal(t, O.Some(15), result)
})
t.Run("fallback chain", func(t *testing.T) {
// Simulate trying multiple sources until one succeeds
primary := None[Config, string]()
secondary := None[Config, string]()
tertiary := Of[Config]("tertiary success")
strROMonoid := AlternativeMonoid[Config](strMonoid)
// Chain concat: try primary, then secondary, then tertiary
combined := strROMonoid.Concat(
strROMonoid.Concat(primary, secondary),
tertiary,
)
result := combined(defaultConfig)
assert.Equal(t, O.Some("tertiary success"), result)
})
t.Run("environment dependent with fallback", func(t *testing.T) {
// First computation fails
ro1 := None[Config, int]()
// Second computation uses environment
ro2 := Asks(func(cfg Config) int {
return cfg.Timeout
})
combined := roMonoid.Concat(ro1, ro2)
result := combined(defaultConfig)
// Should fall back to second computation
assert.Equal(t, O.Some(30), result)
})
t.Run("all failures in chain", func(t *testing.T) {
ro1 := None[Config, int]()
ro2 := None[Config, int]()
ro3 := None[Config, int]()
combined := roMonoid.Concat(
roMonoid.Concat(ro1, ro2),
ro3,
)
result := combined(defaultConfig)
assert.Equal(t, O.None[int](), result)
})
}
// TestMonoidLaws verifies that the monoid laws hold for ApplicativeMonoid
func TestMonoidLaws(t *testing.T) {
roMonoid := ApplicativeMonoid[Config](intAddMonoid)
t.Run("left identity law", func(t *testing.T) {
// empty <> x == x
x := Of[Config](42)
result1 := roMonoid.Concat(roMonoid.Empty(), x)(defaultConfig)
result2 := x(defaultConfig)
assert.Equal(t, result2, result1)
})
t.Run("right identity law", func(t *testing.T) {
// x <> empty == x
x := Of[Config](42)
result1 := roMonoid.Concat(x, roMonoid.Empty())(defaultConfig)
result2 := x(defaultConfig)
assert.Equal(t, result2, result1)
})
t.Run("associativity law", func(t *testing.T) {
// (x <> y) <> z == x <> (y <> z)
x := Of[Config](1)
y := Of[Config](2)
z := Of[Config](3)
left := roMonoid.Concat(roMonoid.Concat(x, y), z)(defaultConfig)
right := roMonoid.Concat(x, roMonoid.Concat(y, z))(defaultConfig)
assert.Equal(t, right, left)
})
t.Run("associativity with None values", func(t *testing.T) {
// Verify associativity even with None values
x := Of[Config](5)
y := None[Config, int]()
z := Of[Config](10)
left := roMonoid.Concat(roMonoid.Concat(x, y), z)(defaultConfig)
right := roMonoid.Concat(x, roMonoid.Concat(y, z))(defaultConfig)
assert.Equal(t, right, left)
})
}
// TestAlternativeMonoidLaws verifies that the monoid laws hold for AlternativeMonoid
func TestAlternativeMonoidLaws(t *testing.T) {
roMonoid := AlternativeMonoid[Config](intAddMonoid)
t.Run("left identity law", func(t *testing.T) {
// empty <> x == x
x := Of[Config](42)
result1 := roMonoid.Concat(roMonoid.Empty(), x)(defaultConfig)
result2 := x(defaultConfig)
assert.Equal(t, result2, result1)
})
t.Run("right identity law", func(t *testing.T) {
// x <> empty == x
x := Of[Config](42)
result1 := roMonoid.Concat(x, roMonoid.Empty())(defaultConfig)
result2 := x(defaultConfig)
assert.Equal(t, result2, result1)
})
t.Run("associativity law", func(t *testing.T) {
// (x <> y) <> z == x <> (y <> z)
x := Of[Config](1)
y := Of[Config](2)
z := Of[Config](3)
left := roMonoid.Concat(roMonoid.Concat(x, y), z)(defaultConfig)
right := roMonoid.Concat(x, roMonoid.Concat(y, z))(defaultConfig)
assert.Equal(t, right, left)
})
t.Run("associativity with None values", func(t *testing.T) {
// Verify associativity even with None values
x := None[Config, int]()
y := Of[Config](5)
z := Of[Config](10)
left := roMonoid.Concat(roMonoid.Concat(x, y), z)(defaultConfig)
right := roMonoid.Concat(x, roMonoid.Concat(y, z))(defaultConfig)
assert.Equal(t, right, left)
})
}
// TestApplicativeVsAlternative compares the behavior of both monoids
func TestApplicativeVsAlternative(t *testing.T) {
applicativeMonoid := ApplicativeMonoid[Config](intAddMonoid)
alternativeMonoid := AlternativeMonoid[Config](intAddMonoid)
t.Run("both succeed - same result", func(t *testing.T) {
ro1 := Of[Config](5)
ro2 := Of[Config](3)
appResult := applicativeMonoid.Concat(ro1, ro2)(defaultConfig)
altResult := alternativeMonoid.Concat(ro1, ro2)(defaultConfig)
assert.Equal(t, O.Some(8), appResult)
assert.Equal(t, O.Some(8), altResult)
assert.Equal(t, appResult, altResult)
})
t.Run("first fails - different behavior", func(t *testing.T) {
ro1 := None[Config, int]()
ro2 := Of[Config](42)
appResult := applicativeMonoid.Concat(ro1, ro2)(defaultConfig)
altResult := alternativeMonoid.Concat(ro1, ro2)(defaultConfig)
// Applicative fails if any fails
assert.Equal(t, O.None[int](), appResult)
// Alternative falls back to second
assert.Equal(t, O.Some(42), altResult)
})
t.Run("second fails - different behavior", func(t *testing.T) {
ro1 := Of[Config](42)
ro2 := None[Config, int]()
appResult := applicativeMonoid.Concat(ro1, ro2)(defaultConfig)
altResult := alternativeMonoid.Concat(ro1, ro2)(defaultConfig)
// Applicative fails if any fails
assert.Equal(t, O.None[int](), appResult)
// Alternative uses first success
assert.Equal(t, O.Some(42), altResult)
})
t.Run("both fail - same result", func(t *testing.T) {
ro1 := None[Config, int]()
ro2 := None[Config, int]()
appResult := applicativeMonoid.Concat(ro1, ro2)(defaultConfig)
altResult := alternativeMonoid.Concat(ro1, ro2)(defaultConfig)
assert.Equal(t, O.None[int](), appResult)
assert.Equal(t, O.None[int](), altResult)
assert.Equal(t, appResult, altResult)
})
}
// TestComplexScenarios tests more complex real-world scenarios
func TestComplexScenarios(t *testing.T) {
t.Run("accumulate configuration values", func(t *testing.T) {
roMonoid := ApplicativeMonoid[Config](intAddMonoid)
// Accumulate multiple configuration values
getPort := Asks(func(cfg Config) int { return cfg.Port })
getTimeout := Asks(func(cfg Config) int { return cfg.Timeout })
getConstant := Of[Config](100)
combined := roMonoid.Concat(
roMonoid.Concat(getPort, getTimeout),
getConstant,
)
result := combined(defaultConfig)
// 8080 + 30 + 100 = 8210
assert.Equal(t, O.Some(8210), result)
})
t.Run("fallback configuration loading", func(t *testing.T) {
roMonoid := AlternativeMonoid[Config](strMonoid)
// Simulate trying to load config from multiple sources
fromEnv := None[Config, string]()
fromFile := None[Config, string]()
fromDefault := Of[Config]("default-config")
combined := roMonoid.Concat(
roMonoid.Concat(fromEnv, fromFile),
fromDefault,
)
result := combined(defaultConfig)
assert.Equal(t, O.Some("default-config"), result)
})
t.Run("partial success accumulation", func(t *testing.T) {
roMonoid := AlternativeMonoid[Config](intAddMonoid)
// Simulate collecting metrics where some may fail
metric1 := Of[Config](100)
metric2 := None[Config, int]() // Failed to collect
metric3 := Of[Config](200)
metric4 := None[Config, int]() // Failed to collect
metric5 := Of[Config](300)
combined := roMonoid.Concat(
roMonoid.Concat(
roMonoid.Concat(
roMonoid.Concat(metric1, metric2),
metric3,
),
metric4,
),
metric5,
)
result := combined(defaultConfig)
// Should accumulate only successful metrics: 100 + 200 + 300 = 600
assert.Equal(t, O.Some(600), result)
})
}

View File

@@ -384,8 +384,13 @@ func Flap[E, B, A any](a A) Operator[E, func(A) B, B] {
// result := readeroption.MonadAlt(primary, fallback)
//
//go:inline
func MonadAlt[E, A any](fa, that ReaderOption[E, A]) ReaderOption[E, A] {
return MonadFold(fa, that, Of[E, A])
func MonadAlt[E, A any](first ReaderOption[E, A], second Lazy[ReaderOption[E, A]]) ReaderOption[E, A] {
return optiont.MonadAlt(
reader.Of[E, Option[A]],
reader.MonadChain[E, Option[A], Option[A]],
first,
second,
)
}
// Alt returns a function that provides an alternative ReaderOption if the first one returns None.
@@ -399,6 +404,10 @@ func MonadAlt[E, A any](fa, that ReaderOption[E, A]) ReaderOption[E, A] {
// )
//
//go:inline
func Alt[E, A any](that ReaderOption[E, A]) Operator[E, A, A] {
return Fold(that, Of[E, A])
func Alt[E, A any](second Lazy[ReaderOption[E, A]]) Operator[E, A, A] {
return optiont.Alt(
reader.Of[E, Option[A]],
reader.Chain[E, Option[A], Option[A]],
second,
)
}

View File

@@ -21,6 +21,7 @@ import (
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/utils"
"github.com/IBM/fp-go/v2/lazy"
O "github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
"github.com/stretchr/testify/assert"
@@ -473,21 +474,21 @@ func TestMonadAlt(t *testing.T) {
t.Run("Alt with first Some", func(t *testing.T) {
primary := Of[Config](42)
fallback := Of[Config](99)
result := MonadAlt(primary, fallback)
result := MonadAlt(primary, lazy.Of(fallback))
assert.Equal(t, O.Some(42), result(defaultConfig))
})
t.Run("Alt with first None", func(t *testing.T) {
primary := None[Config, int]()
fallback := Of[Config](99)
result := MonadAlt(primary, fallback)
result := MonadAlt(primary, lazy.Of(fallback))
assert.Equal(t, O.Some(99), result(defaultConfig))
})
t.Run("Alt with both None", func(t *testing.T) {
primary := None[Config, int]()
fallback := None[Config, int]()
result := MonadAlt(primary, fallback)
result := MonadAlt(primary, lazy.Of(fallback))
assert.Equal(t, O.None[int](), result(defaultConfig))
})
}
@@ -497,7 +498,7 @@ func TestAlt(t *testing.T) {
t.Run("Alt with first Some", func(t *testing.T) {
result := F.Pipe1(
Of[Config](42),
Alt(Of[Config](99)),
Alt(lazy.Of(Of[Config](99))),
)
assert.Equal(t, O.Some(42), result(defaultConfig))
})
@@ -505,7 +506,7 @@ func TestAlt(t *testing.T) {
t.Run("Alt with first None", func(t *testing.T) {
result := F.Pipe1(
None[Config, int](),
Alt(Of[Config](99)),
Alt(lazy.Of(Of[Config](99))),
)
assert.Equal(t, O.Some(99), result(defaultConfig))
})

View File

@@ -150,7 +150,7 @@ func TestApS(t *testing.T) {
func TestBindIOEitherK(t *testing.T) {
res := F.Pipe2(
Do[OuterCtx, InnerCtx, error](utils.Empty),
BindIOEitherK[OuterCtx, InnerCtx, error](
BindIOEitherK[OuterCtx, InnerCtx](
utils.SetLastName,
func(s utils.Initial) IOE.IOEither[error, string] {
return IOE.Of[error]("Smith")
@@ -168,7 +168,7 @@ func TestBindIOEitherKError(t *testing.T) {
err := errors.New("io error")
res := F.Pipe2(
Do[OuterCtx, InnerCtx, error](utils.Empty),
BindIOEitherK[OuterCtx, InnerCtx, error](
BindIOEitherK[OuterCtx, InnerCtx](
utils.SetLastName,
func(s utils.Initial) IOE.IOEither[error, string] {
return IOE.Left[string](err)
@@ -244,7 +244,7 @@ func TestBindReaderIOK(t *testing.T) {
func TestBindEitherK(t *testing.T) {
res := F.Pipe2(
Do[OuterCtx, InnerCtx, error](utils.Empty),
BindEitherK[OuterCtx, InnerCtx, error](
BindEitherK[OuterCtx, InnerCtx](
utils.SetLastName,
func(s utils.Initial) E.Either[error, string] {
return E.Of[error]("Brown")
@@ -262,7 +262,7 @@ func TestBindEitherKError(t *testing.T) {
err := errors.New("either error")
res := F.Pipe2(
Do[OuterCtx, InnerCtx, error](utils.Empty),
BindEitherK[OuterCtx, InnerCtx, error](
BindEitherK[OuterCtx, InnerCtx](
utils.SetLastName,
func(s utils.Initial) E.Either[error, string] {
return E.Left[string](err)
@@ -279,7 +279,7 @@ func TestBindEitherKError(t *testing.T) {
func TestApIOEitherS(t *testing.T) {
res := F.Pipe2(
Do[OuterCtx, InnerCtx, error](utils.Empty),
ApIOEitherS[OuterCtx, InnerCtx, error](utils.SetLastName, IOE.Of[error]("Williams")),
ApIOEitherS[OuterCtx, InnerCtx](utils.SetLastName, IOE.Of[error]("Williams")),
Map[OuterCtx, InnerCtx, error](func(s utils.WithLastName) string {
return s.LastName
}),
@@ -335,7 +335,7 @@ func TestApReaderIOS(t *testing.T) {
func TestApEitherS(t *testing.T) {
res := F.Pipe2(
Do[OuterCtx, InnerCtx, error](utils.Empty),
ApEitherS[OuterCtx, InnerCtx, error](utils.SetLastName, E.Of[error]("Miller")),
ApEitherS[OuterCtx, InnerCtx](utils.SetLastName, E.Of[error]("Miller")),
Map[OuterCtx, InnerCtx, error](func(s utils.WithLastName) string {
return s.LastName
}),

View File

@@ -52,7 +52,7 @@ func TestSequence(t *testing.T) {
}
// Sequence swaps Config1 and Config2 order
sequenced := Sequence[Config1, Config2, Context, error, int](original)
sequenced := Sequence(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -79,7 +79,7 @@ func TestSequence(t *testing.T) {
return RIOE.Left[Context, ReaderReaderIOEither[Config1, Context, error, int]](testErr)
}
sequenced := Sequence[Config1, Config2, Context, error, int](original)
sequenced := Sequence(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -105,7 +105,7 @@ func TestSequence(t *testing.T) {
})
}
sequenced := Sequence[Config1, Config2, Context, error, string](original)
sequenced := Sequence(original)
ctx := Context{contextID: "test"}
@@ -129,7 +129,7 @@ func TestSequence(t *testing.T) {
})
}
sequenced := Sequence[Config1, Config2, Context, error, int](original)
sequenced := Sequence(original)
result := sequenced(Config1{value1: 0})(Config2{value2: ""})(Context{contextID: ""})()
assert.Equal(t, E.Right[error](0), result)
@@ -142,7 +142,7 @@ func TestSequence(t *testing.T) {
})
}
sequenced := Sequence[Config1, Config2, Context, error, int](original)
sequenced := Sequence(original)
cfg1 := Config1{value1: 3}
cfg2 := Config2{value2: "test"}
@@ -166,7 +166,7 @@ func TestSequenceReader(t *testing.T) {
}
// Sequence swaps Config1 and Config2 order
sequenced := SequenceReader[Config1, Config2, Context, error, int](original)
sequenced := SequenceReader(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -194,7 +194,7 @@ func TestSequenceReader(t *testing.T) {
return RIOE.Left[Context, R.Reader[Config1, int]](testErr)
}
sequenced := SequenceReader[Config1, Config2, Context, error, int](original)
sequenced := SequenceReader(original)
result := sequenced(Config1{value1: 10})(Config2{value2: "hello"})(Context{contextID: "test"})()
assert.Equal(t, E.Left[int](testErr), result)
@@ -210,7 +210,7 @@ func TestSequenceReader(t *testing.T) {
})
}
sequenced := SequenceReader[Config1, Config2, Context, error, string](original)
sequenced := SequenceReader(original)
ctx := Context{contextID: "test"}
@@ -230,7 +230,7 @@ func TestSequenceReader(t *testing.T) {
})
}
sequenced := SequenceReader[Config1, Config2, Context, error, int](original)
sequenced := SequenceReader(original)
result := sequenced(Config1{value1: 0})(Config2{value2: ""})(Context{contextID: ""})()
assert.Equal(t, E.Right[error](0), result)
@@ -243,7 +243,7 @@ func TestSequenceReader(t *testing.T) {
})
}
sequenced := SequenceReader[Config1, Config2, Context, error, int](original)
sequenced := SequenceReader(original)
cfg1 := Config1{value1: 3}
cfg2 := Config2{value2: "test"}
@@ -267,7 +267,7 @@ func TestSequenceReaderIO(t *testing.T) {
}
// Sequence swaps Config1 and Config2 order
sequenced := SequenceReaderIO[Config1, Config2, Context, error, int](original)
sequenced := SequenceReaderIO(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -295,7 +295,7 @@ func TestSequenceReaderIO(t *testing.T) {
return RIOE.Left[Context, readerio.ReaderIO[Config1, int]](testErr)
}
sequenced := SequenceReaderIO[Config1, Config2, Context, error, int](original)
sequenced := SequenceReaderIO(original)
result := sequenced(Config1{value1: 10})(Config2{value2: "hello"})(Context{contextID: "test"})()
assert.Equal(t, E.Left[int](testErr), result)
@@ -316,7 +316,7 @@ func TestSequenceReaderIO(t *testing.T) {
})
}
sequenced := SequenceReaderIO[Config1, Config2, Context, error, string](original)
sequenced := SequenceReaderIO(original)
ctx := Context{contextID: "test"}
@@ -340,7 +340,7 @@ func TestSequenceReaderIO(t *testing.T) {
})
}
sequenced := SequenceReaderIO[Config1, Config2, Context, error, int](original)
sequenced := SequenceReaderIO(original)
result := sequenced(Config1{value1: 0})(Config2{value2: ""})(Context{contextID: ""})()
assert.Equal(t, E.Right[error](0), result)
@@ -358,7 +358,7 @@ func TestSequenceReaderIO(t *testing.T) {
})
}
sequenced := SequenceReaderIO[Config1, Config2, Context, error, int](original)
sequenced := SequenceReaderIO(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -389,7 +389,7 @@ func TestTraverse(t *testing.T) {
}
// Apply traverse to swap order and transform
traversed := Traverse[Config2, Config1, Context, error, int, string](transform)(original)
traversed := Traverse[Config2](transform)(original)
cfg1 := Config1{value1: 100}
cfg2 := Config2{value2: "test"}
@@ -407,7 +407,7 @@ func TestTraverse(t *testing.T) {
return Of[Config1, Context, error](fmt.Sprintf("%d", n))
}
traversed := Traverse[Config2, Config1, Context, error, int, string](transform)(original)
traversed := Traverse[Config2](transform)(original)
result := traversed(Config1{value1: 100})(Config2{value2: "test"})(Context{contextID: "test"})()
assert.Equal(t, E.Left[string](testErr), result)
@@ -426,12 +426,12 @@ func TestTraverse(t *testing.T) {
// Test with negative value
originalNeg := Of[Config2, Context, error](-1)
traversedNeg := Traverse[Config2, Config1, Context, error, int, string](transform)(originalNeg)
traversedNeg := Traverse[Config2](transform)(originalNeg)
resultNeg := traversedNeg(Config1{value1: 100})(Config2{value2: "test"})(Context{contextID: "test"})()
assert.Equal(t, E.Left[string](testErr), resultNeg)
// Test with positive value
traversedPos := Traverse[Config2, Config1, Context, error, int, string](transform)(original)
traversedPos := Traverse[Config2](transform)(original)
resultPos := traversedPos(Config1{value1: 100})(Config2{value2: "test"})(Context{contextID: "test"})()
assert.Equal(t, E.Right[error]("42"), resultPos)
})
@@ -447,7 +447,7 @@ func TestTraverse(t *testing.T) {
}
}
traversed := Traverse[Config2, Config1, Context, error, int, int](transform)(original)
traversed := Traverse[Config2](transform)(original)
result := traversed(Config1{value1: 5})(Config2{value2: "test"})(Context{contextID: "test"})()
assert.Equal(t, E.Right[error](50), result)
@@ -462,7 +462,7 @@ func TestTraverse(t *testing.T) {
result := F.Pipe2(
original,
Traverse[Config2, Config1, Context, error, int, int](transform),
Traverse[Config2](transform),
func(k Kleisli[Config2, Context, error, Config1, int]) ReaderReaderIOEither[Config2, Context, error, int] {
return k(Config1{value1: 5})
},
@@ -486,7 +486,7 @@ func TestTraverseReader(t *testing.T) {
}
// Apply traverse to introduce Config1 and swap order
traversed := TraverseReader[Config2, Config1, Context, error, int, string](formatWithConfig)(original)
traversed := TraverseReader[Config2, Config1, Context, error](formatWithConfig)(original)
cfg1 := Config1{value1: 5}
cfg2 := Config2{value2: "test"}
@@ -504,7 +504,7 @@ func TestTraverseReader(t *testing.T) {
return R.Of[Config1](fmt.Sprintf("%d", n))
}
traversed := TraverseReader[Config2, Config1, Context, error, int, string](transform)(original)
traversed := TraverseReader[Config2, Config1, Context, error](transform)(original)
result := traversed(Config1{value1: 5})(Config2{value2: "test"})(Context{contextID: "test"})()
assert.Equal(t, E.Left[string](testErr), result)
@@ -520,7 +520,7 @@ func TestTraverseReader(t *testing.T) {
}
}
traversed := TraverseReader[Config2, Config1, Context, error, int, int](double)(original)
traversed := TraverseReader[Config2, Config1, Context, error](double)(original)
result := traversed(Config1{value1: 3})(Config2{value2: "test"})(Context{contextID: "test"})()
assert.Equal(t, E.Right[error](126), result)
@@ -535,7 +535,7 @@ func TestTraverseReader(t *testing.T) {
}
}
traversed := TraverseReader[Config2, Config1, Context, error, int, int](transform)(original)
traversed := TraverseReader[Config2, Config1, Context, error](transform)(original)
result := traversed(Config1{value1: 0})(Config2{value2: ""})(Context{contextID: ""})()
assert.Equal(t, E.Right[error](0), result)
@@ -550,7 +550,7 @@ func TestTraverseReader(t *testing.T) {
}
}
traversed := TraverseReader[Config2, Config1, Context, error, int, int](transform)(original)
traversed := TraverseReader[Config2, Config1, Context, error](transform)(original)
cfg1 := Config1{value1: 5}
cfg2 := Config2{value2: "test"}
@@ -574,7 +574,7 @@ func TestTraverseReader(t *testing.T) {
result := F.Pipe2(
original,
TraverseReader[Config2, Config1, Context, error, int, int](multiply),
TraverseReader[Config2, Config1, Context, error](multiply),
func(k Kleisli[Config2, Context, error, Config1, int]) ReaderReaderIOEither[Config2, Context, error, int] {
return k(Config1{value1: 3})
},
@@ -593,7 +593,7 @@ func TestFlipIntegration(t *testing.T) {
}
// Sequence it
sequenced := Sequence[Config1, Config2, Context, error, int](nested)
sequenced := Sequence(nested)
// Then traverse with a transformation
transform := func(n int) ReaderReaderIOEither[Config1, Context, error, string] {
@@ -611,7 +611,7 @@ func TestFlipIntegration(t *testing.T) {
// Then apply traverse on a new computation
original := Of[Config2, Context, error](5)
traversed := Traverse[Config2, Config1, Context, error, int, string](transform)(original)
traversed := Traverse[Config2](transform)(original)
result := traversed(cfg1)(cfg2)(ctx)()
assert.Equal(t, E.Right[error]("length=5"), result)
})
@@ -626,21 +626,21 @@ func TestFlipIntegration(t *testing.T) {
seqErr := func(cfg2 Config2) RIOE.ReaderIOEither[Context, error, ReaderReaderIOEither[Config1, Context, error, int]] {
return RIOE.Left[Context, ReaderReaderIOEither[Config1, Context, error, int]](testErr)
}
seqResult := Sequence[Config1, Config2, Context, error, int](seqErr)(cfg1)(cfg2)(ctx)()
seqResult := Sequence(seqErr)(cfg1)(cfg2)(ctx)()
assert.True(t, E.IsLeft(seqResult))
// Test SequenceReader with error
seqReaderErr := func(cfg2 Config2) RIOE.ReaderIOEither[Context, error, R.Reader[Config1, int]] {
return RIOE.Left[Context, R.Reader[Config1, int]](testErr)
}
seqReaderResult := SequenceReader[Config1, Config2, Context, error, int](seqReaderErr)(cfg1)(cfg2)(ctx)()
seqReaderResult := SequenceReader(seqReaderErr)(cfg1)(cfg2)(ctx)()
assert.True(t, E.IsLeft(seqReaderResult))
// Test SequenceReaderIO with error
seqReaderIOErr := func(cfg2 Config2) RIOE.ReaderIOEither[Context, error, readerio.ReaderIO[Config1, int]] {
return RIOE.Left[Context, readerio.ReaderIO[Config1, int]](testErr)
}
seqReaderIOResult := SequenceReaderIO[Config1, Config2, Context, error, int](seqReaderIOErr)(cfg1)(cfg2)(ctx)()
seqReaderIOResult := SequenceReaderIO(seqReaderIOErr)(cfg1)(cfg2)(ctx)()
assert.True(t, E.IsLeft(seqReaderIOResult))
// Test Traverse with error
@@ -648,7 +648,7 @@ func TestFlipIntegration(t *testing.T) {
travTransform := func(n int) ReaderReaderIOEither[Config1, Context, error, string] {
return Of[Config1, Context, error](fmt.Sprintf("%d", n))
}
travResult := Traverse[Config2, Config1, Context, error, int, string](travTransform)(travErr)(cfg1)(cfg2)(ctx)()
travResult := Traverse[Config2](travTransform)(travErr)(cfg1)(cfg2)(ctx)()
assert.True(t, E.IsLeft(travResult))
// Test TraverseReader with error
@@ -656,7 +656,7 @@ func TestFlipIntegration(t *testing.T) {
travReaderTransform := func(n int) R.Reader[Config1, string] {
return R.Of[Config1](fmt.Sprintf("%d", n))
}
travReaderResult := TraverseReader[Config2, Config1, Context, error, int, string](travReaderTransform)(travReaderErr)(cfg1)(cfg2)(ctx)()
travReaderResult := TraverseReader[Config2, Config1, Context, error](travReaderTransform)(travReaderErr)(cfg1)(cfg2)(ctx)()
assert.True(t, E.IsLeft(travReaderResult))
})
}

View File

@@ -45,7 +45,7 @@ func FromReaderOption[R, C, A, E any](onNone Lazy[E]) Kleisli[R, C, E, ReaderOpt
//go:inline
func FromReaderIOEither[C, E, R, A any](ma ReaderIOEither[R, E, A]) ReaderReaderIOEither[R, C, E, A] {
return reader.MonadMap[R](ma, RIOE.FromIOEither[C])
return reader.MonadMap(ma, RIOE.FromIOEither[C])
}
//go:inline
@@ -55,12 +55,12 @@ func FromReaderIO[C, E, R, A any](ma ReaderIO[R, A]) ReaderReaderIOEither[R, C,
//go:inline
func RightReaderIO[C, E, R, A any](ma ReaderIO[R, A]) ReaderReaderIOEither[R, C, E, A] {
return reader.MonadMap[R](ma, RIOE.RightIO[C, E, A])
return reader.MonadMap(ma, RIOE.RightIO[C, E, A])
}
//go:inline
func LeftReaderIO[C, A, R, E any](me ReaderIO[R, E]) ReaderReaderIOEither[R, C, E, A] {
return reader.MonadMap[R](me, RIOE.LeftIO[C, A, E])
return reader.MonadMap(me, RIOE.LeftIO[C, A, E])
}
//go:inline
@@ -297,7 +297,7 @@ func ChainFirstReaderEitherK[C, E, R, A, B any](f RE.Kleisli[R, E, A, B]) Operat
//go:inline
func TapReaderEitherK[C, E, R, A, B any](f RE.Kleisli[R, E, A, B]) Operator[R, C, E, A, A] {
return ChainFirstReaderEitherK[C, E](f)
return ChainFirstReaderEitherK[C](f)
}
func ChainReaderOptionK[R, C, A, B, E any](onNone Lazy[E]) func(readeroption.Kleisli[R, A, B]) Operator[R, C, E, A, B] {
@@ -538,7 +538,7 @@ func FromIOEither[R, C, E, A any](ma IOEither[E, A]) ReaderReaderIOEither[R, C,
//go:inline
func FromReaderEither[R, C, E, A any](ma RE.ReaderEither[R, E, A]) ReaderReaderIOEither[R, C, E, A] {
return reader.MonadMap[R](ma, RIOE.FromEither[C])
return reader.MonadMap(ma, RIOE.FromEither[C])
}
//go:inline
@@ -587,12 +587,12 @@ func Flap[R, C, E, B, A any](a A) Operator[R, C, E, func(A) B, B] {
//go:inline
func MonadMapLeft[R, C, E1, E2, A any](fa ReaderReaderIOEither[R, C, E1, A], f func(E1) E2) ReaderReaderIOEither[R, C, E2, A] {
return reader.MonadMap[R](fa, RIOE.MapLeft[C, A, E1, E2](f))
return reader.MonadMap(fa, RIOE.MapLeft[C, A](f))
}
//go:inline
func MapLeft[R, C, A, E1, E2 any](f func(E1) E2) func(ReaderReaderIOEither[R, C, E1, A]) ReaderReaderIOEither[R, C, E2, A] {
return reader.Map[R](RIOE.MapLeft[C, A, E1, E2](f))
return reader.Map[R](RIOE.MapLeft[C, A](f))
}
//go:inline

View File

@@ -109,7 +109,7 @@ func TestMonadChain(t *testing.T) {
func TestChainFirst(t *testing.T) {
g := F.Pipe1(
Of[OuterConfig, InnerConfig, error](1),
ChainFirst[OuterConfig, InnerConfig, error](func(v int) ReaderReaderIOEither[OuterConfig, InnerConfig, error, string] {
ChainFirst(func(v int) ReaderReaderIOEither[OuterConfig, InnerConfig, error, string] {
return Of[OuterConfig, InnerConfig, error](fmt.Sprintf("%d", v))
}),
)
@@ -128,7 +128,7 @@ func TestTap(t *testing.T) {
sideEffect := 0
g := F.Pipe1(
Of[OuterConfig, InnerConfig, error](1),
Tap[OuterConfig, InnerConfig, error](func(v int) ReaderReaderIOEither[OuterConfig, InnerConfig, error, string] {
Tap(func(v int) ReaderReaderIOEither[OuterConfig, InnerConfig, error, string] {
sideEffect = v * 2
return Of[OuterConfig, InnerConfig, error]("ignored")
}),
@@ -187,7 +187,7 @@ func TestMonadApPar(t *testing.T) {
func TestFromEither(t *testing.T) {
t.Run("Right", func(t *testing.T) {
result := FromEither[OuterConfig, InnerConfig, error](E.Right[error](42))
result := FromEither[OuterConfig, InnerConfig](E.Right[error](42))
assert.Equal(t, E.Right[error](42), result(OuterConfig{})(InnerConfig{})())
})
@@ -246,7 +246,7 @@ func TestFromIOEither(t *testing.T) {
t.Run("Left", func(t *testing.T) {
err := errors.New("test error")
ioe := IOE.Left[int](err)
result := FromIOEither[OuterConfig, InnerConfig, error, int](ioe)
result := FromIOEither[OuterConfig, InnerConfig](ioe)
assert.Equal(t, E.Left[int](err), result(OuterConfig{})(InnerConfig{})())
})
}
@@ -273,14 +273,14 @@ func TestLeftReaderIO(t *testing.T) {
func TestFromReaderEither(t *testing.T) {
t.Run("Right", func(t *testing.T) {
re := RE.Right[OuterConfig, error](42)
result := FromReaderEither[OuterConfig, InnerConfig, error](re)
result := FromReaderEither[OuterConfig, InnerConfig](re)
assert.Equal(t, E.Right[error](42), result(OuterConfig{})(InnerConfig{})())
})
t.Run("Left", func(t *testing.T) {
err := errors.New("test error")
re := RE.Left[OuterConfig, int](err)
result := FromReaderEither[OuterConfig, InnerConfig, error, int](re)
result := FromReaderEither[OuterConfig, InnerConfig](re)
assert.Equal(t, E.Left[int](err), result(OuterConfig{})(InnerConfig{})())
})
}
@@ -288,14 +288,14 @@ func TestFromReaderEither(t *testing.T) {
func TestFromReaderIOEither(t *testing.T) {
t.Run("Right", func(t *testing.T) {
rioe := RIOE.Right[OuterConfig, error](42)
result := FromReaderIOEither[InnerConfig, error](rioe)
result := FromReaderIOEither[InnerConfig](rioe)
assert.Equal(t, E.Right[error](42), result(OuterConfig{})(InnerConfig{})())
})
t.Run("Left", func(t *testing.T) {
err := errors.New("test error")
rioe := RIOE.Left[OuterConfig, int](err)
result := FromReaderIOEither[InnerConfig, error, OuterConfig, int](rioe)
result := FromReaderIOEither[InnerConfig](rioe)
assert.Equal(t, E.Left[int](err), result(OuterConfig{})(InnerConfig{})())
})
}
@@ -339,7 +339,7 @@ func TestFromPredicate(t *testing.T) {
onFalse := func(n int) error { return fmt.Errorf("not positive: %d", n) }
t.Run("Predicate true", func(t *testing.T) {
result := FromPredicate[OuterConfig, InnerConfig, error](isPositive, onFalse)(5)
result := FromPredicate[OuterConfig, InnerConfig](isPositive, onFalse)(5)
assert.Equal(t, E.Right[error](5), result(OuterConfig{})(InnerConfig{})())
})
@@ -409,7 +409,7 @@ func TestMonadChainEitherK(t *testing.T) {
func TestChainFirstEitherK(t *testing.T) {
g := F.Pipe1(
Of[OuterConfig, InnerConfig, error](1),
ChainFirstEitherK[OuterConfig, InnerConfig, error](func(v int) E.Either[error, string] {
ChainFirstEitherK[OuterConfig, InnerConfig](func(v int) E.Either[error, string] {
return E.Right[error](fmt.Sprintf("%d", v))
}),
)
@@ -428,7 +428,7 @@ func TestTapEitherK(t *testing.T) {
sideEffect := ""
g := F.Pipe1(
Of[OuterConfig, InnerConfig, error](1),
TapEitherK[OuterConfig, InnerConfig, error](func(v int) E.Either[error, string] {
TapEitherK[OuterConfig, InnerConfig](func(v int) E.Either[error, string] {
sideEffect = fmt.Sprintf("%d", v)
return E.Right[error](sideEffect)
}),
@@ -577,7 +577,7 @@ func TestMonadTapReaderIOK(t *testing.T) {
func TestChainReaderEitherK(t *testing.T) {
g := F.Pipe1(
Of[OuterConfig, InnerConfig, error](1),
ChainReaderEitherK[InnerConfig, error](func(v int) RE.ReaderEither[OuterConfig, error, string] {
ChainReaderEitherK[InnerConfig](func(v int) RE.ReaderEither[OuterConfig, error, string] {
return RE.Right[OuterConfig, error](fmt.Sprintf("%d", v))
}),
)
@@ -595,7 +595,7 @@ func TestMonadChainReaderEitherK(t *testing.T) {
func TestChainFirstReaderEitherK(t *testing.T) {
g := F.Pipe1(
Of[OuterConfig, InnerConfig, error](1),
ChainFirstReaderEitherK[InnerConfig, error](func(v int) RE.ReaderEither[OuterConfig, error, string] {
ChainFirstReaderEitherK[InnerConfig](func(v int) RE.ReaderEither[OuterConfig, error, string] {
return RE.Right[OuterConfig, error](fmt.Sprintf("%d", v))
}),
)
@@ -614,7 +614,7 @@ func TestTapReaderEitherK(t *testing.T) {
sideEffect := ""
g := F.Pipe1(
Of[OuterConfig, InnerConfig, error](1),
TapReaderEitherK[InnerConfig, error](func(v int) RE.ReaderEither[OuterConfig, error, string] {
TapReaderEitherK[InnerConfig](func(v int) RE.ReaderEither[OuterConfig, error, string] {
sideEffect = fmt.Sprintf("%d", v)
return RE.Right[OuterConfig, error](sideEffect)
}),
@@ -709,7 +709,7 @@ func TestTapReaderOptionK(t *testing.T) {
func TestChainIOEitherK(t *testing.T) {
g := F.Pipe1(
Of[OuterConfig, InnerConfig, error](1),
ChainIOEitherK[OuterConfig, InnerConfig, error](func(v int) IOE.IOEither[error, string] {
ChainIOEitherK[OuterConfig, InnerConfig](func(v int) IOE.IOEither[error, string] {
return IOE.Right[error](fmt.Sprintf("%d", v))
}),
)
@@ -850,7 +850,7 @@ func TestAlt(t *testing.T) {
}
g := F.Pipe1(
Right[OuterConfig, InnerConfig, error](42),
Alt[OuterConfig, InnerConfig, error, int](second),
Alt(second),
)
assert.Equal(t, E.Right[error](42), g(OuterConfig{})(InnerConfig{})())
})
@@ -862,7 +862,7 @@ func TestAlt(t *testing.T) {
}
g := F.Pipe1(
Left[OuterConfig, InnerConfig, int](err),
Alt[OuterConfig, InnerConfig, error, int](second),
Alt(second),
)
assert.Equal(t, E.Right[error](99), g(OuterConfig{})(InnerConfig{})())
})
@@ -939,7 +939,7 @@ func TestCompositionWithBothContexts(t *testing.T) {
Map[OuterConfig, InnerConfig, error](func(cfg OuterConfig) string {
return cfg.database
}),
Chain[OuterConfig, InnerConfig, error](func(db string) ReaderReaderIOEither[OuterConfig, InnerConfig, error, string] {
Chain(func(db string) ReaderReaderIOEither[OuterConfig, InnerConfig, error, string] {
return func(r OuterConfig) RIOE.ReaderIOEither[InnerConfig, error, string] {
return func(c InnerConfig) IOE.IOEither[error, string] {
return IOE.Right[error](fmt.Sprintf("%s:%s", db, c.apiKey))

View File

@@ -1,11 +1,25 @@
@echo off
setlocal enabledelayedexpansion
REM Get the directory to scan from parameter or use current directory
set "SCAN_DIR=%~1"
if "%SCAN_DIR%"=="" set "SCAN_DIR=."
REM Convert to absolute path
pushd "%SCAN_DIR%" 2>nul
if errorlevel 1 (
echo Error: Directory "%SCAN_DIR%" does not exist
exit /b 1
)
set "SCAN_DIR=%CD%"
popd
echo Finding and fixing unnecessary type arguments...
echo Scanning directory: %SCAN_DIR%
echo.
REM Find all Go files recursively
for /r %%f in (*.go) do (
REM Find all Go files recursively in the specified directory
for /r "%SCAN_DIR%" %%f in (*.go) do (
echo Checking %%f...
REM Run gopls check and capture output

View File

@@ -0,0 +1,235 @@
# 🏗️ Builder Pattern with fp-go
This package demonstrates a functional builder pattern using fp-go's optics library. It shows how to construct and validate objects using lenses, prisms, and codecs, separating the building phase from validation.
## 📋 Overview
The builder pattern here uses two key types:
- **`PartialPerson`** 🚧: An intermediate type with unvalidated fields (raw `string` and `int`)
- **`Person`** ✅: A validated type with refined fields (`NonEmptyString` and `AdultAge`)
The pattern provides two approaches for validation:
1. **Prism-based validation** 🔍 (simple, no error messages)
2. **Codec-based validation** 📝 (detailed error reporting)
## 🎯 Core Concepts
### 1. 🔧 Auto-Generated Lenses
The `fp-go:Lens` directive in `types.go` generates lens accessors for both types:
```go
// fp-go:Lens
type PartialPerson struct {
name string
age int
}
// fp-go:Lens
type Person struct {
Name NonEmptyString
Age AdultAge
}
```
This generates:
- `partialPersonLenses` with `.name` and `.age` lenses
- `personLenses` with `.Name` and `.Age` lenses
### 2. 🎁 Exporting Setters as `WithXXX` Methods
The lens setters are exported as builder methods:
```go
// WithName sets the Name field of a PartialPerson
WithName = partialPersonLenses.name.Set
// WithAge sets the Age field of a PartialPerson
WithAge = partialPersonLenses.age.Set
```
These return `Endomorphism[*PartialPerson]` functions that can be composed:
```go
builder := F.Pipe1(
A.From(
WithName("Alice"),
WithAge(25),
),
allOfPartialPerson,
)
partial := builder(&PartialPerson{})
```
Or use the convenience function:
```go
builder := MakePerson("Alice", 25)
```
## 🔍 Approach 1: Prism-Based Validation (No Error Messages)
### Creating Validation Prisms
Define prisms that validate individual fields:
> 💡 **Tip**: The `optics/prism` package provides many helpful out-of-the-box prisms for common validations, including:
> - `NonEmptyString()` - validates non-empty strings
> - `ParseInt()`, `ParseInt64()` - parses integers from strings
> - `ParseFloat32()`, `ParseFloat64()` - parses floats from strings
> - `ParseBool()` - parses booleans from strings
> - `ParseDate(layout)` - parses dates with custom layouts
> - `ParseURL()` - parses URLs
> - `FromZero()`, `FromNonZero()` - validates zero/non-zero values
> - `RegexMatcher()`, `RegexNamedMatcher()` - regex-based validation
> - `FromOption()`, `FromEither()`, `FromResult()` - extracts from monadic types
> - And many more! Check `optics/prism/prisms.go` for the full list.
>
> For custom validation logic, create your own prisms:
```go
namePrism = prism.MakePrismWithName(
func(s string) Option[NonEmptyString] {
if S.IsEmpty(s) {
return option.None[NonEmptyString]()
}
return option.Of(NonEmptyString(s))
},
func(ns NonEmptyString) string {
return string(ns)
},
"NonEmptyString",
)
agePrism = prism.MakePrismWithName(
func(a int) Option[AdultAge] {
if a < 18 {
return option.None[AdultAge]()
}
return option.Of(AdultAge(a))
},
func(aa AdultAge) int {
return int(aa)
},
"AdultAge",
)
```
### 🎭 Creating the PersonPrism
The `PersonPrism` converts between a builder and a validated `Person`:
```go
PersonPrism = prism.MakePrismWithName(
buildPerson(), // Forward: builder -> Option[*Person]
buildEndomorphism(), // Reverse: *Person -> builder
"Person",
)
```
**Forward direction** ➡️ (`buildPerson`):
1. Applies the builder to an empty `PartialPerson`
2. Validates each field using field prisms
3. Returns `Some(*Person)` if all validations pass, `None` otherwise
**Reverse direction** ⬅️ (`buildEndomorphism`):
1. Extracts validated fields from `Person`
2. Converts them back to raw types
3. Returns a builder that reconstructs the `PartialPerson`
### 💡 Usage Example
```go
// Create a builder
builder := MakePerson("Alice", 25)
// Validate and convert to Person
maybePerson := PersonPrism.GetOption(builder)
// maybePerson is Option[*Person]
// - Some(*Person) if validation succeeds ✅
// - None if validation fails (no error details) ❌
```
## 📝 Approach 2: Codec-Based Validation (With Error Messages)
### Creating Field Codecs
Convert prisms to codecs for detailed validation:
```go
nameCodec = codec.FromRefinement(namePrism)
ageCodec = codec.FromRefinement(agePrism)
```
### 🎯 Creating the PersonCodec
The `PersonCodec` provides bidirectional transformation with validation:
```go
func makePersonCodec() PersonCodec {
return codec.MakeType(
"Person",
codec.Is[*Person](),
makePersonValidate(), // Validation with error reporting
buildEndomorphism(), // Encoding (same as prism)
)
}
```
The `makePersonValidate` function:
1. Applies the builder to an empty `PartialPerson`
2. Validates each field using field codecs
3. Accumulates validation errors using applicative composition 📚
4. Returns `Validation[*Person]` (either errors or a valid `Person`)
### 💡 Usage Example
```go
// Create a builder
builder := MakePerson("", 15) // Invalid: empty name, age < 18
// Validate with detailed errors
personCodec := makePersonCodec()
validation := personCodec.Validate(builder)
// validation is Validation[*Person]
// - Right(*Person) if validation succeeds ✅
// - Left(ValidationErrors) with detailed error messages if validation fails ❌
```
## ⚖️ Key Differences
| Feature | Prism-Based 🔍 | Codec-Based 📝 |
|---------|-------------|-------------|
| Error Messages | No (returns `None`) ❌ | Yes (returns detailed errors) ✅ |
| Complexity | Simpler 🟢 | More complex 🟡 |
| Use Case | Simple validation | Production validation with user feedback |
| Return Type | `Option[*Person]` | `Validation[*Person]` |
## 📝 Pattern Summary
1. **Define types** 📐: Create `PartialPerson` (unvalidated) and `Person` (validated)
2. **Generate lenses** 🔧: Use `fp-go:Lens` directive
3. **Export setters** 🎁: Create `WithXXX` methods from lens setters
4. **Create validation prisms** 🎭: Define validation rules for each field
5. **Choose validation approach** ⚖️:
- **Simple** 🔍: Create a `Prism` for quick validation without errors
- **Detailed** 📝: Create a `Codec` for validation with error reporting
## ✨ Benefits
- **Type Safety** 🛡️: Validated types guarantee business rules at compile time
- **Composability** 🧩: Builders can be composed using monoid operations
- **Bidirectional** ↔️: Both prisms and codecs support encoding and decoding
- **Separation of Concerns** 🎯: Building and validation are separate phases
- **Functional** 🔄: Pure functions, no mutation, easy to test
## 📁 Files
- `types.go`: Type definitions and lens generation directives
- `builder.go`: Prism-based builder implementation
- `codec.go`: Codec-based validation implementation
- `codec_test.go`: Tests demonstrating usage patterns

View File

@@ -0,0 +1,219 @@
// Package builder demonstrates a functional builder pattern using fp-go.
// It shows how to construct and validate Person objects using lenses, prisms,
// and functional composition, separating the building phase (PartialPerson)
// from the validated result (Person).
package builder
import (
"github.com/IBM/fp-go/v2/array"
A "github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/endomorphism"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readeroption"
S "github.com/IBM/fp-go/v2/string"
)
var (
// partialPersonLenses provides lens accessors for PartialPerson fields.
// Generated by the fp-go:Lens directive in types.go.
partialPersonLenses = MakePartialPersonRefLenses()
// personLenses provides lens accessors for Person fields.
// Generated by the fp-go:Lens directive in types.go.
personLenses = MakePersonRefLenses()
// emptyPartialPerson is a zero-value PartialPerson used as a starting point for building.
emptyPartialPerson = &PartialPerson{}
// emptyPerson is a zero-value Person used as a starting point for validation.
emptyPerson = &Person{}
// monoidPartialPerson is a monoid for composing endomorphisms on PartialPerson.
// Allows combining multiple builder operations.
monoidPartialPerson = endomorphism.Monoid[*PartialPerson]()
// monoidPerson is a monoid for composing endomorphisms on Person.
monoidPerson = endomorphism.Monoid[*Person]()
// allOfPartialPerson combines multiple PartialPerson endomorphisms into one.
allOfPartialPerson = monoid.ConcatAll(monoidPartialPerson)
// foldPartialPersons folds an array of PartialPerson operations into a single ReaderOption.
foldPartialPersons = array.Fold(readeroption.ApplicativeMonoid[*PartialPerson](monoidPerson))
// foldPersons folds an array of Person operations into a single Reader.
foldPersons = array.Fold(reader.ApplicativeMonoid[*Person](monoidPartialPerson))
// namePrism is a prism that validates and converts between string and NonEmptyString.
// It ensures the name is not empty, returning None if validation fails.
//
// Forward direction: string -> Option[NonEmptyString] (validates non-empty)
// Reverse direction: NonEmptyString -> string (always succeeds)
namePrism = prism.MakePrismWithName(
func(s string) Option[NonEmptyString] {
if S.IsEmpty(s) {
return option.None[NonEmptyString]()
}
return option.Of(NonEmptyString(s))
},
func(ns NonEmptyString) string {
return string(ns)
},
"NonEmptyString",
)
// agePrism is a prism that validates and converts between int and AdultAge.
// It ensures the age is at least 18, returning None if validation fails.
//
// Forward direction: int -> Option[AdultAge] (validates >= 18)
// Reverse direction: AdultAge -> int (always succeeds)
agePrism = prism.MakePrismWithName(
func(a int) Option[AdultAge] {
if a < 18 {
return option.None[AdultAge]()
}
return option.Of(AdultAge(a))
},
func(aa AdultAge) int {
return int(aa)
},
"AdultAge",
)
// WithName is a builder function that sets the Name field of a PartialPerson.
// It returns an endomorphism that can be composed with other builder operations.
//
// Example:
// builder := WithName("Alice")
// person := builder(&PartialPerson{})
WithName = partialPersonLenses.name.Set
// WithAge is a builder function that sets the Age field of a PartialPerson.
// It returns an endomorphism that can be composed with other builder operations.
//
// Example:
// builder := WithAge(25)
// person := builder(&PartialPerson{})
WithAge = partialPersonLenses.age.Set
// PersonPrism is a prism that converts between a builder pattern (Endomorphism[*PartialPerson])
// and a validated Person in both directions.
//
// Forward direction (buildPerson): Endomorphism[*PartialPerson] -> Option[*Person]
// - Applies the builder to an empty PartialPerson
// - Validates all fields using namePrism and agePrism
// - Returns Some(*Person) if all validations pass, None otherwise
//
// Reverse direction (buildEndomorphism): *Person -> Endomorphism[*PartialPerson]
// - Extracts validated fields from Person
// - Converts them back to raw types
// - Returns a builder that reconstructs the PartialPerson
//
// This enables bidirectional conversion with validation in the forward direction.
PersonPrism = prism.MakePrismWithName(buildPerson(), buildEndomorphism(), "Person")
)
// MakePerson creates a builder (endomorphism) that sets both name and age fields
// on a PartialPerson. This is a convenience function that combines WithName and
// WithAge into a single builder operation.
//
// Parameters:
// - name: The name to set (will be validated later when converting to Person)
// - age: The age to set (will be validated later when converting to Person)
//
// Returns:
//
// An endomorphism that applies both field setters to a PartialPerson
//
// Example:
//
// builder := MakePerson("Alice", 25)
// partial := builder(&PartialPerson{})
// // partial now has Name="Alice" and Age=25
func MakePerson(name string, age int) Endomorphism[*PartialPerson] {
return F.Pipe1(
A.From(
WithName(name),
WithAge(age),
),
allOfPartialPerson)
}
// buildPerson constructs the forward direction of PersonPrism.
// It takes a builder (Endomorphism[*PartialPerson]) and attempts to create
// a validated Person by:
// 1. Applying the builder to an empty PartialPerson
// 2. Extracting and validating the Name field using namePrism
// 3. Extracting and validating the Age field using agePrism
// 4. Combining the validated fields into a Person
//
// Returns:
//
// A ReaderOption that produces Some(*Person) if all validations pass,
// or None if any validation fails.
func buildPerson() ReaderOption[Endomorphism[*PartialPerson], *Person] {
// maybeName extracts the name from PartialPerson, validates it,
// and creates a setter for the Person's Name field if valid
maybeName := F.Flow3(
partialPersonLenses.name.Get,
namePrism.GetOption,
option.Map(personLenses.Name.Set),
)
// maybeAge extracts the age from PartialPerson, validates it,
// and creates a setter for the Person's Age field if valid
maybeAge := F.Flow3(
partialPersonLenses.age.Get,
agePrism.GetOption,
option.Map(personLenses.Age.Set),
)
// Combine the field validators and apply them to build a Person
return F.Pipe2(
A.From(maybeName, maybeAge),
foldPartialPersons,
readeroption.Promap(reader.Read[*PartialPerson](emptyPartialPerson), reader.Read[*Person](emptyPerson)),
)
}
// buildEndomorphism constructs the reverse direction of PersonPrism.
// It takes a validated Person and creates a builder (Endomorphism[*PartialPerson])
// that can reconstruct the equivalent PartialPerson by:
// 1. Extracting the validated Name field and converting it back to string
// 2. Extracting the validated Age field and converting it back to int
// 3. Creating setters for the PartialPerson fields
//
// This reverse direction always succeeds because Person contains only valid data.
//
// Returns:
//
// A Reader that produces an endomorphism for reconstructing a PartialPerson
func buildEndomorphism() Reader[*Person, Endomorphism[*PartialPerson]] {
// name extracts the validated name, converts it to string,
// and creates a setter for PartialPerson's Name field
name := F.Flow3(
personLenses.Name.Get,
namePrism.ReverseGet,
partialPersonLenses.name.Set,
)
// age extracts the validated age, converts it to int,
// and creates a setter for PartialPerson's Age field
age := F.Flow3(
personLenses.Age.Get,
agePrism.ReverseGet,
partialPersonLenses.age.Set,
)
// Combine the field extractors into a single builder
return F.Pipe1(
A.From(name, age),
foldPersons,
)
}

View File

@@ -0,0 +1,30 @@
package builder
import (
"testing"
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert"
)
func TestBuilderPrism(t *testing.T) {
b1 := MakePerson("Carsten", 55)
// this should be a valid person
p1, ok := option.Unwrap(PersonPrism.GetOption(b1))
assert.True(t, ok)
// convert back to a builder
b2 := PersonPrism.ReverseGet(p1)
// change the name
b3 := endomorphism.Chain(WithName("Jan"))(b1)
p2 := PersonPrism.GetOption(b2)
p3 := PersonPrism.GetOption(b3)
assert.Equal(t, p2, option.Of(p1))
assert.NotEqual(t, p3, option.Of(p1))
}

131
v2/samples/builder/codec.go Normal file
View File

@@ -0,0 +1,131 @@
// Package builder demonstrates codec-based validation and encoding/decoding
// for Person objects using fp-go's optics and validation framework.
//
// This file extends the builder pattern with codec functionality, enabling:
// - Bidirectional transformation between PartialPerson and Person
// - Validation with detailed error reporting
// - Type-safe encoding and decoding operations
package builder
import (
A "github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/endomorphism"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/identity"
"github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/optics/codec"
"github.com/IBM/fp-go/v2/optics/codec/decode"
"github.com/IBM/fp-go/v2/optics/codec/validate"
"github.com/IBM/fp-go/v2/optics/codec/validation"
)
type (
// PersonCodec is a codec type that handles bidirectional transformation
// between Person and PartialPerson using endomorphisms.
//
// Type parameters:
// - A: *Person - The validated target type
// - O: Endomorphism[*PartialPerson] - The output encoding type (builder)
// - I: Endomorphism[*PartialPerson] - The input decoding type (builder)
//
// This codec enables:
// - Validation: Converting a PartialPerson builder to a validated Person
// - Encoding: Converting a Person back to a PartialPerson builder
PersonCodec = Type[*Person, Endomorphism[*PartialPerson], Endomorphism[*PartialPerson]]
)
var (
// nameCodec is a codec for validating and transforming name fields.
// It uses namePrism to ensure names are non-empty strings.
//
// Validation: string -> Result[NonEmptyString]
// Encoding: NonEmptyString -> string
nameCodec = codec.FromRefinement(namePrism)
// ageCodec is a codec for validating and transforming age fields.
// It uses agePrism to ensure ages meet adult criteria (>= 18).
//
// Validation: int -> Result[AdultAge]
// Encoding: AdultAge -> int
ageCodec = codec.FromRefinement(agePrism)
)
// makePersonValidate creates a validation function that transforms a PartialPerson
// builder (endomorphism) into a validated Person.
//
// The validation process:
// 1. Applies the builder endomorphism to an empty PartialPerson
// 2. Extracts and validates the Name field using nameCodec
// 3. Extracts and validates the Age field using ageCodec
// 4. Combines all validations using applicative composition
// 5. Returns either a validated Person or a collection of validation errors
//
// This function uses the Reader monad to thread validation context through
// the computation, and ReaderEither to accumulate validation errors.
//
// Returns:
//
// A Validate function that takes a PartialPerson builder and returns
// a Reader that produces a Validation result (either errors or a Person)
func makePersonValidate() Validate[Endomorphism[*PartialPerson], *Person] {
// Create a monoid for combining validation operations
// This allows multiple field validations to be composed together
rdrMonoid := validate.ApplicativeMonoid[*PartialPerson](endomorphism.Monoid[*Person]())
// allOfRdr combines an array of validation readers into a single reader
allOfRdr := monoid.ConcatAll(rdrMonoid)
// valName validates the Name field:
// 1. Extract name from PartialPerson
// 2. Validate using nameCodec (ensures non-empty)
// 3. Map to a Person name setter if valid
valName := F.Flow3(
partialPersonLenses.name.Get,
nameCodec.Validate,
decode.Map[validation.Context](personLenses.Name.Set),
)
// valAge validates the Age field:
// 1. Extract age from PartialPerson
// 2. Validate using ageCodec (ensures >= 18)
// 3. Map to a Person age setter if valid
valAge := F.Flow3(
partialPersonLenses.age.Get,
ageCodec.Validate,
decode.Map[validation.Context](personLenses.Age.Set),
)
// Collect all field validators
vals := A.From(valName, valAge)
// Combine all validations and apply to an empty Person
return F.Flow3(
identity.Flap[*PartialPerson](emptyPartialPerson),
allOfRdr(vals),
decode.Map[validation.Context](identity.Flap[*Person](emptyPerson)),
)
}
// makePersonCodec creates a complete codec for Person objects.
//
// The codec provides:
// - Type checking: Verifies if a value is a *Person
// - Validation: Converts PartialPerson builders to validated Person instances
// - Encoding: Converts Person instances back to PartialPerson builders
//
// This enables bidirectional transformation with validation:
// - Decode: Endomorphism[*PartialPerson] -> Validation[*Person]
// - Encode: *Person -> Endomorphism[*PartialPerson]
//
// Returns:
//
// A PersonCodec that can validate, encode, and decode Person objects
func makePersonCodec() PersonCodec {
return codec.MakeType(
"Person",
codec.Is[*Person](),
makePersonValidate(),
buildEndomorphism(),
)
}

View File

@@ -0,0 +1,331 @@
package builder
import (
"testing"
A "github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
// TestMakePersonValidate_ValidPerson tests validation of a valid person
func TestMakePersonValidate_ValidPerson(t *testing.T) {
// Arrange
validate := makePersonValidate()
builder := MakePerson("Alice", 25)
ctx := A.Of(validation.ContextEntry{Type: "Person", Actual: builder})
// Act
result := validate(builder)(ctx)
// Assert
assert.True(t, either.IsRight(result), "Expected validation to succeed")
person, _ := either.Unwrap(result)
require.NotNil(t, person, "Expected to unwrap person")
assert.Equal(t, NonEmptyString("Alice"), person.Name)
assert.Equal(t, AdultAge(25), person.Age)
}
// TestMakePersonValidate_EmptyName tests validation failure for empty name
func TestMakePersonValidate_EmptyName(t *testing.T) {
// Arrange
validate := makePersonValidate()
builder := MakePerson("", 25)
ctx := A.Of(validation.ContextEntry{Type: "Person", Actual: builder})
// Act
result := validate(builder)(ctx)
// Assert
assert.True(t, either.IsLeft(result), "Expected validation to fail for empty name")
_, errors := either.Unwrap(result)
assert.NotEmpty(t, errors, "Expected validation errors")
}
// TestMakePersonValidate_InvalidAge tests validation failure for age < 18
func TestMakePersonValidate_InvalidAge(t *testing.T) {
// Arrange
validate := makePersonValidate()
builder := MakePerson("Bob", 15)
ctx := A.Of(validation.ContextEntry{Type: "Person", Actual: builder})
// Act
result := validate(builder)(ctx)
// Assert
assert.True(t, either.IsLeft(result), "Expected validation to fail for age < 18")
_, errors := either.Unwrap(result)
assert.NotEmpty(t, errors, "Expected validation errors")
}
// TestMakePersonValidate_MultipleErrors tests validation with multiple errors
func TestMakePersonValidate_MultipleErrors(t *testing.T) {
// Arrange
validate := makePersonValidate()
builder := MakePerson("", 10) // Both empty name and invalid age
ctx := A.Of(validation.ContextEntry{Type: "Person", Actual: builder})
// Act
result := validate(builder)(ctx)
// Assert
assert.True(t, either.IsLeft(result), "Expected validation to fail")
_, errors := either.Unwrap(result)
assert.Len(t, errors, 2, "Expected two validation errors")
}
// TestMakePersonValidate_BoundaryAge tests validation at age boundary (18)
func TestMakePersonValidate_BoundaryAge(t *testing.T) {
// Arrange
validate := makePersonValidate()
builder := MakePerson("Charlie", 18)
ctx := A.Of(validation.ContextEntry{Type: "Person", Actual: builder})
// Act
result := validate(builder)(ctx)
// Assert
assert.True(t, either.IsRight(result), "Expected validation to succeed for age 18")
person, _ := either.Unwrap(result)
require.NotNil(t, person, "Expected to unwrap person")
assert.Equal(t, AdultAge(18), person.Age)
}
// TestMakePersonCodec_Decode tests the codec's Decode method
func TestMakePersonCodec_Decode(t *testing.T) {
// Arrange
codec := makePersonCodec()
builder := MakePerson("Diana", 30)
// Act
result := codec.Decode(builder)
// Assert
assert.True(t, either.IsRight(result), "Expected decode to succeed")
person, _ := either.Unwrap(result)
require.NotNil(t, person, "Expected to unwrap person")
assert.Equal(t, NonEmptyString("Diana"), person.Name)
assert.Equal(t, AdultAge(30), person.Age)
}
// TestMakePersonCodec_Decode_Invalid tests the codec's Decode method with invalid data
func TestMakePersonCodec_Decode_Invalid(t *testing.T) {
// Arrange
codec := makePersonCodec()
builder := MakePerson("", 10) // Invalid name and age
// Act
result := codec.Decode(builder)
// Assert
assert.True(t, either.IsLeft(result), "Expected decode to fail")
_, errors := either.Unwrap(result)
assert.Len(t, errors, 2, "Expected two validation errors")
}
// TestMakePersonCodec_Encode tests the codec's Encode method
func TestMakePersonCodec_Encode(t *testing.T) {
// Arrange
codec := makePersonCodec()
person := &Person{
Name: NonEmptyString("Eve"),
Age: AdultAge(28),
}
// Act
builder := codec.Encode(person)
// Apply the builder to get a PartialPerson
partial := builder(emptyPartialPerson)
// Assert
assert.Equal(t, "Eve", partial.name)
assert.Equal(t, 28, partial.age)
}
// TestMakePersonCodec_RoundTrip tests encoding and decoding round-trip
func TestMakePersonCodec_RoundTrip(t *testing.T) {
// Arrange
codec := makePersonCodec()
originalPerson := &Person{
Name: NonEmptyString("Frank"),
Age: AdultAge(35),
}
// Act - Encode to builder
builder := codec.Encode(originalPerson)
// Decode back to person
result := codec.Decode(builder)
// Assert
assert.True(t, either.IsRight(result), "Expected round-trip to succeed")
decodedPerson, _ := either.Unwrap(result)
require.NotNil(t, decodedPerson, "Expected to unwrap person")
assert.Equal(t, originalPerson.Name, decodedPerson.Name)
assert.Equal(t, originalPerson.Age, decodedPerson.Age)
}
// TestMakePersonCodec_Name tests the codec's Name method
func TestMakePersonCodec_Name(t *testing.T) {
// Arrange
codec := makePersonCodec()
// Act
name := codec.Name()
// Assert
assert.Equal(t, "Person", name)
}
// TestNameCodec_Validate tests the name codec validation
func TestNameCodec_Validate(t *testing.T) {
tests := []struct {
name string
input string
wantValid bool
}{
{
name: "valid name",
input: "Alice",
wantValid: true,
},
{
name: "empty name",
input: "",
wantValid: false,
},
{
name: "whitespace name",
input: " ",
wantValid: true, // Non-empty string, even if whitespace
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Arrange
ctx := A.Of(validation.ContextEntry{Type: "Name", Actual: tt.input})
// Act
result := nameCodec.Validate(tt.input)(ctx)
// Assert
if tt.wantValid {
assert.True(t, either.IsRight(result), "Expected validation to succeed")
} else {
assert.True(t, either.IsLeft(result), "Expected validation to fail")
}
})
}
}
// TestAgeCodec_Validate tests the age codec validation
func TestAgeCodec_Validate(t *testing.T) {
tests := []struct {
name string
input int
wantValid bool
}{
{
name: "valid adult age",
input: 25,
wantValid: true,
},
{
name: "boundary age 18",
input: 18,
wantValid: true,
},
{
name: "minor age",
input: 17,
wantValid: false,
},
{
name: "zero age",
input: 0,
wantValid: false,
},
{
name: "negative age",
input: -5,
wantValid: false,
},
{
name: "very old age",
input: 120,
wantValid: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Arrange
ctx := A.Of(validation.ContextEntry{Type: "Age", Actual: tt.input})
// Act
result := ageCodec.Validate(tt.input)(ctx)
// Assert
if tt.wantValid {
assert.True(t, either.IsRight(result), "Expected validation to succeed")
} else {
assert.True(t, either.IsLeft(result), "Expected validation to fail")
}
})
}
}
// TestMakePersonCodec_WithComposedBuilders tests codec with composed builders
func TestMakePersonCodec_WithComposedBuilders(t *testing.T) {
// Arrange
codec := makePersonCodec()
// Create a builder by composing individual field setters
builder := endomorphism.Chain(
WithAge(40),
)(WithName("Grace"))
// Act
result := codec.Decode(builder)
// Assert
assert.True(t, either.IsRight(result), "Expected decode to succeed")
person, _ := either.Unwrap(result)
require.NotNil(t, person, "Expected to unwrap person")
assert.Equal(t, NonEmptyString("Grace"), person.Name)
assert.Equal(t, AdultAge(40), person.Age)
}
// TestMakePersonCodec_PartialBuilder tests codec with partial builder (missing fields)
func TestMakePersonCodec_PartialBuilder(t *testing.T) {
// Arrange
codec := makePersonCodec()
// Create a builder that only sets name
builder := WithName("Henry")
// Act
result := codec.Decode(builder)
// Assert
// Should fail because age is 0 (< 18)
assert.True(t, either.IsLeft(result), "Expected decode to fail for missing age")
}

View File

@@ -0,0 +1,223 @@
package builder
// Code generated by go generate; DO NOT EDIT.
// This file was generated by robots at
// 2026-01-23 16:15:30.703391 +0100 CET m=+0.003782501
import (
__lens "github.com/IBM/fp-go/v2/optics/lens"
__option "github.com/IBM/fp-go/v2/option"
__prism "github.com/IBM/fp-go/v2/optics/prism"
__lens_option "github.com/IBM/fp-go/v2/optics/lens/option"
__iso_option "github.com/IBM/fp-go/v2/optics/iso/option"
)
// PartialPersonLenses provides lenses for accessing fields of PartialPerson
type PartialPersonLenses struct {
// mandatory fields
name __lens.Lens[PartialPerson, string]
age __lens.Lens[PartialPerson, int]
// optional fields
nameO __lens_option.LensO[PartialPerson, string]
ageO __lens_option.LensO[PartialPerson, int]
}
// PartialPersonRefLenses provides lenses for accessing fields of PartialPerson via a reference to PartialPerson
type PartialPersonRefLenses struct {
// mandatory fields
name __lens.Lens[*PartialPerson, string]
age __lens.Lens[*PartialPerson, int]
// optional fields
nameO __lens_option.LensO[*PartialPerson, string]
ageO __lens_option.LensO[*PartialPerson, int]
// prisms
nameP __prism.Prism[*PartialPerson, string]
ageP __prism.Prism[*PartialPerson, int]
}
// PartialPersonPrisms provides prisms for accessing fields of PartialPerson
type PartialPersonPrisms struct {
name __prism.Prism[PartialPerson, string]
age __prism.Prism[PartialPerson, int]
}
// MakePartialPersonLenses creates a new PartialPersonLenses with lenses for all fields
func MakePartialPersonLenses() PartialPersonLenses {
// mandatory lenses
lensname := __lens.MakeLensWithName(
func(s PartialPerson) string { return s.name },
func(s PartialPerson, v string) PartialPerson { s.name = v; return s },
"PartialPerson.name",
)
lensage := __lens.MakeLensWithName(
func(s PartialPerson) int { return s.age },
func(s PartialPerson, v int) PartialPerson { s.age = v; return s },
"PartialPerson.age",
)
// optional lenses
lensnameO := __lens_option.FromIso[PartialPerson](__iso_option.FromZero[string]())(lensname)
lensageO := __lens_option.FromIso[PartialPerson](__iso_option.FromZero[int]())(lensage)
return PartialPersonLenses{
// mandatory lenses
name: lensname,
age: lensage,
// optional lenses
nameO: lensnameO,
ageO: lensageO,
}
}
// MakePartialPersonRefLenses creates a new PartialPersonRefLenses with lenses for all fields
func MakePartialPersonRefLenses() PartialPersonRefLenses {
// mandatory lenses
lensname := __lens.MakeLensStrictWithName(
func(s *PartialPerson) string { return s.name },
func(s *PartialPerson, v string) *PartialPerson { s.name = v; return s },
"(*PartialPerson).name",
)
lensage := __lens.MakeLensStrictWithName(
func(s *PartialPerson) int { return s.age },
func(s *PartialPerson, v int) *PartialPerson { s.age = v; return s },
"(*PartialPerson).age",
)
// optional lenses
lensnameO := __lens_option.FromIso[*PartialPerson](__iso_option.FromZero[string]())(lensname)
lensageO := __lens_option.FromIso[*PartialPerson](__iso_option.FromZero[int]())(lensage)
return PartialPersonRefLenses{
// mandatory lenses
name: lensname,
age: lensage,
// optional lenses
nameO: lensnameO,
ageO: lensageO,
}
}
// MakePartialPersonPrisms creates a new PartialPersonPrisms with prisms for all fields
func MakePartialPersonPrisms() PartialPersonPrisms {
_fromNonZeroname := __option.FromNonZero[string]()
_prismname := __prism.MakePrismWithName(
func(s PartialPerson) __option.Option[string] { return _fromNonZeroname(s.name) },
func(v string) PartialPerson {
return PartialPerson{ name: v }
},
"PartialPerson.name",
)
_fromNonZeroage := __option.FromNonZero[int]()
_prismage := __prism.MakePrismWithName(
func(s PartialPerson) __option.Option[int] { return _fromNonZeroage(s.age) },
func(v int) PartialPerson {
return PartialPerson{ age: v }
},
"PartialPerson.age",
)
return PartialPersonPrisms {
name: _prismname,
age: _prismage,
}
}
// PersonLenses provides lenses for accessing fields of Person
type PersonLenses struct {
// mandatory fields
Name __lens.Lens[Person, NonEmptyString]
Age __lens.Lens[Person, AdultAge]
// optional fields
NameO __lens_option.LensO[Person, NonEmptyString]
AgeO __lens_option.LensO[Person, AdultAge]
}
// PersonRefLenses provides lenses for accessing fields of Person via a reference to Person
type PersonRefLenses struct {
// mandatory fields
Name __lens.Lens[*Person, NonEmptyString]
Age __lens.Lens[*Person, AdultAge]
// optional fields
NameO __lens_option.LensO[*Person, NonEmptyString]
AgeO __lens_option.LensO[*Person, AdultAge]
// prisms
NameP __prism.Prism[*Person, NonEmptyString]
AgeP __prism.Prism[*Person, AdultAge]
}
// PersonPrisms provides prisms for accessing fields of Person
type PersonPrisms struct {
Name __prism.Prism[Person, NonEmptyString]
Age __prism.Prism[Person, AdultAge]
}
// MakePersonLenses creates a new PersonLenses with lenses for all fields
func MakePersonLenses() PersonLenses {
// mandatory lenses
lensName := __lens.MakeLensWithName(
func(s Person) NonEmptyString { return s.Name },
func(s Person, v NonEmptyString) Person { s.Name = v; return s },
"Person.Name",
)
lensAge := __lens.MakeLensWithName(
func(s Person) AdultAge { return s.Age },
func(s Person, v AdultAge) Person { s.Age = v; return s },
"Person.Age",
)
// optional lenses
lensNameO := __lens_option.FromIso[Person](__iso_option.FromZero[NonEmptyString]())(lensName)
lensAgeO := __lens_option.FromIso[Person](__iso_option.FromZero[AdultAge]())(lensAge)
return PersonLenses{
// mandatory lenses
Name: lensName,
Age: lensAge,
// optional lenses
NameO: lensNameO,
AgeO: lensAgeO,
}
}
// MakePersonRefLenses creates a new PersonRefLenses with lenses for all fields
func MakePersonRefLenses() PersonRefLenses {
// mandatory lenses
lensName := __lens.MakeLensStrictWithName(
func(s *Person) NonEmptyString { return s.Name },
func(s *Person, v NonEmptyString) *Person { s.Name = v; return s },
"(*Person).Name",
)
lensAge := __lens.MakeLensStrictWithName(
func(s *Person) AdultAge { return s.Age },
func(s *Person, v AdultAge) *Person { s.Age = v; return s },
"(*Person).Age",
)
// optional lenses
lensNameO := __lens_option.FromIso[*Person](__iso_option.FromZero[NonEmptyString]())(lensName)
lensAgeO := __lens_option.FromIso[*Person](__iso_option.FromZero[AdultAge]())(lensAge)
return PersonRefLenses{
// mandatory lenses
Name: lensName,
Age: lensAge,
// optional lenses
NameO: lensNameO,
AgeO: lensAgeO,
}
}
// MakePersonPrisms creates a new PersonPrisms with prisms for all fields
func MakePersonPrisms() PersonPrisms {
_fromNonZeroName := __option.FromNonZero[NonEmptyString]()
_prismName := __prism.MakePrismWithName(
func(s Person) __option.Option[NonEmptyString] { return _fromNonZeroName(s.Name) },
func(v NonEmptyString) Person {
return Person{ Name: v }
},
"Person.Name",
)
_fromNonZeroAge := __option.FromNonZero[AdultAge]()
_prismAge := __prism.MakePrismWithName(
func(s Person) __option.Option[AdultAge] { return _fromNonZeroAge(s.Age) },
func(v AdultAge) Person {
return Person{ Age: v }
},
"Person.Age",
)
return PersonPrisms {
Name: _prismName,
Age: _prismAge,
}
}

112
v2/samples/builder/types.go Normal file
View File

@@ -0,0 +1,112 @@
// Package builder demonstrates the builder pattern using functional programming concepts
// from fp-go, including validation and transformation of data structures.
package builder
import (
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/optics/codec"
"github.com/IBM/fp-go/v2/optics/codec/validate"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readeroption"
"github.com/IBM/fp-go/v2/result"
)
//go:generate go run ../../main.go lens --dir . --filename gen_lens.go
type (
// Endomorphism represents a function from type A to type A.
// It is an alias for endomorphism.Endomorphism[A].
Endomorphism[A any] = endomorphism.Endomorphism[A]
// Result represents a computation that may succeed with a value of type A or fail with an error.
// It is an alias for result.Result[A].
Result[A any] = result.Result[A]
// Option represents an optional value of type A that may or may not be present.
// It is an alias for option.Option[A].
Option[A any] = option.Option[A]
// ReaderOption represents a computation that depends on an environment R and produces
// an optional value of type A. It is an alias for readeroption.ReaderOption[R, A].
ReaderOption[R, A any] = readeroption.ReaderOption[R, A]
// Reader represents a computation that depends on an environment R and produces
// a value of type A. It is an alias for reader.Reader[R, A].
Reader[R, A any] = reader.Reader[R, A]
// Prism represents an optic that focuses on a subset of values of type S that can be
// converted to type A. It provides bidirectional transformation with validation.
// It is an alias for prism.Prism[S, A].
Prism[S, A any] = prism.Prism[S, A]
// Lens represents an optic that focuses on a field of type A within a structure of type S.
// It provides getter and setter operations for immutable updates.
// It is an alias for lens.Lens[S, A].
Lens[S, A any] = lens.Lens[S, A]
// Type represents a codec that handles bidirectional transformation between types.
// A: The validated target type
// O: The output encoding type
// I: The input decoding type
// It is an alias for codec.Type[A, O, I].
Type[A, O, I any] = codec.Type[A, O, I]
// Validate represents a validation function that transforms input I into a validated result A.
// It returns a Validation that contains either the validated value or validation errors.
// It is an alias for validate.Validate[I, A].
Validate[I, A any] = validate.Validate[I, A]
// Validation represents the result of a validation operation.
// It contains either a validated value of type A (Right) or validation errors (Left).
// It is an alias for validation.Validation[A].
Validation[A any] = validation.Validation[A]
// Encode represents an encoding function that transforms a value of type A into type O.
// It is used in codecs for the reverse direction of validation.
// It is an alias for codec.Encode[A, O].
Encode[A, O any] = codec.Encode[A, O]
// NonEmptyString is a string type that represents a validated non-empty string.
// It is used to ensure that string fields contain meaningful data.
NonEmptyString string
// AdultAge is an unsigned integer type that represents a validated age
// that meets adult criteria (typically >= 18).
AdultAge uint
)
// PartialPerson represents a person record with unvalidated fields.
// This type is typically used as an intermediate representation before
// validation is applied to create a Person instance.
//
// The fp-go:Lens directive generates lens functions for accessing and
// modifying the fields of this struct in a functional way.
//
// fp-go:Lens
type PartialPerson struct {
// name is the person's name as a raw string, which may be empty or invalid.
name string
// age is the person's age as a raw integer, which may be negative or otherwise invalid.
age int
}
// Person represents a person record with validated fields.
// All fields in this type have been validated and are guaranteed to meet
// specific business rules (non-empty name, adult age).
//
// The fp-go:Lens directive generates lens functions for accessing and
// modifying the fields of this struct in a functional way.
//
// fp-go:Lens
type Person struct {
// Name is the person's validated name, guaranteed to be non-empty.
Name NonEmptyString
// Age is the person's validated age, guaranteed to meet adult criteria.
Age AdultAge
}

View File

@@ -107,7 +107,7 @@ func TestHeterogeneousHttpRequests(t *testing.T) {
// BenchmarkHeterogeneousHttpRequests shows how to execute multiple HTTP requests in parallel when
// the response structure of these requests is different. We use [R.TraverseTuple2] to account for the different types
func BenchmarkHeterogeneousHttpRequests(b *testing.B) {
for n := 0; n < b.N; n++ {
heterogeneousHTTPRequests()(context.Background())()
for b.Loop() {
heterogeneousHTTPRequests()(b.Context())()
}
}

View File

@@ -64,3 +64,9 @@ type WithGeneric[T any] struct {
Name string
Value T
}
// fp-go:Lens
type DataBuilder struct {
name string
value string
}

View File

@@ -21,6 +21,7 @@ import (
F "github.com/IBM/fp-go/v2/function"
L "github.com/IBM/fp-go/v2/optics/lens"
O "github.com/IBM/fp-go/v2/option"
S "github.com/IBM/fp-go/v2/string"
"github.com/stretchr/testify/assert"
)
@@ -341,3 +342,125 @@ func TestCompanyRefLensesOptionalIdempotent(t *testing.T) {
assert.Equal(t, &newWebsiteValue, differentWebsite.Website)
assert.Equal(t, &websiteValue, company.Website, "Original should be unchanged")
}
func TestDataBuilderLensWithUnexportedFields(t *testing.T) {
// Test that lenses can access and modify unexported fields
// This demonstrates that the lens generator now supports unexported fields
// Create a DataBuilder with unexported fields
builder := DataBuilder{
name: "initial-name",
value: "initial-value",
}
// Create lenses
lenses := MakeDataBuilderLenses()
// Test Get on unexported fields
assert.Equal(t, "initial-name", lenses.name.Get(builder))
assert.Equal(t, "initial-value", lenses.value.Get(builder))
// Test Set on unexported fields
updatedName := lenses.name.Set("updated-name")(builder)
assert.Equal(t, "updated-name", updatedName.name)
assert.Equal(t, "initial-value", updatedName.value) // Other field unchanged
assert.Equal(t, "initial-name", builder.name) // Original unchanged
updatedValue := lenses.value.Set("updated-value")(builder)
assert.Equal(t, "initial-name", updatedValue.name) // Other field unchanged
assert.Equal(t, "updated-value", updatedValue.value)
assert.Equal(t, "initial-value", builder.value) // Original unchanged
// Test Modify on unexported fields
modifyName := F.Pipe1(
lenses.name,
L.Modify[DataBuilder](S.Append("-modified")),
)
modified := modifyName(builder)
assert.Equal(t, "initial-name-modified", modified.name)
assert.Equal(t, "initial-name", builder.name) // Original unchanged
// Test composition of modifications
updatedBoth := F.Pipe2(
builder,
lenses.name.Set("new-name"),
lenses.value.Set("new-value"),
)
assert.Equal(t, "new-name", updatedBoth.name)
assert.Equal(t, "new-value", updatedBoth.value)
assert.Equal(t, "initial-name", builder.name) // Original unchanged
assert.Equal(t, "initial-value", builder.value) // Original unchanged
}
func TestDataBuilderRefLensesWithUnexportedFields(t *testing.T) {
// Test that ref lenses work with unexported fields and maintain idempotency
builder := &DataBuilder{
name: "test-name",
value: "test-value",
}
refLenses := MakeDataBuilderRefLenses()
// Test Get on unexported fields
assert.Equal(t, "test-name", refLenses.name.Get(builder))
assert.Equal(t, "test-value", refLenses.value.Get(builder))
// Test idempotency - setting same value should return same pointer
sameName := refLenses.name.Set("test-name")(builder)
assert.Same(t, builder, sameName, "Setting name to same value should return identical pointer")
sameValue := refLenses.value.Set("test-value")(builder)
assert.Same(t, builder, sameValue, "Setting value to same value should return identical pointer")
// Test that setting different value creates new pointer
differentName := refLenses.name.Set("different-name")(builder)
assert.NotSame(t, builder, differentName, "Setting name to different value should return new pointer")
assert.Equal(t, "different-name", differentName.name)
assert.Equal(t, "test-name", builder.name, "Original should be unchanged")
differentValue := refLenses.value.Set("different-value")(builder)
assert.NotSame(t, builder, differentValue, "Setting value to different value should return new pointer")
assert.Equal(t, "different-value", differentValue.value)
assert.Equal(t, "test-value", builder.value, "Original should be unchanged")
}
func TestDataBuilderOptionalLensesWithUnexportedFields(t *testing.T) {
// Test optional lenses (LensO) with unexported fields
builder := DataBuilder{
name: "test",
value: "data",
}
lenses := MakeDataBuilderLenses()
// Test getting non-zero values as Some
nameOpt := lenses.nameO.Get(builder)
assert.True(t, O.IsSome(nameOpt))
assert.Equal(t, "test", O.GetOrElse(F.Zero[string])(nameOpt))
valueOpt := lenses.valueO.Get(builder)
assert.True(t, O.IsSome(valueOpt))
assert.Equal(t, "data", O.GetOrElse(F.Zero[string])(valueOpt))
// Test setting to Some
updatedName := lenses.nameO.Set(O.Some("new-test"))(builder)
assert.Equal(t, "new-test", updatedName.name)
// Test setting to None (zero value for string is "")
clearedName := lenses.nameO.Set(O.None[string]())(builder)
assert.Equal(t, "", clearedName.name)
// Test with zero value
emptyBuilder := DataBuilder{
name: "",
value: "",
}
emptyNameOpt := lenses.nameO.Get(emptyBuilder)
assert.True(t, O.IsNone(emptyNameOpt), "Empty string should be None")
emptyValueOpt := lenses.valueO.Get(emptyBuilder)
assert.True(t, O.IsNone(emptyValueOpt), "Empty string should be None")
}

Some files were not shown because too many files have changed in this diff Show More