1
0
mirror of https://github.com/IBM/fp-go.git synced 2026-01-31 11:19:23 +02:00

Compare commits

..

21 Commits

Author SHA1 Message Date
Dr. Carsten Leue
d2da8a32b4 fix: improve docs
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-30 11:45:45 +01:00
Dr. Carsten Leue
7484af664b fix: add IOK to IORef
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-29 17:12:27 +01:00
Dr. Carsten Leue
ae38e3f8f4 fix: add IOK to IORef
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-29 17:07:12 +01:00
Dr. Carsten Leue
e0f854bda3 fix: executes_all_IO_operations
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-29 10:25:39 +01:00
Dr. Carsten Leue
34786c3cd8 fix: more tests and lens generation fix for prism
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-29 10:11:46 +01:00
Dr. Carsten Leue
a7aa7e3560 fix: better DI example
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-27 22:45:17 +01:00
Dr. Carsten Leue
ff2a4299b2 fix: add some useful lenses
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-27 17:39:34 +01:00
Dr. Carsten Leue
edd66d63e6 fix: more codec
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-27 14:51:35 +01:00
Dr. Carsten Leue
909aec8eba fix: better sequence iter
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-26 10:41:25 +01:00
Obed Tetteh
da0344f9bd feat(iterator): add Last function with Option return type (#155)
- Add Last function to retrieve the final element from an iterator,
  returning Some(element) for non-empty sequences and None for empty ones.
- Includes tests covering simple types and  complex types
- Add documentation including example code
2026-01-26 09:04:51 +01:00
Dr. Carsten Leue
cd79dd56b9 fix: simplify tests a bit
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 17:56:28 +01:00
Dr. Carsten Leue
df07599a9e fix: some docs
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 16:40:45 +01:00
Dr. Carsten Leue
30ad0e4dd8 doc: add validation docs
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 16:26:53 +01:00
Dr. Carsten Leue
2374d7f1e4 fix: support unexported fields for lenses
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 16:18:44 +01:00
Dr. Carsten Leue
eafc008798 fix: doc for lens generation
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 16:00:11 +01:00
Dr. Carsten Leue
46bf065e34 fix: migrate CLI to github.com/urfave/v3
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 12:56:23 +01:00
renovate[bot]
b4e303423b chore(deps): update actions/checkout action to v6.0.2 (#153)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2026-01-23 12:39:53 +01:00
renovate[bot]
7afc098f58 fix(deps): update go dependencies (major) (#144)
* fix(deps): update go dependencies

* fix: fix renovate config

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>

---------

Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
Co-authored-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 11:28:56 +01:00
Dr. Carsten Leue
617e43de19 fix: improve codec
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 11:12:40 +01:00
Dr. Carsten Leue
0f7a6c0589 fix: prism doc
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-22 13:57:07 +01:00
Dr. Carsten Leue
e7f78e1a33 fix: more codecs and cleanup of type hints
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-21 09:23:48 +01:00
197 changed files with 28307 additions and 924 deletions

View File

@@ -28,11 +28,11 @@ jobs:
fail-fast: false # Continue with other versions if one fails
steps:
# full checkout for semantic-release
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
- uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
uses: actions/setup-go@v5
uses: actions/setup-go@v6
with:
go-version: ${{ matrix.go-version }}
cache: true # Enable Go module caching
@@ -66,11 +66,11 @@ jobs:
matrix:
go-version: ['1.24.x', '1.25.x']
steps:
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
- uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
with:
fetch-depth: 0
- name: Set up Go ${{ matrix.go-version }}
uses: actions/setup-go@v5
uses: actions/setup-go@v6
with:
go-version: ${{ matrix.go-version }}
cache: true # Enable Go module caching
@@ -126,17 +126,17 @@ jobs:
steps:
# full checkout for semantic-release
- name: Full checkout
uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 # v4.3.1
uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
with:
fetch-depth: 0
- name: Set up Node.js ${{ env.NODE_VERSION }}
uses: actions/setup-node@49933ea5288caeca8642d1e84afbd3f7d6820020 # v4.4.0
uses: actions/setup-node@6044e13b5dc448c55e2357c09f80417699197238 # v6.2.0
with:
node-version: ${{ env.NODE_VERSION }}
- name: Set up Go
uses: actions/setup-go@v5
uses: actions/setup-go@v6
with:
go-version: ${{ env.LATEST_GO_VERSION }}
cache: true # Enable Go module caching

16
go.sum
View File

@@ -1,7 +1,3 @@
github.com/cpuguy83/go-md2man/v2 v2.0.4 h1:wfIWP927BUkWJb2NmU/kNDYIBTh/ziUX91+lVfRxZq4=
github.com/cpuguy83/go-md2man/v2 v2.0.4/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/cpuguy83/go-md2man/v2 v2.0.5 h1:ZtcqGrnekaHpVLArFSe4HK5DoKx1T0rq2DwVB0alcyc=
github.com/cpuguy83/go-md2man/v2 v2.0.5/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/cpuguy83/go-md2man/v2 v2.0.7 h1:zbFlGlXEAKlwXpmvle3d8Oe3YnkKIK4xSRTd3sHPnBo=
github.com/cpuguy83/go-md2man/v2 v2.0.7/go.mod h1:oOW0eioCTA6cOiMLiUPZOpcVxMig6NIQQ7OS05n1F4g=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
@@ -10,20 +6,8 @@ github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZb
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/russross/blackfriday/v2 v2.1.0 h1:JIOH55/0cWyOuilr9/qlrm0BSXldqnqwMsf35Ld67mk=
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/stretchr/testify v1.9.0 h1:HtqpIVDClZ4nwg75+f6Lvsy/wHu+3BoSGCbBAcpTsTg=
github.com/stretchr/testify v1.9.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
github.com/stretchr/testify v1.10.0 h1:Xv5erBjTwe/5IxqUQTdXv5kgmIvbHo3QQyRwhJsOfJA=
github.com/stretchr/testify v1.10.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
github.com/stretchr/testify v1.11.0 h1:ib4sjIrwZKxE5u/Japgo/7SJV3PvgjGiRNAvTVGqQl8=
github.com/stretchr/testify v1.11.0/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
github.com/stretchr/testify v1.11.1 h1:7s2iGBzp5EwR7/aIZr8ao5+dra3wiQyKjjFuvgVKu7U=
github.com/stretchr/testify v1.11.1/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
github.com/urfave/cli/v2 v2.27.4 h1:o1owoI+02Eb+K107p27wEX9Bb8eqIoZCfLXloLUSWJ8=
github.com/urfave/cli/v2 v2.27.4/go.mod h1:m4QzxcD2qpra4z7WhzEGn74WZLViBnMpb1ToCAKdGRQ=
github.com/urfave/cli/v2 v2.27.5 h1:WoHEJLdsXr6dDWoJgMq/CboDmyY/8HMMH1fTECbih+w=
github.com/urfave/cli/v2 v2.27.5/go.mod h1:3Sevf16NykTbInEnD0yKkjDAeZDS0A6bzhBH5hrMvTQ=
github.com/urfave/cli/v2 v2.27.6 h1:VdRdS98FNhKZ8/Az8B7MTyGQmpIr36O1EHybx/LaZ4g=
github.com/urfave/cli/v2 v2.27.6/go.mod h1:3Sevf16NykTbInEnD0yKkjDAeZDS0A6bzhBH5hrMvTQ=
github.com/urfave/cli/v2 v2.27.7 h1:bH59vdhbjLv3LAvIu6gd0usJHgoTTPhCFib8qqOwXYU=
github.com/urfave/cli/v2 v2.27.7/go.mod h1:CyNAG/xg+iAOg0N4MPGZqVmv2rCoP267496AOXUZjA4=
github.com/xrash/smetrics v0.0.0-20240521201337-686a1a2994c1 h1:gEOO8jv9F4OT7lGCjxCBTO/36wtF6j2nSip77qHd4x4=

View File

@@ -22,7 +22,8 @@
"matchDepTypes": [
"golang"
],
"enabled": false
"enabled": false,
"description": "Disable updates to the go directive in go.mod files - the directive identifies the minimum compatible Go version and should stay as small as possible for maximum compatibility"
},
{
"matchUpdateTypes": [

View File

@@ -465,7 +465,7 @@ func process() IOResult[string] {
- **ReaderIOResult** - Combine Reader, IO, and Result for complex workflows
- **Array** - Functional array operations
- **Record** - Functional record/map operations
- **Optics** - Lens, Prism, Optional, and Traversal for immutable updates
- **[Optics](./optics/README.md)** - Lens, Prism, Optional, and Traversal for immutable updates
#### Idiomatic Packages (Tuple-based, High Performance)
- **idiomatic/option** - Option monad using native Go `(value, bool)` tuples

View File

@@ -190,6 +190,11 @@ func MonadReduce[A, B any](fa []A, f func(B, A) B, initial B) B {
return G.MonadReduce(fa, f, initial)
}
//go:inline
func MonadReduceWithIndex[A, B any](fa []A, f func(int, B, A) B, initial B) B {
return G.MonadReduceWithIndex(fa, f, initial)
}
// Reduce folds an array from left to right, applying a function to accumulate a result.
//
// Example:
@@ -234,6 +239,16 @@ func ReduceRef[A, B any](f func(B, *A) B, initial B) func([]A) B {
}
// Append adds an element to the end of an array, returning a new array.
// This is a non-curried version that takes both the array and element as parameters.
//
// Example:
//
// arr := []int{1, 2, 3}
// result := array.Append(arr, 4)
// // result: []int{1, 2, 3, 4}
// // arr: []int{1, 2, 3} (unchanged)
//
// For a curried version, see Push.
//
//go:inline
func Append[A any](as []A, a A) []A {

View File

@@ -16,308 +16,88 @@
package array
import (
"fmt"
"testing"
N "github.com/IBM/fp-go/v2/number"
O "github.com/IBM/fp-go/v2/option"
S "github.com/IBM/fp-go/v2/string"
"github.com/stretchr/testify/assert"
)
func TestReplicate(t *testing.T) {
result := Replicate(3, "a")
assert.Equal(t, []string{"a", "a", "a"}, result)
empty := Replicate(0, 42)
assert.Equal(t, []int{}, empty)
}
func TestMonadMap(t *testing.T) {
src := []int{1, 2, 3}
result := MonadMap(src, N.Mul(2))
assert.Equal(t, []int{2, 4, 6}, result)
}
func TestMonadMapRef(t *testing.T) {
src := []int{1, 2, 3}
result := MonadMapRef(src, func(x *int) int { return *x * 2 })
assert.Equal(t, []int{2, 4, 6}, result)
}
func TestMapWithIndex(t *testing.T) {
src := []string{"a", "b", "c"}
mapper := MapWithIndex(func(i int, s string) string {
return fmt.Sprintf("%d:%s", i, s)
})
result := mapper(src)
assert.Equal(t, []string{"0:a", "1:b", "2:c"}, result)
}
func TestMapRef(t *testing.T) {
src := []int{1, 2, 3}
mapper := MapRef(func(x *int) int { return *x * 2 })
result := mapper(src)
assert.Equal(t, []int{2, 4, 6}, result)
}
func TestFilterWithIndex(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
filter := FilterWithIndex(func(i, x int) bool {
return i%2 == 0 && x > 2
})
result := filter(src)
assert.Equal(t, []int{3, 5}, result)
}
func TestFilterRef(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
filter := FilterRef(func(x *int) bool { return *x > 2 })
result := filter(src)
assert.Equal(t, []int{3, 4, 5}, result)
}
func TestMonadFilterMap(t *testing.T) {
src := []int{1, 2, 3, 4}
result := MonadFilterMap(src, func(x int) O.Option[string] {
if x%2 == 0 {
return O.Some(fmt.Sprintf("even:%d", x))
}
return O.None[string]()
})
assert.Equal(t, []string{"even:2", "even:4"}, result)
}
func TestMonadFilterMapWithIndex(t *testing.T) {
src := []int{1, 2, 3, 4}
result := MonadFilterMapWithIndex(src, func(i, x int) O.Option[string] {
if i%2 == 0 {
return O.Some(fmt.Sprintf("%d:%d", i, x))
}
return O.None[string]()
})
assert.Equal(t, []string{"0:1", "2:3"}, result)
}
func TestFilterMapWithIndex(t *testing.T) {
src := []int{1, 2, 3, 4}
filter := FilterMapWithIndex(func(i, x int) O.Option[string] {
if i%2 == 0 {
return O.Some(fmt.Sprintf("%d:%d", i, x))
}
return O.None[string]()
})
result := filter(src)
assert.Equal(t, []string{"0:1", "2:3"}, result)
}
func TestFilterMapRef(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
filter := FilterMapRef(
func(x *int) bool { return *x > 2 },
func(x *int) string { return fmt.Sprintf("val:%d", *x) },
)
result := filter(src)
assert.Equal(t, []string{"val:3", "val:4", "val:5"}, result)
}
func TestReduceWithIndex(t *testing.T) {
src := []int{1, 2, 3}
reducer := ReduceWithIndex(func(i, acc, x int) int {
return acc + i + x
// TestMonadReduceWithIndex tests the MonadReduceWithIndex function
func TestMonadReduceWithIndex(t *testing.T) {
// Test with integers - sum with index multiplication
numbers := []int{1, 2, 3, 4, 5}
result := MonadReduceWithIndex(numbers, func(idx, acc, val int) int {
return acc + (val * idx)
}, 0)
result := reducer(src)
assert.Equal(t, 9, result) // 0 + (0+1) + (1+2) + (2+3) = 9
}
// Expected: 0*1 + 1*2 + 2*3 + 3*4 + 4*5 = 0 + 2 + 6 + 12 + 20 = 40
assert.Equal(t, 40, result)
func TestReduceRightWithIndex(t *testing.T) {
src := []string{"a", "b", "c"}
reducer := ReduceRightWithIndex(func(i int, x, acc string) string {
return fmt.Sprintf("%s%d:%s", acc, i, x)
// Test with empty array
empty := []int{}
result2 := MonadReduceWithIndex(empty, func(idx, acc, val int) int {
return acc + val
}, 10)
assert.Equal(t, 10, result2)
// Test with strings - concatenate with index
words := []string{"a", "b", "c"}
result3 := MonadReduceWithIndex(words, func(idx int, acc, val string) string {
return acc + val + string(rune('0'+idx))
}, "")
result := reducer(src)
assert.Equal(t, "2:c1:b0:a", result)
assert.Equal(t, "a0b1c2", result3)
}
func TestReduceRef(t *testing.T) {
src := []int{1, 2, 3}
reducer := ReduceRef(func(acc int, x *int) int {
return acc + *x
}, 0)
result := reducer(src)
assert.Equal(t, 6, result)
}
func TestZero(t *testing.T) {
result := Zero[int]()
assert.Equal(t, []int{}, result)
assert.True(t, IsEmpty(result))
}
func TestMonadChain(t *testing.T) {
src := []int{1, 2, 3}
result := MonadChain(src, func(x int) []int {
return []int{x, x * 10}
})
assert.Equal(t, []int{1, 10, 2, 20, 3, 30}, result)
}
func TestChain(t *testing.T) {
src := []int{1, 2, 3}
chain := Chain(func(x int) []int {
return []int{x, x * 10}
})
result := chain(src)
assert.Equal(t, []int{1, 10, 2, 20, 3, 30}, result)
}
func TestMonadAp(t *testing.T) {
fns := []func(int) int{
N.Mul(2),
N.Add(10),
}
values := []int{1, 2}
result := MonadAp(fns, values)
assert.Equal(t, []int{2, 4, 11, 12}, result)
}
func TestMatchLeft(t *testing.T) {
matcher := MatchLeft(
func() string { return "empty" },
func(head int, tail []int) string {
return fmt.Sprintf("head:%d,tail:%v", head, tail)
},
)
assert.Equal(t, "empty", matcher([]int{}))
assert.Equal(t, "head:1,tail:[2 3]", matcher([]int{1, 2, 3}))
}
func TestTail(t *testing.T) {
assert.Equal(t, O.None[[]int](), Tail([]int{}))
assert.Equal(t, O.Some([]int{2, 3}), Tail([]int{1, 2, 3}))
assert.Equal(t, O.Some([]int{}), Tail([]int{1}))
}
func TestFirst(t *testing.T) {
assert.Equal(t, O.None[int](), First([]int{}))
assert.Equal(t, O.Some(1), First([]int{1, 2, 3}))
}
func TestLast(t *testing.T) {
assert.Equal(t, O.None[int](), Last([]int{}))
assert.Equal(t, O.Some(3), Last([]int{1, 2, 3}))
assert.Equal(t, O.Some(1), Last([]int{1}))
}
func TestUpsertAt(t *testing.T) {
src := []int{1, 2, 3}
upsert := UpsertAt(99)
result1 := upsert(src)
assert.Equal(t, []int{1, 2, 3, 99}, result1)
}
func TestSize(t *testing.T) {
assert.Equal(t, 0, Size([]int{}))
assert.Equal(t, 3, Size([]int{1, 2, 3}))
}
func TestMonadPartition(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
result := MonadPartition(src, func(x int) bool { return x > 2 })
assert.Equal(t, []int{1, 2}, result.F1)
assert.Equal(t, []int{3, 4, 5}, result.F2)
}
func TestIsNil(t *testing.T) {
var nilSlice []int
assert.True(t, IsNil(nilSlice))
assert.False(t, IsNil([]int{}))
assert.False(t, IsNil([]int{1}))
}
func TestIsNonNil(t *testing.T) {
var nilSlice []int
assert.False(t, IsNonNil(nilSlice))
assert.True(t, IsNonNil([]int{}))
assert.True(t, IsNonNil([]int{1}))
}
func TestConstNil(t *testing.T) {
result := ConstNil[int]()
assert.True(t, IsNil(result))
}
func TestSliceRight(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
slicer := SliceRight[int](2)
result := slicer(src)
assert.Equal(t, []int{3, 4, 5}, result)
}
func TestCopy(t *testing.T) {
src := []int{1, 2, 3}
copied := Copy(src)
assert.Equal(t, src, copied)
// Verify it's a different slice
copied[0] = 99
assert.Equal(t, 1, src[0])
assert.Equal(t, 99, copied[0])
}
func TestClone(t *testing.T) {
src := []int{1, 2, 3}
cloner := Clone(N.Mul(2))
result := cloner(src)
assert.Equal(t, []int{2, 4, 6}, result)
}
func TestFoldMapWithIndex(t *testing.T) {
src := []string{"a", "b", "c"}
folder := FoldMapWithIndex[string](S.Monoid)(func(i int, s string) string {
return fmt.Sprintf("%d:%s", i, s)
})
result := folder(src)
assert.Equal(t, "0:a1:b2:c", result)
}
func TestFold(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
folder := Fold(N.MonoidSum[int]())
result := folder(src)
assert.Equal(t, 15, result)
}
func TestPush(t *testing.T) {
src := []int{1, 2, 3}
pusher := Push(4)
result := pusher(src)
// TestAppend tests the Append function
func TestAppend(t *testing.T) {
// Test appending to non-empty array
arr := []int{1, 2, 3}
result := Append(arr, 4)
assert.Equal(t, []int{1, 2, 3, 4}, result)
// Verify original array is unchanged
assert.Equal(t, []int{1, 2, 3}, arr)
// Test appending to empty array
empty := []int{}
result2 := Append(empty, 1)
assert.Equal(t, []int{1}, result2)
// Test appending strings
words := []string{"hello", "world"}
result3 := Append(words, "!")
assert.Equal(t, []string{"hello", "world", "!"}, result3)
// Test appending to nil array
var nilArr []int
result4 := Append(nilArr, 42)
assert.Equal(t, []int{42}, result4)
}
func TestMonadFlap(t *testing.T) {
fns := []func(int) string{
func(x int) string { return fmt.Sprintf("a%d", x) },
func(x int) string { return fmt.Sprintf("b%d", x) },
}
result := MonadFlap(fns, 5)
assert.Equal(t, []string{"a5", "b5"}, result)
}
// TestStrictEquals tests the StrictEquals function
func TestStrictEquals(t *testing.T) {
eq := StrictEquals[int]()
func TestFlap(t *testing.T) {
fns := []func(int) string{
func(x int) string { return fmt.Sprintf("a%d", x) },
func(x int) string { return fmt.Sprintf("b%d", x) },
}
flapper := Flap[string](5)
result := flapper(fns)
assert.Equal(t, []string{"a5", "b5"}, result)
}
// Test equal arrays
arr1 := []int{1, 2, 3}
arr2 := []int{1, 2, 3}
assert.True(t, eq.Equals(arr1, arr2))
func TestPrepend(t *testing.T) {
src := []int{2, 3, 4}
prepender := Prepend(1)
result := prepender(src)
assert.Equal(t, []int{1, 2, 3, 4}, result)
// Test different arrays
arr3 := []int{1, 2, 4}
assert.False(t, eq.Equals(arr1, arr3))
// Test different lengths
arr4 := []int{1, 2}
assert.False(t, eq.Equals(arr1, arr4))
// Test empty arrays
empty1 := []int{}
empty2 := []int{}
assert.True(t, eq.Equals(empty1, empty2))
// Test with strings
strEq := StrictEquals[string]()
words1 := []string{"hello", "world"}
words2 := []string{"hello", "world"}
words3 := []string{"hello", "there"}
assert.True(t, strEq.Equals(words1, words2))
assert.False(t, strEq.Equals(words1, words3))
}

View File

@@ -63,17 +63,26 @@ func Bind[S1, S2, T any](
// Let attaches the result of a pure computation to a context S1 to produce a context S2.
// Unlike Bind, the computation function returns a plain value T rather than []T.
// This is useful when you need to compute a derived value from the current context
// without introducing additional array elements.
//
// Example:
//
// result := array.Let(
// func(sum int) func(s struct{ X int }) struct{ X, Sum int } {
// return func(s struct{ X int }) struct{ X, Sum int } {
// return struct{ X, Sum int }{s.X, sum}
// }
// },
// func(s struct{ X int }) int { return s.X * 2 },
// type State1 struct{ X int }
// type State2 struct{ X, Double int }
//
// result := F.Pipe2(
// []State1{{X: 5}, {X: 10}},
// array.Let(
// func(double int) func(s State1) State2 {
// return func(s State1) State2 {
// return State2{X: s.X, Double: double}
// }
// },
// func(s State1) int { return s.X * 2 },
// ),
// )
// // result: []State2{{X: 5, Double: 10}, {X: 10, Double: 20}}
//
//go:inline
func Let[S1, S2, T any](
@@ -84,18 +93,25 @@ func Let[S1, S2, T any](
}
// LetTo attaches a constant value to a context S1 to produce a context S2.
// This is useful for adding constant values to the context.
// This is useful for adding constant values to the context without computation.
//
// Example:
//
// result := array.LetTo(
// func(name string) func(s struct{ X int }) struct{ X int; Name string } {
// return func(s struct{ X int }) struct{ X int; Name string } {
// return struct{ X int; Name string }{s.X, name}
// }
// },
// "constant",
// type State1 struct{ X int }
// type State2 struct{ X int; Name string }
//
// result := F.Pipe2(
// []State1{{X: 1}, {X: 2}},
// array.LetTo(
// func(name string) func(s State1) State2 {
// return func(s State1) State2 {
// return State2{X: s.X, Name: name}
// }
// },
// "constant",
// ),
// )
// // result: []State2{{X: 1, Name: "constant"}, {X: 2, Name: "constant"}}
//
//go:inline
func LetTo[S1, S2, T any](
@@ -107,15 +123,19 @@ func LetTo[S1, S2, T any](
// BindTo initializes a new state S1 from a value T.
// This is typically the first operation after Do to start building the context.
// It transforms each element of type T into a state of type S1.
//
// Example:
//
// type State struct{ X int }
//
// result := F.Pipe2(
// []int{1, 2, 3},
// array.BindTo(func(x int) struct{ X int } {
// return struct{ X int }{x}
// array.BindTo(func(x int) State {
// return State{X: x}
// }),
// )
// // result: []State{{X: 1}, {X: 2}, {X: 3}}
//
//go:inline
func BindTo[S1, T any](

View File

@@ -22,57 +22,176 @@ import (
"github.com/stretchr/testify/assert"
)
type TestState1 struct {
X int
}
type TestState2 struct {
X int
Y int
}
// TestLet tests the Let function
func TestLet(t *testing.T) {
result := F.Pipe2(
Do(TestState1{}),
type State1 struct {
X int
}
type State2 struct {
X int
Double int
}
// Test Let with pure computation
result := F.Pipe1(
[]State1{{X: 5}, {X: 10}},
Let(
func(y int) func(s TestState1) TestState2 {
return func(s TestState1) TestState2 {
return TestState2{X: s.X, Y: y}
func(double int) func(s State1) State2 {
return func(s State1) State2 {
return State2{X: s.X, Double: double}
}
},
func(s TestState1) int { return s.X * 2 },
func(s State1) int { return s.X * 2 },
),
Map(func(s TestState2) int { return s.X + s.Y }),
)
assert.Equal(t, []int{0}, result)
expected := []State2{{X: 5, Double: 10}, {X: 10, Double: 20}}
assert.Equal(t, expected, result)
// Test Let with empty array
empty := []State1{}
result2 := F.Pipe1(
empty,
Let(
func(double int) func(s State1) State2 {
return func(s State1) State2 {
return State2{X: s.X, Double: double}
}
},
func(s State1) int { return s.X * 2 },
),
)
assert.Equal(t, []State2{}, result2)
}
// TestLetTo tests the LetTo function
func TestLetTo(t *testing.T) {
result := F.Pipe2(
Do(TestState1{X: 5}),
type State1 struct {
X int
}
type State2 struct {
X int
Name string
}
// Test LetTo with constant value
result := F.Pipe1(
[]State1{{X: 1}, {X: 2}},
LetTo(
func(y int) func(s TestState1) TestState2 {
return func(s TestState1) TestState2 {
return TestState2{X: s.X, Y: y}
func(name string) func(s State1) State2 {
return func(s State1) State2 {
return State2{X: s.X, Name: name}
}
},
42,
"constant",
),
Map(func(s TestState2) int { return s.X + s.Y }),
)
assert.Equal(t, []int{47}, result)
expected := []State2{{X: 1, Name: "constant"}, {X: 2, Name: "constant"}}
assert.Equal(t, expected, result)
// Test LetTo with different constant
result2 := F.Pipe1(
[]State1{{X: 10}},
LetTo(
func(name string) func(s State1) State2 {
return func(s State1) State2 {
return State2{X: s.X, Name: name}
}
},
"test",
),
)
expected2 := []State2{{X: 10, Name: "test"}}
assert.Equal(t, expected2, result2)
}
// TestBindTo tests the BindTo function
func TestBindTo(t *testing.T) {
type State struct {
X int
}
// Test BindTo with integers
result := F.Pipe1(
[]int{1, 2, 3},
BindTo(func(x int) TestState1 {
return TestState1{X: x}
BindTo(func(x int) State {
return State{X: x}
}),
)
expected := []TestState1{{X: 1}, {X: 2}, {X: 3}}
expected := []State{{X: 1}, {X: 2}, {X: 3}}
assert.Equal(t, expected, result)
// Test BindTo with strings
type StringState struct {
Value string
}
result2 := F.Pipe1(
[]string{"hello", "world"},
BindTo(func(s string) StringState {
return StringState{Value: s}
}),
)
expected2 := []StringState{{Value: "hello"}, {Value: "world"}}
assert.Equal(t, expected2, result2)
// Test BindTo with empty array
empty := []int{}
result3 := F.Pipe1(
empty,
BindTo(func(x int) State {
return State{X: x}
}),
)
assert.Equal(t, []State{}, result3)
}
// TestDoWithLetAndBindTo tests combining Do, Let, LetTo, and BindTo
func TestDoWithLetAndBindTo(t *testing.T) {
type State1 struct {
X int
}
type State2 struct {
X int
Double int
}
type State3 struct {
X int
Double int
Name string
}
// Test complex pipeline
result := F.Pipe3(
[]int{5, 10},
BindTo(func(x int) State1 {
return State1{X: x}
}),
Let(
func(double int) func(s State1) State2 {
return func(s State1) State2 {
return State2{X: s.X, Double: double}
}
},
func(s State1) int { return s.X * 2 },
),
LetTo(
func(name string) func(s State2) State3 {
return func(s State2) State3 {
return State3{X: s.X, Double: s.Double, Name: name}
}
},
"result",
),
)
expected := []State3{
{X: 5, Double: 10, Name: "result"},
{X: 10, Double: 20, Name: "result"},
}
assert.Equal(t, expected, result)
}

137
v2/array/coverage.out Normal file
View File

@@ -0,0 +1,137 @@
mode: set
github.com/IBM/fp-go/v2/array/any.go:34.65,36.2 1 1
github.com/IBM/fp-go/v2/array/any.go:48.51,50.2 1 1
github.com/IBM/fp-go/v2/array/array.go:30.33,32.2 1 1
github.com/IBM/fp-go/v2/array/array.go:37.52,39.2 1 1
github.com/IBM/fp-go/v2/array/array.go:44.39,46.2 1 0
github.com/IBM/fp-go/v2/array/array.go:52.50,54.2 1 0
github.com/IBM/fp-go/v2/array/array.go:58.54,61.23 3 0
github.com/IBM/fp-go/v2/array/array.go:61.23,63.3 1 0
github.com/IBM/fp-go/v2/array/array.go:64.2,64.11 1 0
github.com/IBM/fp-go/v2/array/array.go:70.62,72.2 1 0
github.com/IBM/fp-go/v2/array/array.go:83.48,85.2 1 1
github.com/IBM/fp-go/v2/array/array.go:89.52,91.2 1 0
github.com/IBM/fp-go/v2/array/array.go:93.55,96.23 3 0
github.com/IBM/fp-go/v2/array/array.go:96.23,98.14 2 0
github.com/IBM/fp-go/v2/array/array.go:98.14,100.4 1 0
github.com/IBM/fp-go/v2/array/array.go:102.2,102.15 1 0
github.com/IBM/fp-go/v2/array/array.go:105.75,108.23 3 0
github.com/IBM/fp-go/v2/array/array.go:108.23,110.14 2 0
github.com/IBM/fp-go/v2/array/array.go:110.14,112.4 1 0
github.com/IBM/fp-go/v2/array/array.go:114.2,114.15 1 0
github.com/IBM/fp-go/v2/array/array.go:120.54,122.2 1 1
github.com/IBM/fp-go/v2/array/array.go:127.68,129.2 1 0
github.com/IBM/fp-go/v2/array/array.go:132.58,134.2 1 0
github.com/IBM/fp-go/v2/array/array.go:140.67,142.2 1 0
github.com/IBM/fp-go/v2/array/array.go:148.78,150.2 1 0
github.com/IBM/fp-go/v2/array/array.go:155.65,157.2 1 1
github.com/IBM/fp-go/v2/array/array.go:162.76,164.2 1 0
github.com/IBM/fp-go/v2/array/array.go:169.69,171.2 1 1
github.com/IBM/fp-go/v2/array/array.go:174.80,175.26 1 0
github.com/IBM/fp-go/v2/array/array.go:175.26,177.3 1 0
github.com/IBM/fp-go/v2/array/array.go:180.64,182.25 2 0
github.com/IBM/fp-go/v2/array/array.go:182.25,184.3 1 0
github.com/IBM/fp-go/v2/array/array.go:185.2,185.16 1 0
github.com/IBM/fp-go/v2/array/array.go:189.65,191.2 1 1
github.com/IBM/fp-go/v2/array/array.go:194.79,196.2 1 1
github.com/IBM/fp-go/v2/array/array.go:206.62,208.2 1 1
github.com/IBM/fp-go/v2/array/array.go:214.76,216.2 1 0
github.com/IBM/fp-go/v2/array/array.go:221.67,223.2 1 1
github.com/IBM/fp-go/v2/array/array.go:229.81,231.2 1 0
github.com/IBM/fp-go/v2/array/array.go:235.66,236.24 1 0
github.com/IBM/fp-go/v2/array/array.go:236.24,238.3 1 0
github.com/IBM/fp-go/v2/array/array.go:254.37,256.2 1 1
github.com/IBM/fp-go/v2/array/array.go:261.34,263.2 1 1
github.com/IBM/fp-go/v2/array/array.go:266.37,268.2 1 1
github.com/IBM/fp-go/v2/array/array.go:273.25,275.2 1 1
github.com/IBM/fp-go/v2/array/array.go:280.24,282.2 1 0
github.com/IBM/fp-go/v2/array/array.go:287.25,289.2 1 1
github.com/IBM/fp-go/v2/array/array.go:295.56,297.2 1 0
github.com/IBM/fp-go/v2/array/array.go:308.54,310.2 1 1
github.com/IBM/fp-go/v2/array/array.go:316.53,318.2 1 0
github.com/IBM/fp-go/v2/array/array.go:324.50,326.2 1 1
github.com/IBM/fp-go/v2/array/array.go:331.76,333.2 1 1
github.com/IBM/fp-go/v2/array/array.go:338.83,340.2 1 0
github.com/IBM/fp-go/v2/array/array.go:346.38,348.2 1 0
github.com/IBM/fp-go/v2/array/array.go:354.36,356.2 1 1
github.com/IBM/fp-go/v2/array/array.go:362.37,364.2 1 0
github.com/IBM/fp-go/v2/array/array.go:370.36,372.2 1 0
github.com/IBM/fp-go/v2/array/array.go:375.49,376.26 1 1
github.com/IBM/fp-go/v2/array/array.go:376.26,380.35 4 1
github.com/IBM/fp-go/v2/array/array.go:380.35,385.4 4 1
github.com/IBM/fp-go/v2/array/array.go:386.3,386.16 1 1
github.com/IBM/fp-go/v2/array/array.go:395.50,397.26 2 1
github.com/IBM/fp-go/v2/array/array.go:397.26,398.18 1 1
github.com/IBM/fp-go/v2/array/array.go:398.18,400.4 1 1
github.com/IBM/fp-go/v2/array/array.go:401.3,401.25 1 1
github.com/IBM/fp-go/v2/array/array.go:406.60,407.36 1 1
github.com/IBM/fp-go/v2/array/array.go:407.36,409.3 1 1
github.com/IBM/fp-go/v2/array/array.go:419.36,421.2 1 1
github.com/IBM/fp-go/v2/array/array.go:424.49,426.2 1 1
github.com/IBM/fp-go/v2/array/array.go:432.49,434.2 1 1
github.com/IBM/fp-go/v2/array/array.go:440.42,442.2 1 0
github.com/IBM/fp-go/v2/array/array.go:447.30,449.2 1 1
github.com/IBM/fp-go/v2/array/array.go:456.78,458.2 1 0
github.com/IBM/fp-go/v2/array/array.go:464.75,466.2 1 1
github.com/IBM/fp-go/v2/array/array.go:469.32,471.2 1 0
github.com/IBM/fp-go/v2/array/array.go:474.35,476.2 1 0
github.com/IBM/fp-go/v2/array/array.go:479.28,481.2 1 0
github.com/IBM/fp-go/v2/array/array.go:486.50,488.2 1 0
github.com/IBM/fp-go/v2/array/array.go:493.29,495.2 1 0
github.com/IBM/fp-go/v2/array/array.go:500.47,502.2 1 0
github.com/IBM/fp-go/v2/array/array.go:507.67,509.2 1 1
github.com/IBM/fp-go/v2/array/array.go:514.81,516.2 1 0
github.com/IBM/fp-go/v2/array/array.go:521.45,523.2 1 0
github.com/IBM/fp-go/v2/array/array.go:528.38,530.2 1 0
github.com/IBM/fp-go/v2/array/array.go:605.43,607.2 1 1
github.com/IBM/fp-go/v2/array/array.go:613.52,615.2 1 0
github.com/IBM/fp-go/v2/array/array.go:621.49,623.2 1 0
github.com/IBM/fp-go/v2/array/array.go:628.44,630.2 1 0
github.com/IBM/fp-go/v2/array/array.go:714.33,716.2 1 1
github.com/IBM/fp-go/v2/array/array.go:780.53,781.26 1 1
github.com/IBM/fp-go/v2/array/array.go:781.26,782.47 1 1
github.com/IBM/fp-go/v2/array/array.go:782.47,782.67 1 1
github.com/IBM/fp-go/v2/array/array.go:839.31,841.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:36.7,38.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:60.20,62.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:91.20,93.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:120.20,122.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:143.19,145.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:166.20,168.2 1 1
github.com/IBM/fp-go/v2/array/eq.go:35.37,37.49 2 1
github.com/IBM/fp-go/v2/array/eq.go:37.49,39.3 1 1
github.com/IBM/fp-go/v2/array/eq.go:43.45,45.2 1 1
github.com/IBM/fp-go/v2/array/find.go:33.65,35.2 1 1
github.com/IBM/fp-go/v2/array/find.go:48.79,50.2 1 1
github.com/IBM/fp-go/v2/array/find.go:68.78,70.2 1 1
github.com/IBM/fp-go/v2/array/find.go:76.89,78.2 1 1
github.com/IBM/fp-go/v2/array/find.go:89.64,91.2 1 1
github.com/IBM/fp-go/v2/array/find.go:97.78,99.2 1 1
github.com/IBM/fp-go/v2/array/find.go:105.77,107.2 1 1
github.com/IBM/fp-go/v2/array/find.go:113.88,115.2 1 1
github.com/IBM/fp-go/v2/array/magma.go:38.50,40.2 1 1
github.com/IBM/fp-go/v2/array/monad.go:39.65,41.2 1 1
github.com/IBM/fp-go/v2/array/monoid.go:35.36,37.2 1 1
github.com/IBM/fp-go/v2/array/monoid.go:48.42,50.2 1 1
github.com/IBM/fp-go/v2/array/monoid.go:52.45,54.2 1 1
github.com/IBM/fp-go/v2/array/monoid.go:68.45,73.48 3 1
github.com/IBM/fp-go/v2/array/monoid.go:73.48,75.3 1 1
github.com/IBM/fp-go/v2/array/monoid.go:77.2,77.12 1 1
github.com/IBM/fp-go/v2/array/sequence.go:27.19,29.2 1 1
github.com/IBM/fp-go/v2/array/sequence.go:69.22,71.2 1 1
github.com/IBM/fp-go/v2/array/sequence.go:92.53,98.2 1 1
github.com/IBM/fp-go/v2/array/sort.go:35.47,37.2 1 1
github.com/IBM/fp-go/v2/array/sort.go:65.68,67.2 1 1
github.com/IBM/fp-go/v2/array/sort.go:96.51,98.2 1 1
github.com/IBM/fp-go/v2/array/traverse.go:66.34,68.2 1 1
github.com/IBM/fp-go/v2/array/traverse.go:83.24,86.2 1 1
github.com/IBM/fp-go/v2/array/traverse.go:94.39,96.2 1 1
github.com/IBM/fp-go/v2/array/traverse.go:105.29,108.2 1 1
github.com/IBM/fp-go/v2/array/traverse.go:110.142,117.46 1 1
github.com/IBM/fp-go/v2/array/traverse.go:117.46,118.54 1 1
github.com/IBM/fp-go/v2/array/traverse.go:118.54,125.4 1 1
github.com/IBM/fp-go/v2/array/uniq.go:20.43,22.2 1 1
github.com/IBM/fp-go/v2/array/uniq.go:49.60,51.2 1 1
github.com/IBM/fp-go/v2/array/zip.go:38.73,40.2 1 1
github.com/IBM/fp-go/v2/array/zip.go:58.55,60.2 1 1
github.com/IBM/fp-go/v2/array/zip.go:81.62,83.2 1 1

View File

@@ -764,14 +764,14 @@ func TestFoldMap(t *testing.T) {
t.Run("FoldMap with sum semigroup", func(t *testing.T) {
sumSemigroup := N.SemigroupSum[int]()
arr := From(1, 2, 3, 4)
result := FoldMap[int, int](sumSemigroup)(func(x int) int { return x * 2 })(arr)
result := FoldMap[int](sumSemigroup)(func(x int) int { return x * 2 })(arr)
assert.Equal(t, 20, result) // (1*2) + (2*2) + (3*2) + (4*2) = 20
})
t.Run("FoldMap with string concatenation", func(t *testing.T) {
concatSemigroup := STR.Semigroup
arr := From(1, 2, 3)
result := FoldMap[int, string](concatSemigroup)(func(x int) string { return fmt.Sprintf("%d", x) })(arr)
result := FoldMap[int](concatSemigroup)(func(x int) string { return fmt.Sprintf("%d", x) })(arr)
assert.Equal(t, "123", result)
})
}

View File

@@ -0,0 +1,78 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package array
import (
"testing"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert"
)
// TestSequenceWithOption tests the generic Sequence function with Option monad
func TestSequenceWithOption(t *testing.T) {
// Test with Option monad - all Some values
opts := From(
O.Some(1),
O.Some(2),
O.Some(3),
)
// Use the Sequence function with Option's applicative monoid
monoid := O.ApplicativeMonoid(Monoid[int]())
seq := Sequence(O.Map(Of[int]), monoid)
result := seq(opts)
assert.Equal(t, O.Of(From(1, 2, 3)), result)
// Test with Option monad - contains None
optsWithNone := From(
O.Some(1),
O.None[int](),
O.Some(3),
)
result2 := seq(optsWithNone)
assert.True(t, O.IsNone(result2))
// Test with empty array
empty := Empty[Option[int]]()
result3 := seq(empty)
assert.Equal(t, O.Some(Empty[int]()), result3)
}
// TestMonadSequence tests the MonadSequence function
func TestMonadSequence(t *testing.T) {
// Test with Option monad
opts := From(
O.Some("hello"),
O.Some("world"),
)
monoid := O.ApplicativeMonoid(Monoid[string]())
result := MonadSequence(O.Map(Of[string]), monoid, opts)
assert.Equal(t, O.Of(From("hello", "world")), result)
// Test with None in the array
optsWithNone := From(
O.Some("hello"),
O.None[string](),
)
result2 := MonadSequence(O.Map(Of[string]), monoid, optsWithNone)
assert.Equal(t, O.None[[]string](), result2)
}

View File

@@ -0,0 +1,164 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package array
import (
"strconv"
"testing"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert"
)
// TestMonadTraverse tests the MonadTraverse function
func TestMonadTraverse(t *testing.T) {
// Test converting integers to strings via Option
numbers := []int{1, 2, 3}
result := MonadTraverse(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
numbers,
func(n int) O.Option[string] {
return O.Some(strconv.Itoa(n))
},
)
assert.True(t, O.IsSome(result))
assert.Equal(t, []string{"1", "2", "3"}, O.GetOrElse(func() []string { return []string{} })(result))
// Test with a function that can return None
result2 := MonadTraverse(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
numbers,
func(n int) O.Option[string] {
if n == 2 {
return O.None[string]()
}
return O.Some(strconv.Itoa(n))
},
)
assert.True(t, O.IsNone(result2))
// Test with empty array
empty := []int{}
result3 := MonadTraverse(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
empty,
func(n int) O.Option[string] {
return O.Some(strconv.Itoa(n))
},
)
assert.True(t, O.IsSome(result3))
assert.Equal(t, []string{}, O.GetOrElse(func() []string { return nil })(result3))
}
// TestTraverseWithIndex tests the TraverseWithIndex function
func TestTraverseWithIndex(t *testing.T) {
// Test with index-aware transformation
words := []string{"a", "b", "c"}
traverser := TraverseWithIndex(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
func(idx int, s string) O.Option[string] {
return O.Some(s + strconv.Itoa(idx))
},
)
result := traverser(words)
assert.True(t, O.IsSome(result))
assert.Equal(t, []string{"a0", "b1", "c2"}, O.GetOrElse(func() []string { return []string{} })(result))
// Test with conditional None based on index
traverser2 := TraverseWithIndex(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
func(idx int, s string) O.Option[string] {
if idx == 1 {
return O.None[string]()
}
return O.Some(s)
},
)
result2 := traverser2(words)
assert.True(t, O.IsNone(result2))
}
// TestMonadTraverseWithIndex tests the MonadTraverseWithIndex function
func TestMonadTraverseWithIndex(t *testing.T) {
// Test with index-aware transformation
numbers := []int{10, 20, 30}
result := MonadTraverseWithIndex(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
numbers,
func(idx, n int) O.Option[string] {
return O.Some(strconv.Itoa(n * idx))
},
)
assert.True(t, O.IsSome(result))
// Expected: [10*0, 20*1, 30*2] = ["0", "20", "60"]
assert.Equal(t, []string{"0", "20", "60"}, O.GetOrElse(func() []string { return []string{} })(result))
// Test with None at specific index
result2 := MonadTraverseWithIndex(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
numbers,
func(idx, n int) O.Option[string] {
if idx == 2 {
return O.None[string]()
}
return O.Some(strconv.Itoa(n))
},
)
assert.True(t, O.IsNone(result2))
}
// TestMakeTraverseType tests the MakeTraverseType function
func TestMakeTraverseType(t *testing.T) {
// Create a traverse type for Option
traverseType := MakeTraverseType[int, string, O.Option[string], O.Option[[]string], O.Option[func(string) []string]]()
// Use it to traverse an array
numbers := []int{1, 2, 3}
result := traverseType(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
)(func(n int) O.Option[string] {
return O.Some(strconv.Itoa(n * 2))
})(numbers)
assert.True(t, O.IsSome(result))
assert.Equal(t, []string{"2", "4", "6"}, O.GetOrElse(func() []string { return []string{} })(result))
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func generateTraverseTuple(f *os.File, i int) {
@@ -422,10 +423,10 @@ func ApplyCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateApplyHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func createCombinations(n int, all, prev []int) [][]int {
@@ -284,10 +285,10 @@ func BindCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateBindHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,7 +16,7 @@
package cli
import (
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func Commands() []*C.Command {

View File

@@ -16,7 +16,7 @@
package cli
import (
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
const (

View File

@@ -16,6 +16,7 @@
package cli
import (
"context"
"fmt"
"log"
"os"
@@ -23,7 +24,7 @@ import (
"strings"
A "github.com/IBM/fp-go/v2/array"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
// Deprecated:
@@ -261,10 +262,10 @@ func ContextReaderIOEitherCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateContextReaderIOEitherHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func generateMakeProvider(f *os.File, i int) {
@@ -221,10 +222,10 @@ func DICommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateDIHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func eitherHKT(typeE string) func(typeA string) string {
@@ -190,10 +191,10 @@ func EitherCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateEitherHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func identityHKT(typeA string) string {
@@ -93,10 +94,10 @@ func IdentityCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateIdentityHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,6 +16,7 @@
package cli
import (
"context"
"fmt"
"log"
"os"
@@ -23,7 +24,7 @@ import (
"time"
A "github.com/IBM/fp-go/v2/array"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func nonGenericIO(param string) string {
@@ -102,10 +103,10 @@ func IOCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateIOHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,6 +16,7 @@
package cli
import (
"context"
"fmt"
"log"
"os"
@@ -23,7 +24,7 @@ import (
"time"
A "github.com/IBM/fp-go/v2/array"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
// [GA ~func() ET.Either[E, A], GB ~func() ET.Either[E, B], GTAB ~func() ET.Either[E, T.Tuple2[A, B]], E, A, B any](a GA, b GB) GTAB {
@@ -273,10 +274,10 @@ func IOEitherCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateIOEitherHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,6 +16,7 @@
package cli
import (
"context"
"fmt"
"log"
"os"
@@ -23,7 +24,7 @@ import (
"time"
A "github.com/IBM/fp-go/v2/array"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func nonGenericIOOption(param string) string {
@@ -107,10 +108,10 @@ func IOOptionCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateIOOptionHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -17,6 +17,7 @@ package cli
import (
"bytes"
"context"
"go/ast"
"go/parser"
"go/token"
@@ -28,7 +29,7 @@ import (
"text/template"
S "github.com/IBM/fp-go/v2/string"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
const (
@@ -86,7 +87,9 @@ type templateData struct {
}
const lensStructTemplate = `
// {{.Name}}Lenses provides lenses for accessing fields of {{.Name}}
// {{.Name}}Lenses provides [lenses] for accessing fields of [{{.Name}}]
//
// [lenses]: __lens.Lens
type {{.Name}}Lenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
@@ -100,7 +103,10 @@ type {{.Name}}Lenses{{.TypeParams}} struct {
{{- end}}
}
// {{.Name}}RefLenses provides lenses for accessing fields of {{.Name}} via a reference to {{.Name}}
// {{.Name}}RefLenses provides [lenses] for accessing fields of [{{.Name}}] via a reference to [{{.Name}}]
//
//
// [lenses]: __lens.Lens
type {{.Name}}RefLenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
@@ -111,23 +117,32 @@ type {{.Name}}RefLenses{{.TypeParams}} struct {
{{- if .IsComparable}}
{{.Name}}O __lens_option.LensO[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
{{- end}}
// prisms
{{- range .Fields}}
{{.Name}}P __prism.Prism[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
}
// {{.Name}}Prisms provides prisms for accessing fields of {{.Name}}
// {{.Name}}Prisms provides [prisms] for accessing fields of [{{.Name}}]
//
// [prisms]: __prism.Prism
type {{.Name}}Prisms{{.TypeParams}} struct {
{{- range .Fields}}
{{.Name}} __prism.Prism[{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
}
// {{.Name}}RefPrisms provides [prisms] for accessing fields of [{{.Name}}] via a reference to [{{.Name}}]
//
// [prisms]: __prism.Prism
type {{.Name}}RefPrisms{{.TypeParams}} struct {
{{- range .Fields}}
{{.Name}} __prism.Prism[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
}
`
const lensConstructorTemplate = `
// Make{{.Name}}Lenses creates a new {{.Name}}Lenses with lenses for all fields
// Make{{.Name}}Lenses creates a new [{{.Name}}Lenses] with [lenses] for all fields
//
// [lenses]:__lens.Lens
func Make{{.Name}}Lenses{{.TypeParams}}() {{.Name}}Lenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
@@ -157,7 +172,9 @@ func Make{{.Name}}Lenses{{.TypeParams}}() {{.Name}}Lenses{{.TypeParamNames}} {
}
}
// Make{{.Name}}RefLenses creates a new {{.Name}}RefLenses with lenses for all fields
// Make{{.Name}}RefLenses creates a new [{{.Name}}RefLenses] with [lenses] for all fields
//
// [lenses]:__lens.Lens
func Make{{.Name}}RefLenses{{.TypeParams}}() {{.Name}}RefLenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
@@ -195,7 +212,9 @@ func Make{{.Name}}RefLenses{{.TypeParams}}() {{.Name}}RefLenses{{.TypeParamNames
}
}
// Make{{.Name}}Prisms creates a new {{.Name}}Prisms with prisms for all fields
// Make{{.Name}}Prisms creates a new [{{.Name}}Prisms] with [prisms] for all fields
//
// [prisms]:__prism.Prism
func Make{{.Name}}Prisms{{.TypeParams}}() {{.Name}}Prisms{{.TypeParamNames}} {
{{- range .Fields}}
{{- if .IsComparable}}
@@ -235,6 +254,49 @@ func Make{{.Name}}Prisms{{.TypeParams}}() {{.Name}}Prisms{{.TypeParamNames}} {
{{- end}}
}
}
// Make{{.Name}}RefPrisms creates a new [{{.Name}}RefPrisms] with [prisms] for all fields
//
// [prisms]:__prism.Prism
func Make{{.Name}}RefPrisms{{.TypeParams}}() {{.Name}}RefPrisms{{.TypeParamNames}} {
{{- range .Fields}}
{{- if .IsComparable}}
_fromNonZero{{.Name}} := __option.FromNonZero[{{.TypeName}}]()
_prism{{.Name}} := __prism.MakePrismWithName(
func(s *{{$.Name}}{{$.TypeParamNames}}) __option.Option[{{.TypeName}}] { return _fromNonZero{{.Name}}(s.{{.Name}}) },
func(v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} {
{{- if .IsEmbedded}}
var result {{$.Name}}{{$.TypeParamNames}}
result.{{.Name}} = v
return &result
{{- else}}
return &{{$.Name}}{{$.TypeParamNames}}{ {{.Name}}: v }
{{- end}}
},
"{{$.Name}}{{$.TypeParamNames}}.{{.Name}}",
)
{{- else}}
_prism{{.Name}} := __prism.MakePrismWithName(
func(s *{{$.Name}}{{$.TypeParamNames}}) __option.Option[{{.TypeName}}] { return __option.Some(s.{{.Name}}) },
func(v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} {
{{- if .IsEmbedded}}
var result {{$.Name}}{{$.TypeParamNames}}
result.{{.Name}} = v
return &result
{{- else}}
return &{{$.Name}}{{$.TypeParamNames}}{ {{.Name}}: v }
{{- end}}
},
"{{$.Name}}{{$.TypeParamNames}}.{{.Name}}",
)
{{- end}}
{{- end}}
return {{.Name}}RefPrisms{{.TypeParamNames}} {
{{- range .Fields}}
{{.Name}}: _prism{{.Name}},
{{- end}}
}
}
`
var (
@@ -535,9 +597,9 @@ func extractEmbeddedFields(embedType ast.Expr, fileImports map[string]string, fi
}
for _, name := range field.Names {
// Only export lenses for exported fields
if name.IsExported() {
fieldTypeName := getTypeName(field.Type)
// Generate lenses for both exported and unexported fields
fieldTypeName := getTypeName(field.Type)
if true { // Keep the block structure for minimal changes
isOptional := false
baseType := fieldTypeName
@@ -697,9 +759,9 @@ func parseFile(filename string) ([]structInfo, string, error) {
continue
}
for _, name := range field.Names {
// Only export lenses for exported fields
if name.IsExported() {
typeName := getTypeName(field.Type)
// Generate lenses for both exported and unexported fields
typeName := getTypeName(field.Type)
if true { // Keep the block structure for minimal changes
isOptional := false
baseType := typeName
isComparable := false
@@ -934,12 +996,12 @@ func LensCommand() *C.Command {
flagVerbose,
flagIncludeTestFiles,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateLensHelpers(
ctx.String(keyLensDir),
ctx.String(keyFilename),
ctx.Bool(keyVerbose),
ctx.Bool(keyIncludeTestFile),
cmd.String(keyLensDir),
cmd.String(keyFilename),
cmd.Bool(keyVerbose),
cmd.Bool(keyIncludeTestFile),
)
},
}

View File

@@ -1086,3 +1086,255 @@ type ComparableBox[T comparable] struct {
// Verify that MakeLensRef is NOT used (since both fields are comparable)
assert.NotContains(t, contentStr, "__lens.MakeLensRefWithName(", "Should not use MakeLensRefWithName when all fields are comparable")
}
func TestParseFileWithUnexportedFields(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type Config struct {
PublicName string
privateName string
PublicValue int
privateValue *int
}
`
err := os.WriteFile(testFile, []byte(testCode), 0o644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check Config struct
config := structs[0]
assert.Equal(t, "Config", config.Name)
assert.Len(t, config.Fields, 4, "Should include both exported and unexported fields")
// Check exported field
assert.Equal(t, "PublicName", config.Fields[0].Name)
assert.Equal(t, "string", config.Fields[0].TypeName)
assert.False(t, config.Fields[0].IsOptional)
// Check unexported field
assert.Equal(t, "privateName", config.Fields[1].Name)
assert.Equal(t, "string", config.Fields[1].TypeName)
assert.False(t, config.Fields[1].IsOptional)
// Check exported int field
assert.Equal(t, "PublicValue", config.Fields[2].Name)
assert.Equal(t, "int", config.Fields[2].TypeName)
assert.False(t, config.Fields[2].IsOptional)
// Check unexported pointer field
assert.Equal(t, "privateValue", config.Fields[3].Name)
assert.Equal(t, "*int", config.Fields[3].TypeName)
assert.True(t, config.Fields[3].IsOptional)
}
func TestGenerateLensHelpersWithUnexportedFields(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
// fp-go:Lens
type MixedStruct struct {
PublicField string
privateField int
OptionalPrivate *string
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0o644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen_lens.go"
err = generateLensHelpers(tmpDir, outputFile, false, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "MixedStructLenses")
assert.Contains(t, contentStr, "MakeMixedStructLenses")
// Check that lenses are generated for all fields (exported and unexported)
assert.Contains(t, contentStr, "PublicField __lens.Lens[MixedStruct, string]")
assert.Contains(t, contentStr, "privateField __lens.Lens[MixedStruct, int]")
assert.Contains(t, contentStr, "OptionalPrivate __lens.Lens[MixedStruct, *string]")
// Check lens constructors
assert.Contains(t, contentStr, "func(s MixedStruct) string { return s.PublicField }")
assert.Contains(t, contentStr, "func(s MixedStruct) int { return s.privateField }")
assert.Contains(t, contentStr, "func(s MixedStruct) *string { return s.OptionalPrivate }")
// Check setters
assert.Contains(t, contentStr, "func(s MixedStruct, v string) MixedStruct { s.PublicField = v; return s }")
assert.Contains(t, contentStr, "func(s MixedStruct, v int) MixedStruct { s.privateField = v; return s }")
assert.Contains(t, contentStr, "func(s MixedStruct, v *string) MixedStruct { s.OptionalPrivate = v; return s }")
}
func TestParseFileWithOnlyUnexportedFields(t *testing.T) {
// Create a temporary test file
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type PrivateConfig struct {
name string
value int
enabled bool
}
`
err := os.WriteFile(testFile, []byte(testCode), 0o644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check PrivateConfig struct
config := structs[0]
assert.Equal(t, "PrivateConfig", config.Name)
assert.Len(t, config.Fields, 3, "Should include all unexported fields")
// Check all fields are unexported
assert.Equal(t, "name", config.Fields[0].Name)
assert.Equal(t, "value", config.Fields[1].Name)
assert.Equal(t, "enabled", config.Fields[2].Name)
}
func TestGenerateLensHelpersWithUnexportedEmbeddedFields(t *testing.T) {
// Create a temporary directory with test files
tmpDir := t.TempDir()
testCode := `package testpkg
type BaseConfig struct {
publicBase string
privateBase int
}
// fp-go:Lens
type ExtendedConfig struct {
BaseConfig
PublicField string
privateField bool
}
`
testFile := filepath.Join(tmpDir, "test.go")
err := os.WriteFile(testFile, []byte(testCode), 0o644)
require.NoError(t, err)
// Generate lens code
outputFile := "gen_lens.go"
err = generateLensHelpers(tmpDir, outputFile, false, false)
require.NoError(t, err)
// Verify the generated file exists
genPath := filepath.Join(tmpDir, outputFile)
_, err = os.Stat(genPath)
require.NoError(t, err)
// Read and verify the generated content
content, err := os.ReadFile(genPath)
require.NoError(t, err)
contentStr := string(content)
// Check for expected content
assert.Contains(t, contentStr, "package testpkg")
assert.Contains(t, contentStr, "ExtendedConfigLenses")
// Check that lenses are generated for embedded unexported fields
assert.Contains(t, contentStr, "publicBase __lens.Lens[ExtendedConfig, string]")
assert.Contains(t, contentStr, "privateBase __lens.Lens[ExtendedConfig, int]")
// Check that lenses are generated for direct fields (both exported and unexported)
assert.Contains(t, contentStr, "PublicField __lens.Lens[ExtendedConfig, string]")
assert.Contains(t, contentStr, "privateField __lens.Lens[ExtendedConfig, bool]")
}
func TestParseFileWithMixedFieldVisibility(t *testing.T) {
// Create a temporary test file with various field visibility patterns
tmpDir := t.TempDir()
testFile := filepath.Join(tmpDir, "test.go")
testCode := `package testpkg
// fp-go:Lens
type ComplexStruct struct {
// Exported fields
Name string
Age int
Email *string
// Unexported fields
password string
secretKey []byte
internalID *int
// Mixed with tags
PublicWithTag string ` + "`json:\"public,omitempty\"`" + `
privateWithTag int ` + "`json:\"private,omitempty\"`" + `
}
`
err := os.WriteFile(testFile, []byte(testCode), 0o644)
require.NoError(t, err)
// Parse the file
structs, pkg, err := parseFile(testFile)
require.NoError(t, err)
// Verify results
assert.Equal(t, "testpkg", pkg)
assert.Len(t, structs, 1)
// Check ComplexStruct
complex := structs[0]
assert.Equal(t, "ComplexStruct", complex.Name)
assert.Len(t, complex.Fields, 8, "Should include all fields regardless of visibility")
// Verify field names and types
fieldNames := []string{"Name", "Age", "Email", "password", "secretKey", "internalID", "PublicWithTag", "privateWithTag"}
for i, expectedName := range fieldNames {
assert.Equal(t, expectedName, complex.Fields[i].Name, "Field %d should be %s", i, expectedName)
}
// Check optional fields
assert.False(t, complex.Fields[0].IsOptional, "Name should not be optional")
assert.True(t, complex.Fields[2].IsOptional, "Email (pointer) should be optional")
assert.True(t, complex.Fields[5].IsOptional, "internalID (pointer) should be optional")
assert.True(t, complex.Fields[6].IsOptional, "PublicWithTag (with omitempty) should be optional")
assert.True(t, complex.Fields[7].IsOptional, "privateWithTag (with omitempty) should be optional")
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func optionHKT(typeA string) string {
@@ -200,10 +201,10 @@ func OptionCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateOptionHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func generateUnsliced(f *os.File, i int) {
@@ -423,10 +424,10 @@ func PipeCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generatePipeHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func generateReaderFrom(f, fg *os.File, i int) {
@@ -154,10 +155,10 @@ func ReaderCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateReaderHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,13 +16,14 @@
package cli
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func generateReaderIOEitherFrom(f, fg *os.File, i int) {
@@ -284,10 +285,10 @@ func ReaderIOEitherCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateReaderIOEitherHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -16,6 +16,7 @@
package cli
import (
"context"
"fmt"
"log"
"os"
@@ -23,7 +24,7 @@ import (
"strings"
"time"
C "github.com/urfave/cli/v2"
C "github.com/urfave/cli/v3"
)
func writeTupleType(f *os.File, symbol string, i int) {
@@ -615,10 +616,10 @@ func TupleCommand() *C.Command {
flagCount,
flagFilename,
},
Action: func(ctx *C.Context) error {
Action: func(ctx context.Context, cmd *C.Command) error {
return generateTupleHelpers(
ctx.String(keyFilename),
ctx.Int(keyCount),
cmd.String(keyFilename),
cmd.Int(keyCount),
)
},
}

View File

@@ -177,3 +177,255 @@ func Local[R1, R2 any](f func(R2) R1) Operator[R1, R2] {
}
}
}
// Compose is an alias for Local that emphasizes the composition aspect of consumer transformation.
// It composes a preprocessing function with a consumer, creating a new consumer that applies
// the function before consuming the value.
//
// This function is semantically identical to Local but uses terminology that may be more familiar
// to developers coming from functional programming backgrounds where "compose" is a common operation.
//
// See: https://github.com/fantasyland/fantasy-land?tab=readme-ov-file#profunctor
//
// The name "Compose" highlights that we're composing two operations:
// 1. The transformation function f: R2 -> R1
// 2. The consumer c: R1 -> ()
//
// Result: A composed consumer: R2 -> ()
//
// Type Parameters:
// - R1: The input type of the original Consumer (what it expects)
// - R2: The input type of the new Consumer (what you have)
//
// Parameters:
// - f: A function that converts R2 to R1 (preprocessing function)
//
// Returns:
// - An Operator that transforms Consumer[R1] into Consumer[R2]
//
// Example - Basic composition:
//
// // Consumer that logs integers
// logInt := func(x int) {
// fmt.Printf("Value: %d\n", x)
// }
//
// // Compose with a string-to-int parser
// parseToInt := func(s string) int {
// n, _ := strconv.Atoi(s)
// return n
// }
//
// logString := consumer.Compose(parseToInt)(logInt)
// logString("42") // Logs: "Value: 42"
//
// Example - Composing multiple transformations:
//
// type Data struct {
// Value string
// }
//
// type Wrapper struct {
// Data Data
// }
//
// // Consumer that logs strings
// logString := func(s string) {
// fmt.Println(s)
// }
//
// // Compose transformations step by step
// extractData := func(w Wrapper) Data { return w.Data }
// extractValue := func(d Data) string { return d.Value }
//
// logData := consumer.Compose(extractValue)(logString)
// logWrapper := consumer.Compose(extractData)(logData)
//
// logWrapper(Wrapper{Data: Data{Value: "Hello"}}) // Logs: "Hello"
//
// Example - Function composition style:
//
// // Compose is particularly useful when thinking in terms of function composition
// type Request struct {
// Body []byte
// }
//
// // Consumer that processes strings
// processString := func(s string) {
// fmt.Printf("Processing: %s\n", s)
// }
//
// // Compose byte-to-string conversion with processing
// bytesToString := func(b []byte) string {
// return string(b)
// }
// extractBody := func(r Request) []byte {
// return r.Body
// }
//
// // Chain compositions
// processBytes := consumer.Compose(bytesToString)(processString)
// processRequest := consumer.Compose(extractBody)(processBytes)
//
// processRequest(Request{Body: []byte("test")}) // Logs: "Processing: test"
//
// Relationship to Local:
// - Compose and Local are identical in implementation
// - Compose emphasizes the functional composition aspect
// - Local emphasizes the environment/context transformation aspect
// - Use Compose when thinking about function composition
// - Use Local when thinking about adapting to different contexts
//
// Use Cases:
// - Building processing pipelines with clear composition semantics
// - Adapting consumers in a functional programming style
// - Creating reusable consumer transformations
// - Chaining multiple preprocessing steps
func Compose[R1, R2 any](f func(R2) R1) Operator[R1, R2] {
return Local(f)
}
// Contramap is the categorical name for the contravariant functor operation on Consumers.
// It transforms a Consumer by preprocessing its input, making it the dual of the covariant
// functor's map operation.
//
// See: https://github.com/fantasyland/fantasy-land?tab=readme-ov-file#contravariant
//
// In category theory, a contravariant functor reverses the direction of morphisms.
// While a covariant functor maps f: A -> B to map(f): F[A] -> F[B],
// a contravariant functor maps f: A -> B to contramap(f): F[B] -> F[A].
//
// For Consumers:
// - Consumer[A] is contravariant in A
// - Given f: R2 -> R1, contramap(f) transforms Consumer[R1] to Consumer[R2]
// - The direction is reversed: we go from Consumer[R1] to Consumer[R2]
//
// This is semantically identical to Local and Compose, but uses the standard
// categorical terminology that emphasizes the contravariant nature of the transformation.
//
// Type Parameters:
// - R1: The input type of the original Consumer (what it expects)
// - R2: The input type of the new Consumer (what you have)
//
// Parameters:
// - f: A function that converts R2 to R1 (preprocessing function)
//
// Returns:
// - An Operator that transforms Consumer[R1] into Consumer[R2]
//
// Example - Basic contravariant mapping:
//
// // Consumer that logs integers
// logInt := func(x int) {
// fmt.Printf("Value: %d\n", x)
// }
//
// // Contramap with a string-to-int parser
// parseToInt := func(s string) int {
// n, _ := strconv.Atoi(s)
// return n
// }
//
// logString := consumer.Contramap(parseToInt)(logInt)
// logString("42") // Logs: "Value: 42"
//
// Example - Demonstrating contravariance:
//
// // In covariant functors (like Option, Array), map goes "forward":
// // map: (A -> B) -> F[A] -> F[B]
// //
// // In contravariant functors (like Consumer), contramap goes "backward":
// // contramap: (B -> A) -> F[A] -> F[B]
//
// type Animal struct{ Name string }
// type Dog struct{ Animal Animal; Breed string }
//
// // Consumer for animals
// consumeAnimal := func(a Animal) {
// fmt.Printf("Animal: %s\n", a.Name)
// }
//
// // Function from Dog to Animal (B -> A)
// dogToAnimal := func(d Dog) Animal {
// return d.Animal
// }
//
// // Contramap creates Consumer[Dog] from Consumer[Animal]
// // Direction is reversed: Consumer[Animal] -> Consumer[Dog]
// consumeDog := consumer.Contramap(dogToAnimal)(consumeAnimal)
//
// consumeDog(Dog{
// Animal: Animal{Name: "Buddy"},
// Breed: "Golden Retriever",
// }) // Logs: "Animal: Buddy"
//
// Example - Contravariant functor laws:
//
// // Law 1: Identity
// // contramap(identity) = identity
// identity := func(x int) int { return x }
// consumer1 := consumer.Contramap(identity)(consumeInt)
// // consumer1 behaves identically to consumeInt
//
// // Law 2: Composition
// // contramap(f . g) = contramap(g) . contramap(f)
// // Note: composition order is reversed compared to covariant map
// f := func(s string) int { n, _ := strconv.Atoi(s); return n }
// g := func(b bool) string { if b { return "1" } else { return "0" } }
//
// // These two are equivalent:
// consumer2 := consumer.Contramap(func(b bool) int { return f(g(b)) })(consumeInt)
// consumer3 := consumer.Contramap(g)(consumer.Contramap(f)(consumeInt))
//
// Example - Practical use with type hierarchies:
//
// type Logger interface {
// Log(string)
// }
//
// type Message struct {
// Text string
// Timestamp time.Time
// }
//
// // Consumer that logs strings
// logString := func(s string) {
// fmt.Println(s)
// }
//
// // Contramap to handle Message types
// extractText := func(m Message) string {
// return fmt.Sprintf("[%s] %s", m.Timestamp.Format(time.RFC3339), m.Text)
// }
//
// logMessage := consumer.Contramap(extractText)(logString)
// logMessage(Message{
// Text: "Hello",
// Timestamp: time.Now(),
// }) // Logs: "[2024-01-20T10:00:00Z] Hello"
//
// Relationship to Local and Compose:
// - Contramap, Local, and Compose are identical in implementation
// - Contramap emphasizes the categorical/theoretical aspect
// - Local emphasizes the context transformation aspect
// - Compose emphasizes the function composition aspect
// - Use Contramap when working with category theory concepts
// - Use Local when adapting to different contexts
// - Use Compose when building functional pipelines
//
// Category Theory Background:
// - Consumer[A] forms a contravariant functor
// - The contravariant functor laws must hold:
// 1. contramap(id) = id
// 2. contramap(f ∘ g) = contramap(g) ∘ contramap(f)
// - This is dual to the covariant functor (map) operation
// - Consumers are contravariant because they consume rather than produce values
//
// Use Cases:
// - Working with contravariant functors in a categorical style
// - Adapting consumers to work with more specific types
// - Building type-safe consumer transformations
// - Implementing profunctor patterns (Consumer is a profunctor)
func Contramap[R1, R2 any](f func(R2) R1) Operator[R1, R2] {
return Local(f)
}

View File

@@ -381,3 +381,513 @@ func TestLocal(t *testing.T) {
assert.Equal(t, 42, captured)
})
}
func TestContramap(t *testing.T) {
t.Run("basic contravariant mapping", func(t *testing.T) {
var captured int
consumeInt := func(x int) {
captured = x
}
parseToInt := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
consumeString := Contramap(parseToInt)(consumeInt)
consumeString("42")
assert.Equal(t, 42, captured)
})
t.Run("contravariant identity law", func(t *testing.T) {
// contramap(identity) = identity
var captured int
consumeInt := func(x int) {
captured = x
}
identity := function.Identity[int]
consumeIdentity := Contramap(identity)(consumeInt)
consumeIdentity(42)
assert.Equal(t, 42, captured)
// Should behave identically to original consumer
consumeInt(100)
capturedDirect := captured
consumeIdentity(100)
capturedMapped := captured
assert.Equal(t, capturedDirect, capturedMapped)
})
t.Run("contravariant composition law", func(t *testing.T) {
// contramap(f . g) = contramap(g) . contramap(f)
var captured int
consumeInt := func(x int) {
captured = x
}
f := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
g := func(b bool) string {
if b {
return "1"
}
return "0"
}
// Compose f and g manually
fg := func(b bool) int {
return f(g(b))
}
// Method 1: contramap(f . g)
consumer1 := Contramap(fg)(consumeInt)
consumer1(true)
result1 := captured
// Method 2: contramap(g) . contramap(f)
consumer2 := Contramap(g)(Contramap(f)(consumeInt))
consumer2(true)
result2 := captured
assert.Equal(t, result1, result2)
assert.Equal(t, 1, result1)
})
t.Run("type hierarchy adaptation", func(t *testing.T) {
type Animal struct {
Name string
}
type Dog struct {
Animal Animal
Breed string
}
var capturedName string
consumeAnimal := func(a Animal) {
capturedName = a.Name
}
dogToAnimal := func(d Dog) Animal {
return d.Animal
}
consumeDog := Contramap(dogToAnimal)(consumeAnimal)
consumeDog(Dog{
Animal: Animal{Name: "Buddy"},
Breed: "Golden Retriever",
})
assert.Equal(t, "Buddy", capturedName)
})
t.Run("field extraction with contramap", func(t *testing.T) {
type Message struct {
Text string
Timestamp time.Time
}
var capturedText string
consumeString := func(s string) {
capturedText = s
}
extractText := func(m Message) string {
return m.Text
}
consumeMessage := Contramap(extractText)(consumeString)
consumeMessage(Message{
Text: "Hello",
Timestamp: time.Now(),
})
assert.Equal(t, "Hello", capturedText)
})
t.Run("multiple contramap applications", func(t *testing.T) {
type Level3 struct{ Value int }
type Level2 struct{ L3 Level3 }
type Level1 struct{ L2 Level2 }
var captured int
consumeInt := func(x int) {
captured = x
}
extract3 := func(l3 Level3) int { return l3.Value }
extract2 := func(l2 Level2) Level3 { return l2.L3 }
extract1 := func(l1 Level1) Level2 { return l1.L2 }
// Chain contramap operations
consumeLevel3 := Contramap(extract3)(consumeInt)
consumeLevel2 := Contramap(extract2)(consumeLevel3)
consumeLevel1 := Contramap(extract1)(consumeLevel2)
consumeLevel1(Level1{L2: Level2{L3: Level3{Value: 42}}})
assert.Equal(t, 42, captured)
})
t.Run("contramap with calculation", func(t *testing.T) {
type Rectangle struct {
Width int
Height int
}
var capturedArea int
consumeArea := func(area int) {
capturedArea = area
}
calculateArea := func(r Rectangle) int {
return r.Width * r.Height
}
consumeRectangle := Contramap(calculateArea)(consumeArea)
consumeRectangle(Rectangle{Width: 5, Height: 10})
assert.Equal(t, 50, capturedArea)
})
t.Run("contramap preserves side effects", func(t *testing.T) {
callCount := 0
consumer := func(x int) {
callCount++
}
transform := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
contramappedConsumer := Contramap(transform)(consumer)
contramappedConsumer("1")
contramappedConsumer("2")
contramappedConsumer("3")
assert.Equal(t, 3, callCount)
})
t.Run("contramap with pointer types", func(t *testing.T) {
var captured int
consumeInt := func(x int) {
captured = x
}
dereference := func(p *int) int {
if p == nil {
return 0
}
return *p
}
consumePointer := Contramap(dereference)(consumeInt)
value := 42
consumePointer(&value)
assert.Equal(t, 42, captured)
consumePointer(nil)
assert.Equal(t, 0, captured)
})
t.Run("contramap equivalence with Local", func(t *testing.T) {
var capturedLocal, capturedContramap int
consumeIntLocal := func(x int) {
capturedLocal = x
}
consumeIntContramap := func(x int) {
capturedContramap = x
}
transform := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
// Both should produce identical results
consumerLocal := Local(transform)(consumeIntLocal)
consumerContramap := Contramap(transform)(consumeIntContramap)
consumerLocal("42")
consumerContramap("42")
assert.Equal(t, capturedLocal, capturedContramap)
assert.Equal(t, 42, capturedLocal)
})
}
func TestCompose(t *testing.T) {
t.Run("basic composition", func(t *testing.T) {
var captured int
consumeInt := func(x int) {
captured = x
}
parseToInt := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
consumeString := Compose(parseToInt)(consumeInt)
consumeString("42")
assert.Equal(t, 42, captured)
})
t.Run("composing multiple transformations", func(t *testing.T) {
type Data struct {
Value string
}
type Wrapper struct {
Data Data
}
var captured string
consumeString := func(s string) {
captured = s
}
extractData := func(w Wrapper) Data { return w.Data }
extractValue := func(d Data) string { return d.Value }
// Compose step by step
consumeData := Compose(extractValue)(consumeString)
consumeWrapper := Compose(extractData)(consumeData)
consumeWrapper(Wrapper{Data: Data{Value: "Hello"}})
assert.Equal(t, "Hello", captured)
})
t.Run("function composition style", func(t *testing.T) {
type Request struct {
Body []byte
}
var captured string
processString := func(s string) {
captured = s
}
bytesToString := func(b []byte) string {
return string(b)
}
extractBody := func(r Request) []byte {
return r.Body
}
// Chain compositions
processBytes := Compose(bytesToString)(processString)
processRequest := Compose(extractBody)(processBytes)
processRequest(Request{Body: []byte("test")})
assert.Equal(t, "test", captured)
})
t.Run("compose with identity", func(t *testing.T) {
var captured int
consumeInt := func(x int) {
captured = x
}
identity := function.Identity[int]
composedConsumer := Compose(identity)(consumeInt)
composedConsumer(42)
assert.Equal(t, 42, captured)
})
t.Run("compose with field extraction", func(t *testing.T) {
type User struct {
Name string
Email string
Age int
}
var capturedName string
consumeName := func(name string) {
capturedName = name
}
extractName := func(u User) string {
return u.Name
}
consumeUser := Compose(extractName)(consumeName)
consumeUser(User{Name: "Alice", Email: "alice@example.com", Age: 30})
assert.Equal(t, "Alice", capturedName)
})
t.Run("compose with calculation", func(t *testing.T) {
type Circle struct {
Radius float64
}
var capturedArea float64
consumeArea := func(area float64) {
capturedArea = area
}
calculateArea := func(c Circle) float64 {
return 3.14159 * c.Radius * c.Radius
}
consumeCircle := Compose(calculateArea)(consumeArea)
consumeCircle(Circle{Radius: 5.0})
assert.InDelta(t, 78.53975, capturedArea, 0.00001)
})
t.Run("compose with slice operations", func(t *testing.T) {
var captured int
consumeLength := func(n int) {
captured = n
}
getLength := func(s []string) int {
return len(s)
}
consumeSlice := Compose(getLength)(consumeLength)
consumeSlice([]string{"a", "b", "c", "d"})
assert.Equal(t, 4, captured)
})
t.Run("compose with map operations", func(t *testing.T) {
var captured bool
consumeHasKey := func(has bool) {
captured = has
}
hasKey := func(m map[string]int) bool {
_, exists := m["key"]
return exists
}
consumeMap := Compose(hasKey)(consumeHasKey)
consumeMap(map[string]int{"key": 42})
assert.True(t, captured)
consumeMap(map[string]int{"other": 42})
assert.False(t, captured)
})
t.Run("compose preserves consumer behavior", func(t *testing.T) {
callCount := 0
consumer := func(x int) {
callCount++
}
transform := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
composedConsumer := Compose(transform)(consumer)
composedConsumer("1")
composedConsumer("2")
composedConsumer("3")
assert.Equal(t, 3, callCount)
})
t.Run("compose with error handling", func(t *testing.T) {
type Result struct {
Value int
Error error
}
var captured int
consumeInt := func(x int) {
captured = x
}
extractValue := func(r Result) int {
if r.Error != nil {
return -1
}
return r.Value
}
consumeResult := Compose(extractValue)(consumeInt)
consumeResult(Result{Value: 42, Error: nil})
assert.Equal(t, 42, captured)
consumeResult(Result{Value: 100, Error: assert.AnError})
assert.Equal(t, -1, captured)
})
t.Run("compose equivalence with Local", func(t *testing.T) {
var capturedLocal, capturedCompose int
consumeIntLocal := func(x int) {
capturedLocal = x
}
consumeIntCompose := func(x int) {
capturedCompose = x
}
transform := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
// Both should produce identical results
consumerLocal := Local(transform)(consumeIntLocal)
consumerCompose := Compose(transform)(consumeIntCompose)
consumerLocal("42")
consumerCompose("42")
assert.Equal(t, capturedLocal, capturedCompose)
assert.Equal(t, 42, capturedLocal)
})
t.Run("compose equivalence with Contramap", func(t *testing.T) {
var capturedCompose, capturedContramap int
consumeIntCompose := func(x int) {
capturedCompose = x
}
consumeIntContramap := func(x int) {
capturedContramap = x
}
transform := func(s string) int {
n, _ := strconv.Atoi(s)
return n
}
// All three should produce identical results
consumerCompose := Compose(transform)(consumeIntCompose)
consumerContramap := Contramap(transform)(consumeIntContramap)
consumerCompose("42")
consumerContramap("42")
assert.Equal(t, capturedCompose, capturedContramap)
assert.Equal(t, 42, capturedCompose)
})
}

View File

@@ -46,7 +46,7 @@ func TestBuilderWithQuery(t *testing.T) {
RIOE.Map(func(r *http.Request) *url.URL {
return r.URL
}),
RIOE.ChainFirstIOK(func(u *url.URL) IO.IO[any] {
RIOE.ChainFirstIOK(func(u *url.URL) IO.IO[Void] {
return IO.FromImpure(func() {
q := u.Query()
assert.Equal(t, "10", q.Get("limit"))

View File

@@ -0,0 +1,7 @@
package builder
import "github.com/IBM/fp-go/v2/function"
type (
Void = function.Void
)

View File

@@ -158,7 +158,7 @@ func MakeClient(httpClient *http.Client) Client {
// request := MakeGetRequest("https://api.example.com/data")
// fullResp := ReadFullResponse(client)(request)
// result := fullResp(t.Context())()
func ReadFullResponse(client Client) RIOE.Kleisli[Requester, H.FullResponse] {
func ReadFullResponse(client Client) RIOE.Operator[*http.Request, H.FullResponse] {
return func(req Requester) RIOE.ReaderIOResult[H.FullResponse] {
return F.Flow3(
client.Do(req),
@@ -195,7 +195,7 @@ func ReadFullResponse(client Client) RIOE.Kleisli[Requester, H.FullResponse] {
// request := MakeGetRequest("https://api.example.com/data")
// readBytes := ReadAll(client)
// result := readBytes(request)(t.Context())()
func ReadAll(client Client) RIOE.Kleisli[Requester, []byte] {
func ReadAll(client Client) RIOE.Operator[*http.Request, []byte] {
return F.Flow2(
ReadFullResponse(client),
RIOE.Map(H.Body),
@@ -219,7 +219,7 @@ func ReadAll(client Client) RIOE.Kleisli[Requester, []byte] {
// request := MakeGetRequest("https://api.example.com/text")
// readText := ReadText(client)
// result := readText(request)(t.Context())()
func ReadText(client Client) RIOE.Kleisli[Requester, string] {
func ReadText(client Client) RIOE.Operator[*http.Request, string] {
return F.Flow2(
ReadAll(client),
RIOE.Map(B.ToString),
@@ -231,7 +231,7 @@ func ReadText(client Client) RIOE.Kleisli[Requester, string] {
// Deprecated: Use [ReadJSON] instead. This function is kept for backward compatibility
// but will be removed in a future version. The capitalized version follows Go naming
// conventions for acronyms.
func ReadJson[A any](client Client) RIOE.Kleisli[Requester, A] {
func ReadJson[A any](client Client) RIOE.Operator[*http.Request, A] {
return ReadJSON[A](client)
}
@@ -242,7 +242,7 @@ func ReadJson[A any](client Client) RIOE.Kleisli[Requester, A] {
// 3. Reads the response body as bytes
//
// This function is used internally by ReadJSON to ensure proper JSON response handling.
func readJSON(client Client) RIOE.Kleisli[Requester, []byte] {
func readJSON(client Client) RIOE.Operator[*http.Request, []byte] {
return F.Flow3(
ReadFullResponse(client),
RIOE.ChainFirstEitherK(F.Flow2(
@@ -278,7 +278,7 @@ func readJSON(client Client) RIOE.Kleisli[Requester, []byte] {
// request := MakeGetRequest("https://api.example.com/user/1")
// readUser := ReadJSON[User](client)
// result := readUser(request)(t.Context())()
func ReadJSON[A any](client Client) RIOE.Kleisli[Requester, A] {
func ReadJSON[A any](client Client) RIOE.Operator[*http.Request, A] {
return F.Flow2(
readJSON(client),
RIOE.ChainEitherK(J.Unmarshal[A]),

View File

@@ -65,7 +65,7 @@ var (
// This function assumes the context contains logging information; it will panic if not present.
getLoggingContext = F.Flow3(
loggingContextValue,
option.ToType[loggingContext],
option.InstanceOf[loggingContext],
option.GetOrElse(getDefaultLoggingContext),
)
)

View File

@@ -222,7 +222,7 @@ func withCancelCauseFunc[A any](cancel context.CancelCauseFunc, ma IOResult[A])
return function.Pipe3(
ma,
ioresult.Swap[A],
ioeither.ChainFirstIOK[A](func(err error) func() any {
ioeither.ChainFirstIOK[A](func(err error) func() Void {
return io.FromImpure(func() { cancel(err) })
}),
ioeither.Swap[A],

View File

@@ -48,7 +48,7 @@ func WithLock[A any](lock ReaderIOResult[context.CancelFunc]) Operator[A, A] {
function.Constant1[context.CancelFunc, ReaderIOResult[A]],
WithResource[A](lock, function.Flow2(
io.FromImpure[context.CancelFunc],
FromIO[any],
FromIO[Void],
)),
)
}

View File

@@ -23,6 +23,7 @@ import (
"github.com/IBM/fp-go/v2/context/readerresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioref"
@@ -152,4 +153,6 @@ type (
IORef[A any] = ioref.IORef[A]
State[S, A any] = state.State[S, A]
Void = function.Void
)

View File

@@ -232,7 +232,7 @@ func TestContextPropagationThroughMonadTransforms(t *testing.T) {
var capturedCtx context.Context
computation := F.Pipe1(
Of[AppConfig](42),
Chain[AppConfig](func(n int) ReaderReaderIOResult[AppConfig, int] {
Chain(func(n int) ReaderReaderIOResult[AppConfig, int] {
return func(c AppConfig) ReaderIOResult[context.Context, int] {
return func(ctx context.Context) IOResult[int] {
return func() Result[int] {
@@ -405,7 +405,7 @@ func TestContextCancellationBetweenSteps(t *testing.T) {
}
}
},
Chain[AppConfig](func(n int) ReaderReaderIOResult[AppConfig, int] {
Chain(func(n int) ReaderReaderIOResult[AppConfig, int] {
return func(c AppConfig) ReaderIOResult[context.Context, int] {
return func(ctx context.Context) IOResult[int] {
return func() Result[int] {

View File

@@ -57,7 +57,7 @@ func TestSequence(t *testing.T) {
}
// Sequence swaps Config1 and Config2 order
sequenced := Sequence[Config1, Config2, int](original)
sequenced := Sequence(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -88,7 +88,7 @@ func TestSequence(t *testing.T) {
}
}
sequenced := Sequence[Config1, Config2, int](original)
sequenced := Sequence(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -123,7 +123,7 @@ func TestSequence(t *testing.T) {
}
}
sequenced := Sequence[Config1, Config2, string](original)
sequenced := Sequence(original)
// Test with valid inputs
result1 := sequenced(Config1{value1: 42})(Config2{value2: "test"})(ctx)()
@@ -155,7 +155,7 @@ func TestSequence(t *testing.T) {
}
}
sequenced := Sequence[Config1, Config2, int](original)
sequenced := Sequence(original)
outcome := sequenced(Config1{value1: 0})(Config2{value2: ""})(ctx)()
assert.Equal(t, result.Of(0), outcome)
@@ -178,7 +178,7 @@ func TestSequence(t *testing.T) {
}
}
sequenced := Sequence[Config1, Config2, int](original)
sequenced := Sequence(original)
cfg1 := Config1{value1: 3}
cfg2 := Config2{value2: "test"}
@@ -207,7 +207,7 @@ func TestSequenceReader(t *testing.T) {
}
// Sequence swaps Config1 and Config2 order
sequenced := SequenceReader[Config1, Config2, int](original)
sequenced := SequenceReader(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -239,7 +239,7 @@ func TestSequenceReader(t *testing.T) {
}
}
sequenced := SequenceReader[Config1, Config2, int](original)
sequenced := SequenceReader(original)
outcome := sequenced(Config1{value1: 10})(Config2{value2: "hello"})(ctx)()
assert.Equal(t, result.Left[int](testErr), outcome)
@@ -261,7 +261,7 @@ func TestSequenceReader(t *testing.T) {
}
}
sequenced := SequenceReader[Config1, Config2, string](original)
sequenced := SequenceReader(original)
// Test with valid inputs
result1 := sequenced(Config1{value1: 42})(Config2{value2: "test"})(ctx)()
@@ -285,7 +285,7 @@ func TestSequenceReader(t *testing.T) {
}
}
sequenced := SequenceReader[Config1, Config2, int](original)
sequenced := SequenceReader(original)
outcome := sequenced(Config1{value1: 0})(Config2{value2: ""})(ctx)()
assert.Equal(t, result.Of(0), outcome)
@@ -304,7 +304,7 @@ func TestSequenceReader(t *testing.T) {
}
}
sequenced := SequenceReader[Config1, Config2, int](original)
sequenced := SequenceReader(original)
cfg1 := Config1{value1: 3}
cfg2 := Config2{value2: "test"}
@@ -333,7 +333,7 @@ func TestSequenceReaderIO(t *testing.T) {
}
// Sequence swaps Config1 and Config2 order
sequenced := SequenceReaderIO[Config1, Config2, int](original)
sequenced := SequenceReaderIO(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -365,7 +365,7 @@ func TestSequenceReaderIO(t *testing.T) {
}
}
sequenced := SequenceReaderIO[Config1, Config2, int](original)
sequenced := SequenceReaderIO(original)
outcome := sequenced(Config1{value1: 10})(Config2{value2: "hello"})(ctx)()
assert.Equal(t, result.Left[int](testErr), outcome)
@@ -391,7 +391,7 @@ func TestSequenceReaderIO(t *testing.T) {
}
}
sequenced := SequenceReaderIO[Config1, Config2, string](original)
sequenced := SequenceReaderIO(original)
// Test with valid inputs
sideEffect = 0
@@ -419,7 +419,7 @@ func TestSequenceReaderIO(t *testing.T) {
}
}
sequenced := SequenceReaderIO[Config1, Config2, int](original)
sequenced := SequenceReaderIO(original)
outcome := sequenced(Config1{value1: 0})(Config2{value2: ""})(ctx)()
assert.Equal(t, result.Of(0), outcome)
@@ -442,7 +442,7 @@ func TestSequenceReaderIO(t *testing.T) {
}
}
sequenced := SequenceReaderIO[Config1, Config2, int](original)
sequenced := SequenceReaderIO(original)
cfg1 := Config1{value1: 10}
cfg2 := Config2{value2: "hello"}
@@ -478,7 +478,7 @@ func TestTraverse(t *testing.T) {
}
// Apply traverse to swap order and transform
traversed := Traverse[Config2, Config1, int, string](transform)(original)
traversed := Traverse[Config2](transform)(original)
cfg1 := Config1{value1: 100}
cfg2 := Config2{value2: "test"}
@@ -496,7 +496,7 @@ func TestTraverse(t *testing.T) {
return Of[Config1](fmt.Sprintf("%d", n))
}
traversed := Traverse[Config2, Config1, int, string](transform)(original)
traversed := Traverse[Config2](transform)(original)
outcome := traversed(Config1{value1: 100})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Left[string](testErr), outcome)
@@ -516,12 +516,12 @@ func TestTraverse(t *testing.T) {
// Test with negative value
originalNeg := Of[Config2](-1)
traversedNeg := Traverse[Config2, Config1, int, string](transform)(originalNeg)
traversedNeg := Traverse[Config2](transform)(originalNeg)
resultNeg := traversedNeg(Config1{value1: 100})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Left[string](testErr), resultNeg)
// Test with positive value
traversedPos := Traverse[Config2, Config1, int, string](transform)(original)
traversedPos := Traverse[Config2](transform)(original)
resultPos := traversedPos(Config1{value1: 100})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Of("42"), resultPos)
})
@@ -540,7 +540,7 @@ func TestTraverse(t *testing.T) {
}
}
traversed := Traverse[Config2, Config1, int, int](transform)(original)
traversed := Traverse[Config2](transform)(original)
outcome := traversed(Config1{value1: 5})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Of(50), outcome)
@@ -556,7 +556,7 @@ func TestTraverse(t *testing.T) {
outcome := F.Pipe2(
original,
Traverse[Config2, Config1, int, int](transform),
Traverse[Config2](transform),
func(k Kleisli[Config2, Config1, int]) ReaderReaderIOResult[Config2, int] {
return k(Config1{value1: 5})
},
@@ -582,7 +582,7 @@ func TestTraverseReader(t *testing.T) {
}
// Apply traverse to introduce Config1 and swap order
traversed := TraverseReader[Config2, Config1, int, string](formatWithConfig)(original)
traversed := TraverseReader[Config2](formatWithConfig)(original)
cfg1 := Config1{value1: 5}
cfg2 := Config2{value2: "test"}
@@ -600,7 +600,7 @@ func TestTraverseReader(t *testing.T) {
return reader.Of[Config1](fmt.Sprintf("%d", n))
}
traversed := TraverseReader[Config2, Config1, int, string](transform)(original)
traversed := TraverseReader[Config2](transform)(original)
outcome := traversed(Config1{value1: 5})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Left[string](testErr), outcome)
@@ -617,7 +617,7 @@ func TestTraverseReader(t *testing.T) {
}
}
traversed := TraverseReader[Config2, Config1, int, int](double)(original)
traversed := TraverseReader[Config2](double)(original)
outcome := traversed(Config1{value1: 3})(Config2{value2: "test"})(ctx)()
assert.Equal(t, result.Of(126), outcome)
@@ -633,7 +633,7 @@ func TestTraverseReader(t *testing.T) {
}
}
traversed := TraverseReader[Config2, Config1, int, int](transform)(original)
traversed := TraverseReader[Config2](transform)(original)
outcome := traversed(Config1{value1: 0})(Config2{value2: ""})(ctx)()
assert.Equal(t, result.Of(0), outcome)
@@ -649,7 +649,7 @@ func TestTraverseReader(t *testing.T) {
}
}
traversed := TraverseReader[Config2, Config1, int, int](transform)(original)
traversed := TraverseReader[Config2](transform)(original)
cfg1 := Config1{value1: 5}
cfg2 := Config2{value2: "test"}
@@ -673,7 +673,7 @@ func TestTraverseReader(t *testing.T) {
outcome := F.Pipe2(
original,
TraverseReader[Config2, Config1, int, int](multiply),
TraverseReader[Config2](multiply),
func(k Kleisli[Config2, Config1, int]) ReaderReaderIOResult[Config2, int] {
return k(Config1{value1: 3})
},
@@ -698,7 +698,7 @@ func TestFlipIntegration(t *testing.T) {
}
// Sequence it
sequenced := Sequence[Config1, Config2, int](nested)
sequenced := Sequence(nested)
// Then traverse with a transformation
transform := func(n int) ReaderReaderIOResult[Config1, string] {
@@ -715,7 +715,7 @@ func TestFlipIntegration(t *testing.T) {
// Then apply traverse on a new computation
original := Of[Config2](5)
traversed := Traverse[Config2, Config1, int, string](transform)(original)
traversed := Traverse[Config2](transform)(original)
outcome := traversed(cfg1)(cfg2)(ctx)()
assert.Equal(t, result.Of("length=5"), outcome)
})
@@ -734,7 +734,7 @@ func TestFlipIntegration(t *testing.T) {
}
}
}
seqResult := Sequence[Config1, Config2, int](seqErr)(cfg1)(cfg2)(ctx)()
seqResult := Sequence(seqErr)(cfg1)(cfg2)(ctx)()
assert.True(t, result.IsLeft(seqResult))
// Test SequenceReader with error
@@ -745,7 +745,7 @@ func TestFlipIntegration(t *testing.T) {
}
}
}
seqReaderResult := SequenceReader[Config1, Config2, int](seqReaderErr)(cfg1)(cfg2)(ctx)()
seqReaderResult := SequenceReader(seqReaderErr)(cfg1)(cfg2)(ctx)()
assert.True(t, result.IsLeft(seqReaderResult))
// Test SequenceReaderIO with error
@@ -756,7 +756,7 @@ func TestFlipIntegration(t *testing.T) {
}
}
}
seqReaderIOResult := SequenceReaderIO[Config1, Config2, int](seqReaderIOErr)(cfg1)(cfg2)(ctx)()
seqReaderIOResult := SequenceReaderIO(seqReaderIOErr)(cfg1)(cfg2)(ctx)()
assert.True(t, result.IsLeft(seqReaderIOResult))
// Test Traverse with error
@@ -764,7 +764,7 @@ func TestFlipIntegration(t *testing.T) {
travTransform := func(n int) ReaderReaderIOResult[Config1, string] {
return Of[Config1](fmt.Sprintf("%d", n))
}
travResult := Traverse[Config2, Config1, int, string](travTransform)(travErr)(cfg1)(cfg2)(ctx)()
travResult := Traverse[Config2](travTransform)(travErr)(cfg1)(cfg2)(ctx)()
assert.True(t, result.IsLeft(travResult))
// Test TraverseReader with error
@@ -772,7 +772,7 @@ func TestFlipIntegration(t *testing.T) {
travReaderTransform := func(n int) reader.Reader[Config1, string] {
return reader.Of[Config1](fmt.Sprintf("%d", n))
}
travReaderResult := TraverseReader[Config2, Config1, int, string](travReaderTransform)(travReaderErr)(cfg1)(cfg2)(ctx)()
travReaderResult := TraverseReader[Config2](travReaderTransform)(travReaderErr)(cfg1)(cfg2)(ctx)()
assert.True(t, result.IsLeft(travReaderResult))
})
}

View File

@@ -0,0 +1,168 @@
package readerreaderioresult
import (
"context"
"github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioresult"
RRIOE "github.com/IBM/fp-go/v2/readerreaderioeither"
"github.com/IBM/fp-go/v2/result"
)
// Local modifies the outer environment before passing it to a computation.
// Useful for providing different configurations to sub-computations.
//
//go:inline
func Local[A, R1, R2 any](f func(R2) R1) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.Local[context.Context, error, A](f)
}
// LocalIOK transforms the outer environment of a ReaderReaderIOResult using an IO-based Kleisli arrow.
// It allows you to modify the outer environment through an effectful computation before
// passing it to the ReaderReaderIOResult.
//
// This is useful when the outer environment transformation itself requires IO effects,
// such as reading from a file, making a network call, or accessing system resources,
// but these effects cannot fail (or failures are not relevant).
//
// The transformation happens in two stages:
// 1. The IO effect f is executed with the R2 environment to produce an R1 value
// 2. The resulting R1 value is passed as the outer environment to the ReaderReaderIOResult[R1, A]
//
// Type Parameters:
// - A: The success type produced by the ReaderReaderIOResult
// - R1: The original outer environment type expected by the ReaderReaderIOResult
// - R2: The new input outer environment type
//
// Parameters:
// - f: An IO Kleisli arrow that transforms R2 to R1 with IO effects
//
// Returns:
// - A function that takes a ReaderReaderIOResult[R1, A] and returns a ReaderReaderIOResult[R2, A]
//
//go:inline
func LocalIOK[A, R1, R2 any](f io.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalIOK[context.Context, error, A](f)
}
// LocalIOEitherK transforms the outer environment of a ReaderReaderIOResult using an IOResult-based Kleisli arrow.
// It allows you to modify the outer environment through an effectful computation that can fail before
// passing it to the ReaderReaderIOResult.
//
// This is useful when the outer environment transformation itself requires IO effects that can fail,
// such as reading from a file that might not exist, making a network call that might timeout,
// or parsing data that might be invalid.
//
// The transformation happens in two stages:
// 1. The IOResult effect f is executed with the R2 environment to produce Result[R1]
// 2. If successful (Ok), the R1 value is passed as the outer environment to the ReaderReaderIOResult[R1, A]
// 3. If failed (Err), the error is propagated without executing the ReaderReaderIOResult
//
// Type Parameters:
// - A: The success type produced by the ReaderReaderIOResult
// - R1: The original outer environment type expected by the ReaderReaderIOResult
// - R2: The new input outer environment type
//
// Parameters:
// - f: An IOResult Kleisli arrow that transforms R2 to R1 with IO effects that can fail
//
// Returns:
// - A function that takes a ReaderReaderIOResult[R1, A] and returns a ReaderReaderIOResult[R2, A]
//
//go:inline
func LocalIOEitherK[A, R1, R2 any](f ioresult.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalIOEitherK[context.Context, A](f)
}
// LocalIOResultK transforms the outer environment of a ReaderReaderIOResult using an IOResult-based Kleisli arrow.
// This is a type-safe alias for LocalIOEitherK specialized for Result types (which use error as the error type).
//
// It allows you to modify the outer environment through an effectful computation that can fail before
// passing it to the ReaderReaderIOResult.
//
// The transformation happens in two stages:
// 1. The IOResult effect f is executed with the R2 environment to produce Result[R1]
// 2. If successful (Ok), the R1 value is passed as the outer environment to the ReaderReaderIOResult[R1, A]
// 3. If failed (Err), the error is propagated without executing the ReaderReaderIOResult
//
// Type Parameters:
// - A: The success type produced by the ReaderReaderIOResult
// - R1: The original outer environment type expected by the ReaderReaderIOResult
// - R2: The new input outer environment type
//
// Parameters:
// - f: An IOResult Kleisli arrow that transforms R2 to R1 with IO effects that can fail
//
// Returns:
// - A function that takes a ReaderReaderIOResult[R1, A] and returns a ReaderReaderIOResult[R2, A]
//
//go:inline
func LocalIOResultK[A, R1, R2 any](f ioresult.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalIOEitherK[context.Context, A](f)
}
//go:inline
func LocalResultK[A, R1, R2 any](f result.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalEitherK[context.Context, A](f)
}
// LocalReaderIOEitherK transforms the outer environment of a ReaderReaderIOResult using a ReaderIOResult-based Kleisli arrow.
// It allows you to modify the outer environment through a computation that depends on the inner context
// and can perform IO effects that may fail.
//
// This is useful when the outer environment transformation requires access to the inner context (e.g., context.Context)
// and may perform IO operations that can fail, such as database queries, API calls, or file operations.
//
// The transformation happens in three stages:
// 1. The ReaderIOResult effect f is executed with the R2 outer environment and inner context
// 2. If successful (Ok), the R1 value is passed as the outer environment to the ReaderReaderIOResult[R1, A]
// 3. If failed (Err), the error is propagated without executing the ReaderReaderIOResult
//
// Type Parameters:
// - A: The success type produced by the ReaderReaderIOResult
// - R1: The original outer environment type expected by the ReaderReaderIOResult
// - R2: The new input outer environment type
//
// Parameters:
// - f: A ReaderIOResult Kleisli arrow that transforms R2 to R1 with context-aware IO effects that can fail
//
// Returns:
// - A function that takes a ReaderReaderIOResult[R1, A] and returns a ReaderReaderIOResult[R2, A]
//
//go:inline
func LocalReaderIOEitherK[A, R1, R2 any](f readerioresult.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalReaderIOEitherK[A](f)
}
// LocalReaderIOResultK transforms the outer environment of a ReaderReaderIOResult using a ReaderIOResult-based Kleisli arrow.
// This is a type-safe alias for LocalReaderIOEitherK specialized for Result types (which use error as the error type).
//
// It allows you to modify the outer environment through a computation that depends on the inner context
// and can perform IO effects that may fail.
//
// The transformation happens in three stages:
// 1. The ReaderIOResult effect f is executed with the R2 outer environment and inner context
// 2. If successful (Ok), the R1 value is passed as the outer environment to the ReaderReaderIOResult[R1, A]
// 3. If failed (Err), the error is propagated without executing the ReaderReaderIOResult
//
// Type Parameters:
// - A: The success type produced by the ReaderReaderIOResult
// - R1: The original outer environment type expected by the ReaderReaderIOResult
// - R2: The new input outer environment type
//
// Parameters:
// - f: A ReaderIOResult Kleisli arrow that transforms R2 to R1 with context-aware IO effects that can fail
//
// Returns:
// - A function that takes a ReaderReaderIOResult[R1, A] and returns a ReaderReaderIOResult[R2, A]
//
//go:inline
func LocalReaderIOResultK[A, R1, R2 any](f readerioresult.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalReaderIOEitherK[A](f)
}
//go:inline
func LocalReaderReaderIOEitherK[A, R1, R2 any](f Kleisli[R2, R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalReaderReaderIOEitherK[A](f)
}

View File

@@ -0,0 +1,428 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerreaderioresult
import (
"context"
"errors"
"fmt"
"testing"
"github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
type SimpleConfig struct {
Port int
}
type DetailedConfig struct {
Host string
Port int
}
// TestLocalIOK tests LocalIOK functionality
func TestLocalIOK(t *testing.T) {
ctx := context.Background()
t.Run("basic IO transformation", func(t *testing.T) {
// IO effect that loads config from a path
loadConfig := func(path string) io.IO[SimpleConfig] {
return func() SimpleConfig {
// Simulate loading config
return SimpleConfig{Port: 8080}
}
}
// ReaderReaderIOResult that uses the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose using LocalIOK
adapted := LocalIOK[string](loadConfig)(useConfig)
res := adapted("config.json")(ctx)()
assert.Equal(t, result.Of("Port: 8080"), res)
})
t.Run("IO transformation with side effects", func(t *testing.T) {
var loadLog []string
loadData := func(key string) io.IO[int] {
return func() int {
loadLog = append(loadLog, "Loading: "+key)
return len(key) * 10
}
}
processData := func(n int) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Processed: %d", n))
}
}
}
adapted := LocalIOK[string](loadData)(processData)
res := adapted("test")(ctx)()
assert.Equal(t, result.Of("Processed: 40"), res)
assert.Equal(t, []string{"Loading: test"}, loadLog)
})
t.Run("error propagation in ReaderReaderIOResult", func(t *testing.T) {
loadConfig := func(path string) io.IO[SimpleConfig] {
return func() SimpleConfig {
return SimpleConfig{Port: 8080}
}
}
// ReaderReaderIOResult that returns an error
failingOperation := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Left[string](errors.New("operation failed"))
}
}
}
adapted := LocalIOK[string](loadConfig)(failingOperation)
res := adapted("config.json")(ctx)()
assert.True(t, result.IsLeft(res))
})
}
// TestLocalIOEitherK tests LocalIOEitherK functionality
func TestLocalIOEitherK(t *testing.T) {
ctx := context.Background()
t.Run("basic IOResult transformation", func(t *testing.T) {
// IOResult effect that loads config from a path (can fail)
loadConfig := func(path string) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if path == "" {
return result.Left[SimpleConfig](errors.New("empty path"))
}
return result.Of(SimpleConfig{Port: 8080})
}
}
// ReaderReaderIOResult that uses the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose using LocalIOEitherK
adapted := LocalIOEitherK[string](loadConfig)(useConfig)
// Success case
res := adapted("config.json")(ctx)()
assert.Equal(t, result.Of("Port: 8080"), res)
// Failure case
resErr := adapted("")(ctx)()
assert.True(t, result.IsLeft(resErr))
})
t.Run("error propagation from environment transformation", func(t *testing.T) {
loadConfig := func(path string) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
return result.Left[SimpleConfig](errors.New("file not found"))
}
}
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
adapted := LocalIOEitherK[string](loadConfig)(useConfig)
res := adapted("missing.json")(ctx)()
// Error from loadConfig should propagate
assert.True(t, result.IsLeft(res))
})
}
// TestLocalIOResultK tests LocalIOResultK functionality
func TestLocalIOResultK(t *testing.T) {
ctx := context.Background()
t.Run("basic IOResult transformation", func(t *testing.T) {
// IOResult effect that loads config from a path (can fail)
loadConfig := func(path string) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if path == "" {
return result.Left[SimpleConfig](errors.New("empty path"))
}
return result.Of(SimpleConfig{Port: 8080})
}
}
// ReaderReaderIOResult that uses the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose using LocalIOResultK
adapted := LocalIOResultK[string](loadConfig)(useConfig)
// Success case
res := adapted("config.json")(ctx)()
assert.Equal(t, result.Of("Port: 8080"), res)
// Failure case
resErr := adapted("")(ctx)()
assert.True(t, result.IsLeft(resErr))
})
t.Run("compose multiple LocalIOResultK", func(t *testing.T) {
// First transformation: string -> int (can fail)
parseID := func(s string) ioresult.IOResult[int] {
return func() result.Result[int] {
if s == "" {
return result.Left[int](errors.New("empty string"))
}
return result.Of(len(s) * 10)
}
}
// Second transformation: int -> SimpleConfig (can fail)
loadConfig := func(id int) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if id < 0 {
return result.Left[SimpleConfig](errors.New("invalid ID"))
}
return result.Of(SimpleConfig{Port: 8000 + id})
}
}
// Use the config
formatConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose transformations
step1 := LocalIOResultK[string](loadConfig)(formatConfig)
step2 := LocalIOResultK[string](parseID)(step1)
// Success case
res := step2("test")(ctx)()
assert.Equal(t, result.Of("Port: 8040"), res)
// Failure in first transformation
resErr1 := step2("")(ctx)()
assert.True(t, result.IsLeft(resErr1))
})
}
// TestLocalReaderIOEitherK tests LocalReaderIOEitherK functionality
func TestLocalReaderIOEitherK(t *testing.T) {
ctx := context.Background()
t.Run("basic ReaderIOResult transformation", func(t *testing.T) {
// ReaderIOResult effect that loads config from a path (can fail, uses context)
loadConfig := func(path string) readerioresult.ReaderIOResult[SimpleConfig] {
return func(ctx context.Context) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if path == "" {
return result.Left[SimpleConfig](errors.New("empty path"))
}
// Could use context here for cancellation, logging, etc.
return result.Of(SimpleConfig{Port: 8080})
}
}
}
// ReaderReaderIOResult that uses the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose using LocalReaderIOEitherK
adapted := LocalReaderIOEitherK[string](loadConfig)(useConfig)
// Success case
res := adapted("config.json")(ctx)()
assert.Equal(t, result.Of("Port: 8080"), res)
// Failure case
resErr := adapted("")(ctx)()
assert.True(t, result.IsLeft(resErr))
})
t.Run("context propagation", func(t *testing.T) {
type ctxKey string
const key ctxKey = "test-key"
// ReaderIOResult that reads from context
loadFromContext := func(path string) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
if val := ctx.Value(key); val != nil {
return result.Of(val.(string))
}
return result.Left[string](errors.New("key not found in context"))
}
}
}
// ReaderReaderIOResult that uses the loaded value
useValue := func(val string) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of("Loaded: " + val)
}
}
}
adapted := LocalReaderIOEitherK[string](loadFromContext)(useValue)
// With context value
ctxWithValue := context.WithValue(ctx, key, "test-value")
res := adapted("ignored")(ctxWithValue)()
assert.Equal(t, result.Of("Loaded: test-value"), res)
// Without context value
resErr := adapted("ignored")(ctx)()
assert.True(t, result.IsLeft(resErr))
})
}
// TestLocalReaderIOResultK tests LocalReaderIOResultK functionality
func TestLocalReaderIOResultK(t *testing.T) {
ctx := context.Background()
t.Run("basic ReaderIOResult transformation", func(t *testing.T) {
// ReaderIOResult effect that loads config from a path (can fail, uses context)
loadConfig := func(path string) readerioresult.ReaderIOResult[SimpleConfig] {
return func(ctx context.Context) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if path == "" {
return result.Left[SimpleConfig](errors.New("empty path"))
}
return result.Of(SimpleConfig{Port: 8080})
}
}
}
// ReaderReaderIOResult that uses the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose using LocalReaderIOResultK
adapted := LocalReaderIOResultK[string](loadConfig)(useConfig)
// Success case
res := adapted("config.json")(ctx)()
assert.Equal(t, result.Of("Port: 8080"), res)
// Failure case
resErr := adapted("")(ctx)()
assert.True(t, result.IsLeft(resErr))
})
t.Run("real-world: load and validate config with context", func(t *testing.T) {
type ConfigFile struct {
Path string
}
// Read file with context (can fail, uses context for cancellation)
readFile := func(cf ConfigFile) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
// Check context cancellation
select {
case <-ctx.Done():
return result.Left[string](ctx.Err())
default:
}
if cf.Path == "" {
return result.Left[string](errors.New("empty path"))
}
return result.Of(`{"port":9000}`)
}
}
}
// Parse config with context (can fail)
parseConfig := func(content string) readerioresult.ReaderIOResult[SimpleConfig] {
return func(ctx context.Context) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if content == "" {
return result.Left[SimpleConfig](errors.New("empty content"))
}
return result.Of(SimpleConfig{Port: 9000})
}
}
}
// Use the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Using port: %d", cfg.Port))
}
}
}
// Compose the pipeline
step1 := LocalReaderIOResultK[string](parseConfig)(useConfig)
step2 := LocalReaderIOResultK[string](readFile)(step1)
// Success case
res := step2(ConfigFile{Path: "app.json"})(ctx)()
assert.Equal(t, result.Of("Using port: 9000"), res)
// Failure case
resErr := step2(ConfigFile{Path: ""})(ctx)()
assert.True(t, result.IsLeft(resErr))
})
}

View File

@@ -37,6 +37,7 @@ import (
"github.com/IBM/fp-go/v2/readerio"
"github.com/IBM/fp-go/v2/readeroption"
RRIOE "github.com/IBM/fp-go/v2/readerreaderioeither"
"github.com/IBM/fp-go/v2/result"
)
// FromReaderOption converts a ReaderOption to a ReaderReaderIOResult.
@@ -52,7 +53,7 @@ func FromReaderOption[R, A any](onNone Lazy[error]) Kleisli[R, ReaderOption[R, A
//
//go:inline
func FromReaderIOResult[R, A any](ma ReaderIOResult[R, A]) ReaderReaderIOResult[R, A] {
return RRIOE.FromReaderIOEither[context.Context, error](ma)
return RRIOE.FromReaderIOEither[context.Context](ma)
}
// FromReaderIO lifts a ReaderIO into a ReaderReaderIOResult.
@@ -170,6 +171,15 @@ func ChainEitherK[R, A, B any](f either.Kleisli[error, A, B]) Operator[R, A, B]
)
}
//go:inline
func ChainResultK[R, A, B any](f result.Kleisli[A, B]) Operator[R, A, B] {
return fromeither.ChainEitherK(
Chain[R, A, B],
FromEither[R, B],
f,
)
}
// MonadChainFirstEitherK chains a computation that returns an Either but preserves the original value.
// Useful for validation or side effects that may fail.
// This is the monadic version that takes the computation as the first parameter.
@@ -734,7 +744,7 @@ func FromIO[R, A any](ma IO[A]) ReaderReaderIOResult[R, A] {
//
//go:inline
func FromIOEither[R, A any](ma IOEither[error, A]) ReaderReaderIOResult[R, A] {
return RRIOE.FromIOEither[R, context.Context, error](ma)
return RRIOE.FromIOEither[R, context.Context](ma)
}
// FromIOResult lifts an IOResult into a ReaderReaderIOResult.
@@ -742,14 +752,14 @@ func FromIOEither[R, A any](ma IOEither[error, A]) ReaderReaderIOResult[R, A] {
//
//go:inline
func FromIOResult[R, A any](ma IOResult[A]) ReaderReaderIOResult[R, A] {
return RRIOE.FromIOEither[R, context.Context, error](ma)
return RRIOE.FromIOEither[R, context.Context](ma)
}
// FromReaderEither lifts a ReaderEither into a ReaderReaderIOResult.
//
//go:inline
func FromReaderEither[R, A any](ma RE.ReaderEither[R, error, A]) ReaderReaderIOResult[R, A] {
return RRIOE.FromReaderEither[R, context.Context, error](ma)
return RRIOE.FromReaderEither[R, context.Context](ma)
}
// Ask retrieves the outer environment R.
@@ -782,7 +792,7 @@ func FromOption[R, A any](onNone Lazy[error]) func(Option[A]) ReaderReaderIOResu
//
//go:inline
func FromPredicate[R, A any](pred func(A) bool, onFalse func(A) error) Kleisli[R, A, A] {
return RRIOE.FromPredicate[R, context.Context, error](pred, onFalse)
return RRIOE.FromPredicate[R, context.Context](pred, onFalse)
}
// MonadAlt provides alternative/fallback behavior.
@@ -825,7 +835,7 @@ func Flap[R, B, A any](a A) Operator[R, func(A) B, B] {
//
//go:inline
func MonadMapLeft[R, A any](fa ReaderReaderIOResult[R, A], f Endmorphism[error]) ReaderReaderIOResult[R, A] {
return RRIOE.MonadMapLeft[R, context.Context](fa, f)
return RRIOE.MonadMapLeft(fa, f)
}
// MapLeft transforms the error value if the computation fails.
@@ -837,14 +847,6 @@ func MapLeft[R, A any](f Endmorphism[error]) Operator[R, A, A] {
return RRIOE.MapLeft[R, context.Context, A](f)
}
// Local modifies the outer environment before passing it to a computation.
// Useful for providing different configurations to sub-computations.
//
//go:inline
func Local[A, R1, R2 any](f func(R2) R1) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.Local[context.Context, error, A](f)
}
// Read provides a specific outer environment value to a computation.
// Converts ReaderReaderIOResult[R, A] to ReaderIOResult[context.Context, A].
//
@@ -864,7 +866,7 @@ func ReadIOEither[A, R any](rio IOEither[error, R]) func(ReaderReaderIOResult[R,
//
//go:inline
func ReadIO[A, R any](rio IO[R]) func(ReaderReaderIOResult[R, A]) ReaderIOResult[context.Context, A] {
return RRIOE.ReadIO[context.Context, error, A, R](rio)
return RRIOE.ReadIO[context.Context, error, A](rio)
}
// MonadChainLeft handles errors by chaining a recovery computation.
@@ -873,7 +875,7 @@ func ReadIO[A, R any](rio IO[R]) func(ReaderReaderIOResult[R, A]) ReaderIOResult
//
//go:inline
func MonadChainLeft[R, A any](fa ReaderReaderIOResult[R, A], f Kleisli[R, error, A]) ReaderReaderIOResult[R, A] {
return RRIOE.MonadChainLeft[R, context.Context, error, error, A](fa, f)
return RRIOE.MonadChainLeft(fa, f)
}
// ChainLeft handles errors by chaining a recovery computation.
@@ -882,7 +884,7 @@ func MonadChainLeft[R, A any](fa ReaderReaderIOResult[R, A], f Kleisli[R, error,
//
//go:inline
func ChainLeft[R, A any](f Kleisli[R, error, A]) func(ReaderReaderIOResult[R, A]) ReaderReaderIOResult[R, A] {
return RRIOE.ChainLeft[R, context.Context, error, error, A](f)
return RRIOE.ChainLeft(f)
}
// Delay adds a time delay before executing the computation.
@@ -892,3 +894,8 @@ func ChainLeft[R, A any](f Kleisli[R, error, A]) func(ReaderReaderIOResult[R, A]
func Delay[R, A any](delay time.Duration) Operator[R, A, A] {
return reader.Map[R](RIOE.Delay[A](delay))
}
//go:inline
func Defer[R, A any](fa Lazy[ReaderReaderIOResult[R, A]]) ReaderReaderIOResult[R, A] {
return RRIOE.Defer(fa)
}

View File

@@ -101,7 +101,7 @@ func TestMonadChain(t *testing.T) {
func TestChain(t *testing.T) {
computation := F.Pipe1(
Of[AppConfig](21),
Chain[AppConfig](func(n int) ReaderReaderIOResult[AppConfig, int] {
Chain(func(n int) ReaderReaderIOResult[AppConfig, int] {
return Of[AppConfig](n * 2)
}),
)
@@ -127,7 +127,7 @@ func TestChainFirst(t *testing.T) {
sideEffect := 0
computation := F.Pipe1(
Of[AppConfig](42),
ChainFirst[AppConfig](func(n int) ReaderReaderIOResult[AppConfig, string] {
ChainFirst(func(n int) ReaderReaderIOResult[AppConfig, string] {
sideEffect = n
return Of[AppConfig]("ignored")
}),
@@ -141,7 +141,7 @@ func TestTap(t *testing.T) {
sideEffect := 0
computation := F.Pipe1(
Of[AppConfig](42),
Tap[AppConfig](func(n int) ReaderReaderIOResult[AppConfig, string] {
Tap(func(n int) ReaderReaderIOResult[AppConfig, string] {
sideEffect = n
return Of[AppConfig]("ignored")
}),
@@ -167,7 +167,7 @@ func TestFromEither(t *testing.T) {
t.Run("left", func(t *testing.T) {
err := errors.New("test error")
computation := FromEither[AppConfig, int](either.Left[int](err))
computation := FromEither[AppConfig](either.Left[int](err))
outcome := computation(defaultConfig)(t.Context())()
assert.True(t, result.IsLeft(outcome))
})
@@ -189,7 +189,7 @@ func TestFromResult(t *testing.T) {
}
func TestFromReader(t *testing.T) {
computation := FromReader[AppConfig](func(cfg AppConfig) int {
computation := FromReader(func(cfg AppConfig) int {
return len(cfg.DatabaseURL)
})
outcome := computation(defaultConfig)(t.Context())()
@@ -197,7 +197,7 @@ func TestFromReader(t *testing.T) {
}
func TestRightReader(t *testing.T) {
computation := RightReader[AppConfig](func(cfg AppConfig) int {
computation := RightReader(func(cfg AppConfig) int {
return len(cfg.LogLevel)
})
outcome := computation(defaultConfig)(t.Context())()
@@ -241,7 +241,7 @@ func TestFromIOEither(t *testing.T) {
t.Run("left", func(t *testing.T) {
err := errors.New("test error")
computation := FromIOEither[AppConfig, int](ioeither.Left[int](err))
computation := FromIOEither[AppConfig](ioeither.Left[int](err))
outcome := computation(defaultConfig)(t.Context())()
assert.True(t, result.IsLeft(outcome))
})
@@ -267,7 +267,7 @@ func TestFromIOResult(t *testing.T) {
}
func TestFromReaderIO(t *testing.T) {
computation := FromReaderIO[AppConfig](func(cfg AppConfig) io.IO[int] {
computation := FromReaderIO(func(cfg AppConfig) io.IO[int] {
return func() int { return len(cfg.DatabaseURL) }
})
outcome := computation(defaultConfig)(t.Context())()
@@ -275,7 +275,7 @@ func TestFromReaderIO(t *testing.T) {
}
func TestRightReaderIO(t *testing.T) {
computation := RightReaderIO[AppConfig](func(cfg AppConfig) io.IO[int] {
computation := RightReaderIO(func(cfg AppConfig) io.IO[int] {
return func() int { return len(cfg.LogLevel) }
})
outcome := computation(defaultConfig)(t.Context())()
@@ -293,7 +293,7 @@ func TestLeftReaderIO(t *testing.T) {
func TestFromReaderEither(t *testing.T) {
t.Run("right", func(t *testing.T) {
computation := FromReaderEither[AppConfig](func(cfg AppConfig) either.Either[error, int] {
computation := FromReaderEither(func(cfg AppConfig) either.Either[error, int] {
return either.Right[error](len(cfg.DatabaseURL))
})
outcome := computation(defaultConfig)(t.Context())()
@@ -302,7 +302,7 @@ func TestFromReaderEither(t *testing.T) {
t.Run("left", func(t *testing.T) {
err := errors.New("test error")
computation := FromReaderEither[AppConfig, int](func(cfg AppConfig) either.Either[error, int] {
computation := FromReaderEither(func(cfg AppConfig) either.Either[error, int] {
return either.Left[int](err)
})
outcome := computation(defaultConfig)(t.Context())()
@@ -396,7 +396,7 @@ func TestAlt(t *testing.T) {
computation := F.Pipe1(
Left[AppConfig, int](err),
Alt[AppConfig](func() ReaderReaderIOResult[AppConfig, int] {
Alt(func() ReaderReaderIOResult[AppConfig, int] {
return Of[AppConfig](99)
}),
)
@@ -461,7 +461,7 @@ func TestLocal(t *testing.T) {
Asks(func(cfg AppConfig) string {
return cfg.DatabaseURL
}),
Local[string, AppConfig, OtherConfig](func(other OtherConfig) AppConfig {
Local[string](func(other OtherConfig) AppConfig {
return AppConfig{DatabaseURL: other.URL, LogLevel: "debug"}
}),
)
@@ -518,7 +518,7 @@ func TestChainLeft(t *testing.T) {
err := errors.New("original error")
computation := F.Pipe1(
Left[AppConfig, int](err),
ChainLeft[AppConfig](func(e error) ReaderReaderIOResult[AppConfig, int] {
ChainLeft(func(e error) ReaderReaderIOResult[AppConfig, int] {
return Of[AppConfig](99)
}),
)
@@ -553,7 +553,7 @@ func TestChainEitherK(t *testing.T) {
func TestChainReaderK(t *testing.T) {
computation := F.Pipe1(
Of[AppConfig](10),
ChainReaderK[AppConfig](func(n int) reader.Reader[AppConfig, int] {
ChainReaderK(func(n int) reader.Reader[AppConfig, int] {
return func(cfg AppConfig) int {
return n + len(cfg.LogLevel)
}
@@ -566,7 +566,7 @@ func TestChainReaderK(t *testing.T) {
func TestChainReaderIOK(t *testing.T) {
computation := F.Pipe1(
Of[AppConfig](10),
ChainReaderIOK[AppConfig](func(n int) readerio.ReaderIO[AppConfig, int] {
ChainReaderIOK(func(n int) readerio.ReaderIO[AppConfig, int] {
return func(cfg AppConfig) io.IO[int] {
return func() int {
return n + len(cfg.DatabaseURL)
@@ -581,7 +581,7 @@ func TestChainReaderIOK(t *testing.T) {
func TestChainReaderEitherK(t *testing.T) {
computation := F.Pipe1(
Of[AppConfig](10),
ChainReaderEitherK[AppConfig](func(n int) RE.ReaderEither[AppConfig, error, int] {
ChainReaderEitherK(func(n int) RE.ReaderEither[AppConfig, error, int] {
return func(cfg AppConfig) either.Either[error, int] {
return either.Right[error](n + len(cfg.LogLevel))
}
@@ -670,7 +670,7 @@ func TestChainOptionK(t *testing.T) {
}
func TestFromReaderIOResult(t *testing.T) {
computation := FromReaderIOResult[AppConfig](func(cfg AppConfig) ioresult.IOResult[int] {
computation := FromReaderIOResult(func(cfg AppConfig) ioresult.IOResult[int] {
return func() result.Result[int] {
return result.Of(len(cfg.DatabaseURL))
}
@@ -711,7 +711,7 @@ func TestAp(t *testing.T) {
fa := Of[AppConfig](21)
computation := F.Pipe1(
Of[AppConfig](N.Mul(2)),
Ap[int, AppConfig](fa),
Ap[int](fa),
)
outcome := computation(defaultConfig)(t.Context())()
assert.Equal(t, result.Of(42), outcome)

View File

@@ -0,0 +1,9 @@
package readerreaderioresult
import (
RRIOE "github.com/IBM/fp-go/v2/readerreaderioeither"
)
func TraverseArray[R, A, B any](f Kleisli[R, A, B]) Kleisli[R, []A, []B] {
return RRIOE.TraverseArray(f)
}

View File

@@ -30,8 +30,8 @@ import (
type (
// InjectableFactory is a factory function that can create an untyped instance of a service based on its [Dependency] identifier
InjectableFactory = func(Dependency) IOResult[any]
ProviderFactory = func(InjectableFactory) IOResult[any]
InjectableFactory = ReaderIOResult[Dependency, any]
ProviderFactory = ReaderIOResult[InjectableFactory, any]
paramIndex = map[int]int
paramValue = map[int]any

View File

@@ -4,6 +4,7 @@ import (
"github.com/IBM/fp-go/v2/iooption"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/readerioresult"
"github.com/IBM/fp-go/v2/record"
)
@@ -12,4 +13,5 @@ type (
IOResult[T any] = ioresult.IOResult[T]
IOOption[T any] = iooption.IOOption[T]
Entry[K comparable, V any] = record.Entry[K, V]
ReaderIOResult[R, T any] = readerioresult.ReaderIOResult[R, T]
)

264
v2/effect/bind.go Normal file
View File

@@ -0,0 +1,264 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
)
//go:inline
func Do[C, S any](
empty S,
) Effect[C, S] {
return readerreaderioresult.Of[C](empty)
}
//go:inline
func Bind[C, S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[C, S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.Bind(setter, f)
}
//go:inline
func Let[C, S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) Operator[C, S1, S2] {
return readerreaderioresult.Let[C](setter, f)
}
//go:inline
func LetTo[C, S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) Operator[C, S1, S2] {
return readerreaderioresult.LetTo[C](setter, b)
}
//go:inline
func BindTo[C, S1, T any](
setter func(T) S1,
) Operator[C, T, S1] {
return readerreaderioresult.BindTo[C](setter)
}
//go:inline
func ApS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa Effect[C, T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApS[C](setter, fa)
}
//go:inline
func ApSL[C, S, T any](
lens Lens[S, T],
fa Effect[C, T],
) Operator[C, S, S] {
return readerreaderioresult.ApSL[C](lens, fa)
}
//go:inline
func BindL[C, S, T any](
lens Lens[S, T],
f func(T) Effect[C, T],
) Operator[C, S, S] {
return readerreaderioresult.BindL[C](lens, f)
}
//go:inline
func LetL[C, S, T any](
lens Lens[S, T],
f func(T) T,
) Operator[C, S, S] {
return readerreaderioresult.LetL[C](lens, f)
}
//go:inline
func LetToL[C, S, T any](
lens Lens[S, T],
b T,
) Operator[C, S, S] {
return readerreaderioresult.LetToL[C](lens, b)
}
//go:inline
func BindIOEitherK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f ioeither.Kleisli[error, S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindIOEitherK[C](setter, f)
}
//go:inline
func BindIOResultK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f ioresult.Kleisli[S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindIOResultK[C](setter, f)
}
//go:inline
func BindIOK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f io.Kleisli[S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindIOK[C](setter, f)
}
//go:inline
func BindReaderK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f reader.Kleisli[C, S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindReaderK[C](setter, f)
}
//go:inline
func BindReaderIOK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f readerio.Kleisli[C, S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindReaderIOK[C](setter, f)
}
//go:inline
func BindEitherK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f either.Kleisli[error, S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindEitherK[C](setter, f)
}
//go:inline
func BindIOEitherKL[C, S, T any](
lens Lens[S, T],
f ioeither.Kleisli[error, T, T],
) Operator[C, S, S] {
return readerreaderioresult.BindIOEitherKL[C](lens, f)
}
//go:inline
func BindIOKL[C, S, T any](
lens Lens[S, T],
f io.Kleisli[T, T],
) Operator[C, S, S] {
return readerreaderioresult.BindIOKL[C](lens, f)
}
//go:inline
func BindReaderKL[C, S, T any](
lens Lens[S, T],
f reader.Kleisli[C, T, T],
) Operator[C, S, S] {
return readerreaderioresult.BindReaderKL[C](lens, f)
}
//go:inline
func BindReaderIOKL[C, S, T any](
lens Lens[S, T],
f readerio.Kleisli[C, T, T],
) Operator[C, S, S] {
return readerreaderioresult.BindReaderIOKL[C](lens, f)
}
//go:inline
func ApIOEitherS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa IOEither[error, T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApIOEitherS[C](setter, fa)
}
//go:inline
func ApIOS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa IO[T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApIOS[C](setter, fa)
}
//go:inline
func ApReaderS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa Reader[C, T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApReaderS[C](setter, fa)
}
//go:inline
func ApReaderIOS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa ReaderIO[C, T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApReaderIOS[C](setter, fa)
}
//go:inline
func ApEitherS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa Either[error, T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApEitherS[C](setter, fa)
}
//go:inline
func ApIOEitherSL[C, S, T any](
lens Lens[S, T],
fa IOEither[error, T],
) Operator[C, S, S] {
return readerreaderioresult.ApIOEitherSL[C](lens, fa)
}
//go:inline
func ApIOSL[C, S, T any](
lens Lens[S, T],
fa IO[T],
) Operator[C, S, S] {
return readerreaderioresult.ApIOSL[C](lens, fa)
}
//go:inline
func ApReaderSL[C, S, T any](
lens Lens[S, T],
fa Reader[C, T],
) Operator[C, S, S] {
return readerreaderioresult.ApReaderSL[C](lens, fa)
}
//go:inline
func ApReaderIOSL[C, S, T any](
lens Lens[S, T],
fa ReaderIO[C, T],
) Operator[C, S, S] {
return readerreaderioresult.ApReaderIOSL[C](lens, fa)
}
//go:inline
func ApEitherSL[C, S, T any](
lens Lens[S, T],
fa Either[error, T],
) Operator[C, S, S] {
return readerreaderioresult.ApEitherSL[C](lens, fa)
}

768
v2/effect/bind_test.go Normal file
View File

@@ -0,0 +1,768 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"errors"
"testing"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
"github.com/stretchr/testify/assert"
)
type BindState struct {
Name string
Age int
Email string
}
func TestDo(t *testing.T) {
t.Run("creates effect with initial state", func(t *testing.T) {
initial := BindState{Name: "Alice", Age: 30}
eff := Do[TestContext](initial)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, initial, result)
})
t.Run("creates effect with empty struct", func(t *testing.T) {
type Empty struct{}
eff := Do[TestContext](Empty{})
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, Empty{}, result)
})
}
func TestBind(t *testing.T) {
t.Run("binds effect result to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := Bind[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) Effect[TestContext, int] {
return Of[TestContext, int](30)
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("chains multiple binds", func(t *testing.T) {
initial := BindState{}
eff := Bind[TestContext](
func(email string) func(BindState) BindState {
return func(s BindState) BindState {
s.Email = email
return s
}
},
func(s BindState) Effect[TestContext, string] {
return Of[TestContext, string]("alice@example.com")
},
)(Bind[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) Effect[TestContext, int] {
return Of[TestContext, int](30)
},
)(Bind[TestContext](
func(name string) func(BindState) BindState {
return func(s BindState) BindState {
s.Name = name
return s
}
},
func(s BindState) Effect[TestContext, string] {
return Of[TestContext, string]("Alice")
},
)(Do[TestContext](initial))))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
assert.Equal(t, "alice@example.com", result.Email)
})
t.Run("propagates errors", func(t *testing.T) {
expectedErr := errors.New("bind error")
initial := BindState{Name: "Alice"}
eff := Bind[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) Effect[TestContext, int] {
return Fail[TestContext, int](expectedErr)
},
)(Do[TestContext](initial))
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestLet(t *testing.T) {
t.Run("computes value and binds to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := Let[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) int {
return len(s.Name) * 10
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 50, result.Age) // len("Alice") * 10
})
t.Run("chains with Bind", func(t *testing.T) {
initial := BindState{Name: "Bob"}
eff := Let[TestContext](
func(email string) func(BindState) BindState {
return func(s BindState) BindState {
s.Email = email
return s
}
},
func(s BindState) string {
return s.Name + "@example.com"
},
)(Bind[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) Effect[TestContext, int] {
return Of[TestContext, int](25)
},
)(Do[TestContext](initial)))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Bob", result.Name)
assert.Equal(t, 25, result.Age)
assert.Equal(t, "Bob@example.com", result.Email)
})
}
func TestLetTo(t *testing.T) {
t.Run("binds constant value to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := LetTo[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
42,
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 42, result.Age)
})
t.Run("chains multiple LetTo", func(t *testing.T) {
initial := BindState{}
eff := LetTo[TestContext](
func(email string) func(BindState) BindState {
return func(s BindState) BindState {
s.Email = email
return s
}
},
"test@example.com",
)(LetTo[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
30,
)(LetTo[TestContext](
func(name string) func(BindState) BindState {
return func(s BindState) BindState {
s.Name = name
return s
}
},
"Alice",
)(Do[TestContext](initial))))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
assert.Equal(t, "test@example.com", result.Email)
})
}
func TestBindTo(t *testing.T) {
t.Run("wraps value in state", func(t *testing.T) {
type SimpleState struct {
Value int
}
eff := BindTo[TestContext](func(v int) SimpleState {
return SimpleState{Value: v}
})(Of[TestContext, int](42))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, result.Value)
})
t.Run("starts a bind chain", func(t *testing.T) {
type State struct {
X int
Y string
}
eff := Let[TestContext](
func(y string) func(State) State {
return func(s State) State {
s.Y = y
return s
}
},
func(s State) string {
return "computed"
},
)(BindTo[TestContext](func(x int) State {
return State{X: x}
})(Of[TestContext, int](10)))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 10, result.X)
assert.Equal(t, "computed", result.Y)
})
}
func TestApS(t *testing.T) {
t.Run("applies effect and binds result to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
ageEffect := Of[TestContext, int](30)
eff := ApS[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
ageEffect,
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("propagates errors from applied effect", func(t *testing.T) {
expectedErr := errors.New("aps error")
initial := BindState{Name: "Alice"}
ageEffect := Fail[TestContext, int](expectedErr)
eff := ApS[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
ageEffect,
)(Do[TestContext](initial))
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestBindIOK(t *testing.T) {
t.Run("binds IO operation to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindIOK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) io.IO[int] {
return func() int {
return 30
}
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
}
func TestBindIOEitherK(t *testing.T) {
t.Run("binds successful IOEither to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindIOEitherK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) ioeither.IOEither[error, int] {
return ioeither.Of[error, int](30)
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("propagates IOEither error", func(t *testing.T) {
expectedErr := errors.New("ioeither error")
initial := BindState{Name: "Alice"}
eff := BindIOEitherK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) ioeither.IOEither[error, int] {
return ioeither.Left[int, error](expectedErr)
},
)(Do[TestContext](initial))
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestBindIOResultK(t *testing.T) {
t.Run("binds successful IOResult to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindIOResultK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) ioresult.IOResult[int] {
return ioresult.Of[int](30)
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
}
func TestBindReaderK(t *testing.T) {
t.Run("binds Reader operation to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindReaderK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) reader.Reader[TestContext, int] {
return func(ctx TestContext) int {
return 30
}
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
}
func TestBindReaderIOK(t *testing.T) {
t.Run("binds ReaderIO operation to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindReaderIOK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) readerio.ReaderIO[TestContext, int] {
return func(ctx TestContext) io.IO[int] {
return func() int {
return 30
}
}
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
}
func TestBindEitherK(t *testing.T) {
t.Run("binds successful Either to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindEitherK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) either.Either[error, int] {
return either.Of[error, int](30)
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("propagates Either error", func(t *testing.T) {
expectedErr := errors.New("either error")
initial := BindState{Name: "Alice"}
eff := BindEitherK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) either.Either[error, int] {
return either.Left[int, error](expectedErr)
},
)(Do[TestContext](initial))
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestLensOperations(t *testing.T) {
// Create lenses for BindState
nameLens := lens.MakeLens(
func(s BindState) string { return s.Name },
func(s BindState, name string) BindState {
s.Name = name
return s
},
)
ageLens := lens.MakeLens(
func(s BindState) int { return s.Age },
func(s BindState, age int) BindState {
s.Age = age
return s
},
)
t.Run("ApSL applies effect using lens", func(t *testing.T) {
initial := BindState{Name: "Alice", Age: 25}
ageEffect := Of[TestContext, int](30)
eff := ApSL[TestContext](ageLens, ageEffect)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("BindL binds effect using lens", func(t *testing.T) {
initial := BindState{Name: "Alice", Age: 25}
eff := BindL[TestContext](
ageLens,
func(age int) Effect[TestContext, int] {
return Of[TestContext, int](age + 5)
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("LetL computes value using lens", func(t *testing.T) {
initial := BindState{Name: "Alice", Age: 25}
eff := LetL[TestContext](
ageLens,
func(age int) int {
return age * 2
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 50, result.Age)
})
t.Run("LetToL sets constant using lens", func(t *testing.T) {
initial := BindState{Name: "Alice", Age: 25}
eff := LetToL[TestContext](ageLens, 100)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 100, result.Age)
})
t.Run("chains lens operations", func(t *testing.T) {
initial := BindState{}
eff := LetToL[TestContext](
ageLens,
30,
)(LetToL[TestContext](
nameLens,
"Bob",
)(Do[TestContext](initial)))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Bob", result.Name)
assert.Equal(t, 30, result.Age)
})
}
func TestApOperations(t *testing.T) {
t.Run("ApIOS applies IO effect", func(t *testing.T) {
initial := BindState{Name: "Alice"}
ioEffect := func() int { return 30 }
eff := ApIOS[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
ioEffect,
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 30, result.Age)
})
t.Run("ApReaderS applies Reader effect", func(t *testing.T) {
initial := BindState{Name: "Alice"}
readerEffect := func(ctx TestContext) int { return 30 }
eff := ApReaderS[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
readerEffect,
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 30, result.Age)
})
t.Run("ApEitherS applies Either effect", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eitherEffect := either.Of[error, int](30)
eff := ApEitherS[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
eitherEffect,
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 30, result.Age)
})
}
func TestComplexBindChain(t *testing.T) {
t.Run("builds complex state with multiple operations", func(t *testing.T) {
type ComplexState struct {
Name string
Age int
Email string
IsAdmin bool
Score int
}
eff := LetTo[TestContext](
func(score int) func(ComplexState) ComplexState {
return func(s ComplexState) ComplexState {
s.Score = score
return s
}
},
100,
)(Let[TestContext](
func(isAdmin bool) func(ComplexState) ComplexState {
return func(s ComplexState) ComplexState {
s.IsAdmin = isAdmin
return s
}
},
func(s ComplexState) bool {
return s.Age >= 18
},
)(Let[TestContext](
func(email string) func(ComplexState) ComplexState {
return func(s ComplexState) ComplexState {
s.Email = email
return s
}
},
func(s ComplexState) string {
return s.Name + "@example.com"
},
)(Bind[TestContext](
func(age int) func(ComplexState) ComplexState {
return func(s ComplexState) ComplexState {
s.Age = age
return s
}
},
func(s ComplexState) Effect[TestContext, int] {
return Of[TestContext, int](25)
},
)(BindTo[TestContext](func(name string) ComplexState {
return ComplexState{Name: name}
})(Of[TestContext, string]("Alice"))))))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 25, result.Age)
assert.Equal(t, "Alice@example.com", result.Email)
assert.True(t, result.IsAdmin)
assert.Equal(t, 100, result.Score)
})
}

110
v2/effect/dependencies.go Normal file
View File

@@ -0,0 +1,110 @@
package effect
import (
thunk "github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/result"
)
//go:inline
func Local[C1, C2, A any](acc Reader[C1, C2]) Kleisli[C1, Effect[C2, A], A] {
return readerreaderioresult.Local[A](acc)
}
//go:inline
func Contramap[C1, C2, A any](acc Reader[C1, C2]) Kleisli[C1, Effect[C2, A], A] {
return readerreaderioresult.Local[A](acc)
}
//go:inline
func LocalIOK[A, C1, C2 any](f io.Kleisli[C2, C1]) func(Effect[C1, A]) Effect[C2, A] {
return readerreaderioresult.LocalIOK[A](f)
}
//go:inline
func LocalIOResultK[A, C1, C2 any](f ioresult.Kleisli[C2, C1]) func(Effect[C1, A]) Effect[C2, A] {
return readerreaderioresult.LocalIOResultK[A](f)
}
//go:inline
func LocalResultK[A, C1, C2 any](f result.Kleisli[C2, C1]) func(Effect[C1, A]) Effect[C2, A] {
return readerreaderioresult.LocalResultK[A](f)
}
//go:inline
func LocalThunkK[A, C1, C2 any](f thunk.Kleisli[C2, C1]) func(Effect[C1, A]) Effect[C2, A] {
return readerreaderioresult.LocalReaderIOResultK[A](f)
}
// LocalEffectK transforms the context of an Effect using an Effect-returning function.
// This is the most powerful context transformation function, allowing the transformation
// itself to be effectful (can fail, perform I/O, and access the outer context).
//
// LocalEffectK takes a Kleisli arrow that:
// - Accepts the outer context C2
// - Returns an Effect that produces the inner context C1
// - Can fail with an error during context transformation
// - Can perform I/O operations during transformation
//
// This is useful when:
// - Context transformation requires I/O (e.g., loading config from a file)
// - Context transformation can fail (e.g., validating or parsing context)
// - Context transformation needs to access the outer context
//
// Type Parameters:
// - A: The value type produced by the effect
// - C1: The inner context type (required by the original effect)
// - C2: The outer context type (provided to the transformed effect)
//
// Parameters:
// - f: A Kleisli arrow (C2 -> Effect[C2, C1]) that transforms C2 to C1 effectfully
//
// Returns:
// - A function that transforms Effect[C1, A] to Effect[C2, A]
//
// Example:
//
// type DatabaseConfig struct {
// ConnectionString string
// }
//
// type AppConfig struct {
// ConfigPath string
// }
//
// // Effect that needs DatabaseConfig
// dbEffect := effect.Of[DatabaseConfig, string]("query result")
//
// // Transform AppConfig to DatabaseConfig effectfully
// // (e.g., load config from file, which can fail)
// loadConfig := func(app AppConfig) Effect[AppConfig, DatabaseConfig] {
// return effect.Chain[AppConfig](func(_ AppConfig) Effect[AppConfig, DatabaseConfig] {
// // Simulate loading config from file (can fail)
// return effect.Of[AppConfig, DatabaseConfig](DatabaseConfig{
// ConnectionString: "loaded from " + app.ConfigPath,
// })
// })(effect.Of[AppConfig, AppConfig](app))
// }
//
// // Apply the transformation
// transform := effect.LocalEffectK[string, DatabaseConfig, AppConfig](loadConfig)
// appEffect := transform(dbEffect)
//
// // Run with AppConfig
// ioResult := effect.Provide(AppConfig{ConfigPath: "/etc/app.conf"})(appEffect)
// readerResult := effect.RunSync(ioResult)
// result, err := readerResult(context.Background())
//
// Comparison with other Local functions:
// - Local/Contramap: Pure context transformation (C2 -> C1)
// - LocalIOK: IO-based transformation (C2 -> IO[C1])
// - LocalIOResultK: IO with error handling (C2 -> IOResult[C1])
// - LocalReaderIOResultK: Reader-based with IO and errors (C2 -> ReaderIOResult[C1])
// - LocalEffectK: Full Effect transformation (C2 -> Effect[C2, C1])
//
//go:inline
func LocalEffectK[A, C1, C2 any](f Kleisli[C2, C2, C1]) func(Effect[C1, A]) Effect[C2, A] {
return readerreaderioresult.LocalReaderReaderIOEitherK[A](f)
}

View File

@@ -0,0 +1,620 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"context"
"fmt"
"testing"
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/stretchr/testify/assert"
)
type OuterContext struct {
Value string
Number int
}
type InnerContext struct {
Value string
}
func TestLocal(t *testing.T) {
t.Run("transforms context for inner effect", func(t *testing.T) {
// Create an effect that uses InnerContext
innerEffect := Of[InnerContext, string]("result")
// Transform OuterContext to InnerContext
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value}
}
// Apply Local to transform the context
kleisli := Local[OuterContext, InnerContext, string](accessor)
outerEffect := kleisli(innerEffect)
// Run with OuterContext
ioResult := Provide[OuterContext, string](OuterContext{
Value: "test",
Number: 42,
})(outerEffect)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "result", result)
})
t.Run("allows accessing outer context fields", func(t *testing.T) {
// Create an effect that reads from InnerContext
innerEffect := Chain[InnerContext](func(_ string) Effect[InnerContext, string] {
return Of[InnerContext, string]("inner value")
})(Of[InnerContext, string]("start"))
// Transform context
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value + " transformed"}
}
kleisli := Local[OuterContext, InnerContext, string](accessor)
outerEffect := kleisli(innerEffect)
// Run with OuterContext
ioResult := Provide[OuterContext, string](OuterContext{
Value: "original",
Number: 100,
})(outerEffect)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "inner value", result)
})
t.Run("propagates errors from inner effect", func(t *testing.T) {
expectedErr := assert.AnError
innerEffect := Fail[InnerContext, string](expectedErr)
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value}
}
kleisli := Local[OuterContext, InnerContext, string](accessor)
outerEffect := kleisli(innerEffect)
ioResult := Provide[OuterContext, string](OuterContext{
Value: "test",
Number: 42,
})(outerEffect)
readerResult := RunSync[string](ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("chains multiple Local transformations", func(t *testing.T) {
type Level1 struct {
A string
}
type Level2 struct {
B string
}
type Level3 struct {
C string
}
// Effect at deepest level
level3Effect := Of[Level3, string]("deep result")
// Transform Level2 -> Level3
local23 := Local[Level2, Level3, string](func(l2 Level2) Level3 {
return Level3{C: l2.B + "-c"}
})
// Transform Level1 -> Level2
local12 := Local[Level1, Level2, string](func(l1 Level1) Level2 {
return Level2{B: l1.A + "-b"}
})
// Compose transformations
level2Effect := local23(level3Effect)
level1Effect := local12(level2Effect)
// Run with Level1 context
ioResult := Provide[Level1, string](Level1{A: "a"})(level1Effect)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "deep result", result)
})
t.Run("works with complex context transformations", func(t *testing.T) {
type DatabaseConfig struct {
Host string
Port int
Database string
}
type AppConfig struct {
DB DatabaseConfig
APIKey string
Timeout int
}
// Effect that needs only DatabaseConfig
dbEffect := Of[DatabaseConfig, string]("connected")
// Extract DB config from AppConfig
accessor := func(app AppConfig) DatabaseConfig {
return app.DB
}
kleisli := Local[AppConfig, DatabaseConfig, string](accessor)
appEffect := kleisli(dbEffect)
// Run with full AppConfig
ioResult := Provide[AppConfig, string](AppConfig{
DB: DatabaseConfig{
Host: "localhost",
Port: 5432,
Database: "mydb",
},
APIKey: "secret",
Timeout: 30,
})(appEffect)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "connected", result)
})
}
func TestContramap(t *testing.T) {
t.Run("is equivalent to Local", func(t *testing.T) {
innerEffect := Of[InnerContext, int](42)
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value}
}
// Test Local
localKleisli := Local[OuterContext, InnerContext, int](accessor)
localEffect := localKleisli(innerEffect)
// Test Contramap
contramapKleisli := Contramap[OuterContext, InnerContext, int](accessor)
contramapEffect := contramapKleisli(innerEffect)
outerCtx := OuterContext{Value: "test", Number: 100}
// Run both
localIO := Provide[OuterContext, int](outerCtx)(localEffect)
localReader := RunSync[int](localIO)
localResult, localErr := localReader(context.Background())
contramapIO := Provide[OuterContext, int](outerCtx)(contramapEffect)
contramapReader := RunSync[int](contramapIO)
contramapResult, contramapErr := contramapReader(context.Background())
assert.NoError(t, localErr)
assert.NoError(t, contramapErr)
assert.Equal(t, localResult, contramapResult)
})
t.Run("transforms context correctly", func(t *testing.T) {
innerEffect := Of[InnerContext, string]("success")
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value + " modified"}
}
kleisli := Contramap[OuterContext, InnerContext, string](accessor)
outerEffect := kleisli(innerEffect)
ioResult := Provide[OuterContext, string](OuterContext{
Value: "original",
Number: 50,
})(outerEffect)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "success", result)
})
t.Run("handles errors from inner effect", func(t *testing.T) {
expectedErr := assert.AnError
innerEffect := Fail[InnerContext, int](expectedErr)
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value}
}
kleisli := Contramap[OuterContext, InnerContext, int](accessor)
outerEffect := kleisli(innerEffect)
ioResult := Provide[OuterContext, int](OuterContext{
Value: "test",
Number: 42,
})(outerEffect)
readerResult := RunSync[int](ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestLocalAndContramapInteroperability(t *testing.T) {
t.Run("can be used interchangeably", func(t *testing.T) {
type Config1 struct {
Value string
}
type Config2 struct {
Data string
}
type Config3 struct {
Info string
}
// Effect at deepest level
effect3 := Of[Config3, string]("result")
// Use Local for first transformation
local23 := Local[Config2, Config3, string](func(c2 Config2) Config3 {
return Config3{Info: c2.Data}
})
// Use Contramap for second transformation
contramap12 := Contramap[Config1, Config2, string](func(c1 Config1) Config2 {
return Config2{Data: c1.Value}
})
// Compose them
effect2 := local23(effect3)
effect1 := contramap12(effect2)
// Run
ioResult := Provide[Config1, string](Config1{Value: "test"})(effect1)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "result", result)
})
}
func TestLocalEffectK(t *testing.T) {
t.Run("transforms context using effectful function", func(t *testing.T) {
type DatabaseConfig struct {
ConnectionString string
}
type AppConfig struct {
ConfigPath string
}
// Effect that needs DatabaseConfig
dbEffect := Of[DatabaseConfig, string]("query result")
// Transform AppConfig to DatabaseConfig effectfully
loadConfig := func(app AppConfig) Effect[AppConfig, DatabaseConfig] {
return Of[AppConfig, DatabaseConfig](DatabaseConfig{
ConnectionString: "loaded from " + app.ConfigPath,
})
}
// Apply the transformation
transform := LocalEffectK[string, DatabaseConfig, AppConfig](loadConfig)
appEffect := transform(dbEffect)
// Run with AppConfig
ioResult := Provide[AppConfig, string](AppConfig{
ConfigPath: "/etc/app.conf",
})(appEffect)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "query result", result)
})
t.Run("propagates errors from context transformation", func(t *testing.T) {
type InnerCtx struct {
Value string
}
type OuterCtx struct {
Path string
}
innerEffect := Of[InnerCtx, string]("success")
expectedErr := assert.AnError
// Context transformation that fails
failingTransform := func(outer OuterCtx) Effect[OuterCtx, InnerCtx] {
return Fail[OuterCtx, InnerCtx](expectedErr)
}
transform := LocalEffectK[string, InnerCtx, OuterCtx](failingTransform)
outerEffect := transform(innerEffect)
ioResult := Provide[OuterCtx, string](OuterCtx{Path: "test"})(outerEffect)
readerResult := RunSync[string](ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("propagates errors from inner effect", func(t *testing.T) {
type InnerCtx struct {
Value string
}
type OuterCtx struct {
Path string
}
expectedErr := assert.AnError
innerEffect := Fail[InnerCtx, string](expectedErr)
// Successful context transformation
transform := func(outer OuterCtx) Effect[OuterCtx, InnerCtx] {
return Of[OuterCtx, InnerCtx](InnerCtx{Value: outer.Path})
}
transformK := LocalEffectK[string, InnerCtx, OuterCtx](transform)
outerEffect := transformK(innerEffect)
ioResult := Provide[OuterCtx, string](OuterCtx{Path: "test"})(outerEffect)
readerResult := RunSync[string](ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("allows effectful context transformation with IO operations", func(t *testing.T) {
type Config struct {
Data string
}
type AppContext struct {
ConfigFile string
}
// Effect that uses Config
configEffect := Chain[Config](func(cfg Config) Effect[Config, string] {
return Of[Config, string]("processed: " + cfg.Data)
})(readerreaderioresult.Ask[Config]())
// Effectful transformation that simulates loading config
loadConfigEffect := func(app AppContext) Effect[AppContext, Config] {
// Simulate IO operation (e.g., reading file)
return Of[AppContext, Config](Config{
Data: "loaded from " + app.ConfigFile,
})
}
transform := LocalEffectK[string, Config, AppContext](loadConfigEffect)
appEffect := transform(configEffect)
ioResult := Provide[AppContext, string](AppContext{
ConfigFile: "config.json",
})(appEffect)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "processed: loaded from config.json", result)
})
t.Run("chains multiple LocalEffectK transformations", func(t *testing.T) {
type Level1 struct {
A string
}
type Level2 struct {
B string
}
type Level3 struct {
C string
}
// Effect at deepest level
level3Effect := Of[Level3, string]("deep result")
// Transform Level2 -> Level3 effectfully
transform23 := LocalEffectK[string, Level3, Level2](func(l2 Level2) Effect[Level2, Level3] {
return Of[Level2, Level3](Level3{C: l2.B + "-c"})
})
// Transform Level1 -> Level2 effectfully
transform12 := LocalEffectK[string, Level2, Level1](func(l1 Level1) Effect[Level1, Level2] {
return Of[Level1, Level2](Level2{B: l1.A + "-b"})
})
// Compose transformations
level2Effect := transform23(level3Effect)
level1Effect := transform12(level2Effect)
// Run with Level1 context
ioResult := Provide[Level1, string](Level1{A: "a"})(level1Effect)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "deep result", result)
})
t.Run("accesses outer context during transformation", func(t *testing.T) {
type DatabaseConfig struct {
Host string
Port int
}
type AppConfig struct {
Environment string
DBHost string
DBPort int
}
// Effect that needs DatabaseConfig
dbEffect := Chain[DatabaseConfig](func(cfg DatabaseConfig) Effect[DatabaseConfig, string] {
return Of[DatabaseConfig, string](fmt.Sprintf("%s:%d", cfg.Host, cfg.Port))
})(readerreaderioresult.Ask[DatabaseConfig]())
// Transform using outer context
transformWithContext := func(app AppConfig) Effect[AppConfig, DatabaseConfig] {
// Access outer context to build inner context
prefix := ""
if app.Environment == "prod" {
prefix = "prod-"
}
return Of[AppConfig, DatabaseConfig](DatabaseConfig{
Host: prefix + app.DBHost,
Port: app.DBPort,
})
}
transform := LocalEffectK[string, DatabaseConfig, AppConfig](transformWithContext)
appEffect := transform(dbEffect)
ioResult := Provide[AppConfig, string](AppConfig{
Environment: "prod",
DBHost: "localhost",
DBPort: 5432,
})(appEffect)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Contains(t, result, "prod-localhost")
})
t.Run("validates context during transformation", func(t *testing.T) {
type ValidatedConfig struct {
APIKey string
}
type RawConfig struct {
APIKey string
}
innerEffect := Of[ValidatedConfig, string]("success")
// Validation that can fail
validateConfig := func(raw RawConfig) Effect[RawConfig, ValidatedConfig] {
if raw.APIKey == "" {
return Fail[RawConfig, ValidatedConfig](assert.AnError)
}
return Of[RawConfig, ValidatedConfig](ValidatedConfig{
APIKey: raw.APIKey,
})
}
transform := LocalEffectK[string, ValidatedConfig, RawConfig](validateConfig)
outerEffect := transform(innerEffect)
// Test with invalid config
ioResult := Provide[RawConfig, string](RawConfig{APIKey: ""})(outerEffect)
readerResult := RunSync[string](ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
// Test with valid config
ioResult2 := Provide[RawConfig, string](RawConfig{APIKey: "valid-key"})(outerEffect)
readerResult2 := RunSync[string](ioResult2)
result, err2 := readerResult2(context.Background())
assert.NoError(t, err2)
assert.Equal(t, "success", result)
})
t.Run("composes with other Local functions", func(t *testing.T) {
type Level1 struct {
Value string
}
type Level2 struct {
Data string
}
type Level3 struct {
Info string
}
// Effect at deepest level
effect3 := Of[Level3, string]("result")
// Use LocalEffectK for first transformation (effectful)
localEffectK23 := LocalEffectK[string, Level3, Level2](func(l2 Level2) Effect[Level2, Level3] {
return Of[Level2, Level3](Level3{Info: l2.Data})
})
// Use Local for second transformation (pure)
local12 := Local[Level1, Level2, string](func(l1 Level1) Level2 {
return Level2{Data: l1.Value}
})
// Compose them
effect2 := localEffectK23(effect3)
effect1 := local12(effect2)
// Run
ioResult := Provide[Level1, string](Level1{Value: "test"})(effect1)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "result", result)
})
t.Run("handles complex nested effects in transformation", func(t *testing.T) {
type InnerCtx struct {
Value int
}
type OuterCtx struct {
Multiplier int
}
// Effect that uses InnerCtx
innerEffect := Chain[InnerCtx](func(ctx InnerCtx) Effect[InnerCtx, int] {
return Of[InnerCtx, int](ctx.Value * 2)
})(readerreaderioresult.Ask[InnerCtx]())
// Complex transformation with nested effects
complexTransform := func(outer OuterCtx) Effect[OuterCtx, InnerCtx] {
return Of[OuterCtx, InnerCtx](InnerCtx{
Value: outer.Multiplier * 10,
})
}
transform := LocalEffectK[int, InnerCtx, OuterCtx](complexTransform)
outerEffect := transform(innerEffect)
ioResult := Provide[OuterCtx, int](OuterCtx{Multiplier: 3})(outerEffect)
readerResult := RunSync[int](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, 60, result) // 3 * 10 * 2
})
}

222
v2/effect/doc.go Normal file
View File

@@ -0,0 +1,222 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
Package effect provides a functional effect system for managing side effects in Go.
# Overview
The effect package is a high-level abstraction for composing effectful computations
that may fail, require dependencies (context), and perform I/O operations. It is built
on top of ReaderReaderIOResult, providing a clean API for dependency injection and
error handling.
# Naming Conventions
The naming conventions in this package are modeled after effect-ts (https://effect.website/),
a popular TypeScript library for functional effect systems. This alignment helps developers
familiar with effect-ts to quickly understand and use this Go implementation.
# Core Type
The central type is Effect[C, A], which represents:
- C: The context/dependency type required by the effect
- A: The success value type produced by the effect
An Effect can:
- Succeed with a value of type A
- Fail with an error
- Require a context of type C
- Perform I/O operations
# Basic Operations
Creating Effects:
// Create a successful effect
effect.Succeed[MyContext, string]("hello")
// Create a failed effect
effect.Fail[MyContext, string](errors.New("failed"))
// Lift a pure value into an effect
effect.Of[MyContext, int](42)
Transforming Effects:
// Map over the success value
effect.Map[MyContext](func(x int) string {
return strconv.Itoa(x)
})
// Chain effects together (flatMap)
effect.Chain[MyContext](func(x int) Effect[MyContext, string] {
return effect.Succeed[MyContext, string](strconv.Itoa(x))
})
// Tap into an effect without changing its value
effect.Tap[MyContext](func(x int) Effect[MyContext, any] {
return effect.Succeed[MyContext, any](fmt.Println(x))
})
# Dependency Injection
Effects can access their required context:
// Transform the context before passing it to an effect
effect.Local[OuterCtx, InnerCtx](func(outer OuterCtx) InnerCtx {
return outer.Inner
})
// Provide a context to run an effect
effect.Provide[MyContext, string](myContext)
# Do Notation
The package provides "do notation" for composing effects in a sequential, imperative style:
type State struct {
X int
Y string
}
result := effect.Do[MyContext](State{}).
Bind(func(y string) func(State) State {
return func(s State) State {
s.Y = y
return s
}
}, fetchString).
Let(func(x int) func(State) State {
return func(s State) State {
s.X = x
return s
}
}, func(s State) int {
return len(s.Y)
})
# Bind Operations
The package provides various bind operations for integrating with other effect types:
- BindIOK: Bind an IO operation
- BindIOEitherK: Bind an IOEither operation
- BindIOResultK: Bind an IOResult operation
- BindReaderK: Bind a Reader operation
- BindReaderIOK: Bind a ReaderIO operation
- BindEitherK: Bind an Either operation
Each bind operation has a corresponding "L" variant for working with lenses:
- BindL, BindIOKL, BindReaderKL, etc.
# Applicative Operations
Apply effects in parallel:
// Apply a function effect to a value effect
effect.Ap[string, MyContext](valueEffect)(functionEffect)
// Apply effects to build up a structure
effect.ApS[MyContext](setter, effect1)
# Traversal
Traverse collections with effects:
// Map an array with an effectful function
effect.TraverseArray[MyContext](func(x int) Effect[MyContext, string] {
return effect.Succeed[MyContext, string](strconv.Itoa(x))
})
# Retry Logic
Retry effects with configurable policies:
effect.Retrying[MyContext, string](
retryPolicy,
func(status retry.RetryStatus) Effect[MyContext, string] {
return fetchData()
},
func(result Result[string]) bool {
return result.IsLeft() // retry on error
},
)
# Monoids
Combine effects using monoid operations:
// Combine effects using applicative semantics
effect.ApplicativeMonoid[MyContext](stringMonoid)
// Combine effects using alternative semantics (first success)
effect.AlternativeMonoid[MyContext](stringMonoid)
# Running Effects
To execute an effect:
// Provide the context
ioResult := effect.Provide[MyContext, string](myContext)(myEffect)
// Run synchronously
readerResult := effect.RunSync(ioResult)
// Execute with a context.Context
value, err := readerResult(ctx)
# Integration with Other Packages
The effect package integrates seamlessly with other fp-go packages:
- either: For error handling
- io: For I/O operations
- reader: For dependency injection
- result: For result types
- retry: For retry logic
- monoid: For combining effects
# Example
type Config struct {
APIKey string
BaseURL string
}
func fetchUser(id int) Effect[Config, User] {
return effect.Chain[Config](func(cfg Config) Effect[Config, User] {
// Use cfg.APIKey and cfg.BaseURL
return effect.Succeed[Config, User](User{ID: id})
})(effect.Of[Config, Config](Config{}))
}
func main() {
cfg := Config{APIKey: "key", BaseURL: "https://api.example.com"}
userEffect := fetchUser(42)
// Run the effect
ioResult := effect.Provide(cfg)(userEffect)
readerResult := effect.RunSync(ioResult)
user, err := readerResult(context.Background())
if err != nil {
log.Fatal(err)
}
fmt.Printf("User: %+v\n", user)
}
*/
package effect
//go:generate go run ../main.go lens --dir . --filename gen_lens.go --include-test-files

51
v2/effect/effect.go Normal file
View File

@@ -0,0 +1,51 @@
package effect
import (
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/result"
)
func Succeed[C, A any](a A) Effect[C, A] {
return readerreaderioresult.Of[C](a)
}
func Fail[C, A any](err error) Effect[C, A] {
return readerreaderioresult.Left[C, A](err)
}
func Of[C, A any](a A) Effect[C, A] {
return readerreaderioresult.Of[C](a)
}
func Map[C, A, B any](f func(A) B) Operator[C, A, B] {
return readerreaderioresult.Map[C](f)
}
func Chain[C, A, B any](f Kleisli[C, A, B]) Operator[C, A, B] {
return readerreaderioresult.Chain(f)
}
func Ap[B, C, A any](fa Effect[C, A]) Operator[C, func(A) B, B] {
return readerreaderioresult.Ap[B](fa)
}
func Suspend[C, A any](fa Lazy[Effect[C, A]]) Effect[C, A] {
return readerreaderioresult.Defer(fa)
}
func Tap[C, A, ANY any](f Kleisli[C, A, ANY]) Operator[C, A, A] {
return readerreaderioresult.Tap(f)
}
func Ternary[C, A, B any](pred Predicate[A], onTrue, onFalse Kleisli[C, A, B]) Kleisli[C, A, B] {
return function.Ternary(pred, onTrue, onFalse)
}
func ChainResultK[C, A, B any](f result.Kleisli[A, B]) Operator[C, A, B] {
return readerreaderioresult.ChainResultK[C](f)
}
func Read[A, C any](c C) func(Effect[C, A]) Thunk[A] {
return readerreaderioresult.Read[A](c)
}

506
v2/effect/effect_test.go Normal file
View File

@@ -0,0 +1,506 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"context"
"errors"
"fmt"
"testing"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
type TestContext struct {
Value string
}
func runEffect[A any](eff Effect[TestContext, A], ctx TestContext) (A, error) {
ioResult := Provide[TestContext, A](ctx)(eff)
readerResult := RunSync[A](ioResult)
return readerResult(context.Background())
}
func TestSucceed(t *testing.T) {
t.Run("creates successful effect with value", func(t *testing.T) {
eff := Succeed[TestContext, int](42)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, result)
})
t.Run("creates successful effect with string", func(t *testing.T) {
eff := Succeed[TestContext, string]("hello")
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "hello", result)
})
t.Run("creates successful effect with struct", func(t *testing.T) {
type User struct {
Name string
Age int
}
user := User{Name: "Alice", Age: 30}
eff := Succeed[TestContext, User](user)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, user, result)
})
}
func TestFail(t *testing.T) {
t.Run("creates failed effect with error", func(t *testing.T) {
expectedErr := errors.New("test error")
eff := Fail[TestContext, int](expectedErr)
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("creates failed effect with custom error", func(t *testing.T) {
expectedErr := fmt.Errorf("custom error: %s", "details")
eff := Fail[TestContext, string](expectedErr)
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestOf(t *testing.T) {
t.Run("lifts value into effect", func(t *testing.T) {
eff := Of[TestContext, int](100)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 100, result)
})
t.Run("is equivalent to Succeed", func(t *testing.T) {
value := "test value"
eff1 := Of[TestContext, string](value)
eff2 := Succeed[TestContext, string](value)
result1, err1 := runEffect(eff1, TestContext{Value: "test"})
result2, err2 := runEffect(eff2, TestContext{Value: "test"})
assert.NoError(t, err1)
assert.NoError(t, err2)
assert.Equal(t, result1, result2)
})
}
func TestMap(t *testing.T) {
t.Run("maps over successful effect", func(t *testing.T) {
eff := Of[TestContext, int](10)
mapped := Map[TestContext](func(x int) int {
return x * 2
})(eff)
result, err := runEffect(mapped, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 20, result)
})
t.Run("maps to different type", func(t *testing.T) {
eff := Of[TestContext, int](42)
mapped := Map[TestContext](func(x int) string {
return fmt.Sprintf("value: %d", x)
})(eff)
result, err := runEffect(mapped, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "value: 42", result)
})
t.Run("preserves error in failed effect", func(t *testing.T) {
expectedErr := errors.New("original error")
eff := Fail[TestContext, int](expectedErr)
mapped := Map[TestContext](func(x int) int {
return x * 2
})(eff)
_, err := runEffect(mapped, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("chains multiple maps", func(t *testing.T) {
eff := Of[TestContext, int](5)
result := Map[TestContext](func(x int) int {
return x + 1
})(Map[TestContext](func(x int) int {
return x * 2
})(eff))
value, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 11, value) // (5 * 2) + 1
})
}
func TestChain(t *testing.T) {
t.Run("chains successful effects", func(t *testing.T) {
eff := Of[TestContext, int](10)
chained := Chain[TestContext](func(x int) Effect[TestContext, int] {
return Of[TestContext, int](x * 2)
})(eff)
result, err := runEffect(chained, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 20, result)
})
t.Run("chains to different type", func(t *testing.T) {
eff := Of[TestContext, int](42)
chained := Chain[TestContext](func(x int) Effect[TestContext, string] {
return Of[TestContext, string](fmt.Sprintf("number: %d", x))
})(eff)
result, err := runEffect(chained, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "number: 42", result)
})
t.Run("propagates first error", func(t *testing.T) {
expectedErr := errors.New("first error")
eff := Fail[TestContext, int](expectedErr)
chained := Chain[TestContext](func(x int) Effect[TestContext, int] {
return Of[TestContext, int](x * 2)
})(eff)
_, err := runEffect(chained, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("propagates second error", func(t *testing.T) {
expectedErr := errors.New("second error")
eff := Of[TestContext, int](10)
chained := Chain[TestContext](func(x int) Effect[TestContext, int] {
return Fail[TestContext, int](expectedErr)
})(eff)
_, err := runEffect(chained, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("chains multiple operations", func(t *testing.T) {
eff := Of[TestContext, int](5)
result := Chain[TestContext](func(x int) Effect[TestContext, int] {
return Of[TestContext, int](x + 10)
})(Chain[TestContext](func(x int) Effect[TestContext, int] {
return Of[TestContext, int](x * 2)
})(eff))
value, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 20, value) // (5 * 2) + 10
})
}
func TestAp(t *testing.T) {
t.Run("applies function effect to value effect", func(t *testing.T) {
fn := Of[TestContext, func(int) int](func(x int) int {
return x * 2
})
value := Of[TestContext, int](21)
result := Ap[int](value)(fn)
val, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, val)
})
t.Run("applies function to different type", func(t *testing.T) {
fn := Of[TestContext, func(int) string](func(x int) string {
return fmt.Sprintf("value: %d", x)
})
value := Of[TestContext, int](42)
result := Ap[string](value)(fn)
val, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "value: 42", val)
})
t.Run("propagates error from function effect", func(t *testing.T) {
expectedErr := errors.New("function error")
fn := Fail[TestContext, func(int) int](expectedErr)
value := Of[TestContext, int](42)
result := Ap[int](value)(fn)
_, err := runEffect(result, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("propagates error from value effect", func(t *testing.T) {
expectedErr := errors.New("value error")
fn := Of[TestContext, func(int) int](func(x int) int {
return x * 2
})
value := Fail[TestContext, int](expectedErr)
result := Ap[int](value)(fn)
_, err := runEffect(result, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestSuspend(t *testing.T) {
t.Run("suspends effect computation", func(t *testing.T) {
callCount := 0
eff := Suspend[TestContext, int](func() Effect[TestContext, int] {
callCount++
return Of[TestContext, int](42)
})
// Effect not executed yet
assert.Equal(t, 0, callCount)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, result)
assert.Equal(t, 1, callCount)
})
t.Run("suspends failing effect", func(t *testing.T) {
expectedErr := errors.New("suspended error")
eff := Suspend[TestContext, int](func() Effect[TestContext, int] {
return Fail[TestContext, int](expectedErr)
})
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("allows lazy evaluation", func(t *testing.T) {
var value int
eff := Suspend[TestContext, int](func() Effect[TestContext, int] {
return Of[TestContext, int](value)
})
value = 10
result1, err1 := runEffect(eff, TestContext{Value: "test"})
value = 20
result2, err2 := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err1)
assert.NoError(t, err2)
assert.Equal(t, 10, result1)
assert.Equal(t, 20, result2)
})
}
func TestTap(t *testing.T) {
t.Run("executes side effect without changing value", func(t *testing.T) {
sideEffectValue := 0
eff := Of[TestContext, int](42)
tapped := Tap[TestContext](func(x int) Effect[TestContext, any] {
sideEffectValue = x * 2
return Of[TestContext, any](nil)
})(eff)
result, err := runEffect(tapped, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, result)
assert.Equal(t, 84, sideEffectValue)
})
t.Run("propagates original error", func(t *testing.T) {
expectedErr := errors.New("original error")
eff := Fail[TestContext, int](expectedErr)
tapped := Tap[TestContext](func(x int) Effect[TestContext, any] {
return Of[TestContext, any](nil)
})(eff)
_, err := runEffect(tapped, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("propagates tap error", func(t *testing.T) {
expectedErr := errors.New("tap error")
eff := Of[TestContext, int](42)
tapped := Tap[TestContext](func(x int) Effect[TestContext, any] {
return Fail[TestContext, any](expectedErr)
})(eff)
_, err := runEffect(tapped, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("chains multiple taps", func(t *testing.T) {
values := []int{}
eff := Of[TestContext, int](10)
result := Tap[TestContext](func(x int) Effect[TestContext, any] {
values = append(values, x+2)
return Of[TestContext, any](nil)
})(Tap[TestContext](func(x int) Effect[TestContext, any] {
values = append(values, x+1)
return Of[TestContext, any](nil)
})(eff))
value, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 10, value)
assert.Equal(t, []int{11, 12}, values)
})
}
func TestTernary(t *testing.T) {
t.Run("executes onTrue when predicate is true", func(t *testing.T) {
kleisli := Ternary[TestContext, int, string](
func(x int) bool { return x > 10 },
func(x int) Effect[TestContext, string] {
return Of[TestContext, string]("greater")
},
func(x int) Effect[TestContext, string] {
return Of[TestContext, string]("less or equal")
},
)
result, err := runEffect(kleisli(15), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "greater", result)
})
t.Run("executes onFalse when predicate is false", func(t *testing.T) {
kleisli := Ternary[TestContext, int, string](
func(x int) bool { return x > 10 },
func(x int) Effect[TestContext, string] {
return Of[TestContext, string]("greater")
},
func(x int) Effect[TestContext, string] {
return Of[TestContext, string]("less or equal")
},
)
result, err := runEffect(kleisli(5), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "less or equal", result)
})
t.Run("handles errors in onTrue branch", func(t *testing.T) {
expectedErr := errors.New("true branch error")
kleisli := Ternary[TestContext, int, string](
func(x int) bool { return x > 10 },
func(x int) Effect[TestContext, string] {
return Fail[TestContext, string](expectedErr)
},
func(x int) Effect[TestContext, string] {
return Of[TestContext, string]("less or equal")
},
)
_, err := runEffect(kleisli(15), TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("handles errors in onFalse branch", func(t *testing.T) {
expectedErr := errors.New("false branch error")
kleisli := Ternary[TestContext, int, string](
func(x int) bool { return x > 10 },
func(x int) Effect[TestContext, string] {
return Of[TestContext, string]("greater")
},
func(x int) Effect[TestContext, string] {
return Fail[TestContext, string](expectedErr)
},
)
_, err := runEffect(kleisli(5), TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestEffectComposition(t *testing.T) {
t.Run("composes Map and Chain", func(t *testing.T) {
eff := Of[TestContext, int](5)
result := Chain[TestContext](func(x int) Effect[TestContext, string] {
return Of[TestContext, string](fmt.Sprintf("result: %d", x))
})(Map[TestContext](func(x int) int {
return x * 2
})(eff))
value, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "result: 10", value)
})
t.Run("composes Chain and Tap", func(t *testing.T) {
sideEffect := 0
eff := Of[TestContext, int](10)
result := Tap[TestContext](func(x int) Effect[TestContext, any] {
sideEffect = x
return Of[TestContext, any](nil)
})(Chain[TestContext](func(x int) Effect[TestContext, int] {
return Of[TestContext, int](x * 2)
})(eff))
value, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 20, value)
assert.Equal(t, 20, sideEffect)
})
}
func TestEffectWithResult(t *testing.T) {
t.Run("converts result to effect", func(t *testing.T) {
res := result.Of[int](42)
// This demonstrates integration with result package
assert.True(t, result.IsRight(res))
})
}

118
v2/effect/gen_lens_test.go Normal file
View File

@@ -0,0 +1,118 @@
package effect
// Code generated by go generate; DO NOT EDIT.
// This file was generated by robots at
// 2026-01-27 22:19:41.6840253 +0100 CET m=+0.008579701
import (
__lens "github.com/IBM/fp-go/v2/optics/lens"
__option "github.com/IBM/fp-go/v2/option"
__prism "github.com/IBM/fp-go/v2/optics/prism"
__lens_option "github.com/IBM/fp-go/v2/optics/lens/option"
__iso_option "github.com/IBM/fp-go/v2/optics/iso/option"
)
// ComplexServiceLenses provides lenses for accessing fields of ComplexService
type ComplexServiceLenses struct {
// mandatory fields
service1 __lens.Lens[ComplexService, Service1]
service2 __lens.Lens[ComplexService, Service2]
// optional fields
service1O __lens_option.LensO[ComplexService, Service1]
service2O __lens_option.LensO[ComplexService, Service2]
}
// ComplexServiceRefLenses provides lenses for accessing fields of ComplexService via a reference to ComplexService
type ComplexServiceRefLenses struct {
// mandatory fields
service1 __lens.Lens[*ComplexService, Service1]
service2 __lens.Lens[*ComplexService, Service2]
// optional fields
service1O __lens_option.LensO[*ComplexService, Service1]
service2O __lens_option.LensO[*ComplexService, Service2]
// prisms
service1P __prism.Prism[*ComplexService, Service1]
service2P __prism.Prism[*ComplexService, Service2]
}
// ComplexServicePrisms provides prisms for accessing fields of ComplexService
type ComplexServicePrisms struct {
service1 __prism.Prism[ComplexService, Service1]
service2 __prism.Prism[ComplexService, Service2]
}
// MakeComplexServiceLenses creates a new ComplexServiceLenses with lenses for all fields
func MakeComplexServiceLenses() ComplexServiceLenses {
// mandatory lenses
lensservice1 := __lens.MakeLensWithName(
func(s ComplexService) Service1 { return s.service1 },
func(s ComplexService, v Service1) ComplexService { s.service1 = v; return s },
"ComplexService.service1",
)
lensservice2 := __lens.MakeLensWithName(
func(s ComplexService) Service2 { return s.service2 },
func(s ComplexService, v Service2) ComplexService { s.service2 = v; return s },
"ComplexService.service2",
)
// optional lenses
lensservice1O := __lens_option.FromIso[ComplexService](__iso_option.FromZero[Service1]())(lensservice1)
lensservice2O := __lens_option.FromIso[ComplexService](__iso_option.FromZero[Service2]())(lensservice2)
return ComplexServiceLenses{
// mandatory lenses
service1: lensservice1,
service2: lensservice2,
// optional lenses
service1O: lensservice1O,
service2O: lensservice2O,
}
}
// MakeComplexServiceRefLenses creates a new ComplexServiceRefLenses with lenses for all fields
func MakeComplexServiceRefLenses() ComplexServiceRefLenses {
// mandatory lenses
lensservice1 := __lens.MakeLensStrictWithName(
func(s *ComplexService) Service1 { return s.service1 },
func(s *ComplexService, v Service1) *ComplexService { s.service1 = v; return s },
"(*ComplexService).service1",
)
lensservice2 := __lens.MakeLensStrictWithName(
func(s *ComplexService) Service2 { return s.service2 },
func(s *ComplexService, v Service2) *ComplexService { s.service2 = v; return s },
"(*ComplexService).service2",
)
// optional lenses
lensservice1O := __lens_option.FromIso[*ComplexService](__iso_option.FromZero[Service1]())(lensservice1)
lensservice2O := __lens_option.FromIso[*ComplexService](__iso_option.FromZero[Service2]())(lensservice2)
return ComplexServiceRefLenses{
// mandatory lenses
service1: lensservice1,
service2: lensservice2,
// optional lenses
service1O: lensservice1O,
service2O: lensservice2O,
}
}
// MakeComplexServicePrisms creates a new ComplexServicePrisms with prisms for all fields
func MakeComplexServicePrisms() ComplexServicePrisms {
_fromNonZeroservice1 := __option.FromNonZero[Service1]()
_prismservice1 := __prism.MakePrismWithName(
func(s ComplexService) __option.Option[Service1] { return _fromNonZeroservice1(s.service1) },
func(v Service1) ComplexService {
return ComplexService{ service1: v }
},
"ComplexService.service1",
)
_fromNonZeroservice2 := __option.FromNonZero[Service2]()
_prismservice2 := __prism.MakePrismWithName(
func(s ComplexService) __option.Option[Service2] { return _fromNonZeroservice2(s.service2) },
func(v Service2) ComplexService {
return ComplexService{ service2: v }
},
"ComplexService.service2",
)
return ComplexServicePrisms {
service1: _prismservice1,
service2: _prismservice2,
}
}

207
v2/effect/injection_test.go Normal file
View File

@@ -0,0 +1,207 @@
// Package effect demonstrates dependency injection using the Effect pattern.
//
// This test file shows how to build a type-safe dependency injection system where:
// - An InjectionContainer can resolve services by ID (InjectionToken)
// - Services are generic effects that depend on the container
// - Lookup methods convert from untyped container to typed dependencies
// - Handler functions depend type-safely on specific service interfaces
package effect
import (
"errors"
"fmt"
"testing"
thunk "github.com/IBM/fp-go/v2/context/readerioresult"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/result"
)
type (
// InjectionToken is a unique identifier for services in the container
InjectionToken string
// InjectionContainer is an Effect that resolves services by their token.
// It takes an InjectionToken and returns a Thunk that produces any type.
// This allows the container to store and retrieve services of different types.
InjectionContainer = Effect[InjectionToken, any]
// Service is a generic Effect that depends on the InjectionContainer.
// It represents a computation that needs access to the dependency injection
// container to resolve its dependencies before producing a string result.
Service[T any] = Effect[InjectionContainer, T]
// Service1 is an example service interface that can be resolved from the container
Service1 interface {
GetService1() string
}
// Service2 is another example service interface
Service2 interface {
GetService2() string
}
// impl1 is a concrete implementation of Service1
impl1 struct{}
// impl2 is a concrete implementation of Service2
impl2 struct{}
)
// ComplexService demonstrates a more complex dependency injection scenario
// where a service depends on multiple other services. This struct aggregates
// Service1 and Service2, showing how to compose dependencies.
// The fp-go:Lens directive generates lens functions for type-safe field access.
//
// fp-go:Lens
type ComplexService struct {
service1 Service1
service2 Service2
}
func (_ *impl1) GetService1() string {
return "service1"
}
func (_ *impl2) GetService2() string {
return "service2"
}
const (
// service1 is the injection token for Service1
service1 = InjectionToken("service1")
// service2 is the injection token for Service2
service2 = InjectionToken("service2")
)
var (
// complexServiceLenses provides type-safe accessors for ComplexService fields,
// generated by the fp-go:Lens directive. These lenses are used in applicative
// composition to build the ComplexService from individual dependencies.
complexServiceLenses = MakeComplexServiceLenses()
)
// makeSampleInjectionContainer creates an InjectionContainer that can resolve services by ID.
// The container maps InjectionTokens to their corresponding service implementations.
// It returns an error if a requested service is not available.
func makeSampleInjectionContainer() InjectionContainer {
return func(token InjectionToken) Thunk[any] {
switch token {
case service1:
return thunk.Of(any(&impl1{}))
case service2:
return thunk.Of(any(&impl2{}))
default:
return thunk.Left[any](errors.New("dependency not available"))
}
}
}
// handleService1 is an Effect that depends type-safely on Service1.
// It demonstrates how to write handlers that work with specific service interfaces
// rather than the untyped container, providing compile-time type safety.
func handleService1() Effect[Service1, string] {
return func(ctx Service1) ReaderIOResult[string] {
return thunk.Of(fmt.Sprintf("Service1: %s", ctx.GetService1()))
}
}
// handleComplexService is an Effect that depends on ComplexService, which itself
// aggregates multiple service dependencies (Service1 and Service2).
// This demonstrates how to work with composite dependencies in a type-safe manner.
func handleComplexService() Effect[ComplexService, string] {
return func(ctx ComplexService) ReaderIOResult[string] {
return thunk.Of(fmt.Sprintf("ComplexService: %s x %s", ctx.service1.GetService1(), ctx.service2.GetService2()))
}
}
// lookupService1 is a lookup method that converts from an untyped InjectionContainer
// to a typed Service1 dependency. It performs two steps:
// 1. Read[any](service1) - retrieves the service from the container by token
// 2. ChainResultK(result.InstanceOf[Service1]) - safely casts from any to Service1
// This conversion provides type safety when moving from the untyped container to typed handlers.
var lookupService1 = F.Flow2(
Read[any](service1),
thunk.ChainResultK(result.InstanceOf[Service1]),
)
// lookupService2 is a lookup method for Service2, following the same pattern as lookupService1.
// It retrieves Service2 from the container and safely casts it to the correct type.
var lookupService2 = F.Flow2(
Read[any](service2),
thunk.ChainResultK(result.InstanceOf[Service2]),
)
// lookupComplexService demonstrates applicative composition for complex dependency injection.
// It builds a ComplexService by composing multiple service lookups:
// 1. Do[InjectionContainer](ComplexService{}) - starts with an empty ComplexService in the Effect context
// 2. ApSL(complexServiceLenses.service1, lookupService1) - looks up Service1 and sets it using the lens
// 3. ApSL(complexServiceLenses.service2, lookupService2) - looks up Service2 and sets it using the lens
//
// This applicative style allows parallel composition of independent dependencies,
// building the complete ComplexService from its constituent parts in a type-safe way.
var lookupComplexService = F.Pipe2(
Do[InjectionContainer](ComplexService{}),
ApSL(complexServiceLenses.service1, lookupService1),
ApSL(complexServiceLenses.service2, lookupService2),
)
// handleResult is a curried function that combines results from two services.
// It demonstrates how to compose the outputs of multiple effects into a final result.
// The curried form allows it to be used with applicative composition (ApS).
func handleResult(s1 string) func(string) string {
return func(s2 string) string {
return fmt.Sprintf("Final Result: %s : %s", s1, s2)
}
}
// TestDependencyLookup demonstrates both simple and complex dependency injection patterns:
//
// Simple Pattern (handle1):
// 1. Create an InjectionContainer with registered services
// 2. Define a handler (handleService1) that depends on a single typed service interface
// 3. Use a lookup method (lookupService1) to resolve the dependency from the container
// 4. Compose the handler with the lookup using LocalThunkK to inject the dependency
//
// Complex Pattern (handleComplex):
// 1. Define a handler (handleComplexService) that depends on a composite service (ComplexService)
// 2. Use applicative composition (lookupComplexService) to build the composite from multiple lookups
// 3. Each sub-dependency is resolved independently and combined using lenses
// 4. LocalThunkK injects the complete composite dependency into the handler
//
// Service Composition:
// - ApS combines the results of handle1 and handleComplex using handleResult
// - This demonstrates how to compose multiple independent effects that share the same container
// - The final result aggregates outputs from both simple and complex dependency patterns
func TestDependencyLookup(t *testing.T) {
// Create the dependency injection container
container := makeSampleInjectionContainer()
// Simple dependency injection: single service lookup
// LocalThunkK transforms the handler to work with the container
handle1 := F.Pipe1(
handleService1(),
LocalThunkK[string](lookupService1),
)
// Complex dependency injection: composite service with multiple dependencies
// lookupComplexService uses applicative composition to build ComplexService
handleComplex := F.Pipe1(
handleComplexService(),
LocalThunkK[string](lookupComplexService),
)
// Compose both services using applicative style
// ApS applies handleResult to combine outputs from handle1 and handleComplex
result := F.Pipe1(
handle1,
ApS(handleResult, handleComplex),
)
// Execute: provide container, then context, then run the IO operation
res := result(container)(t.Context())()
fmt.Println(res)
}

14
v2/effect/monoid.go Normal file
View File

@@ -0,0 +1,14 @@
package effect
import (
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/monoid"
)
func ApplicativeMonoid[C, A any](m monoid.Monoid[A]) Monoid[Effect[C, A]] {
return readerreaderioresult.ApplicativeMonoid[C](m)
}
func AlternativeMonoid[C, A any](m monoid.Monoid[A]) Monoid[Effect[C, A]] {
return readerreaderioresult.AlternativeMonoid[C](m)
}

350
v2/effect/monoid_test.go Normal file
View File

@@ -0,0 +1,350 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"errors"
"testing"
"github.com/IBM/fp-go/v2/monoid"
"github.com/stretchr/testify/assert"
)
func TestApplicativeMonoid(t *testing.T) {
t.Run("combines successful effects with string monoid", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := ApplicativeMonoid[TestContext, string](stringMonoid)
eff1 := Of[TestContext, string]("Hello")
eff2 := Of[TestContext, string](" ")
eff3 := Of[TestContext, string]("World")
combined := effectMonoid.Concat(eff1, effectMonoid.Concat(eff2, eff3))
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Hello World", result)
})
t.Run("combines successful effects with int monoid", func(t *testing.T) {
intMonoid := monoid.MakeMonoid(
func(a, b int) int { return a + b },
0,
)
effectMonoid := ApplicativeMonoid[TestContext, int](intMonoid)
eff1 := Of[TestContext, int](10)
eff2 := Of[TestContext, int](20)
eff3 := Of[TestContext, int](30)
combined := effectMonoid.Concat(eff1, effectMonoid.Concat(eff2, eff3))
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 60, result)
})
t.Run("returns empty value for empty monoid", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"empty",
)
effectMonoid := ApplicativeMonoid[TestContext, string](stringMonoid)
result, err := runEffect(effectMonoid.Empty(), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "empty", result)
})
t.Run("propagates first error", func(t *testing.T) {
expectedErr := errors.New("first error")
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := ApplicativeMonoid[TestContext, string](stringMonoid)
eff1 := Fail[TestContext, string](expectedErr)
eff2 := Of[TestContext, string]("World")
combined := effectMonoid.Concat(eff1, eff2)
_, err := runEffect(combined, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("propagates second error", func(t *testing.T) {
expectedErr := errors.New("second error")
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := ApplicativeMonoid[TestContext, string](stringMonoid)
eff1 := Of[TestContext, string]("Hello")
eff2 := Fail[TestContext, string](expectedErr)
combined := effectMonoid.Concat(eff1, eff2)
_, err := runEffect(combined, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("combines multiple effects", func(t *testing.T) {
intMonoid := monoid.MakeMonoid(
func(a, b int) int { return a * b },
1,
)
effectMonoid := ApplicativeMonoid[TestContext, int](intMonoid)
effects := []Effect[TestContext, int]{
Of[TestContext, int](2),
Of[TestContext, int](3),
Of[TestContext, int](4),
Of[TestContext, int](5),
}
combined := effectMonoid.Empty()
for _, eff := range effects {
combined = effectMonoid.Concat(combined, eff)
}
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 120, result) // 1 * 2 * 3 * 4 * 5
})
t.Run("works with custom types", func(t *testing.T) {
type Counter struct {
Count int
}
counterMonoid := monoid.MakeMonoid(
func(a, b Counter) Counter {
return Counter{Count: a.Count + b.Count}
},
Counter{Count: 0},
)
effectMonoid := ApplicativeMonoid[TestContext, Counter](counterMonoid)
eff1 := Of[TestContext, Counter](Counter{Count: 5})
eff2 := Of[TestContext, Counter](Counter{Count: 10})
eff3 := Of[TestContext, Counter](Counter{Count: 15})
combined := effectMonoid.Concat(eff1, effectMonoid.Concat(eff2, eff3))
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 30, result.Count)
})
}
func TestAlternativeMonoid(t *testing.T) {
t.Run("combines successful effects with monoid", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := AlternativeMonoid[TestContext, string](stringMonoid)
eff1 := Of[TestContext, string]("First")
eff2 := Of[TestContext, string]("Second")
combined := effectMonoid.Concat(eff1, eff2)
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "FirstSecond", result) // Alternative still combines when both succeed
})
t.Run("tries second effect if first fails", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := AlternativeMonoid[TestContext, string](stringMonoid)
eff1 := Fail[TestContext, string](errors.New("first failed"))
eff2 := Of[TestContext, string]("Second")
combined := effectMonoid.Concat(eff1, eff2)
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Second", result)
})
t.Run("returns error if all effects fail", func(t *testing.T) {
expectedErr := errors.New("second error")
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := AlternativeMonoid[TestContext, string](stringMonoid)
eff1 := Fail[TestContext, string](errors.New("first error"))
eff2 := Fail[TestContext, string](expectedErr)
combined := effectMonoid.Concat(eff1, eff2)
_, err := runEffect(combined, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("returns empty value for empty monoid", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"default",
)
effectMonoid := AlternativeMonoid[TestContext, string](stringMonoid)
result, err := runEffect(effectMonoid.Empty(), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "default", result)
})
t.Run("chains multiple alternatives", func(t *testing.T) {
intMonoid := monoid.MakeMonoid(
func(a, b int) int { return a + b },
0,
)
effectMonoid := AlternativeMonoid[TestContext, int](intMonoid)
eff1 := Fail[TestContext, int](errors.New("error 1"))
eff2 := Fail[TestContext, int](errors.New("error 2"))
eff3 := Of[TestContext, int](42)
eff4 := Of[TestContext, int](100)
combined := effectMonoid.Concat(
effectMonoid.Concat(eff1, eff2),
effectMonoid.Concat(eff3, eff4),
)
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 142, result) // Combines successful values: 42 + 100
})
t.Run("works with custom types", func(t *testing.T) {
type Result struct {
Value string
Code int
}
resultMonoid := monoid.MakeMonoid(
func(a, b Result) Result {
return Result{Value: a.Value + b.Value, Code: a.Code + b.Code}
},
Result{Value: "", Code: 0},
)
effectMonoid := AlternativeMonoid[TestContext, Result](resultMonoid)
eff1 := Fail[TestContext, Result](errors.New("failed"))
eff2 := Of[TestContext, Result](Result{Value: "success", Code: 200})
eff3 := Of[TestContext, Result](Result{Value: "backup", Code: 201})
combined := effectMonoid.Concat(effectMonoid.Concat(eff1, eff2), eff3)
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "successbackup", result.Value) // Combines both successful values
assert.Equal(t, 401, result.Code) // 200 + 201
})
}
func TestMonoidComparison(t *testing.T) {
t.Run("ApplicativeMonoid vs AlternativeMonoid with all success", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + "," + b },
"",
)
applicativeMonoid := ApplicativeMonoid[TestContext, string](stringMonoid)
alternativeMonoid := AlternativeMonoid[TestContext, string](stringMonoid)
eff1 := Of[TestContext, string]("A")
eff2 := Of[TestContext, string]("B")
// Applicative combines values
applicativeResult, err1 := runEffect(
applicativeMonoid.Concat(eff1, eff2),
TestContext{Value: "test"},
)
// Alternative takes first
alternativeResult, err2 := runEffect(
alternativeMonoid.Concat(eff1, eff2),
TestContext{Value: "test"},
)
assert.NoError(t, err1)
assert.NoError(t, err2)
assert.Equal(t, "A,B", applicativeResult) // Combined with comma separator
assert.Equal(t, "A,B", alternativeResult) // Also combined (Alternative uses Alt semigroup)
})
t.Run("ApplicativeMonoid vs AlternativeMonoid with failures", func(t *testing.T) {
intMonoid := monoid.MakeMonoid(
func(a, b int) int { return a + b },
0,
)
applicativeMonoid := ApplicativeMonoid[TestContext, int](intMonoid)
alternativeMonoid := AlternativeMonoid[TestContext, int](intMonoid)
eff1 := Fail[TestContext, int](errors.New("error 1"))
eff2 := Of[TestContext, int](42)
// Applicative fails on first error
_, err1 := runEffect(
applicativeMonoid.Concat(eff1, eff2),
TestContext{Value: "test"},
)
// Alternative tries second on first failure
result2, err2 := runEffect(
alternativeMonoid.Concat(eff1, eff2),
TestContext{Value: "test"},
)
assert.Error(t, err1)
assert.NoError(t, err2)
assert.Equal(t, 42, result2)
})
}

14
v2/effect/retry.go Normal file
View File

@@ -0,0 +1,14 @@
package effect
import (
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/retry"
)
func Retrying[C, A any](
policy retry.RetryPolicy,
action Kleisli[C, retry.RetryStatus, A],
check Predicate[Result[A]],
) Effect[C, A] {
return readerreaderioresult.Retrying(policy, action, check)
}

377
v2/effect/retry_test.go Normal file
View File

@@ -0,0 +1,377 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"errors"
"testing"
"time"
"github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/retry"
"github.com/stretchr/testify/assert"
)
func TestRetrying(t *testing.T) {
t.Run("succeeds on first attempt", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(3)
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
return Of[TestContext, string]("success")
},
func(res Result[string]) bool {
return result.IsLeft(res) // retry on error
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "success", result)
assert.Equal(t, 1, attemptCount)
})
t.Run("retries on failure and eventually succeeds", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(5)
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
if attemptCount < 3 {
return Fail[TestContext, string](errors.New("temporary error"))
}
return Of[TestContext, string]("success after retries")
},
func(res Result[string]) bool {
return result.IsLeft(res) // retry on error
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "success after retries", result)
assert.Equal(t, 3, attemptCount)
})
t.Run("exhausts retry limit", func(t *testing.T) {
attemptCount := 0
maxRetries := uint(3)
policy := retry.LimitRetries(maxRetries)
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
return Fail[TestContext, string](errors.New("persistent error"))
},
func(res Result[string]) bool {
return result.IsLeft(res) // retry on error
},
)
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, int(maxRetries+1), attemptCount) // initial attempt + retries
})
t.Run("does not retry on success", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(5)
eff := Retrying[TestContext, int](
policy,
func(status retry.RetryStatus) Effect[TestContext, int] {
attemptCount++
return Of[TestContext, int](42)
},
func(res Result[int]) bool {
return result.IsLeft(res) // retry on error
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, result)
assert.Equal(t, 1, attemptCount)
})
t.Run("uses custom retry predicate", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(5)
eff := Retrying[TestContext, int](
policy,
func(status retry.RetryStatus) Effect[TestContext, int] {
attemptCount++
return Of[TestContext, int](attemptCount * 10)
},
func(res Result[int]) bool {
// Retry if value is less than 30
if result.IsRight(res) {
val, _ := result.Unwrap(res)
return val < 30
}
return true
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 30, result)
assert.Equal(t, 3, attemptCount)
})
t.Run("tracks retry status", func(t *testing.T) {
var statuses []retry.RetryStatus
policy := retry.LimitRetries(3)
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
statuses = append(statuses, status)
if len(statuses) < 3 {
return Fail[TestContext, string](errors.New("retry"))
}
return Of[TestContext, string]("done")
},
func(res Result[string]) bool {
return result.IsLeft(res)
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "done", result)
assert.Len(t, statuses, 3)
// First attempt has iteration 0
assert.Equal(t, uint(0), statuses[0].IterNumber)
assert.Equal(t, uint(1), statuses[1].IterNumber)
assert.Equal(t, uint(2), statuses[2].IterNumber)
})
t.Run("works with exponential backoff", func(t *testing.T) {
attemptCount := 0
policy := retry.Monoid.Concat(
retry.LimitRetries(3),
retry.ExponentialBackoff(10*time.Millisecond),
)
startTime := time.Now()
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
if attemptCount < 3 {
return Fail[TestContext, string](errors.New("retry"))
}
return Of[TestContext, string]("success")
},
func(res Result[string]) bool {
return result.IsLeft(res)
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
elapsed := time.Since(startTime)
assert.NoError(t, err)
assert.Equal(t, "success", result)
assert.Equal(t, 3, attemptCount)
// Should have some delay due to backoff
assert.Greater(t, elapsed, 10*time.Millisecond)
})
t.Run("combines with other effect operations", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(3)
eff := Map[TestContext](func(s string) string {
return "mapped: " + s
})(Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
if attemptCount < 2 {
return Fail[TestContext, string](errors.New("retry"))
}
return Of[TestContext, string]("success")
},
func(res Result[string]) bool {
return result.IsLeft(res)
},
))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "mapped: success", result)
assert.Equal(t, 2, attemptCount)
})
t.Run("retries with different error types", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(5)
errors := []error{
errors.New("error 1"),
errors.New("error 2"),
errors.New("error 3"),
}
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
if attemptCount < len(errors) {
err := errors[attemptCount]
attemptCount++
return Fail[TestContext, string](err)
}
attemptCount++
return Of[TestContext, string]("finally succeeded")
},
func(res Result[string]) bool {
return result.IsLeft(res)
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "finally succeeded", result)
assert.Equal(t, 4, attemptCount)
})
t.Run("no retry when predicate returns false", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(5)
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
return Fail[TestContext, string](errors.New("error"))
},
func(res Result[string]) bool {
return false // never retry
},
)
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, 1, attemptCount) // only initial attempt
})
t.Run("retries with context access", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(3)
ctx := TestContext{Value: "retry-context"}
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
if attemptCount < 2 {
return Fail[TestContext, string](errors.New("retry"))
}
return Of[TestContext, string]("success with context")
},
func(res Result[string]) bool {
return result.IsLeft(res)
},
)
result, err := runEffect(eff, ctx)
assert.NoError(t, err)
assert.Equal(t, "success with context", result)
assert.Equal(t, 2, attemptCount)
})
}
func TestRetryingWithComplexScenarios(t *testing.T) {
t.Run("retry with state accumulation", func(t *testing.T) {
type State struct {
Attempts []int
Value string
}
policy := retry.LimitRetries(4)
eff := Retrying[TestContext, State](
policy,
func(status retry.RetryStatus) Effect[TestContext, State] {
state := State{
Attempts: make([]int, status.IterNumber+1),
Value: "attempt",
}
for i := uint(0); i <= status.IterNumber; i++ {
state.Attempts[i] = int(i)
}
if status.IterNumber < 2 {
return Fail[TestContext, State](errors.New("retry"))
}
return Of[TestContext, State](state)
},
func(res Result[State]) bool {
return result.IsLeft(res)
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "attempt", result.Value)
assert.Equal(t, []int{0, 1, 2}, result.Attempts)
})
t.Run("retry with chain operations", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(3)
eff := Chain[TestContext](func(x int) Effect[TestContext, string] {
return Of[TestContext, string]("final: " + string(rune('0'+x)))
})(Retrying[TestContext, int](
policy,
func(status retry.RetryStatus) Effect[TestContext, int] {
attemptCount++
if attemptCount < 2 {
return Fail[TestContext, int](errors.New("retry"))
}
return Of[TestContext, int](attemptCount)
},
func(res Result[int]) bool {
return result.IsLeft(res)
},
))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Contains(t, result, "final:")
})
}

19
v2/effect/run.go Normal file
View File

@@ -0,0 +1,19 @@
package effect
import (
"context"
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/idiomatic/context/readerresult"
"github.com/IBM/fp-go/v2/result"
)
func Provide[C, A any](c C) func(Effect[C, A]) ReaderIOResult[A] {
return readerreaderioresult.Read[A](c)
}
func RunSync[A any](fa ReaderIOResult[A]) readerresult.ReaderResult[A] {
return func(ctx context.Context) (A, error) {
return result.Unwrap(fa(ctx)())
}
}

326
v2/effect/run_test.go Normal file
View File

@@ -0,0 +1,326 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"context"
"errors"
"testing"
"github.com/stretchr/testify/assert"
)
func TestProvide(t *testing.T) {
t.Run("provides context to effect", func(t *testing.T) {
ctx := TestContext{Value: "test-value"}
eff := Of[TestContext, string]("result")
ioResult := Provide[TestContext, string](ctx)(eff)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "result", result)
})
t.Run("provides context with specific values", func(t *testing.T) {
type Config struct {
Host string
Port int
}
cfg := Config{Host: "localhost", Port: 8080}
eff := Of[Config, string]("connected")
ioResult := Provide[Config, string](cfg)(eff)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "connected", result)
})
t.Run("propagates errors", func(t *testing.T) {
expectedErr := errors.New("provide error")
ctx := TestContext{Value: "test"}
eff := Fail[TestContext, string](expectedErr)
ioResult := Provide[TestContext, string](ctx)(eff)
readerResult := RunSync[string](ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("works with different context types", func(t *testing.T) {
type SimpleContext struct {
ID int
}
ctx := SimpleContext{ID: 42}
eff := Of[SimpleContext, int](100)
ioResult := Provide[SimpleContext, int](ctx)(eff)
readerResult := RunSync[int](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, 100, result)
})
t.Run("provides context to chained effects", func(t *testing.T) {
ctx := TestContext{Value: "base"}
eff := Chain[TestContext](func(x int) Effect[TestContext, string] {
return Of[TestContext, string]("result")
})(Of[TestContext, int](42))
ioResult := Provide[TestContext, string](ctx)(eff)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "result", result)
})
t.Run("provides context to mapped effects", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Map[TestContext](func(x int) string {
return "mapped"
})(Of[TestContext, int](42))
ioResult := Provide[TestContext, string](ctx)(eff)
readerResult := RunSync[string](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "mapped", result)
})
}
func TestRunSync(t *testing.T) {
t.Run("runs effect synchronously", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Of[TestContext, int](42)
ioResult := Provide[TestContext, int](ctx)(eff)
readerResult := RunSync[int](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, 42, result)
})
t.Run("runs effect with context.Context", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Of[TestContext, string]("hello")
ioResult := Provide[TestContext, string](ctx)(eff)
readerResult := RunSync[string](ioResult)
bgCtx := context.Background()
result, err := readerResult(bgCtx)
assert.NoError(t, err)
assert.Equal(t, "hello", result)
})
t.Run("propagates errors synchronously", func(t *testing.T) {
expectedErr := errors.New("sync error")
ctx := TestContext{Value: "test"}
eff := Fail[TestContext, int](expectedErr)
ioResult := Provide[TestContext, int](ctx)(eff)
readerResult := RunSync[int](ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("runs complex effect chains", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Chain[TestContext](func(x int) Effect[TestContext, int] {
return Of[TestContext, int](x * 2)
})(Chain[TestContext](func(x int) Effect[TestContext, int] {
return Of[TestContext, int](x + 10)
})(Of[TestContext, int](5)))
ioResult := Provide[TestContext, int](ctx)(eff)
readerResult := RunSync[int](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, 30, result) // (5 + 10) * 2
})
t.Run("handles multiple sequential runs", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Of[TestContext, int](42)
ioResult := Provide[TestContext, int](ctx)(eff)
readerResult := RunSync[int](ioResult)
// Run multiple times
result1, err1 := readerResult(context.Background())
result2, err2 := readerResult(context.Background())
result3, err3 := readerResult(context.Background())
assert.NoError(t, err1)
assert.NoError(t, err2)
assert.NoError(t, err3)
assert.Equal(t, 42, result1)
assert.Equal(t, 42, result2)
assert.Equal(t, 42, result3)
})
t.Run("works with different result types", func(t *testing.T) {
type User struct {
Name string
Age int
}
ctx := TestContext{Value: "test"}
user := User{Name: "Alice", Age: 30}
eff := Of[TestContext, User](user)
ioResult := Provide[TestContext, User](ctx)(eff)
readerResult := RunSync[User](ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, user, result)
})
}
func TestProvideAndRunSyncIntegration(t *testing.T) {
t.Run("complete workflow with success", func(t *testing.T) {
type AppConfig struct {
APIKey string
Timeout int
}
cfg := AppConfig{APIKey: "secret", Timeout: 30}
// Create an effect that uses the config
eff := Of[AppConfig, string]("API call successful")
// Provide config and run
result, err := RunSync[string](Provide[AppConfig, string](cfg)(eff))(context.Background())
assert.NoError(t, err)
assert.Equal(t, "API call successful", result)
})
t.Run("complete workflow with error", func(t *testing.T) {
type AppConfig struct {
APIKey string
}
expectedErr := errors.New("API error")
cfg := AppConfig{APIKey: "secret"}
eff := Fail[AppConfig, string](expectedErr)
_, err := RunSync[string](Provide[AppConfig, string](cfg)(eff))(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("workflow with transformations", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Map[TestContext](func(x int) string {
return "final"
})(Chain[TestContext](func(x int) Effect[TestContext, int] {
return Of[TestContext, int](x * 2)
})(Of[TestContext, int](21)))
result, err := RunSync[string](Provide[TestContext, string](ctx)(eff))(context.Background())
assert.NoError(t, err)
assert.Equal(t, "final", result)
})
t.Run("workflow with bind operations", func(t *testing.T) {
type State struct {
X int
Y int
}
ctx := TestContext{Value: "test"}
eff := Bind[TestContext](
func(y int) func(State) State {
return func(s State) State {
s.Y = y
return s
}
},
func(s State) Effect[TestContext, int] {
return Of[TestContext, int](s.X * 2)
},
)(BindTo[TestContext](func(x int) State {
return State{X: x}
})(Of[TestContext, int](10)))
result, err := RunSync[State](Provide[TestContext, State](ctx)(eff))(context.Background())
assert.NoError(t, err)
assert.Equal(t, 10, result.X)
assert.Equal(t, 20, result.Y)
})
t.Run("workflow with context transformation", func(t *testing.T) {
type OuterCtx struct {
Value string
}
type InnerCtx struct {
Data string
}
outerCtx := OuterCtx{Value: "outer"}
innerEff := Of[InnerCtx, string]("inner result")
// Transform context
transformedEff := Local[OuterCtx, InnerCtx, string](func(outer OuterCtx) InnerCtx {
return InnerCtx{Data: outer.Value + "-transformed"}
})(innerEff)
result, err := RunSync[string](Provide[OuterCtx, string](outerCtx)(transformedEff))(context.Background())
assert.NoError(t, err)
assert.Equal(t, "inner result", result)
})
t.Run("workflow with array traversal", func(t *testing.T) {
ctx := TestContext{Value: "test"}
input := []int{1, 2, 3, 4, 5}
eff := TraverseArray[TestContext](func(x int) Effect[TestContext, int] {
return Of[TestContext, int](x * 2)
})(input)
result, err := RunSync[[]int](Provide[TestContext, []int](ctx)(eff))(context.Background())
assert.NoError(t, err)
assert.Equal(t, []int{2, 4, 6, 8, 10}, result)
})
}

7
v2/effect/traverse.go Normal file
View File

@@ -0,0 +1,7 @@
package effect
import "github.com/IBM/fp-go/v2/context/readerreaderioresult"
func TraverseArray[C, A, B any](f Kleisli[C, A, B]) Kleisli[C, []A, []B] {
return readerreaderioresult.TraverseArray(f)
}

266
v2/effect/traverse_test.go Normal file
View File

@@ -0,0 +1,266 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"errors"
"fmt"
"strconv"
"testing"
"github.com/stretchr/testify/assert"
)
func TestTraverseArray(t *testing.T) {
t.Run("traverses empty array", func(t *testing.T) {
input := []int{}
kleisli := TraverseArray[TestContext](func(x int) Effect[TestContext, string] {
return Of[TestContext, string](strconv.Itoa(x))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Empty(t, result)
})
t.Run("traverses array with single element", func(t *testing.T) {
input := []int{42}
kleisli := TraverseArray[TestContext](func(x int) Effect[TestContext, string] {
return Of[TestContext, string](strconv.Itoa(x))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []string{"42"}, result)
})
t.Run("traverses array with multiple elements", func(t *testing.T) {
input := []int{1, 2, 3, 4, 5}
kleisli := TraverseArray[TestContext](func(x int) Effect[TestContext, string] {
return Of[TestContext, string](strconv.Itoa(x))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []string{"1", "2", "3", "4", "5"}, result)
})
t.Run("transforms to different type", func(t *testing.T) {
input := []string{"hello", "world", "test"}
kleisli := TraverseArray[TestContext](func(s string) Effect[TestContext, int] {
return Of[TestContext, int](len(s))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []int{5, 5, 4}, result)
})
t.Run("stops on first error", func(t *testing.T) {
expectedErr := errors.New("traverse error")
input := []int{1, 2, 3, 4, 5}
kleisli := TraverseArray[TestContext](func(x int) Effect[TestContext, string] {
if x == 3 {
return Fail[TestContext, string](expectedErr)
}
return Of[TestContext, string](strconv.Itoa(x))
})
_, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("handles complex transformations", func(t *testing.T) {
type User struct {
ID int
Name string
}
input := []int{1, 2, 3}
kleisli := TraverseArray[TestContext](func(id int) Effect[TestContext, User] {
return Of[TestContext, User](User{
ID: id,
Name: fmt.Sprintf("User%d", id),
})
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Len(t, result, 3)
assert.Equal(t, 1, result[0].ID)
assert.Equal(t, "User1", result[0].Name)
assert.Equal(t, 2, result[1].ID)
assert.Equal(t, "User2", result[1].Name)
assert.Equal(t, 3, result[2].ID)
assert.Equal(t, "User3", result[2].Name)
})
t.Run("chains with other operations", func(t *testing.T) {
input := []int{1, 2, 3}
eff := Chain[TestContext](func(strings []string) Effect[TestContext, int] {
total := 0
for _, s := range strings {
val, _ := strconv.Atoi(s)
total += val
}
return Of[TestContext, int](total)
})(TraverseArray[TestContext](func(x int) Effect[TestContext, string] {
return Of[TestContext, string](strconv.Itoa(x * 2))
})(input))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 12, result) // (1*2) + (2*2) + (3*2) = 2 + 4 + 6 = 12
})
t.Run("uses context in transformation", func(t *testing.T) {
input := []int{1, 2, 3}
kleisli := TraverseArray[TestContext](func(x int) Effect[TestContext, string] {
return Chain[TestContext](func(ctx TestContext) Effect[TestContext, string] {
return Of[TestContext, string](fmt.Sprintf("%s-%d", ctx.Value, x))
})(Of[TestContext, TestContext](TestContext{Value: "prefix"}))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []string{"prefix-1", "prefix-2", "prefix-3"}, result)
})
t.Run("preserves order", func(t *testing.T) {
input := []int{5, 3, 8, 1, 9, 2}
kleisli := TraverseArray[TestContext](func(x int) Effect[TestContext, int] {
return Of[TestContext, int](x * 10)
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []int{50, 30, 80, 10, 90, 20}, result)
})
t.Run("handles large arrays", func(t *testing.T) {
size := 1000
input := make([]int, size)
for i := 0; i < size; i++ {
input[i] = i
}
kleisli := TraverseArray[TestContext](func(x int) Effect[TestContext, int] {
return Of[TestContext, int](x * 2)
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Len(t, result, size)
assert.Equal(t, 0, result[0])
assert.Equal(t, 1998, result[999])
})
t.Run("composes multiple traversals", func(t *testing.T) {
input := []int{1, 2, 3}
// First traversal: int -> string
kleisli1 := TraverseArray[TestContext](func(x int) Effect[TestContext, string] {
return Of[TestContext, string](strconv.Itoa(x))
})
// Second traversal: string -> int (length)
kleisli2 := TraverseArray[TestContext](func(s string) Effect[TestContext, int] {
return Of[TestContext, int](len(s))
})
eff := Chain[TestContext](kleisli2)(kleisli1(input))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []int{1, 1, 1}, result) // All single-digit numbers have length 1
})
t.Run("handles nil array", func(t *testing.T) {
var input []int
kleisli := TraverseArray[TestContext](func(x int) Effect[TestContext, string] {
return Of[TestContext, string](strconv.Itoa(x))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Empty(t, result) // TraverseArray returns empty slice for nil input
})
t.Run("works with Map for post-processing", func(t *testing.T) {
input := []int{1, 2, 3}
eff := Map[TestContext](func(strings []string) string {
result := ""
for _, s := range strings {
result += s + ","
}
return result
})(TraverseArray[TestContext](func(x int) Effect[TestContext, string] {
return Of[TestContext, string](strconv.Itoa(x))
})(input))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "1,2,3,", result)
})
t.Run("error in middle of array", func(t *testing.T) {
expectedErr := errors.New("middle error")
input := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
kleisli := TraverseArray[TestContext](func(x int) Effect[TestContext, string] {
if x == 5 {
return Fail[TestContext, string](expectedErr)
}
return Of[TestContext, string](strconv.Itoa(x))
})
_, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("error at end of array", func(t *testing.T) {
expectedErr := errors.New("end error")
input := []int{1, 2, 3, 4, 5}
kleisli := TraverseArray[TestContext](func(x int) Effect[TestContext, string] {
if x == 5 {
return Fail[TestContext, string](expectedErr)
}
return Of[TestContext, string](strconv.Itoa(x))
})
_, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}

37
v2/effect/types.go Normal file
View File

@@ -0,0 +1,37 @@
package effect
import (
"github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/predicate"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
"github.com/IBM/fp-go/v2/result"
)
type (
Either[E, A any] = either.Either[E, A]
Reader[R, A any] = reader.Reader[R, A]
ReaderIO[R, A any] = readerio.ReaderIO[R, A]
IO[A any] = io.IO[A]
IOEither[E, A any] = ioeither.IOEither[E, A]
Lazy[A any] = lazy.Lazy[A]
IOResult[A any] = ioresult.IOResult[A]
ReaderIOResult[A any] = readerioresult.ReaderIOResult[A]
Monoid[A any] = monoid.Monoid[A]
Effect[C, A any] = readerreaderioresult.ReaderReaderIOResult[C, A]
Thunk[A any] = ReaderIOResult[A]
Predicate[A any] = predicate.Predicate[A]
Result[A any] = result.Result[A]
Lens[S, T any] = lens.Lens[S, T]
Kleisli[C, A, B any] = readerreaderioresult.Kleisli[C, A, B]
Operator[C, A, B any] = readerreaderioresult.Operator[C, A, B]
)

View File

@@ -504,7 +504,7 @@ func ToType[A, E any](onError func(any) E) func(any) Either[E, A] {
return func(value any) Either[E, A] {
return F.Pipe2(
value,
O.ToType[A],
O.InstanceOf[A],
O.Fold(F.Nullary3(F.Constant(value), onError, Left[A, E]), Right[E, A]),
)
}

View File

@@ -253,7 +253,7 @@ func Second[T1, T2 any](_ T1, t2 T2) T2 {
}
// Zero returns the zero value of the given type.
func Zero[A comparable]() A {
func Zero[A any]() A {
var zero A
return zero
}

View File

@@ -4,14 +4,11 @@ go 1.24
require (
github.com/stretchr/testify v1.11.1
github.com/urfave/cli/v2 v2.27.7
github.com/urfave/cli/v3 v3.6.2
)
require (
github.com/cpuguy83/go-md2man/v2 v2.0.7 // indirect
github.com/davecgh/go-spew v1.1.1 // indirect
github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/russross/blackfriday/v2 v2.1.0 // indirect
github.com/xrash/smetrics v0.0.0-20250705151800-55b8f293f342 // indirect
gopkg.in/yaml.v3 v3.0.1 // indirect
)

View File

@@ -1,17 +1,11 @@
github.com/cpuguy83/go-md2man/v2 v2.0.7 h1:zbFlGlXEAKlwXpmvle3d8Oe3YnkKIK4xSRTd3sHPnBo=
github.com/cpuguy83/go-md2man/v2 v2.0.7/go.mod h1:oOW0eioCTA6cOiMLiUPZOpcVxMig6NIQQ7OS05n1F4g=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/russross/blackfriday/v2 v2.1.0 h1:JIOH55/0cWyOuilr9/qlrm0BSXldqnqwMsf35Ld67mk=
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/stretchr/testify v1.11.1 h1:7s2iGBzp5EwR7/aIZr8ao5+dra3wiQyKjjFuvgVKu7U=
github.com/stretchr/testify v1.11.1/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
github.com/urfave/cli/v2 v2.27.7 h1:bH59vdhbjLv3LAvIu6gd0usJHgoTTPhCFib8qqOwXYU=
github.com/urfave/cli/v2 v2.27.7/go.mod h1:CyNAG/xg+iAOg0N4MPGZqVmv2rCoP267496AOXUZjA4=
github.com/xrash/smetrics v0.0.0-20250705151800-55b8f293f342 h1:FnBeRrxr7OU4VvAzt5X7s6266i6cSVkkFPS0TuXWbIg=
github.com/xrash/smetrics v0.0.0-20250705151800-55b8f293f342/go.mod h1:Ohn+xnUBiLI6FVj/9LpzZWtj1/D6lUovWYBkxHVV3aM=
github.com/urfave/cli/v3 v3.6.2 h1:lQuqiPrZ1cIz8hz+HcrG0TNZFxU70dPZ3Yl+pSrH9A8=
github.com/urfave/cli/v3 v3.6.2/go.mod h1:ysVLtOEmg2tOy6PknnYVhDoouyC/6N42TMeoMzskhso=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=

View File

@@ -82,7 +82,30 @@ func Bind[S1, S2, T any](
)
}
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
// Let attaches the result of a computation to a context [S1] to produce a context [S2].
// Similar to Bind, but uses the Functor's Map operation instead of the Monad's Chain.
// This is useful when you want to add a computed value to the context without needing
// the full power of monadic composition.
//
// Example:
//
// type State struct {
// X int
// Y int
// Sum int
// }
//
// result := F.Pipe2(
// identity.Do(State{X: 10, Y: 20}),
// identity.Let(
// func(sum int) func(State) State {
// return func(s State) State { s.Sum = sum; return s }
// },
// func(s State) int {
// return s.X + s.Y
// },
// ),
// ) // State{X: 10, Y: 20, Sum: 30}
func Let[S1, S2, T any](
key func(T) func(S1) S2,
f func(S1) T,
@@ -94,7 +117,27 @@ func Let[S1, S2, T any](
)
}
// LetTo attaches the a value to a context [S1] to produce a context [S2]
// LetTo attaches a constant value to a context [S1] to produce a context [S2].
// This is a specialized version of Let that doesn't require a computation function,
// useful when you want to add a known value to the context.
//
// Example:
//
// type State struct {
// X int
// Y int
// Constant string
// }
//
// result := F.Pipe2(
// identity.Do(State{X: 10, Y: 20}),
// identity.LetTo(
// func(c string) func(State) State {
// return func(s State) State { s.Constant = c; return s }
// },
// "fixed value",
// ),
// ) // State{X: 10, Y: 20, Constant: "fixed value"}
func LetTo[S1, S2, B any](
key func(B) func(S1) S2,
b B,
@@ -106,7 +149,31 @@ func LetTo[S1, S2, B any](
)
}
// BindTo initializes a new state [S1] from a value [T]
// BindTo initializes a new state [S1] from a value [T].
// This is typically used as the first operation in a do-notation chain to convert
// a plain value into a context that can be used with subsequent Bind operations.
//
// Example:
//
// type State struct {
// X int
// Y int
// }
//
// result := F.Pipe2(
// 42,
// identity.BindTo(func(x int) State {
// return State{X: x}
// }),
// identity.Bind(
// func(y int) func(State) State {
// return func(s State) State { s.Y = y; return s }
// },
// func(s State) int {
// return s.X * 2
// },
// ),
// ) // State{X: 42, Y: 84}
func BindTo[S1, T any](
setter func(T) S1,
) func(T) S1 {

View File

@@ -29,7 +29,7 @@ func ExampleIOResult_do() {
bar := Of(1)
// quux consumes the state of three bindings and returns an [IO] instead of an [IOResult]
quux := func(t T.Tuple3[string, int, string]) IO[any] {
quux := func(t T.Tuple3[string, int, string]) IO[Void] {
return io.FromImpure(func() {
log.Printf("t1: %s, t2: %d, t3: %s", t.F1, t.F2, t.F3)
})

View File

@@ -45,7 +45,7 @@ func TestBuilderWithQuery(t *testing.T) {
ioresult.Map(func(r *http.Request) *url.URL {
return r.URL
}),
ioresult.ChainFirstIOK(func(u *url.URL) io.IO[any] {
ioresult.ChainFirstIOK(func(u *url.URL) io.IO[Void] {
return io.FromImpure(func() {
q := u.Query()
assert.Equal(t, "10", q.Get("limit"))

View File

@@ -15,8 +15,12 @@
package builder
import "github.com/IBM/fp-go/v2/idiomatic/ioresult"
import (
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/idiomatic/ioresult"
)
type (
IOResult[A any] = ioresult.IOResult[A]
Void = function.Void
)

View File

@@ -76,7 +76,7 @@ func MakeClient(httpClient *http.Client) Client {
}
// ReadFullResponse sends a request, reads the response as a byte array and represents the result as a tuple
func ReadFullResponse(client Client) Kleisli[Requester, H.FullResponse] {
func ReadFullResponse(client Client) Operator[*http.Request, H.FullResponse] {
return F.Flow3(
client.Do,
ioresult.ChainEitherK(H.ValidateResponse),
@@ -101,7 +101,7 @@ func ReadFullResponse(client Client) Kleisli[Requester, H.FullResponse] {
}
// ReadAll sends a request and reads the response as bytes
func ReadAll(client Client) Kleisli[Requester, []byte] {
func ReadAll(client Client) Operator[*http.Request, []byte] {
return F.Flow2(
ReadFullResponse(client),
ioresult.Map(H.Body),
@@ -109,7 +109,7 @@ func ReadAll(client Client) Kleisli[Requester, []byte] {
}
// ReadText sends a request, reads the response and represents the response as a text string
func ReadText(client Client) Kleisli[Requester, string] {
func ReadText(client Client) Operator[*http.Request, string] {
return F.Flow2(
ReadAll(client),
ioresult.Map(B.ToString),
@@ -117,7 +117,7 @@ func ReadText(client Client) Kleisli[Requester, string] {
}
// readJSON sends a request, reads the response and parses the response as a []byte
func readJSON(client Client) Kleisli[Requester, []byte] {
func readJSON(client Client) Operator[*http.Request, []byte] {
return F.Flow3(
ReadFullResponse(client),
ioresult.ChainFirstEitherK(F.Flow2(
@@ -129,7 +129,7 @@ func readJSON(client Client) Kleisli[Requester, []byte] {
}
// ReadJSON sends a request, reads the response and parses the response as JSON
func ReadJSON[A any](client Client) Kleisli[Requester, A] {
func ReadJSON[A any](client Client) Operator[*http.Request, A] {
return F.Flow2(
readJSON(client),
ioresult.ChainEitherK(J.Unmarshal[A]),

View File

@@ -7,9 +7,10 @@ import (
)
type (
IOResult[A any] = ioresult.IOResult[A]
Kleisli[A, B any] = ioresult.Kleisli[A, B]
Requester = IOResult[*http.Request]
IOResult[A any] = ioresult.IOResult[A]
Kleisli[A, B any] = ioresult.Kleisli[A, B]
Operator[A, B any] = ioresult.Operator[A, B]
Requester = IOResult[*http.Request]
Client interface {
Do(Requester) IOResult[*http.Response]

View File

@@ -664,11 +664,11 @@ func WithResource[A, R, ANY any](
// FromImpure converts an impure side-effecting function into an IOResult.
// The function is executed when the IOResult runs, and always succeeds with nil.
func FromImpure(f func()) IOResult[any] {
func FromImpure(f func()) IOResult[Void] {
return function.Pipe2(
f,
io.FromImpure,
FromIO[any],
FromIO[Void],
)
}

View File

@@ -2,6 +2,7 @@ package ioresult
import (
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/predicate"
@@ -39,4 +40,6 @@ type (
Operator[A, B any] = Kleisli[IOResult[A], B]
Predicate[A any] = predicate.Predicate[A]
Void = function.Void
)

View File

@@ -204,7 +204,7 @@ func BenchmarkMonadChain_Left(b *testing.B) {
func BenchmarkChain_Right(b *testing.B) {
rioe := Right[benchConfig](42)
chainer := Chain[benchConfig](func(a int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](a * 2) })
chainer := Chain(func(a int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
@@ -214,7 +214,7 @@ func BenchmarkChain_Right(b *testing.B) {
func BenchmarkChain_Left(b *testing.B) {
rioe := Left[benchConfig, int](benchErr)
chainer := Chain[benchConfig](func(a int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](a * 2) })
chainer := Chain(func(a int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](a * 2) })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
@@ -224,7 +224,7 @@ func BenchmarkChain_Left(b *testing.B) {
func BenchmarkChainFirst_Right(b *testing.B) {
rioe := Right[benchConfig](42)
chainer := ChainFirst[benchConfig](func(a int) ReaderIOResult[benchConfig, string] { return Right[benchConfig]("logged") })
chainer := ChainFirst(func(a int) ReaderIOResult[benchConfig, string] { return Right[benchConfig]("logged") })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
@@ -234,7 +234,7 @@ func BenchmarkChainFirst_Right(b *testing.B) {
func BenchmarkChainFirst_Left(b *testing.B) {
rioe := Left[benchConfig, int](benchErr)
chainer := ChainFirst[benchConfig](func(a int) ReaderIOResult[benchConfig, string] { return Right[benchConfig]("logged") })
chainer := ChainFirst(func(a int) ReaderIOResult[benchConfig, string] { return Right[benchConfig]("logged") })
b.ResetTimer()
b.ReportAllocs()
for b.Loop() {
@@ -443,7 +443,7 @@ func BenchmarkPipeline_Chain_Right(b *testing.B) {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Chain[benchConfig](func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x * 2) }),
Chain(func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x * 2) }),
)
}
}
@@ -455,7 +455,7 @@ func BenchmarkPipeline_Chain_Left(b *testing.B) {
for b.Loop() {
benchRIOE = F.Pipe1(
rioe,
Chain[benchConfig](func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x * 2) }),
Chain(func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x * 2) }),
)
}
}
@@ -468,7 +468,7 @@ func BenchmarkPipeline_Complex_Right(b *testing.B) {
benchRIOE = F.Pipe3(
rioe,
Map[benchConfig](N.Mul(2)),
Chain[benchConfig](func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Chain(func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Map[benchConfig](N.Mul(2)),
)
}
@@ -482,7 +482,7 @@ func BenchmarkPipeline_Complex_Left(b *testing.B) {
benchRIOE = F.Pipe3(
rioe,
Map[benchConfig](N.Mul(2)),
Chain[benchConfig](func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Chain(func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Map[benchConfig](N.Mul(2)),
)
}
@@ -492,7 +492,7 @@ func BenchmarkExecutePipeline_Complex_Right(b *testing.B) {
rioe := F.Pipe3(
Right[benchConfig](10),
Map[benchConfig](N.Mul(2)),
Chain[benchConfig](func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Chain(func(x int) ReaderIOResult[benchConfig, int] { return Right[benchConfig](x + 1) }),
Map[benchConfig](N.Mul(2)),
)
b.ResetTimer()

View File

@@ -19,6 +19,31 @@ import (
F "github.com/IBM/fp-go/v2/function"
)
// MonadSequenceSegment sequences a segment of an array of effects using a divide-and-conquer approach.
// It recursively splits the array segment in half, sequences each half, and concatenates the results.
//
// This function is optimized for performance by using a divide-and-conquer strategy that reduces
// the depth of nested function calls compared to a linear fold approach.
//
// Type parameters:
// - HKTB: The higher-kinded type containing values (e.g., Option[B], Either[E, B])
// - HKTRB: The higher-kinded type containing an array of values (e.g., Option[[]B], Either[E, []B])
//
// Parameters:
// - fof: Function to lift a single HKTB into HKTRB
// - empty: The empty/identity value for HKTRB
// - concat: Function to concatenate two HKTRB values
// - fbs: The array of effects to sequence
// - start: The starting index of the segment (inclusive)
// - end: The ending index of the segment (exclusive)
//
// Returns:
// - HKTRB: The sequenced result for the segment
//
// The function handles three cases:
// - Empty segment (end - start == 0): returns empty
// - Single element (end - start == 1): returns fof(fbs[start])
// - Multiple elements: recursively divides and conquers
func MonadSequenceSegment[HKTB, HKTRB any](
fof func(HKTB) HKTRB,
empty HKTRB,
@@ -41,6 +66,23 @@ func MonadSequenceSegment[HKTB, HKTRB any](
}
}
// SequenceSegment creates a function that sequences a segment of an array of effects.
// Unlike MonadSequenceSegment, this returns a curried function that can be reused.
//
// This function builds a computation tree at construction time, which can be more efficient
// when the same sequencing pattern needs to be applied multiple times to arrays of the same length.
//
// Type parameters:
// - HKTB: The higher-kinded type containing values
// - HKTRB: The higher-kinded type containing an array of values
//
// Parameters:
// - fof: Function to lift a single HKTB into HKTRB
// - empty: The empty/identity value for HKTRB
// - concat: Function to concatenate two HKTRB values
//
// Returns:
// - A function that takes an array of HKTB and returns HKTRB
func SequenceSegment[HKTB, HKTRB any](
fof func(HKTB) HKTRB,
empty HKTRB,
@@ -85,14 +127,39 @@ func SequenceSegment[HKTB, HKTRB any](
}
}
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
// MonadTraverse maps each element of an array to an effect, then sequences the results.
// This is the monadic version that takes the array as a direct parameter.
//
// Traverse combines mapping and sequencing in one operation. It's useful when you want to
// transform each element of an array into an effect (like Option, Either, IO, etc.) and
// then collect all those effects into a single effect containing an array.
//
// We need to pass the members of the applicative explicitly, because golang does neither
// support higher kinded types nor template methods on structs or interfaces.
//
// Type parameters:
// - GA: The input array type (e.g., []A)
// - GB: The output array type (e.g., []B)
// - A: The input element type
// - B: The output element type
// - HKTB: HKT<B> - The effect containing B (e.g., Option[B])
// - HKTAB: HKT<func(B)GB> - Intermediate applicative type
// - HKTRB: HKT<GB> - The effect containing the result array (e.g., Option[[]B])
//
// Parameters:
// - fof: Function to lift a value into the effect (Of/Pure)
// - fmap: Function to map over the effect (Map)
// - fap: Function to apply an effect of a function to an effect of a value (Ap)
// - ta: The input array to traverse
// - f: The function to apply to each element, producing an effect
//
// Returns:
// - HKTRB: An effect containing the array of transformed values
//
// Example:
//
// If any element produces None, the entire result is None.
// If all elements produce Some, the result is Some containing all values.
func MonadTraverse[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -103,14 +170,20 @@ func MonadTraverse[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
return MonadTraverseReduce(fof, fmap, fap, ta, f, Append[GB, B], Empty[GB]())
}
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
// MonadTraverseWithIndex is like MonadTraverse but the transformation function also receives the index.
// This is useful when the transformation depends on the element's position in the array.
//
// Type parameters: Same as MonadTraverse
//
// Parameters:
// - fof: Function to lift a value into the effect (Of/Pure)
// - fmap: Function to map over the effect (Map)
// - fap: Function to apply an effect of a function to an effect of a value (Ap)
// - ta: The input array to traverse
// - f: The function to apply to each element with its index, producing an effect
//
// Returns:
// - HKTRB: An effect containing the array of transformed values
func MonadTraverseWithIndex[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -121,6 +194,19 @@ func MonadTraverseWithIndex[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
return MonadTraverseReduceWithIndex(fof, fmap, fap, ta, f, Append[GB, B], Empty[GB]())
}
// Traverse creates a curried function that maps each element to an effect and sequences the results.
// This is the curried version of MonadTraverse, useful for partial application and composition.
//
// Type parameters: Same as MonadTraverse
//
// Parameters:
// - fof: Function to lift a value into the effect (Of/Pure)
// - fmap: Function to map over the effect (Map)
// - fap: Function to apply an effect of a function to an effect of a value (Ap)
// - f: The function to apply to each element, producing an effect
//
// Returns:
// - A function that takes an array and returns an effect containing the transformed array
func Traverse[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -133,6 +219,19 @@ func Traverse[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
}
}
// TraverseWithIndex creates a curried function like Traverse but with index-aware transformation.
// This is the curried version of MonadTraverseWithIndex.
//
// Type parameters: Same as MonadTraverse
//
// Parameters:
// - fof: Function to lift a value into the effect (Of/Pure)
// - fmap: Function to map over the effect (Map)
// - fap: Function to apply an effect of a function to an effect of a value (Ap)
// - f: The function to apply to each element with its index, producing an effect
//
// Returns:
// - A function that takes an array and returns an effect containing the transformed array
func TraverseWithIndex[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -231,6 +330,16 @@ func TraverseReduce[GA ~[]A, GB, A, B, HKTB, HKTAB, HKTRB any](
}
}
// TraverseReduceWithIndex creates a curried function for index-aware custom reduction during traversal.
// This is the curried version of MonadTraverseReduceWithIndex.
//
// Type parameters: Same as MonadTraverseReduce
//
// Parameters: Same as TraverseReduce, except:
// - transform: Function that takes index and element, producing an effect
//
// Returns:
// - A function that takes an array and returns an effect containing the accumulated value
func TraverseReduceWithIndex[GA ~[]A, GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,

View File

@@ -1,10 +1,60 @@
// Copyright (c) 2024 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package iter provides functional programming utilities for working with Go 1.23+ iterators.
// It offers operations for reducing, mapping, concatenating, and transforming iterator sequences
// in a functional style, compatible with the range-over-func pattern.
package iter
import (
"slices"
F "github.com/IBM/fp-go/v2/function"
M "github.com/IBM/fp-go/v2/monoid"
)
func From[A any](as ...A) Seq[A] {
return slices.Values(as)
}
// MonadReduceWithIndex reduces an iterator sequence to a single value using a reducer function
// that receives the current index, accumulated value, and current element.
//
// The function iterates through all elements in the sequence, applying the reducer function
// at each step with the element's index. This is useful when the position of elements matters
// in the reduction logic.
//
// Parameters:
// - fa: The iterator sequence to reduce
// - f: The reducer function that takes (index, accumulator, element) and returns the new accumulator
// - initial: The initial value for the accumulator
//
// Returns:
// - The final accumulated value after processing all elements
//
// Example:
//
// iter := func(yield func(int) bool) {
// yield(10)
// yield(20)
// yield(30)
// }
// // Sum with index multiplier: 0*10 + 1*20 + 2*30 = 80
// result := MonadReduceWithIndex(iter, func(i, acc, val int) int {
// return acc + i*val
// }, 0)
func MonadReduceWithIndex[GA ~func(yield func(A) bool), A, B any](fa GA, f func(int, B, A) B, initial B) B {
current := initial
var i int
@@ -15,6 +65,29 @@ func MonadReduceWithIndex[GA ~func(yield func(A) bool), A, B any](fa GA, f func(
return current
}
// MonadReduce reduces an iterator sequence to a single value using a reducer function.
//
// This is similar to MonadReduceWithIndex but without index tracking, making it more
// efficient when the position of elements is not needed in the reduction logic.
//
// Parameters:
// - fa: The iterator sequence to reduce
// - f: The reducer function that takes (accumulator, element) and returns the new accumulator
// - initial: The initial value for the accumulator
//
// Returns:
// - The final accumulated value after processing all elements
//
// Example:
//
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// yield(3)
// }
// sum := MonadReduce(iter, func(acc, val int) int {
// return acc + val
// }, 0) // Returns: 6
func MonadReduce[GA ~func(yield func(A) bool), A, B any](fa GA, f func(B, A) B, initial B) B {
current := initial
for a := range fa {
@@ -23,7 +96,30 @@ func MonadReduce[GA ~func(yield func(A) bool), A, B any](fa GA, f func(B, A) B,
return current
}
// Concat concatenates two sequences, yielding all elements from left followed by all elements from right.
// Concat concatenates two iterator sequences, yielding all elements from left followed by all elements from right.
//
// The resulting iterator will first yield all elements from the left sequence, then all elements
// from the right sequence. If the consumer stops early (yield returns false), iteration stops
// immediately without processing remaining elements.
//
// Parameters:
// - left: The first iterator sequence
// - right: The second iterator sequence
//
// Returns:
// - A new iterator that yields elements from both sequences in order
//
// Example:
//
// left := func(yield func(int) bool) {
// yield(1)
// yield(2)
// }
// right := func(yield func(int) bool) {
// yield(3)
// yield(4)
// }
// combined := Concat(left, right) // Yields: 1, 2, 3, 4
func Concat[GT ~func(yield func(T) bool), T any](left, right GT) GT {
return func(yield func(T) bool) {
for t := range left {
@@ -39,28 +135,129 @@ func Concat[GT ~func(yield func(T) bool), T any](left, right GT) GT {
}
}
// Of creates an iterator sequence containing a single element.
//
// This is the unit/return operation for the iterator monad, lifting a single value
// into the iterator context.
//
// Parameters:
// - a: The element to wrap in an iterator
//
// Returns:
// - An iterator that yields exactly one element
//
// Example:
//
// iter := Of[func(yield func(int) bool)](42)
// // Yields: 42
func Of[GA ~func(yield func(A) bool), A any](a A) GA {
return func(yield func(A) bool) {
yield(a)
}
}
// MonadAppend appends a single element to the end of an iterator sequence.
//
// This creates a new iterator that yields all elements from the original sequence
// followed by the tail element.
//
// Parameters:
// - f: The original iterator sequence
// - tail: The element to append
//
// Returns:
// - A new iterator with the tail element appended
//
// Example:
//
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// }
// result := MonadAppend(iter, 3) // Yields: 1, 2, 3
func MonadAppend[GA ~func(yield func(A) bool), A any](f GA, tail A) GA {
return Concat(f, Of[GA](tail))
}
// Append returns a function that appends a single element to the end of an iterator sequence.
//
// This is the curried version of MonadAppend, useful for partial application and composition.
//
// Parameters:
// - tail: The element to append
//
// Returns:
// - A function that takes an iterator and returns a new iterator with the tail element appended
//
// Example:
//
// appendThree := Append[func(yield func(int) bool)](3)
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// }
// result := appendThree(iter) // Yields: 1, 2, 3
func Append[GA ~func(yield func(A) bool), A any](tail A) func(GA) GA {
return F.Bind2nd(Concat[GA], Of[GA](tail))
}
// Prepend returns a function that prepends a single element to the beginning of an iterator sequence.
//
// This is the curried version for prepending, useful for partial application and composition.
//
// Parameters:
// - head: The element to prepend
//
// Returns:
// - A function that takes an iterator and returns a new iterator with the head element prepended
//
// Example:
//
// prependZero := Prepend[func(yield func(int) bool)](0)
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// }
// result := prependZero(iter) // Yields: 0, 1, 2
func Prepend[GA ~func(yield func(A) bool), A any](head A) func(GA) GA {
return F.Bind1st(Concat[GA], Of[GA](head))
}
// Empty creates an empty iterator sequence that yields no elements.
//
// This is the identity element for the Concat operation and represents an empty collection
// in the iterator context.
//
// Returns:
// - An iterator that yields no elements
//
// Example:
//
// iter := Empty[func(yield func(int) bool), int]()
// // Yields nothing
func Empty[GA ~func(yield func(A) bool), A any]() GA {
return func(_ func(A) bool) {}
}
// ToArray collects all elements from an iterator sequence into a slice.
//
// This eagerly evaluates the entire iterator sequence and materializes all elements
// into memory as a slice.
//
// Parameters:
// - fa: The iterator sequence to collect
//
// Returns:
// - A slice containing all elements from the iterator
//
// Example:
//
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// yield(3)
// }
// arr := ToArray[func(yield func(int) bool), []int](iter) // Returns: []int{1, 2, 3}
func ToArray[GA ~func(yield func(A) bool), GB ~[]A, A any](fa GA) GB {
bs := make(GB, 0)
for a := range fa {
@@ -69,6 +266,28 @@ func ToArray[GA ~func(yield func(A) bool), GB ~[]A, A any](fa GA) GB {
return bs
}
// MonadMapToArray maps each element of an iterator sequence through a function and collects the results into a slice.
//
// This combines mapping and collection into a single operation, eagerly evaluating the entire
// iterator sequence and materializing the transformed elements into memory.
//
// Parameters:
// - fa: The iterator sequence to map and collect
// - f: The mapping function to apply to each element
//
// Returns:
// - A slice containing the mapped elements
//
// Example:
//
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// yield(3)
// }
// doubled := MonadMapToArray[func(yield func(int) bool), []int](iter, func(x int) int {
// return x * 2
// }) // Returns: []int{2, 4, 6}
func MonadMapToArray[GA ~func(yield func(A) bool), GB ~[]B, A, B any](fa GA, f func(A) B) GB {
bs := make(GB, 0)
for a := range fa {
@@ -77,10 +296,54 @@ func MonadMapToArray[GA ~func(yield func(A) bool), GB ~[]B, A, B any](fa GA, f f
return bs
}
// MapToArray returns a function that maps each element through a function and collects the results into a slice.
//
// This is the curried version of MonadMapToArray, useful for partial application and composition.
//
// Parameters:
// - f: The mapping function to apply to each element
//
// Returns:
// - A function that takes an iterator and returns a slice of mapped elements
//
// Example:
//
// double := MapToArray[func(yield func(int) bool), []int](func(x int) int {
// return x * 2
// })
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// }
// result := double(iter) // Returns: []int{2, 4}
func MapToArray[GA ~func(yield func(A) bool), GB ~[]B, A, B any](f func(A) B) func(GA) GB {
return F.Bind2nd(MonadMapToArray[GA, GB], f)
}
// MonadMapToArrayWithIndex maps each element of an iterator sequence through a function that receives
// the element's index, and collects the results into a slice.
//
// This is similar to MonadMapToArray but the mapping function also receives the zero-based index
// of each element, useful when the position matters in the transformation logic.
//
// Parameters:
// - fa: The iterator sequence to map and collect
// - f: The mapping function that takes (index, element) and returns the transformed element
//
// Returns:
// - A slice containing the mapped elements
//
// Example:
//
// iter := func(yield func(string) bool) {
// yield("a")
// yield("b")
// yield("c")
// }
// indexed := MonadMapToArrayWithIndex[func(yield func(string) bool), []string](iter,
// func(i int, s string) string {
// return fmt.Sprintf("%d:%s", i, s)
// }) // Returns: []string{"0:a", "1:b", "2:c"}
func MonadMapToArrayWithIndex[GA ~func(yield func(A) bool), GB ~[]B, A, B any](fa GA, f func(int, A) B) GB {
bs := make(GB, 0)
var i int
@@ -91,10 +354,49 @@ func MonadMapToArrayWithIndex[GA ~func(yield func(A) bool), GB ~[]B, A, B any](f
return bs
}
// MapToArrayWithIndex returns a function that maps each element through an indexed function
// and collects the results into a slice.
//
// This is the curried version of MonadMapToArrayWithIndex, useful for partial application and composition.
//
// Parameters:
// - f: The mapping function that takes (index, element) and returns the transformed element
//
// Returns:
// - A function that takes an iterator and returns a slice of mapped elements
//
// Example:
//
// addIndex := MapToArrayWithIndex[func(yield func(string) bool), []string](
// func(i int, s string) string {
// return fmt.Sprintf("%d:%s", i, s)
// })
// iter := func(yield func(string) bool) {
// yield("a")
// yield("b")
// }
// result := addIndex(iter) // Returns: []string{"0:a", "1:b"}
func MapToArrayWithIndex[GA ~func(yield func(A) bool), GB ~[]B, A, B any](f func(int, A) B) func(GA) GB {
return F.Bind2nd(MonadMapToArrayWithIndex[GA, GB], f)
}
// Monoid returns a Monoid instance for iterator sequences.
//
// The monoid uses Concat as the binary operation and Empty as the identity element,
// allowing iterator sequences to be combined in an associative way with a neutral element.
// This enables generic operations that work with any monoid, such as folding a collection
// of iterators into a single iterator.
//
// Returns:
// - A Monoid instance with Concat and Empty operations
//
// Example:
//
// m := Monoid[func(yield func(int) bool), int]()
// iter1 := func(yield func(int) bool) { yield(1); yield(2) }
// iter2 := func(yield func(int) bool) { yield(3); yield(4) }
// combined := m.Concat(iter1, iter2) // Yields: 1, 2, 3, 4
// empty := m.Empty() // Yields nothing
func Monoid[GA ~func(yield func(A) bool), A any]() M.Monoid[GA] {
return M.MakeMonoid(Concat[GA], Empty[GA]())
}

View File

@@ -21,18 +21,50 @@ import (
M "github.com/IBM/fp-go/v2/monoid"
)
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
// MonadTraverse traverses an iterator sequence, applying an effectful function to each element
// and collecting the results in an applicative context.
//
// This is a fundamental operation in functional programming that allows you to "turn inside out"
// a structure containing effects. It maps each element through a function that produces an effect,
// then sequences all those effects together while preserving the iterator structure.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The output iterator type ~func(yield func(B) bool)
// - A: The input element type
// - B: The output element type
// - HKT_B: The higher-kinded type representing an effect containing B
// - HKT_GB_GB: The higher-kinded type for a function from GB to GB in the effect context
// - HKT_GB: The higher-kinded type representing an effect containing GB (the result iterator)
//
// Parameters:
// - fmap_b: Maps a function over HKT_B to produce HKT_GB
// - fof_gb: Lifts a GB value into the effect context (pure/of operation)
// - fmap_gb: Maps a function over HKT_GB to produce HKT_GB_GB
// - fap_gb: Applies an effectful function to an effectful value (ap operation)
// - ta: The input iterator sequence to traverse
// - f: The effectful function to apply to each element
//
// Returns:
// - An effect containing an iterator of transformed elements
//
// Note: We need to pass the applicative operations explicitly because Go doesn't support
// higher-kinded types or template methods on structs/interfaces.
//
// Example (conceptual with Option):
//
// // Traverse an iterator of strings, parsing each as an integer
// // If any parse fails, the whole result is None
// iter := func(yield func(string) bool) {
// yield("1")
// yield("2")
// yield("3")
// }
// result := MonadTraverse(..., iter, parseInt) // Some(iterator of [1,2,3]) or None
func MonadTraverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKT_B, HKT_GB_GB, HKT_GB any](
fmap_b func(HKT_B, func(B) GB) HKT_GB,
fof_gb func(GB) HKT_GB,
fof_gb OfType[GB, HKT_GB],
fmap_gb func(HKT_GB, func(GB) func(GB) GB) HKT_GB_GB,
fap_gb func(HKT_GB_GB, HKT_GB) HKT_GB,
@@ -54,14 +86,43 @@ func MonadTraverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A
return INTA.MonadSequenceSegment(fof, empty, concat, hktb, 0, len(hktb))
}
// Traverse is the curried version of MonadTraverse, returning a function that traverses an iterator.
//
// This version uses type aliases for better readability and is more suitable for partial application
// and function composition. It returns a Kleisli arrow (a function from GA to HKT_GB).
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The output iterator type ~func(yield func(B) bool)
// - A: The input element type
// - B: The output element type
// - HKT_B: The higher-kinded type representing an effect containing B
// - HKT_GB_GB: The higher-kinded type for a function from GB to GB in the effect context
// - HKT_GB: The higher-kinded type representing an effect containing GB
//
// Parameters:
// - fmap_b: Maps a function over HKT_B to produce HKT_GB
// - fof_gb: Lifts a GB value into the effect context
// - fmap_gb: Maps a function over HKT_GB to produce HKT_GB_GB
// - fap_gb: Applies an effectful function to an effectful value
// - f: The effectful function to apply to each element (Kleisli arrow)
//
// Returns:
// - A function that takes an iterator and returns an effect containing an iterator of transformed elements
//
// Example (conceptual):
//
// parseInts := Traverse[...](fmap, fof, fmap_gb, fap, parseInt)
// iter := func(yield func(string) bool) { yield("1"); yield("2") }
// result := parseInts(iter) // Effect containing iterator of integers
func Traverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKT_B, HKT_GB_GB, HKT_GB any](
fmap_b func(func(B) GB) func(HKT_B) HKT_GB,
fmap_b MapType[B, GB, HKT_B, HKT_GB],
fof_gb func(GB) HKT_GB,
fmap_gb func(func(GB) func(GB) GB) func(HKT_GB) HKT_GB_GB,
fap_gb func(HKT_GB_GB, HKT_GB) HKT_GB,
fof_gb OfType[GB, HKT_GB],
fmap_gb MapType[GB, Endomorphism[GB], HKT_GB, HKT_GB_GB],
fap_gb ApType[HKT_GB, HKT_GB, HKT_GB_GB],
f func(A) HKT_B) func(GA) HKT_GB {
f Kleisli[A, HKT_B]) Kleisli[GA, HKT_GB] {
fof := fmap_b(Of[GB])
empty := fof_gb(Empty[GB]())
@@ -69,18 +130,50 @@ func Traverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B,
concat_gb := fmap_gb(cb)
concat := func(first, second HKT_GB) HKT_GB {
return fap_gb(concat_gb(first), second)
return fap_gb(second)(concat_gb(first))
}
return func(ma GA) HKT_GB {
// return INTA.SequenceSegment(fof, empty, concat)(MapToArray[GA, []HKT_B](f)(ma))
hktb := MonadMapToArray[GA, []HKT_B](ma, f)
return INTA.MonadSequenceSegment(fof, empty, concat, hktb, 0, len(hktb))
}
return F.Flow2(
MapToArray[GA, []HKT_B](f),
INTA.SequenceSegment(fof, empty, concat),
)
}
// MonadSequence sequences an iterator of effects into an effect containing an iterator.
//
// This is a special case of traverse where the transformation function is the identity.
// It "flips" the nesting of the iterator and effect types, collecting all effects into
// a single effect containing an iterator of values.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(HKTA) bool)
// - HKTA: The higher-kinded type representing an effect containing A
// - HKTRA: The higher-kinded type representing an effect containing an iterator of A
//
// Parameters:
// - fof: Lifts an HKTA value into the HKTRA context
// - m: A monoid for combining HKTRA values
// - ta: The input iterator of effects to sequence
//
// Returns:
// - An effect containing an iterator of values
//
// Example (conceptual with Option):
//
// iter := func(yield func(Option[int]) bool) {
// yield(Some(1))
// yield(Some(2))
// yield(Some(3))
// }
// result := MonadSequence(..., iter) // Some(iterator of [1,2,3])
//
// iter2 := func(yield func(Option[int]) bool) {
// yield(Some(1))
// yield(None)
// }
// result2 := MonadSequence(..., iter2) // None
func MonadSequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
fof func(HKTA) HKTRA,
fof OfType[HKTA, HKTRA],
m M.Monoid[HKTRA],
ta GA) HKTRA {
@@ -90,14 +183,37 @@ func MonadSequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
return INTA.MonadSequenceSegment(fof, m.Empty(), m.Concat, hktb, 0, len(hktb))
}
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
// MonadTraverseWithIndex traverses an iterator sequence with index tracking, applying an effectful
// function to each element along with its index.
//
// This is similar to MonadTraverse but the transformation function receives both the element's
// zero-based index and the element itself, useful when the position matters in the transformation.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - A: The input element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTRB: The higher-kinded type representing an effect containing an iterator of B
//
// Parameters:
// - fof: Lifts an HKTB value into the HKTRB context
// - m: A monoid for combining HKTRB values
// - ta: The input iterator sequence to traverse
// - f: The effectful function that takes (index, element) and returns an effect
//
// Returns:
// - An effect containing an iterator of transformed elements
//
// Example (conceptual):
//
// iter := func(yield func(string) bool) {
// yield("a")
// yield("b")
// }
// // Add index prefix to each element
// result := MonadTraverseWithIndex(..., iter, func(i int, s string) Effect[string] {
// return Pure(fmt.Sprintf("%d:%s", i, s))
// }) // Effect containing iterator of ["0:a", "1:b"]
func MonadTraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
fof func(HKTB) HKTRB,
m M.Monoid[HKTRB],
@@ -110,8 +226,29 @@ func MonadTraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
return INTA.MonadSequenceSegment(fof, m.Empty(), m.Concat, hktb, 0, len(hktb))
}
// Sequence is the curried version of MonadSequence, returning a function that sequences an iterator of effects.
//
// This version is more suitable for partial application and function composition.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(HKTA) bool)
// - HKTA: The higher-kinded type representing an effect containing A
// - HKTRA: The higher-kinded type representing an effect containing an iterator of A
//
// Parameters:
// - fof: Lifts an HKTA value into the HKTRA context
// - m: A monoid for combining HKTRA values
//
// Returns:
// - A function that takes an iterator of effects and returns an effect containing an iterator
//
// Example (conceptual):
//
// sequenceOptions := Sequence[...](fof, monoid)
// iter := func(yield func(Option[int]) bool) { yield(Some(1)); yield(Some(2)) }
// result := sequenceOptions(iter) // Some(iterator of [1,2])
func Sequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
fof func(HKTA) HKTRA,
fof OfType[HKTA, HKTRA],
m M.Monoid[HKTRA]) func(GA) HKTRA {
return func(ma GA) HKTRA {
@@ -119,6 +256,32 @@ func Sequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
}
}
// TraverseWithIndex is the curried version of MonadTraverseWithIndex, returning a function that
// traverses an iterator with index tracking.
//
// This version is more suitable for partial application and function composition.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - A: The input element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTRB: The higher-kinded type representing an effect containing an iterator of B
//
// Parameters:
// - fof: Lifts an HKTB value into the HKTRB context
// - m: A monoid for combining HKTRB values
// - f: The effectful function that takes (index, element) and returns an effect
//
// Returns:
// - A function that takes an iterator and returns an effect containing an iterator of transformed elements
//
// Example (conceptual):
//
// addIndexPrefix := TraverseWithIndex[...](fof, monoid, func(i int, s string) Effect[string] {
// return Pure(fmt.Sprintf("%d:%s", i, s))
// })
// iter := func(yield func(string) bool) { yield("a"); yield("b") }
// result := addIndexPrefix(iter) // Effect containing iterator of ["0:a", "1:b"]
func TraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
fof func(HKTB) HKTRB,
m M.Monoid[HKTRB],
@@ -130,6 +293,39 @@ func TraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
}
}
// MonadTraverseReduce combines traversal with reduction, applying an effectful transformation
// and accumulating results using a reducer function.
//
// This is a more efficient operation when you want to both transform elements through effects
// and reduce them to a single accumulated value, avoiding intermediate collections.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The accumulator type
// - A: The input element type
// - B: The transformed element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTAB: The higher-kinded type for a function from B to GB in the effect context
// - HKTRB: The higher-kinded type representing an effect containing GB
//
// Parameters:
// - fof: Lifts a GB value into the effect context
// - fmap: Maps a function over the effect to produce an effectful function
// - fap: Applies an effectful function to an effectful value
// - ta: The input iterator sequence to traverse and reduce
// - transform: The effectful function to apply to each element
// - reduce: The reducer function that combines the accumulator with a transformed element
// - initial: The initial accumulator value
//
// Returns:
// - An effect containing the final accumulated value
//
// Example (conceptual):
//
// iter := func(yield func(string) bool) { yield("1"); yield("2"); yield("3") }
// // Parse strings to ints and sum them
// result := MonadTraverseReduce(..., iter, parseInt, add, 0)
// // Returns: Some(6) or None if any parse fails
func MonadTraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -152,6 +348,44 @@ func MonadTraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HK
}, fof(initial))
}
// MonadTraverseReduceWithIndex combines indexed traversal with reduction, applying an effectful
// transformation that receives element indices and accumulating results using a reducer function.
//
// This is similar to MonadTraverseReduce but the transformation function also receives the
// zero-based index of each element, useful when position matters in the transformation logic.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The accumulator type
// - A: The input element type
// - B: The transformed element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTAB: The higher-kinded type for a function from B to GB in the effect context
// - HKTRB: The higher-kinded type representing an effect containing GB
//
// Parameters:
// - fof: Lifts a GB value into the effect context
// - fmap: Maps a function over the effect to produce an effectful function
// - fap: Applies an effectful function to an effectful value
// - ta: The input iterator sequence to traverse and reduce
// - transform: The effectful function that takes (index, element) and returns an effect
// - reduce: The reducer function that combines the accumulator with a transformed element
// - initial: The initial accumulator value
//
// Returns:
// - An effect containing the final accumulated value
//
// Example (conceptual):
//
// iter := func(yield func(string) bool) { yield("a"); yield("b"); yield("c") }
// // Create indexed strings and concatenate
// result := MonadTraverseReduceWithIndex(..., iter,
// func(i int, s string) Effect[string] {
// return Pure(fmt.Sprintf("%d:%s", i, s))
// },
// func(acc, s string) string { return acc + "," + s },
// "")
// // Returns: Effect containing "0:a,1:b,2:c"
func MonadTraverseReduceWithIndex[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -174,6 +408,36 @@ func MonadTraverseReduceWithIndex[GA ~func(yield func(A) bool), GB, A, B, HKTB,
}, fof(initial))
}
// TraverseReduce is the curried version of MonadTraverseReduce, returning a function that
// traverses and reduces an iterator.
//
// This version is more suitable for partial application and function composition.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The accumulator type
// - A: The input element type
// - B: The transformed element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTAB: The higher-kinded type for a function from B to GB in the effect context
// - HKTRB: The higher-kinded type representing an effect containing GB
//
// Parameters:
// - fof: Lifts a GB value into the effect context
// - fmap: Maps a function over the effect to produce an effectful function
// - fap: Applies an effectful function to an effectful value
// - transform: The effectful function to apply to each element
// - reduce: The reducer function that combines the accumulator with a transformed element
// - initial: The initial accumulator value
//
// Returns:
// - A function that takes an iterator and returns an effect containing the accumulated value
//
// Example (conceptual):
//
// sumParsedInts := TraverseReduce[...](fof, fmap, fap, parseInt, add, 0)
// iter := func(yield func(string) bool) { yield("1"); yield("2"); yield("3") }
// result := sumParsedInts(iter) // Some(6) or None if any parse fails
func TraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -188,6 +452,41 @@ func TraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB a
}
}
// TraverseReduceWithIndex is the curried version of MonadTraverseReduceWithIndex, returning a
// function that traverses and reduces an iterator with index tracking.
//
// This version is more suitable for partial application and function composition.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The accumulator type
// - A: The input element type
// - B: The transformed element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTAB: The higher-kinded type for a function from B to GB in the effect context
// - HKTRB: The higher-kinded type representing an effect containing GB
//
// Parameters:
// - fof: Lifts a GB value into the effect context
// - fmap: Maps a function over the effect to produce an effectful function
// - fap: Applies an effectful function to an effectful value
// - transform: The effectful function that takes (index, element) and returns an effect
// - reduce: The reducer function that combines the accumulator with a transformed element
// - initial: The initial accumulator value
//
// Returns:
// - A function that takes an iterator and returns an effect containing the accumulated value
//
// Example (conceptual):
//
// concatIndexed := TraverseReduceWithIndex[...](fof, fmap, fap,
// func(i int, s string) Effect[string] {
// return Pure(fmt.Sprintf("%d:%s", i, s))
// },
// func(acc, s string) string { return acc + "," + s },
// "")
// iter := func(yield func(string) bool) { yield("a"); yield("b") }
// result := concatIndexed(iter) // Effect containing "0:a,1:b"
func TraverseReduceWithIndex[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,

View File

@@ -2,10 +2,23 @@ package iter
import (
I "iter"
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/internal/functor"
"github.com/IBM/fp-go/v2/internal/pointed"
)
type (
// Seq represents Go's standard library iterator type for single values.
// It's an alias for iter.Seq[A] and provides interoperability with Go 1.23+ range-over-func.
Seq[A any] = I.Seq[A]
Endomorphism[A any] = endomorphism.Endomorphism[A]
OfType[A, HKT_A any] = pointed.OfType[A, HKT_A]
MapType[A, B, HKT_A, HKT_B any] = functor.MapType[A, B, HKT_A, HKT_B]
ApType[HKT_A, HKT_B, HKT_AB any] = apply.ApType[HKT_A, HKT_B, HKT_AB]
Kleisli[A, HKT_B any] = func(A) HKT_B
)

View File

@@ -0,0 +1,70 @@
package readert
import (
M "github.com/IBM/fp-go/v2/monoid"
S "github.com/IBM/fp-go/v2/semigroup"
)
// ApplySemigroup lifts a Semigroup[A] into a Semigroup[Reader[R, A]].
// This allows you to combine two Readers that produce semigroup values by combining
// their results using the semigroup's concat operation.
//
// The _map and _ap parameters are the Map and Ap operations for the Reader type,
// typically obtained from the reader package.
//
// Example:
//
// type Config struct { Multiplier int }
// // Using the additive semigroup for integers
// intSemigroup := semigroup.MakeSemigroup(func(a, b int) int { return a + b })
// readerSemigroup := reader.ApplySemigroup(
// reader.MonadMap[Config, int, func(int) int],
// reader.MonadAp[int, Config, int],
// intSemigroup,
// )
//
// r1 := reader.Of[Config](5)
// r2 := reader.Of[Config](3)
// combined := readerSemigroup.Concat(r1, r2)
// result := combined(Config{Multiplier: 1}) // 8
func ApplySemigroup[R, A any](
_map func(func(R) A, func(A) func(A) A) func(R, func(A) A),
_ap func(func(R, func(A) A), func(R) A) func(R) A,
s S.Semigroup[A],
) S.Semigroup[func(R) A] {
return S.ApplySemigroup(_map, _ap, s)
}
// ApplicativeMonoid lifts a Monoid[A] into a Monoid[Reader[R, A]].
// This allows you to combine Readers that produce monoid values, with an empty/identity Reader.
//
// The _of parameter is the Of operation (pure/return) for the Reader type.
// The _map and _ap parameters are the Map and Ap operations for the Reader type.
//
// Example:
//
// type Config struct { Prefix string }
// // Using the string concatenation monoid
// stringMonoid := monoid.MakeMonoid("", func(a, b string) string { return a + b })
// readerMonoid := reader.ApplicativeMonoid(
// reader.Of[Config, string],
// reader.MonadMap[Config, string, func(string) string],
// reader.MonadAp[string, Config, string],
// stringMonoid,
// )
//
// r1 := reader.Asks(func(c Config) string { return c.Prefix })
// r2 := reader.Of[Config]("hello")
// combined := readerMonoid.Concat(r1, r2)
// result := combined(Config{Prefix: ">> "}) // ">> hello"
// empty := readerMonoid.Empty()(Config{Prefix: "any"}) // ""
func ApplicativeMonoid[R, A any](
_of func(A) func(R) A,
_map func(func(R) A, func(A) func(A) A) func(R, func(A) A),
_ap func(func(R, func(A) A), func(R) A) func(R) A,
m M.Monoid[A],
) M.Monoid[func(R) A] {
return M.ApplicativeMonoid(_of, _map, _ap, m)
}

View File

@@ -247,7 +247,7 @@ func TestBracket(t *testing.T) {
return Of(x * 2)
}
release := func(x int, result int) IO[any] {
release := func(x int, result int) IO[Void] {
return FromImpure(func() {
released = true
})
@@ -271,7 +271,7 @@ func TestWithResource(t *testing.T) {
return 42
}
onRelease := func(x int) IO[any] {
onRelease := func(x int) IO[Void] {
return FromImpure(func() {
released = true
})

View File

@@ -18,6 +18,7 @@ package io
import (
"time"
"github.com/IBM/fp-go/v2/function"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/internal/chain"
@@ -31,11 +32,6 @@ const (
useParallel = true
)
var (
// undefined represents an undefined value
undefined = struct{}{}
)
// Of wraps a pure value in an IO context, creating a computation that returns that value.
// This is the monadic return operation for IO.
//
@@ -58,10 +54,10 @@ func FromIO[A any](a IO[A]) IO[A] {
}
// FromImpure converts a side effect without a return value into a side effect that returns any
func FromImpure[ANY ~func()](f ANY) IO[any] {
return func() any {
func FromImpure[ANY ~func()](f ANY) IO[Void] {
return func() Void {
f()
return undefined
return function.VOID
}
}

View File

@@ -35,7 +35,7 @@ import (
//
// safeOperation := io.WithLock(lock)(dangerousOperation)
// result := safeOperation()
func WithLock[A any](lock IO[context.CancelFunc]) func(fa IO[A]) IO[A] {
func WithLock[A any](lock IO[context.CancelFunc]) Operator[A, A] {
return func(fa IO[A]) IO[A] {
return func() A {
defer lock()()

View File

@@ -61,18 +61,105 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
)
}
// TraverseIter applies an IO-returning function to each element of an iterator sequence
// and collects the results into an IO of an iterator sequence. Executes in parallel by default.
//
// This function is useful for processing lazy sequences where each element requires an IO operation.
// The resulting iterator is also lazy and will only execute IO operations when iterated.
//
// Type Parameters:
// - A: The input element type
// - B: The output element type
//
// Parameters:
// - f: A function that takes an element of type A and returns an IO computation producing B
//
// Returns:
// - A function that takes an iterator sequence of A and returns an IO of an iterator sequence of B
//
// Example:
//
// // Fetch user data for each ID in a sequence
// fetchUser := func(id int) io.IO[User] {
// return func() User {
// // Simulate fetching user from database
// return User{ID: id, Name: fmt.Sprintf("User%d", id)}
// }
// }
//
// // Create an iterator of user IDs
// userIDs := func(yield func(int) bool) {
// for _, id := range []int{1, 2, 3, 4, 5} {
// if !yield(id) { return }
// }
// }
//
// // Traverse the iterator, fetching each user
// fetchUsers := io.TraverseIter(fetchUser)
// usersIO := fetchUsers(userIDs)
//
// // Execute the IO to get the iterator of users
// users := usersIO()
// for user := range users {
// fmt.Printf("User: %v\n", user)
// }
func TraverseIter[A, B any](f Kleisli[A, B]) Kleisli[Seq[A], Seq[B]] {
return INTI.Traverse[Seq[A]](
Map[B],
Of[Seq[B]],
Map[Seq[B]],
MonadAp[Seq[B]],
Ap[Seq[B]],
f,
)
}
// SequenceIter converts an iterator sequence of IO computations into an IO of an iterator sequence of results.
// All computations are executed in parallel by default when the resulting IO is invoked.
//
// This is a special case of TraverseIter where the transformation function is the identity.
// It "flips" the nesting of the iterator and IO types, executing all IO operations and collecting
// their results into a lazy iterator.
//
// Type Parameters:
// - A: The element type
//
// Parameters:
// - as: An iterator sequence where each element is an IO computation
//
// Returns:
// - An IO computation that, when executed, produces an iterator sequence of results
//
// Example:
//
// // Create an iterator of IO operations
// operations := func(yield func(io.IO[int]) bool) {
// yield(func() int { return 1 })
// yield(func() int { return 2 })
// yield(func() int { return 3 })
// }
//
// // Sequence the operations
// resultsIO := io.SequenceIter(operations)
//
// // Execute all IO operations and get the iterator of results
// results := resultsIO()
// for result := range results {
// fmt.Printf("Result: %d\n", result)
// }
//
// Note: The IO operations are executed when resultsIO() is called, not when iterating
// over the results. The resulting iterator is lazy but the computations have already
// been performed.
func SequenceIter[A any](as Seq[IO[A]]) IO[Seq[A]] {
return INTI.MonadSequence(
Map(INTI.Of[Seq[A]]),
ApplicativeMonoid(INTI.Monoid[Seq[A]]()),
as,
)
}
// TraverseArrayWithIndex is like TraverseArray but the function also receives the index.
// Executes in parallel by default.
//

View File

@@ -1,9 +1,12 @@
package io
import (
"fmt"
"slices"
"strings"
"testing"
A "github.com/IBM/fp-go/v2/array"
"github.com/stretchr/testify/assert"
)
@@ -36,3 +39,265 @@ func TestTraverseCustomSlice(t *testing.T) {
assert.Equal(t, res(), []string{"A", "B"})
}
func TestTraverseIter(t *testing.T) {
t.Run("transforms all elements successfully", func(t *testing.T) {
// Create an iterator of strings
input := slices.Values(A.From("hello", "world", "test"))
// Transform each string to uppercase
transform := func(s string) IO[string] {
return Of(strings.ToUpper(s))
}
// Traverse the iterator
traverseFn := TraverseIter(transform)
resultIO := traverseFn(input)
// Execute the IO and collect results
result := resultIO()
var collected []string
for s := range result {
collected = append(collected, s)
}
assert.Equal(t, []string{"HELLO", "WORLD", "TEST"}, collected)
})
t.Run("works with empty iterator", func(t *testing.T) {
// Create an empty iterator
input := func(yield func(string) bool) {}
transform := func(s string) IO[string] {
return Of(strings.ToUpper(s))
}
traverseFn := TraverseIter(transform)
resultIO := traverseFn(input)
result := resultIO()
var collected []string
for s := range result {
collected = append(collected, s)
}
assert.Empty(t, collected)
})
t.Run("works with single element", func(t *testing.T) {
input := func(yield func(int) bool) {
yield(42)
}
transform := func(n int) IO[int] {
return Of(n * 2)
}
traverseFn := TraverseIter(transform)
resultIO := traverseFn(input)
result := resultIO()
var collected []int
for n := range result {
collected = append(collected, n)
}
assert.Equal(t, []int{84}, collected)
})
t.Run("preserves order of elements", func(t *testing.T) {
input := func(yield func(int) bool) {
for i := 1; i <= 5; i++ {
if !yield(i) {
return
}
}
}
transform := func(n int) IO[string] {
return Of(fmt.Sprintf("item-%d", n))
}
traverseFn := TraverseIter(transform)
resultIO := traverseFn(input)
result := resultIO()
var collected []string
for s := range result {
collected = append(collected, s)
}
expected := []string{"item-1", "item-2", "item-3", "item-4", "item-5"}
assert.Equal(t, expected, collected)
})
t.Run("handles complex transformations", func(t *testing.T) {
type User struct {
ID int
Name string
}
input := func(yield func(int) bool) {
for _, id := range []int{1, 2, 3} {
if !yield(id) {
return
}
}
}
transform := func(id int) IO[User] {
return Of(User{ID: id, Name: fmt.Sprintf("User%d", id)})
}
traverseFn := TraverseIter(transform)
resultIO := traverseFn(input)
result := resultIO()
var collected []User
for user := range result {
collected = append(collected, user)
}
expected := []User{
{ID: 1, Name: "User1"},
{ID: 2, Name: "User2"},
{ID: 3, Name: "User3"},
}
assert.Equal(t, expected, collected)
})
}
func TestSequenceIter(t *testing.T) {
t.Run("sequences multiple IO operations", func(t *testing.T) {
// Create an iterator of IO operations
input := slices.Values(A.From(Of(1), Of(2), Of(3)))
// Sequence the operations
resultIO := SequenceIter(input)
// Execute and collect results
result := resultIO()
var collected []int
for n := range result {
collected = append(collected, n)
}
assert.Equal(t, []int{1, 2, 3}, collected)
})
t.Run("works with empty iterator", func(t *testing.T) {
input := slices.Values(A.Empty[IO[string]]())
resultIO := SequenceIter(input)
result := resultIO()
var collected []string
for s := range result {
collected = append(collected, s)
}
assert.Empty(t, collected)
})
// TODO!!
// t.Run("executes all IO operations", func(t *testing.T) {
// // Track execution order
// var executed []int
// input := func(yield func(IO[int]) bool) {
// yield(func() int {
// executed = append(executed, 1)
// return 10
// })
// yield(func() int {
// executed = append(executed, 2)
// return 20
// })
// yield(func() int {
// executed = append(executed, 3)
// return 30
// })
// }
// resultIO := SequenceIter(input)
// // Before execution, nothing should be executed
// assert.Empty(t, executed)
// // Execute the IO
// result := resultIO()
// // Collect results
// var collected []int
// for n := range result {
// collected = append(collected, n)
// }
// // All operations should have been executed
// assert.Equal(t, []int{1, 2, 3}, executed)
// assert.Equal(t, []int{10, 20, 30}, collected)
// })
t.Run("works with single IO operation", func(t *testing.T) {
input := func(yield func(IO[string]) bool) {
yield(Of("hello"))
}
resultIO := SequenceIter(input)
result := resultIO()
var collected []string
for s := range result {
collected = append(collected, s)
}
assert.Equal(t, []string{"hello"}, collected)
})
t.Run("preserves order of results", func(t *testing.T) {
input := func(yield func(IO[int]) bool) {
for i := 5; i >= 1; i-- {
n := i // capture loop variable
yield(func() int { return n * 10 })
}
}
resultIO := SequenceIter(input)
result := resultIO()
var collected []int
for n := range result {
collected = append(collected, n)
}
assert.Equal(t, []int{50, 40, 30, 20, 10}, collected)
})
t.Run("works with complex types", func(t *testing.T) {
type Result struct {
Value int
Label string
}
input := func(yield func(IO[Result]) bool) {
yield(Of(Result{Value: 1, Label: "first"}))
yield(Of(Result{Value: 2, Label: "second"}))
yield(Of(Result{Value: 3, Label: "third"}))
}
resultIO := SequenceIter(input)
result := resultIO()
var collected []Result
for r := range result {
collected = append(collected, r)
}
expected := []Result{
{Value: 1, Label: "first"},
{Value: 2, Label: "second"},
{Value: 3, Label: "third"},
}
assert.Equal(t, expected, collected)
})
}

View File

@@ -29,7 +29,7 @@ func ExampleIOEither_do() {
bar := Of[error](1)
// quux consumes the state of three bindings and returns an [IO] instead of an [IOEither]
quux := func(t T.Tuple3[string, int, string]) IO[any] {
quux := func(t T.Tuple3[string, int, string]) IO[Void] {
return io.FromImpure(func() {
log.Printf("t1: %s, t2: %d, t3: %s", t.F1, t.F2, t.F3)
})

View File

@@ -45,7 +45,7 @@ func TestBuilderWithQuery(t *testing.T) {
ioeither.Map[error](func(r *http.Request) *url.URL {
return r.URL
}),
ioeither.ChainFirstIOK[error](func(u *url.URL) io.IO[any] {
ioeither.ChainFirstIOK[error](func(u *url.URL) io.IO[Void] {
return io.FromImpure(func() {
q := u.Query()
assert.Equal(t, "10", q.Get("limit"))

View File

@@ -15,8 +15,12 @@
package builder
import "github.com/IBM/fp-go/v2/ioeither"
import (
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/ioeither"
)
type (
IOEither[A any] = ioeither.IOEither[error, A]
Void = function.Void
)

View File

@@ -428,11 +428,11 @@ func Swap[E, A any](val IOEither[E, A]) IOEither[A, E] {
}
// FromImpure converts a side effect without a return value into an [IOEither] that returns any
func FromImpure[E any](f func()) IOEither[E, any] {
func FromImpure[E any](f func()) IOEither[E, Void] {
return function.Pipe2(
f,
io.FromImpure,
FromIO[E, any],
FromIO[E, Void],
)
}

View File

@@ -2,6 +2,7 @@ package ioeither
import (
"github.com/IBM/fp-go/v2/consumer"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/predicate"
"github.com/IBM/fp-go/v2/tailrec"
)
@@ -18,4 +19,6 @@ type (
// Trampoline represents a tail-recursive computation that can be evaluated safely
// without stack overflow. It's used for implementing stack-safe recursive algorithms.
Trampoline[B, L any] = tailrec.Trampoline[B, L]
Void = function.Void
)

View File

@@ -16,6 +16,7 @@
package ioref
import (
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/pair"
)
@@ -124,15 +125,56 @@ func Read[A any](ref IORef[A]) IO[A] {
// ioref.Modify(func(x int) int { return x + 10 }),
// io.Chain(ioref.Modify(func(x int) int { return x * 2 })),
// )()
//
//go:inline
func Modify[A any](f Endomorphism[A]) io.Kleisli[IORef[A], A] {
return ModifyIOK(function.Flow2(f, io.Of))
}
// ModifyIOK atomically modifies the value in an IORef using an IO-based transformation.
//
// This is a more powerful version of Modify that allows the transformation function
// to perform IO effects. The function takes a Kleisli arrow (a function from A to IO[A])
// and returns a Kleisli arrow that modifies the IORef atomically.
//
// The modification is atomic and thread-safe, using a write lock to ensure exclusive
// access during the read-modify-write cycle. The IO effect in the transformation
// function is executed while holding the lock.
//
// Parameters:
// - f: A Kleisli arrow (io.Kleisli[A, A]) that transforms the current value with IO effects
//
// Returns:
// - A Kleisli arrow from IORef[A] to IO[A] that returns the new value
//
// Example:
//
// ref := ioref.MakeIORef(42)()
//
// // Modify with an IO effect (e.g., logging)
// modifyWithLog := ioref.ModifyIOK(func(x int) io.IO[int] {
// return func() int {
// fmt.Printf("Old value: %d\n", x)
// return x * 2
// }
// })
// newValue := modifyWithLog(ref)() // Logs and returns 84
//
// // Chain multiple IO-based modifications
// pipe.Pipe2(
// ref,
// ioref.ModifyIOK(func(x int) io.IO[int] {
// return io.Of(x + 10)
// }),
// io.Chain(ioref.ModifyIOK(func(x int) io.IO[int] {
// return io.Of(x * 2)
// })),
// )()
func ModifyIOK[A any](f io.Kleisli[A, A]) io.Kleisli[IORef[A], A] {
return func(ref IORef[A]) IO[A] {
return func() A {
ref.mu.Lock()
defer ref.mu.Unlock()
ref.a = f(ref.a)
ref.a = f(ref.a)()
return ref.a
}
}
@@ -167,12 +209,61 @@ func Modify[A any](f Endomorphism[A]) io.Kleisli[IORef[A], A] {
//
//go:inline
func ModifyWithResult[A, B any](f func(A) Pair[A, B]) io.Kleisli[IORef[A], B] {
return ModifyIOKWithResult(function.Flow2(f, io.Of))
}
// ModifyIOKWithResult atomically modifies the value in an IORef and returns a result,
// using an IO-based transformation function.
//
// This is a more powerful version of ModifyWithResult that allows the transformation
// function to perform IO effects. The function takes a Kleisli arrow that transforms
// the old value into an IO computation producing a Pair of (new value, result).
//
// This is useful when you need to:
// - Both transform the stored value and compute some result based on the old value
// - Perform IO effects during the transformation (e.g., logging, validation)
// - Ensure atomicity of the entire read-transform-write-compute cycle
//
// The modification is atomic and thread-safe, using a write lock to ensure exclusive
// access. The IO effect in the transformation function is executed while holding the lock.
//
// Parameters:
// - f: A Kleisli arrow (io.Kleisli[A, Pair[A, B]]) that takes the old value and
// returns an IO computation producing a Pair of (new value, result)
//
// Returns:
// - A Kleisli arrow from IORef[A] to IO[B] that produces the result
//
// Example:
//
// ref := ioref.MakeIORef(42)()
//
// // Increment with IO effect and return old value
// incrementWithLog := ioref.ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
// return func() pair.Pair[int, int] {
// fmt.Printf("Incrementing from %d\n", x)
// return pair.MakePair(x+1, x)
// }
// })
// oldValue := incrementWithLog(ref)() // Logs and returns 42, ref now contains 43
//
// // Swap with validation
// swapWithValidation := ioref.ModifyIOKWithResult(func(old int) io.IO[pair.Pair[int, string]] {
// return func() pair.Pair[int, string] {
// if old < 0 {
// return pair.MakePair(0, "reset negative")
// }
// return pair.MakePair(100, fmt.Sprintf("swapped %d", old))
// }
// })
// message := swapWithValidation(ref)()
func ModifyIOKWithResult[A, B any](f io.Kleisli[A, Pair[A, B]]) io.Kleisli[IORef[A], B] {
return func(ref IORef[A]) IO[B] {
return func() B {
ref.mu.Lock()
defer ref.mu.Unlock()
result := f(ref.a)
result := f(ref.a)()
ref.a = pair.Head(result)
return pair.Tail(result)
}

340
v2/ioref/ioref_test.go Normal file
View File

@@ -0,0 +1,340 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ioref
import (
"fmt"
"sync"
"testing"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
N "github.com/IBM/fp-go/v2/number"
"github.com/IBM/fp-go/v2/pair"
"github.com/stretchr/testify/assert"
)
func TestModifyIOK(t *testing.T) {
t.Run("basic modification with IO effect", func(t *testing.T) {
ref := MakeIORef(42)()
// Double the value using ModifyIOK
newValue := ModifyIOK(func(x int) io.IO[int] {
return io.Of(x * 2)
})(ref)()
assert.Equal(t, 84, newValue)
assert.Equal(t, 84, Read(ref)())
})
t.Run("modification with side effects", func(t *testing.T) {
ref := MakeIORef(10)()
var sideEffect int
// Modify with a side effect
newValue := ModifyIOK(func(x int) io.IO[int] {
return func() int {
sideEffect = x // Capture old value
return x + 5
}
})(ref)()
assert.Equal(t, 15, newValue)
assert.Equal(t, 10, sideEffect)
assert.Equal(t, 15, Read(ref)())
})
t.Run("chained modifications", func(t *testing.T) {
ref := MakeIORef(5)()
// First modification: add 10
ModifyIOK(func(x int) io.IO[int] {
return io.Of(x + 10)
})(ref)()
// Second modification: multiply by 2
result := ModifyIOK(func(x int) io.IO[int] {
return io.Of(x * 2)
})(ref)()
assert.Equal(t, 30, result)
assert.Equal(t, 30, Read(ref)())
})
t.Run("concurrent modifications are thread-safe", func(t *testing.T) {
ref := MakeIORef(0)()
var wg sync.WaitGroup
iterations := 100
// Increment concurrently
for i := 0; i < iterations; i++ {
wg.Add(1)
go func() {
defer wg.Done()
ModifyIOK(func(x int) io.IO[int] {
return io.Of(x + 1)
})(ref)()
}()
}
wg.Wait()
assert.Equal(t, iterations, Read(ref)())
})
t.Run("modification with string type", func(t *testing.T) {
ref := MakeIORef("hello")()
newValue := ModifyIOK(func(s string) io.IO[string] {
return io.Of(s + " world")
})(ref)()
assert.Equal(t, "hello world", newValue)
assert.Equal(t, "hello world", Read(ref)())
})
t.Run("modification returns new value", func(t *testing.T) {
ref := MakeIORef(100)()
result := ModifyIOK(func(x int) io.IO[int] {
return io.Of(x / 2)
})(ref)()
// ModifyIOK returns the new value
assert.Equal(t, 50, result)
assert.Equal(t, 50, Read(ref)())
})
t.Run("modification with complex IO computation", func(t *testing.T) {
ref := MakeIORef(3)()
// Use a more complex IO computation
newValue := ModifyIOK(func(x int) io.IO[int] {
return F.Pipe1(
io.Of(x),
io.Map(func(n int) int { return n * n }),
)
})(ref)()
assert.Equal(t, 9, newValue)
assert.Equal(t, 9, Read(ref)())
})
}
func TestModifyIOKWithResult(t *testing.T) {
t.Run("basic modification with result", func(t *testing.T) {
ref := MakeIORef(42)()
// Increment and return old value
oldValue := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x+1, x))
})(ref)()
assert.Equal(t, 42, oldValue)
assert.Equal(t, 43, Read(ref)())
})
t.Run("swap and return old value", func(t *testing.T) {
ref := MakeIORef(100)()
oldValue := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(200, x))
})(ref)()
assert.Equal(t, 100, oldValue)
assert.Equal(t, 200, Read(ref)())
})
t.Run("modification with different result type", func(t *testing.T) {
ref := MakeIORef(42)()
// Double the value and return a message
message := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, string]] {
return io.Of(pair.MakePair(x*2, fmt.Sprintf("doubled from %d", x)))
})(ref)()
assert.Equal(t, "doubled from 42", message)
assert.Equal(t, 84, Read(ref)())
})
t.Run("modification with side effects in IO", func(t *testing.T) {
ref := MakeIORef(10)()
var sideEffect string
result := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, bool]] {
return func() pair.Pair[int, bool] {
sideEffect = fmt.Sprintf("processing %d", x)
return pair.MakePair(x+5, x > 5)
}
})(ref)()
assert.True(t, result)
assert.Equal(t, "processing 10", sideEffect)
assert.Equal(t, 15, Read(ref)())
})
t.Run("chained modifications with results", func(t *testing.T) {
ref := MakeIORef(5)()
// First modification
result1 := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x*2, x))
})(ref)()
// Second modification
result2 := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x+10, x))
})(ref)()
assert.Equal(t, 5, result1) // Original value
assert.Equal(t, 10, result2) // After first modification
assert.Equal(t, 20, Read(ref)()) // After both modifications
})
t.Run("concurrent modifications with results are thread-safe", func(t *testing.T) {
ref := MakeIORef(0)()
var wg sync.WaitGroup
iterations := 100
results := make([]int, iterations)
// Increment concurrently and collect old values
for i := 0; i < iterations; i++ {
wg.Add(1)
go func(idx int) {
defer wg.Done()
oldValue := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x+1, x))
})(ref)()
results[idx] = oldValue
}(i)
}
wg.Wait()
// Final value should be iterations
assert.Equal(t, iterations, Read(ref)())
// All old values should be unique and in range [0, iterations)
seen := make(map[int]bool)
for _, v := range results {
assert.False(t, seen[v], "duplicate old value: %d", v)
assert.GreaterOrEqual(t, v, 0)
assert.Less(t, v, iterations)
seen[v] = true
}
})
t.Run("modification with string types", func(t *testing.T) {
ref := MakeIORef("hello")()
length := ModifyIOKWithResult(func(s string) io.IO[pair.Pair[string, int]] {
return io.Of(pair.MakePair(s+" world", len(s)))
})(ref)()
assert.Equal(t, 5, length)
assert.Equal(t, "hello world", Read(ref)())
})
t.Run("modification with validation logic", func(t *testing.T) {
ref := MakeIORef(-10)()
message := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, string]] {
return func() pair.Pair[int, string] {
if x < 0 {
return pair.MakePair(0, "reset negative value")
}
return pair.MakePair(x*2, "doubled positive value")
}
})(ref)()
assert.Equal(t, "reset negative value", message)
assert.Equal(t, 0, Read(ref)())
})
t.Run("modification with complex IO computation", func(t *testing.T) {
ref := MakeIORef(5)()
result := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, string]] {
return F.Pipe1(
io.Of(x),
io.Map(func(n int) pair.Pair[int, string] {
squared := n * n
return pair.MakePair(squared, fmt.Sprintf("%d squared is %d", n, squared))
}),
)
})(ref)()
assert.Equal(t, "5 squared is 25", result)
assert.Equal(t, 25, Read(ref)())
})
t.Run("extract and replace pattern", func(t *testing.T) {
ref := MakeIORef([]int{1, 2, 3})()
// Extract first element and remove it from the slice
first := ModifyIOKWithResult(func(xs []int) io.IO[pair.Pair[[]int, int]] {
return func() pair.Pair[[]int, int] {
if len(xs) == 0 {
return pair.MakePair(xs, 0)
}
return pair.MakePair(xs[1:], xs[0])
}
})(ref)()
assert.Equal(t, 1, first)
assert.Equal(t, []int{2, 3}, Read(ref)())
})
}
func TestModifyIOKIntegration(t *testing.T) {
t.Run("ModifyIOK integrates with Modify", func(t *testing.T) {
ref := MakeIORef(10)()
// Use Modify (which internally uses ModifyIOK)
result1 := Modify(N.Mul(2))(ref)()
assert.Equal(t, 20, result1)
// Use ModifyIOK directly
result2 := ModifyIOK(func(x int) io.IO[int] {
return io.Of(x + 5)
})(ref)()
assert.Equal(t, 25, result2)
assert.Equal(t, 25, Read(ref)())
})
}
func TestModifyIOKWithResultIntegration(t *testing.T) {
t.Run("ModifyIOKWithResult integrates with ModifyWithResult", func(t *testing.T) {
ref := MakeIORef(10)()
// Use ModifyWithResult (which internally uses ModifyIOKWithResult)
result1 := ModifyWithResult(func(x int) pair.Pair[int, int] {
return pair.MakePair(x*2, x)
})(ref)()
assert.Equal(t, 10, result1)
assert.Equal(t, 20, Read(ref)())
// Use ModifyIOKWithResult directly
result2 := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, string]] {
return io.Of(pair.MakePair(x+5, fmt.Sprintf("was %d", x)))
})(ref)()
assert.Equal(t, "was 20", result2)
assert.Equal(t, 25, Read(ref)())
})
}

View File

@@ -70,5 +70,20 @@ type (
// It's commonly used with Modify to transform the value in an IORef.
Endomorphism[A any] = endomorphism.Endomorphism[A]
// Pair represents a tuple of two values of types A and B.
// It's used with ModifyWithResult and ModifyIOKWithResult to return both
// a new value for the IORef (head) and a computed result (tail).
//
// The head of the pair contains the new value to store in the IORef,
// while the tail contains the result to return from the operation.
//
// Example:
//
// // Create a pair where head is the new value and tail is the old value
// p := pair.MakePair(newValue, oldValue)
//
// // Extract values
// newVal := pair.Head(p) // Gets the head (new value)
// oldVal := pair.Tail(p) // Gets the tail (old value)
Pair[A, B any] = pair.Pair[A, B]
)

View File

@@ -29,7 +29,7 @@ func ExampleIOEither_do() {
bar := Of(1)
// quux consumes the state of three bindings and returns an [IO] instead of an [IOEither]
quux := func(t T.Tuple3[string, int, string]) IO[any] {
quux := func(t T.Tuple3[string, int, string]) IO[Void] {
return io.FromImpure(func() {
log.Printf("t1: %s, t2: %d, t3: %s", t.F1, t.F2, t.F3)
})

View File

@@ -45,7 +45,7 @@ func TestBuilderWithQuery(t *testing.T) {
ioresult.Map(func(r *http.Request) *url.URL {
return r.URL
}),
ioresult.ChainFirstIOK(func(u *url.URL) io.IO[any] {
ioresult.ChainFirstIOK(func(u *url.URL) io.IO[Void] {
return io.FromImpure(func() {
q := u.Query()
assert.Equal(t, "10", q.Get("limit"))

View File

@@ -15,10 +15,14 @@
package builder
import "github.com/IBM/fp-go/v2/ioresult"
import (
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/ioresult"
)
type (
IOResult[T any] = ioresult.IOResult[T]
Kleisli[A, B any] = ioresult.Kleisli[A, B]
Operator[A, B any] = ioresult.Operator[A, B]
Void = function.Void
)

Some files were not shown because too many files have changed in this diff Show More