1
0
mirror of https://github.com/IBM/fp-go.git synced 2026-02-04 11:33:51 +02:00

Compare commits

...

16 Commits

Author SHA1 Message Date
Dr. Carsten Leue
49deb57d24 fix: OrElse
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-02-03 17:54:43 +01:00
Dr. Carsten Leue
abb55ddbd0 fix: validation logic and ChainLeft
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-02-03 14:00:44 +01:00
Dr. Carsten Leue
f6b01dffdc fix: add ModifiyReaderIOK to IORef
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-02-02 09:09:04 +01:00
Dr. Carsten Leue
43b666edbb fix: add bind to codec
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-31 11:47:50 +01:00
Dr. Carsten Leue
e42d765852 fix: readeriooption
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-30 16:59:32 +01:00
Dr. Carsten Leue
d2da8a32b4 fix: improve docs
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-30 11:45:45 +01:00
Dr. Carsten Leue
7484af664b fix: add IOK to IORef
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-29 17:12:27 +01:00
Dr. Carsten Leue
ae38e3f8f4 fix: add IOK to IORef
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-29 17:07:12 +01:00
Dr. Carsten Leue
e0f854bda3 fix: executes_all_IO_operations
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-29 10:25:39 +01:00
Dr. Carsten Leue
34786c3cd8 fix: more tests and lens generation fix for prism
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-29 10:11:46 +01:00
Dr. Carsten Leue
a7aa7e3560 fix: better DI example
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-27 22:45:17 +01:00
Dr. Carsten Leue
ff2a4299b2 fix: add some useful lenses
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-27 17:39:34 +01:00
Dr. Carsten Leue
edd66d63e6 fix: more codec
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-27 14:51:35 +01:00
Dr. Carsten Leue
909aec8eba fix: better sequence iter
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-26 10:41:25 +01:00
Obed Tetteh
da0344f9bd feat(iterator): add Last function with Option return type (#155)
- Add Last function to retrieve the final element from an iterator,
  returning Some(element) for non-empty sequences and None for empty ones.
- Includes tests covering simple types and  complex types
- Add documentation including example code
2026-01-26 09:04:51 +01:00
Dr. Carsten Leue
cd79dd56b9 fix: simplify tests a bit
Signed-off-by: Dr. Carsten Leue <carsten.leue@de.ibm.com>
2026-01-23 17:56:28 +01:00
152 changed files with 27371 additions and 1104 deletions

1
v2/.bob/mcp.json Normal file
View File

@@ -0,0 +1 @@
{"mcpServers":{}}

View File

@@ -460,8 +460,11 @@ func process() IOResult[string] {
- **Either** - Type-safe error handling with left/right values
- **Result** - Simplified Either with error as left type (recommended for error handling)
- **IO** - Lazy evaluation and side effect management
- **IOOption** - Combine IO with Option for optional values with side effects
- **IOResult** - Combine IO with Result for error handling (recommended over IOEither)
- **Reader** - Dependency injection pattern
- **ReaderOption** - Combine Reader with Option for optional values with dependency injection
- **ReaderIOOption** - Combine Reader, IO, and Option for optional values with dependency injection and side effects
- **ReaderIOResult** - Combine Reader, IO, and Result for complex workflows
- **Array** - Functional array operations
- **Record** - Functional record/map operations

View File

@@ -239,6 +239,16 @@ func ReduceRef[A, B any](f func(B, *A) B, initial B) func([]A) B {
}
// Append adds an element to the end of an array, returning a new array.
// This is a non-curried version that takes both the array and element as parameters.
//
// Example:
//
// arr := []int{1, 2, 3}
// result := array.Append(arr, 4)
// // result: []int{1, 2, 3, 4}
// // arr: []int{1, 2, 3} (unchanged)
//
// For a curried version, see Push.
//
//go:inline
func Append[A any](as []A, a A) []A {

View File

@@ -16,308 +16,88 @@
package array
import (
"fmt"
"testing"
N "github.com/IBM/fp-go/v2/number"
O "github.com/IBM/fp-go/v2/option"
S "github.com/IBM/fp-go/v2/string"
"github.com/stretchr/testify/assert"
)
func TestReplicate(t *testing.T) {
result := Replicate(3, "a")
assert.Equal(t, []string{"a", "a", "a"}, result)
empty := Replicate(0, 42)
assert.Equal(t, []int{}, empty)
}
func TestMonadMap(t *testing.T) {
src := []int{1, 2, 3}
result := MonadMap(src, N.Mul(2))
assert.Equal(t, []int{2, 4, 6}, result)
}
func TestMonadMapRef(t *testing.T) {
src := []int{1, 2, 3}
result := MonadMapRef(src, func(x *int) int { return *x * 2 })
assert.Equal(t, []int{2, 4, 6}, result)
}
func TestMapWithIndex(t *testing.T) {
src := []string{"a", "b", "c"}
mapper := MapWithIndex(func(i int, s string) string {
return fmt.Sprintf("%d:%s", i, s)
})
result := mapper(src)
assert.Equal(t, []string{"0:a", "1:b", "2:c"}, result)
}
func TestMapRef(t *testing.T) {
src := []int{1, 2, 3}
mapper := MapRef(func(x *int) int { return *x * 2 })
result := mapper(src)
assert.Equal(t, []int{2, 4, 6}, result)
}
func TestFilterWithIndex(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
filter := FilterWithIndex(func(i, x int) bool {
return i%2 == 0 && x > 2
})
result := filter(src)
assert.Equal(t, []int{3, 5}, result)
}
func TestFilterRef(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
filter := FilterRef(func(x *int) bool { return *x > 2 })
result := filter(src)
assert.Equal(t, []int{3, 4, 5}, result)
}
func TestMonadFilterMap(t *testing.T) {
src := []int{1, 2, 3, 4}
result := MonadFilterMap(src, func(x int) O.Option[string] {
if x%2 == 0 {
return O.Some(fmt.Sprintf("even:%d", x))
}
return O.None[string]()
})
assert.Equal(t, []string{"even:2", "even:4"}, result)
}
func TestMonadFilterMapWithIndex(t *testing.T) {
src := []int{1, 2, 3, 4}
result := MonadFilterMapWithIndex(src, func(i, x int) O.Option[string] {
if i%2 == 0 {
return O.Some(fmt.Sprintf("%d:%d", i, x))
}
return O.None[string]()
})
assert.Equal(t, []string{"0:1", "2:3"}, result)
}
func TestFilterMapWithIndex(t *testing.T) {
src := []int{1, 2, 3, 4}
filter := FilterMapWithIndex(func(i, x int) O.Option[string] {
if i%2 == 0 {
return O.Some(fmt.Sprintf("%d:%d", i, x))
}
return O.None[string]()
})
result := filter(src)
assert.Equal(t, []string{"0:1", "2:3"}, result)
}
func TestFilterMapRef(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
filter := FilterMapRef(
func(x *int) bool { return *x > 2 },
func(x *int) string { return fmt.Sprintf("val:%d", *x) },
)
result := filter(src)
assert.Equal(t, []string{"val:3", "val:4", "val:5"}, result)
}
func TestReduceWithIndex(t *testing.T) {
src := []int{1, 2, 3}
reducer := ReduceWithIndex(func(i, acc, x int) int {
return acc + i + x
// TestMonadReduceWithIndex tests the MonadReduceWithIndex function
func TestMonadReduceWithIndex(t *testing.T) {
// Test with integers - sum with index multiplication
numbers := []int{1, 2, 3, 4, 5}
result := MonadReduceWithIndex(numbers, func(idx, acc, val int) int {
return acc + (val * idx)
}, 0)
result := reducer(src)
assert.Equal(t, 9, result) // 0 + (0+1) + (1+2) + (2+3) = 9
}
// Expected: 0*1 + 1*2 + 2*3 + 3*4 + 4*5 = 0 + 2 + 6 + 12 + 20 = 40
assert.Equal(t, 40, result)
func TestReduceRightWithIndex(t *testing.T) {
src := []string{"a", "b", "c"}
reducer := ReduceRightWithIndex(func(i int, x, acc string) string {
return fmt.Sprintf("%s%d:%s", acc, i, x)
// Test with empty array
empty := []int{}
result2 := MonadReduceWithIndex(empty, func(idx, acc, val int) int {
return acc + val
}, 10)
assert.Equal(t, 10, result2)
// Test with strings - concatenate with index
words := []string{"a", "b", "c"}
result3 := MonadReduceWithIndex(words, func(idx int, acc, val string) string {
return acc + val + string(rune('0'+idx))
}, "")
result := reducer(src)
assert.Equal(t, "2:c1:b0:a", result)
assert.Equal(t, "a0b1c2", result3)
}
func TestReduceRef(t *testing.T) {
src := []int{1, 2, 3}
reducer := ReduceRef(func(acc int, x *int) int {
return acc + *x
}, 0)
result := reducer(src)
assert.Equal(t, 6, result)
}
func TestZero(t *testing.T) {
result := Zero[int]()
assert.Equal(t, []int{}, result)
assert.True(t, IsEmpty(result))
}
func TestMonadChain(t *testing.T) {
src := []int{1, 2, 3}
result := MonadChain(src, func(x int) []int {
return []int{x, x * 10}
})
assert.Equal(t, []int{1, 10, 2, 20, 3, 30}, result)
}
func TestChain(t *testing.T) {
src := []int{1, 2, 3}
chain := Chain(func(x int) []int {
return []int{x, x * 10}
})
result := chain(src)
assert.Equal(t, []int{1, 10, 2, 20, 3, 30}, result)
}
func TestMonadAp(t *testing.T) {
fns := []func(int) int{
N.Mul(2),
N.Add(10),
}
values := []int{1, 2}
result := MonadAp(fns, values)
assert.Equal(t, []int{2, 4, 11, 12}, result)
}
func TestMatchLeft(t *testing.T) {
matcher := MatchLeft(
func() string { return "empty" },
func(head int, tail []int) string {
return fmt.Sprintf("head:%d,tail:%v", head, tail)
},
)
assert.Equal(t, "empty", matcher([]int{}))
assert.Equal(t, "head:1,tail:[2 3]", matcher([]int{1, 2, 3}))
}
func TestTail(t *testing.T) {
assert.Equal(t, O.None[[]int](), Tail([]int{}))
assert.Equal(t, O.Some([]int{2, 3}), Tail([]int{1, 2, 3}))
assert.Equal(t, O.Some([]int{}), Tail([]int{1}))
}
func TestFirst(t *testing.T) {
assert.Equal(t, O.None[int](), First([]int{}))
assert.Equal(t, O.Some(1), First([]int{1, 2, 3}))
}
func TestLast(t *testing.T) {
assert.Equal(t, O.None[int](), Last([]int{}))
assert.Equal(t, O.Some(3), Last([]int{1, 2, 3}))
assert.Equal(t, O.Some(1), Last([]int{1}))
}
func TestUpsertAt(t *testing.T) {
src := []int{1, 2, 3}
upsert := UpsertAt(99)
result1 := upsert(src)
assert.Equal(t, []int{1, 2, 3, 99}, result1)
}
func TestSize(t *testing.T) {
assert.Equal(t, 0, Size([]int{}))
assert.Equal(t, 3, Size([]int{1, 2, 3}))
}
func TestMonadPartition(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
result := MonadPartition(src, func(x int) bool { return x > 2 })
assert.Equal(t, []int{1, 2}, result.F1)
assert.Equal(t, []int{3, 4, 5}, result.F2)
}
func TestIsNil(t *testing.T) {
var nilSlice []int
assert.True(t, IsNil(nilSlice))
assert.False(t, IsNil([]int{}))
assert.False(t, IsNil([]int{1}))
}
func TestIsNonNil(t *testing.T) {
var nilSlice []int
assert.False(t, IsNonNil(nilSlice))
assert.True(t, IsNonNil([]int{}))
assert.True(t, IsNonNil([]int{1}))
}
func TestConstNil(t *testing.T) {
result := ConstNil[int]()
assert.True(t, IsNil(result))
}
func TestSliceRight(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
slicer := SliceRight[int](2)
result := slicer(src)
assert.Equal(t, []int{3, 4, 5}, result)
}
func TestCopy(t *testing.T) {
src := []int{1, 2, 3}
copied := Copy(src)
assert.Equal(t, src, copied)
// Verify it's a different slice
copied[0] = 99
assert.Equal(t, 1, src[0])
assert.Equal(t, 99, copied[0])
}
func TestClone(t *testing.T) {
src := []int{1, 2, 3}
cloner := Clone(N.Mul(2))
result := cloner(src)
assert.Equal(t, []int{2, 4, 6}, result)
}
func TestFoldMapWithIndex(t *testing.T) {
src := []string{"a", "b", "c"}
folder := FoldMapWithIndex[string](S.Monoid)(func(i int, s string) string {
return fmt.Sprintf("%d:%s", i, s)
})
result := folder(src)
assert.Equal(t, "0:a1:b2:c", result)
}
func TestFold(t *testing.T) {
src := []int{1, 2, 3, 4, 5}
folder := Fold(N.MonoidSum[int]())
result := folder(src)
assert.Equal(t, 15, result)
}
func TestPush(t *testing.T) {
src := []int{1, 2, 3}
pusher := Push(4)
result := pusher(src)
// TestAppend tests the Append function
func TestAppend(t *testing.T) {
// Test appending to non-empty array
arr := []int{1, 2, 3}
result := Append(arr, 4)
assert.Equal(t, []int{1, 2, 3, 4}, result)
// Verify original array is unchanged
assert.Equal(t, []int{1, 2, 3}, arr)
// Test appending to empty array
empty := []int{}
result2 := Append(empty, 1)
assert.Equal(t, []int{1}, result2)
// Test appending strings
words := []string{"hello", "world"}
result3 := Append(words, "!")
assert.Equal(t, []string{"hello", "world", "!"}, result3)
// Test appending to nil array
var nilArr []int
result4 := Append(nilArr, 42)
assert.Equal(t, []int{42}, result4)
}
func TestMonadFlap(t *testing.T) {
fns := []func(int) string{
func(x int) string { return fmt.Sprintf("a%d", x) },
func(x int) string { return fmt.Sprintf("b%d", x) },
}
result := MonadFlap(fns, 5)
assert.Equal(t, []string{"a5", "b5"}, result)
}
// TestStrictEquals tests the StrictEquals function
func TestStrictEquals(t *testing.T) {
eq := StrictEquals[int]()
func TestFlap(t *testing.T) {
fns := []func(int) string{
func(x int) string { return fmt.Sprintf("a%d", x) },
func(x int) string { return fmt.Sprintf("b%d", x) },
}
flapper := Flap[string](5)
result := flapper(fns)
assert.Equal(t, []string{"a5", "b5"}, result)
}
// Test equal arrays
arr1 := []int{1, 2, 3}
arr2 := []int{1, 2, 3}
assert.True(t, eq.Equals(arr1, arr2))
func TestPrepend(t *testing.T) {
src := []int{2, 3, 4}
prepender := Prepend(1)
result := prepender(src)
assert.Equal(t, []int{1, 2, 3, 4}, result)
// Test different arrays
arr3 := []int{1, 2, 4}
assert.False(t, eq.Equals(arr1, arr3))
// Test different lengths
arr4 := []int{1, 2}
assert.False(t, eq.Equals(arr1, arr4))
// Test empty arrays
empty1 := []int{}
empty2 := []int{}
assert.True(t, eq.Equals(empty1, empty2))
// Test with strings
strEq := StrictEquals[string]()
words1 := []string{"hello", "world"}
words2 := []string{"hello", "world"}
words3 := []string{"hello", "there"}
assert.True(t, strEq.Equals(words1, words2))
assert.False(t, strEq.Equals(words1, words3))
}

View File

@@ -63,17 +63,26 @@ func Bind[S1, S2, T any](
// Let attaches the result of a pure computation to a context S1 to produce a context S2.
// Unlike Bind, the computation function returns a plain value T rather than []T.
// This is useful when you need to compute a derived value from the current context
// without introducing additional array elements.
//
// Example:
//
// result := array.Let(
// func(sum int) func(s struct{ X int }) struct{ X, Sum int } {
// return func(s struct{ X int }) struct{ X, Sum int } {
// return struct{ X, Sum int }{s.X, sum}
// }
// },
// func(s struct{ X int }) int { return s.X * 2 },
// type State1 struct{ X int }
// type State2 struct{ X, Double int }
//
// result := F.Pipe2(
// []State1{{X: 5}, {X: 10}},
// array.Let(
// func(double int) func(s State1) State2 {
// return func(s State1) State2 {
// return State2{X: s.X, Double: double}
// }
// },
// func(s State1) int { return s.X * 2 },
// ),
// )
// // result: []State2{{X: 5, Double: 10}, {X: 10, Double: 20}}
//
//go:inline
func Let[S1, S2, T any](
@@ -84,18 +93,25 @@ func Let[S1, S2, T any](
}
// LetTo attaches a constant value to a context S1 to produce a context S2.
// This is useful for adding constant values to the context.
// This is useful for adding constant values to the context without computation.
//
// Example:
//
// result := array.LetTo(
// func(name string) func(s struct{ X int }) struct{ X int; Name string } {
// return func(s struct{ X int }) struct{ X int; Name string } {
// return struct{ X int; Name string }{s.X, name}
// }
// },
// "constant",
// type State1 struct{ X int }
// type State2 struct{ X int; Name string }
//
// result := F.Pipe2(
// []State1{{X: 1}, {X: 2}},
// array.LetTo(
// func(name string) func(s State1) State2 {
// return func(s State1) State2 {
// return State2{X: s.X, Name: name}
// }
// },
// "constant",
// ),
// )
// // result: []State2{{X: 1, Name: "constant"}, {X: 2, Name: "constant"}}
//
//go:inline
func LetTo[S1, S2, T any](
@@ -107,15 +123,19 @@ func LetTo[S1, S2, T any](
// BindTo initializes a new state S1 from a value T.
// This is typically the first operation after Do to start building the context.
// It transforms each element of type T into a state of type S1.
//
// Example:
//
// type State struct{ X int }
//
// result := F.Pipe2(
// []int{1, 2, 3},
// array.BindTo(func(x int) struct{ X int } {
// return struct{ X int }{x}
// array.BindTo(func(x int) State {
// return State{X: x}
// }),
// )
// // result: []State{{X: 1}, {X: 2}, {X: 3}}
//
//go:inline
func BindTo[S1, T any](

View File

@@ -22,57 +22,176 @@ import (
"github.com/stretchr/testify/assert"
)
type TestState1 struct {
X int
}
type TestState2 struct {
X int
Y int
}
// TestLet tests the Let function
func TestLet(t *testing.T) {
result := F.Pipe2(
Do(TestState1{}),
type State1 struct {
X int
}
type State2 struct {
X int
Double int
}
// Test Let with pure computation
result := F.Pipe1(
[]State1{{X: 5}, {X: 10}},
Let(
func(y int) func(s TestState1) TestState2 {
return func(s TestState1) TestState2 {
return TestState2{X: s.X, Y: y}
func(double int) func(s State1) State2 {
return func(s State1) State2 {
return State2{X: s.X, Double: double}
}
},
func(s TestState1) int { return s.X * 2 },
func(s State1) int { return s.X * 2 },
),
Map(func(s TestState2) int { return s.X + s.Y }),
)
assert.Equal(t, []int{0}, result)
expected := []State2{{X: 5, Double: 10}, {X: 10, Double: 20}}
assert.Equal(t, expected, result)
// Test Let with empty array
empty := []State1{}
result2 := F.Pipe1(
empty,
Let(
func(double int) func(s State1) State2 {
return func(s State1) State2 {
return State2{X: s.X, Double: double}
}
},
func(s State1) int { return s.X * 2 },
),
)
assert.Equal(t, []State2{}, result2)
}
// TestLetTo tests the LetTo function
func TestLetTo(t *testing.T) {
result := F.Pipe2(
Do(TestState1{X: 5}),
type State1 struct {
X int
}
type State2 struct {
X int
Name string
}
// Test LetTo with constant value
result := F.Pipe1(
[]State1{{X: 1}, {X: 2}},
LetTo(
func(y int) func(s TestState1) TestState2 {
return func(s TestState1) TestState2 {
return TestState2{X: s.X, Y: y}
func(name string) func(s State1) State2 {
return func(s State1) State2 {
return State2{X: s.X, Name: name}
}
},
42,
"constant",
),
Map(func(s TestState2) int { return s.X + s.Y }),
)
assert.Equal(t, []int{47}, result)
expected := []State2{{X: 1, Name: "constant"}, {X: 2, Name: "constant"}}
assert.Equal(t, expected, result)
// Test LetTo with different constant
result2 := F.Pipe1(
[]State1{{X: 10}},
LetTo(
func(name string) func(s State1) State2 {
return func(s State1) State2 {
return State2{X: s.X, Name: name}
}
},
"test",
),
)
expected2 := []State2{{X: 10, Name: "test"}}
assert.Equal(t, expected2, result2)
}
// TestBindTo tests the BindTo function
func TestBindTo(t *testing.T) {
type State struct {
X int
}
// Test BindTo with integers
result := F.Pipe1(
[]int{1, 2, 3},
BindTo(func(x int) TestState1 {
return TestState1{X: x}
BindTo(func(x int) State {
return State{X: x}
}),
)
expected := []TestState1{{X: 1}, {X: 2}, {X: 3}}
expected := []State{{X: 1}, {X: 2}, {X: 3}}
assert.Equal(t, expected, result)
// Test BindTo with strings
type StringState struct {
Value string
}
result2 := F.Pipe1(
[]string{"hello", "world"},
BindTo(func(s string) StringState {
return StringState{Value: s}
}),
)
expected2 := []StringState{{Value: "hello"}, {Value: "world"}}
assert.Equal(t, expected2, result2)
// Test BindTo with empty array
empty := []int{}
result3 := F.Pipe1(
empty,
BindTo(func(x int) State {
return State{X: x}
}),
)
assert.Equal(t, []State{}, result3)
}
// TestDoWithLetAndBindTo tests combining Do, Let, LetTo, and BindTo
func TestDoWithLetAndBindTo(t *testing.T) {
type State1 struct {
X int
}
type State2 struct {
X int
Double int
}
type State3 struct {
X int
Double int
Name string
}
// Test complex pipeline
result := F.Pipe3(
[]int{5, 10},
BindTo(func(x int) State1 {
return State1{X: x}
}),
Let(
func(double int) func(s State1) State2 {
return func(s State1) State2 {
return State2{X: s.X, Double: double}
}
},
func(s State1) int { return s.X * 2 },
),
LetTo(
func(name string) func(s State2) State3 {
return func(s State2) State3 {
return State3{X: s.X, Double: s.Double, Name: name}
}
},
"result",
),
)
expected := []State3{
{X: 5, Double: 10, Name: "result"},
{X: 10, Double: 20, Name: "result"},
}
assert.Equal(t, expected, result)
}

137
v2/array/coverage.out Normal file
View File

@@ -0,0 +1,137 @@
mode: set
github.com/IBM/fp-go/v2/array/any.go:34.65,36.2 1 1
github.com/IBM/fp-go/v2/array/any.go:48.51,50.2 1 1
github.com/IBM/fp-go/v2/array/array.go:30.33,32.2 1 1
github.com/IBM/fp-go/v2/array/array.go:37.52,39.2 1 1
github.com/IBM/fp-go/v2/array/array.go:44.39,46.2 1 0
github.com/IBM/fp-go/v2/array/array.go:52.50,54.2 1 0
github.com/IBM/fp-go/v2/array/array.go:58.54,61.23 3 0
github.com/IBM/fp-go/v2/array/array.go:61.23,63.3 1 0
github.com/IBM/fp-go/v2/array/array.go:64.2,64.11 1 0
github.com/IBM/fp-go/v2/array/array.go:70.62,72.2 1 0
github.com/IBM/fp-go/v2/array/array.go:83.48,85.2 1 1
github.com/IBM/fp-go/v2/array/array.go:89.52,91.2 1 0
github.com/IBM/fp-go/v2/array/array.go:93.55,96.23 3 0
github.com/IBM/fp-go/v2/array/array.go:96.23,98.14 2 0
github.com/IBM/fp-go/v2/array/array.go:98.14,100.4 1 0
github.com/IBM/fp-go/v2/array/array.go:102.2,102.15 1 0
github.com/IBM/fp-go/v2/array/array.go:105.75,108.23 3 0
github.com/IBM/fp-go/v2/array/array.go:108.23,110.14 2 0
github.com/IBM/fp-go/v2/array/array.go:110.14,112.4 1 0
github.com/IBM/fp-go/v2/array/array.go:114.2,114.15 1 0
github.com/IBM/fp-go/v2/array/array.go:120.54,122.2 1 1
github.com/IBM/fp-go/v2/array/array.go:127.68,129.2 1 0
github.com/IBM/fp-go/v2/array/array.go:132.58,134.2 1 0
github.com/IBM/fp-go/v2/array/array.go:140.67,142.2 1 0
github.com/IBM/fp-go/v2/array/array.go:148.78,150.2 1 0
github.com/IBM/fp-go/v2/array/array.go:155.65,157.2 1 1
github.com/IBM/fp-go/v2/array/array.go:162.76,164.2 1 0
github.com/IBM/fp-go/v2/array/array.go:169.69,171.2 1 1
github.com/IBM/fp-go/v2/array/array.go:174.80,175.26 1 0
github.com/IBM/fp-go/v2/array/array.go:175.26,177.3 1 0
github.com/IBM/fp-go/v2/array/array.go:180.64,182.25 2 0
github.com/IBM/fp-go/v2/array/array.go:182.25,184.3 1 0
github.com/IBM/fp-go/v2/array/array.go:185.2,185.16 1 0
github.com/IBM/fp-go/v2/array/array.go:189.65,191.2 1 1
github.com/IBM/fp-go/v2/array/array.go:194.79,196.2 1 1
github.com/IBM/fp-go/v2/array/array.go:206.62,208.2 1 1
github.com/IBM/fp-go/v2/array/array.go:214.76,216.2 1 0
github.com/IBM/fp-go/v2/array/array.go:221.67,223.2 1 1
github.com/IBM/fp-go/v2/array/array.go:229.81,231.2 1 0
github.com/IBM/fp-go/v2/array/array.go:235.66,236.24 1 0
github.com/IBM/fp-go/v2/array/array.go:236.24,238.3 1 0
github.com/IBM/fp-go/v2/array/array.go:254.37,256.2 1 1
github.com/IBM/fp-go/v2/array/array.go:261.34,263.2 1 1
github.com/IBM/fp-go/v2/array/array.go:266.37,268.2 1 1
github.com/IBM/fp-go/v2/array/array.go:273.25,275.2 1 1
github.com/IBM/fp-go/v2/array/array.go:280.24,282.2 1 0
github.com/IBM/fp-go/v2/array/array.go:287.25,289.2 1 1
github.com/IBM/fp-go/v2/array/array.go:295.56,297.2 1 0
github.com/IBM/fp-go/v2/array/array.go:308.54,310.2 1 1
github.com/IBM/fp-go/v2/array/array.go:316.53,318.2 1 0
github.com/IBM/fp-go/v2/array/array.go:324.50,326.2 1 1
github.com/IBM/fp-go/v2/array/array.go:331.76,333.2 1 1
github.com/IBM/fp-go/v2/array/array.go:338.83,340.2 1 0
github.com/IBM/fp-go/v2/array/array.go:346.38,348.2 1 0
github.com/IBM/fp-go/v2/array/array.go:354.36,356.2 1 1
github.com/IBM/fp-go/v2/array/array.go:362.37,364.2 1 0
github.com/IBM/fp-go/v2/array/array.go:370.36,372.2 1 0
github.com/IBM/fp-go/v2/array/array.go:375.49,376.26 1 1
github.com/IBM/fp-go/v2/array/array.go:376.26,380.35 4 1
github.com/IBM/fp-go/v2/array/array.go:380.35,385.4 4 1
github.com/IBM/fp-go/v2/array/array.go:386.3,386.16 1 1
github.com/IBM/fp-go/v2/array/array.go:395.50,397.26 2 1
github.com/IBM/fp-go/v2/array/array.go:397.26,398.18 1 1
github.com/IBM/fp-go/v2/array/array.go:398.18,400.4 1 1
github.com/IBM/fp-go/v2/array/array.go:401.3,401.25 1 1
github.com/IBM/fp-go/v2/array/array.go:406.60,407.36 1 1
github.com/IBM/fp-go/v2/array/array.go:407.36,409.3 1 1
github.com/IBM/fp-go/v2/array/array.go:419.36,421.2 1 1
github.com/IBM/fp-go/v2/array/array.go:424.49,426.2 1 1
github.com/IBM/fp-go/v2/array/array.go:432.49,434.2 1 1
github.com/IBM/fp-go/v2/array/array.go:440.42,442.2 1 0
github.com/IBM/fp-go/v2/array/array.go:447.30,449.2 1 1
github.com/IBM/fp-go/v2/array/array.go:456.78,458.2 1 0
github.com/IBM/fp-go/v2/array/array.go:464.75,466.2 1 1
github.com/IBM/fp-go/v2/array/array.go:469.32,471.2 1 0
github.com/IBM/fp-go/v2/array/array.go:474.35,476.2 1 0
github.com/IBM/fp-go/v2/array/array.go:479.28,481.2 1 0
github.com/IBM/fp-go/v2/array/array.go:486.50,488.2 1 0
github.com/IBM/fp-go/v2/array/array.go:493.29,495.2 1 0
github.com/IBM/fp-go/v2/array/array.go:500.47,502.2 1 0
github.com/IBM/fp-go/v2/array/array.go:507.67,509.2 1 1
github.com/IBM/fp-go/v2/array/array.go:514.81,516.2 1 0
github.com/IBM/fp-go/v2/array/array.go:521.45,523.2 1 0
github.com/IBM/fp-go/v2/array/array.go:528.38,530.2 1 0
github.com/IBM/fp-go/v2/array/array.go:605.43,607.2 1 1
github.com/IBM/fp-go/v2/array/array.go:613.52,615.2 1 0
github.com/IBM/fp-go/v2/array/array.go:621.49,623.2 1 0
github.com/IBM/fp-go/v2/array/array.go:628.44,630.2 1 0
github.com/IBM/fp-go/v2/array/array.go:714.33,716.2 1 1
github.com/IBM/fp-go/v2/array/array.go:780.53,781.26 1 1
github.com/IBM/fp-go/v2/array/array.go:781.26,782.47 1 1
github.com/IBM/fp-go/v2/array/array.go:782.47,782.67 1 1
github.com/IBM/fp-go/v2/array/array.go:839.31,841.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:36.7,38.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:60.20,62.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:91.20,93.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:120.20,122.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:143.19,145.2 1 1
github.com/IBM/fp-go/v2/array/bind.go:166.20,168.2 1 1
github.com/IBM/fp-go/v2/array/eq.go:35.37,37.49 2 1
github.com/IBM/fp-go/v2/array/eq.go:37.49,39.3 1 1
github.com/IBM/fp-go/v2/array/eq.go:43.45,45.2 1 1
github.com/IBM/fp-go/v2/array/find.go:33.65,35.2 1 1
github.com/IBM/fp-go/v2/array/find.go:48.79,50.2 1 1
github.com/IBM/fp-go/v2/array/find.go:68.78,70.2 1 1
github.com/IBM/fp-go/v2/array/find.go:76.89,78.2 1 1
github.com/IBM/fp-go/v2/array/find.go:89.64,91.2 1 1
github.com/IBM/fp-go/v2/array/find.go:97.78,99.2 1 1
github.com/IBM/fp-go/v2/array/find.go:105.77,107.2 1 1
github.com/IBM/fp-go/v2/array/find.go:113.88,115.2 1 1
github.com/IBM/fp-go/v2/array/magma.go:38.50,40.2 1 1
github.com/IBM/fp-go/v2/array/monad.go:39.65,41.2 1 1
github.com/IBM/fp-go/v2/array/monoid.go:35.36,37.2 1 1
github.com/IBM/fp-go/v2/array/monoid.go:48.42,50.2 1 1
github.com/IBM/fp-go/v2/array/monoid.go:52.45,54.2 1 1
github.com/IBM/fp-go/v2/array/monoid.go:68.45,73.48 3 1
github.com/IBM/fp-go/v2/array/monoid.go:73.48,75.3 1 1
github.com/IBM/fp-go/v2/array/monoid.go:77.2,77.12 1 1
github.com/IBM/fp-go/v2/array/sequence.go:27.19,29.2 1 1
github.com/IBM/fp-go/v2/array/sequence.go:69.22,71.2 1 1
github.com/IBM/fp-go/v2/array/sequence.go:92.53,98.2 1 1
github.com/IBM/fp-go/v2/array/sort.go:35.47,37.2 1 1
github.com/IBM/fp-go/v2/array/sort.go:65.68,67.2 1 1
github.com/IBM/fp-go/v2/array/sort.go:96.51,98.2 1 1
github.com/IBM/fp-go/v2/array/traverse.go:66.34,68.2 1 1
github.com/IBM/fp-go/v2/array/traverse.go:83.24,86.2 1 1
github.com/IBM/fp-go/v2/array/traverse.go:94.39,96.2 1 1
github.com/IBM/fp-go/v2/array/traverse.go:105.29,108.2 1 1
github.com/IBM/fp-go/v2/array/traverse.go:110.142,117.46 1 1
github.com/IBM/fp-go/v2/array/traverse.go:117.46,118.54 1 1
github.com/IBM/fp-go/v2/array/traverse.go:118.54,125.4 1 1
github.com/IBM/fp-go/v2/array/uniq.go:20.43,22.2 1 1
github.com/IBM/fp-go/v2/array/uniq.go:49.60,51.2 1 1
github.com/IBM/fp-go/v2/array/zip.go:38.73,40.2 1 1
github.com/IBM/fp-go/v2/array/zip.go:58.55,60.2 1 1
github.com/IBM/fp-go/v2/array/zip.go:81.62,83.2 1 1

View File

@@ -0,0 +1,78 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package array
import (
"testing"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert"
)
// TestSequenceWithOption tests the generic Sequence function with Option monad
func TestSequenceWithOption(t *testing.T) {
// Test with Option monad - all Some values
opts := From(
O.Some(1),
O.Some(2),
O.Some(3),
)
// Use the Sequence function with Option's applicative monoid
monoid := O.ApplicativeMonoid(Monoid[int]())
seq := Sequence(O.Map(Of[int]), monoid)
result := seq(opts)
assert.Equal(t, O.Of(From(1, 2, 3)), result)
// Test with Option monad - contains None
optsWithNone := From(
O.Some(1),
O.None[int](),
O.Some(3),
)
result2 := seq(optsWithNone)
assert.True(t, O.IsNone(result2))
// Test with empty array
empty := Empty[Option[int]]()
result3 := seq(empty)
assert.Equal(t, O.Some(Empty[int]()), result3)
}
// TestMonadSequence tests the MonadSequence function
func TestMonadSequence(t *testing.T) {
// Test with Option monad
opts := From(
O.Some("hello"),
O.Some("world"),
)
monoid := O.ApplicativeMonoid(Monoid[string]())
result := MonadSequence(O.Map(Of[string]), monoid, opts)
assert.Equal(t, O.Of(From("hello", "world")), result)
// Test with None in the array
optsWithNone := From(
O.Some("hello"),
O.None[string](),
)
result2 := MonadSequence(O.Map(Of[string]), monoid, optsWithNone)
assert.Equal(t, O.None[[]string](), result2)
}

View File

@@ -0,0 +1,164 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package array
import (
"strconv"
"testing"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert"
)
// TestMonadTraverse tests the MonadTraverse function
func TestMonadTraverse(t *testing.T) {
// Test converting integers to strings via Option
numbers := []int{1, 2, 3}
result := MonadTraverse(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
numbers,
func(n int) O.Option[string] {
return O.Some(strconv.Itoa(n))
},
)
assert.True(t, O.IsSome(result))
assert.Equal(t, []string{"1", "2", "3"}, O.GetOrElse(func() []string { return []string{} })(result))
// Test with a function that can return None
result2 := MonadTraverse(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
numbers,
func(n int) O.Option[string] {
if n == 2 {
return O.None[string]()
}
return O.Some(strconv.Itoa(n))
},
)
assert.True(t, O.IsNone(result2))
// Test with empty array
empty := []int{}
result3 := MonadTraverse(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
empty,
func(n int) O.Option[string] {
return O.Some(strconv.Itoa(n))
},
)
assert.True(t, O.IsSome(result3))
assert.Equal(t, []string{}, O.GetOrElse(func() []string { return nil })(result3))
}
// TestTraverseWithIndex tests the TraverseWithIndex function
func TestTraverseWithIndex(t *testing.T) {
// Test with index-aware transformation
words := []string{"a", "b", "c"}
traverser := TraverseWithIndex(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
func(idx int, s string) O.Option[string] {
return O.Some(s + strconv.Itoa(idx))
},
)
result := traverser(words)
assert.True(t, O.IsSome(result))
assert.Equal(t, []string{"a0", "b1", "c2"}, O.GetOrElse(func() []string { return []string{} })(result))
// Test with conditional None based on index
traverser2 := TraverseWithIndex(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
func(idx int, s string) O.Option[string] {
if idx == 1 {
return O.None[string]()
}
return O.Some(s)
},
)
result2 := traverser2(words)
assert.True(t, O.IsNone(result2))
}
// TestMonadTraverseWithIndex tests the MonadTraverseWithIndex function
func TestMonadTraverseWithIndex(t *testing.T) {
// Test with index-aware transformation
numbers := []int{10, 20, 30}
result := MonadTraverseWithIndex(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
numbers,
func(idx, n int) O.Option[string] {
return O.Some(strconv.Itoa(n * idx))
},
)
assert.True(t, O.IsSome(result))
// Expected: [10*0, 20*1, 30*2] = ["0", "20", "60"]
assert.Equal(t, []string{"0", "20", "60"}, O.GetOrElse(func() []string { return []string{} })(result))
// Test with None at specific index
result2 := MonadTraverseWithIndex(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
numbers,
func(idx, n int) O.Option[string] {
if idx == 2 {
return O.None[string]()
}
return O.Some(strconv.Itoa(n))
},
)
assert.True(t, O.IsNone(result2))
}
// TestMakeTraverseType tests the MakeTraverseType function
func TestMakeTraverseType(t *testing.T) {
// Create a traverse type for Option
traverseType := MakeTraverseType[int, string, O.Option[string], O.Option[[]string], O.Option[func(string) []string]]()
// Use it to traverse an array
numbers := []int{1, 2, 3}
result := traverseType(
O.Of[[]string],
O.Map[[]string, func(string) []string],
O.Ap[[]string, string],
)(func(n int) O.Option[string] {
return O.Some(strconv.Itoa(n * 2))
})(numbers)
assert.True(t, O.IsSome(result))
assert.Equal(t, []string{"2", "4", "6"}, O.GetOrElse(func() []string { return []string{} })(result))
}

View File

@@ -87,7 +87,9 @@ type templateData struct {
}
const lensStructTemplate = `
// {{.Name}}Lenses provides lenses for accessing fields of {{.Name}}
// {{.Name}}Lenses provides [lenses] for accessing fields of [{{.Name}}]
//
// [lenses]: __lens.Lens
type {{.Name}}Lenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
@@ -101,7 +103,10 @@ type {{.Name}}Lenses{{.TypeParams}} struct {
{{- end}}
}
// {{.Name}}RefLenses provides lenses for accessing fields of {{.Name}} via a reference to {{.Name}}
// {{.Name}}RefLenses provides [lenses] for accessing fields of [{{.Name}}] via a reference to [{{.Name}}]
//
//
// [lenses]: __lens.Lens
type {{.Name}}RefLenses{{.TypeParams}} struct {
// mandatory fields
{{- range .Fields}}
@@ -112,23 +117,32 @@ type {{.Name}}RefLenses{{.TypeParams}} struct {
{{- if .IsComparable}}
{{.Name}}O __lens_option.LensO[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
{{- end}}
// prisms
{{- range .Fields}}
{{.Name}}P __prism.Prism[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
}
// {{.Name}}Prisms provides prisms for accessing fields of {{.Name}}
// {{.Name}}Prisms provides [prisms] for accessing fields of [{{.Name}}]
//
// [prisms]: __prism.Prism
type {{.Name}}Prisms{{.TypeParams}} struct {
{{- range .Fields}}
{{.Name}} __prism.Prism[{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
}
// {{.Name}}RefPrisms provides [prisms] for accessing fields of [{{.Name}}] via a reference to [{{.Name}}]
//
// [prisms]: __prism.Prism
type {{.Name}}RefPrisms{{.TypeParams}} struct {
{{- range .Fields}}
{{.Name}} __prism.Prism[*{{$.Name}}{{$.TypeParamNames}}, {{.TypeName}}]
{{- end}}
}
`
const lensConstructorTemplate = `
// Make{{.Name}}Lenses creates a new {{.Name}}Lenses with lenses for all fields
// Make{{.Name}}Lenses creates a new [{{.Name}}Lenses] with [lenses] for all fields
//
// [lenses]:__lens.Lens
func Make{{.Name}}Lenses{{.TypeParams}}() {{.Name}}Lenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
@@ -158,7 +172,9 @@ func Make{{.Name}}Lenses{{.TypeParams}}() {{.Name}}Lenses{{.TypeParamNames}} {
}
}
// Make{{.Name}}RefLenses creates a new {{.Name}}RefLenses with lenses for all fields
// Make{{.Name}}RefLenses creates a new [{{.Name}}RefLenses] with [lenses] for all fields
//
// [lenses]:__lens.Lens
func Make{{.Name}}RefLenses{{.TypeParams}}() {{.Name}}RefLenses{{.TypeParamNames}} {
// mandatory lenses
{{- range .Fields}}
@@ -196,7 +212,9 @@ func Make{{.Name}}RefLenses{{.TypeParams}}() {{.Name}}RefLenses{{.TypeParamNames
}
}
// Make{{.Name}}Prisms creates a new {{.Name}}Prisms with prisms for all fields
// Make{{.Name}}Prisms creates a new [{{.Name}}Prisms] with [prisms] for all fields
//
// [prisms]:__prism.Prism
func Make{{.Name}}Prisms{{.TypeParams}}() {{.Name}}Prisms{{.TypeParamNames}} {
{{- range .Fields}}
{{- if .IsComparable}}
@@ -236,6 +254,49 @@ func Make{{.Name}}Prisms{{.TypeParams}}() {{.Name}}Prisms{{.TypeParamNames}} {
{{- end}}
}
}
// Make{{.Name}}RefPrisms creates a new [{{.Name}}RefPrisms] with [prisms] for all fields
//
// [prisms]:__prism.Prism
func Make{{.Name}}RefPrisms{{.TypeParams}}() {{.Name}}RefPrisms{{.TypeParamNames}} {
{{- range .Fields}}
{{- if .IsComparable}}
_fromNonZero{{.Name}} := __option.FromNonZero[{{.TypeName}}]()
_prism{{.Name}} := __prism.MakePrismWithName(
func(s *{{$.Name}}{{$.TypeParamNames}}) __option.Option[{{.TypeName}}] { return _fromNonZero{{.Name}}(s.{{.Name}}) },
func(v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} {
{{- if .IsEmbedded}}
var result {{$.Name}}{{$.TypeParamNames}}
result.{{.Name}} = v
return &result
{{- else}}
return &{{$.Name}}{{$.TypeParamNames}}{ {{.Name}}: v }
{{- end}}
},
"{{$.Name}}{{$.TypeParamNames}}.{{.Name}}",
)
{{- else}}
_prism{{.Name}} := __prism.MakePrismWithName(
func(s *{{$.Name}}{{$.TypeParamNames}}) __option.Option[{{.TypeName}}] { return __option.Some(s.{{.Name}}) },
func(v {{.TypeName}}) *{{$.Name}}{{$.TypeParamNames}} {
{{- if .IsEmbedded}}
var result {{$.Name}}{{$.TypeParamNames}}
result.{{.Name}} = v
return &result
{{- else}}
return &{{$.Name}}{{$.TypeParamNames}}{ {{.Name}}: v }
{{- end}}
},
"{{$.Name}}{{$.TypeParamNames}}.{{.Name}}",
)
{{- end}}
{{- end}}
return {{.Name}}RefPrisms{{.TypeParamNames}} {
{{- range .Fields}}
{{.Name}}: _prism{{.Name}},
{{- end}}
}
}
`
var (

View File

@@ -46,7 +46,7 @@ func TestBuilderWithQuery(t *testing.T) {
RIOE.Map(func(r *http.Request) *url.URL {
return r.URL
}),
RIOE.ChainFirstIOK(func(u *url.URL) IO.IO[any] {
RIOE.ChainFirstIOK(func(u *url.URL) IO.IO[Void] {
return IO.FromImpure(func() {
q := u.Query()
assert.Equal(t, "10", q.Get("limit"))

View File

@@ -0,0 +1,7 @@
package builder
import "github.com/IBM/fp-go/v2/function"
type (
Void = function.Void
)

View File

@@ -158,7 +158,7 @@ func MakeClient(httpClient *http.Client) Client {
// request := MakeGetRequest("https://api.example.com/data")
// fullResp := ReadFullResponse(client)(request)
// result := fullResp(t.Context())()
func ReadFullResponse(client Client) RIOE.Kleisli[Requester, H.FullResponse] {
func ReadFullResponse(client Client) RIOE.Operator[*http.Request, H.FullResponse] {
return func(req Requester) RIOE.ReaderIOResult[H.FullResponse] {
return F.Flow3(
client.Do(req),
@@ -195,7 +195,7 @@ func ReadFullResponse(client Client) RIOE.Kleisli[Requester, H.FullResponse] {
// request := MakeGetRequest("https://api.example.com/data")
// readBytes := ReadAll(client)
// result := readBytes(request)(t.Context())()
func ReadAll(client Client) RIOE.Kleisli[Requester, []byte] {
func ReadAll(client Client) RIOE.Operator[*http.Request, []byte] {
return F.Flow2(
ReadFullResponse(client),
RIOE.Map(H.Body),
@@ -219,7 +219,7 @@ func ReadAll(client Client) RIOE.Kleisli[Requester, []byte] {
// request := MakeGetRequest("https://api.example.com/text")
// readText := ReadText(client)
// result := readText(request)(t.Context())()
func ReadText(client Client) RIOE.Kleisli[Requester, string] {
func ReadText(client Client) RIOE.Operator[*http.Request, string] {
return F.Flow2(
ReadAll(client),
RIOE.Map(B.ToString),
@@ -231,7 +231,7 @@ func ReadText(client Client) RIOE.Kleisli[Requester, string] {
// Deprecated: Use [ReadJSON] instead. This function is kept for backward compatibility
// but will be removed in a future version. The capitalized version follows Go naming
// conventions for acronyms.
func ReadJson[A any](client Client) RIOE.Kleisli[Requester, A] {
func ReadJson[A any](client Client) RIOE.Operator[*http.Request, A] {
return ReadJSON[A](client)
}
@@ -242,7 +242,7 @@ func ReadJson[A any](client Client) RIOE.Kleisli[Requester, A] {
// 3. Reads the response body as bytes
//
// This function is used internally by ReadJSON to ensure proper JSON response handling.
func readJSON(client Client) RIOE.Kleisli[Requester, []byte] {
func readJSON(client Client) RIOE.Operator[*http.Request, []byte] {
return F.Flow3(
ReadFullResponse(client),
RIOE.ChainFirstEitherK(F.Flow2(
@@ -278,7 +278,7 @@ func readJSON(client Client) RIOE.Kleisli[Requester, []byte] {
// request := MakeGetRequest("https://api.example.com/user/1")
// readUser := ReadJSON[User](client)
// result := readUser(request)(t.Context())()
func ReadJSON[A any](client Client) RIOE.Kleisli[Requester, A] {
func ReadJSON[A any](client Client) RIOE.Operator[*http.Request, A] {
return F.Flow2(
readJSON(client),
RIOE.ChainEitherK(J.Unmarshal[A]),

View File

@@ -65,7 +65,7 @@ var (
// This function assumes the context contains logging information; it will panic if not present.
getLoggingContext = F.Flow3(
loggingContextValue,
option.ToType[loggingContext],
option.InstanceOf[loggingContext],
option.GetOrElse(getDefaultLoggingContext),
)
)

View File

@@ -222,7 +222,7 @@ func withCancelCauseFunc[A any](cancel context.CancelCauseFunc, ma IOResult[A])
return function.Pipe3(
ma,
ioresult.Swap[A],
ioeither.ChainFirstIOK[A](func(err error) func() any {
ioeither.ChainFirstIOK[A](func(err error) func() Void {
return io.FromImpure(func() { cancel(err) })
}),
ioeither.Swap[A],

View File

@@ -48,7 +48,7 @@ func WithLock[A any](lock ReaderIOResult[context.CancelFunc]) Operator[A, A] {
function.Constant1[context.CancelFunc, ReaderIOResult[A]],
WithResource[A](lock, function.Flow2(
io.FromImpure[context.CancelFunc],
FromIO[any],
FromIO[Void],
)),
)
}

View File

@@ -23,6 +23,7 @@ import (
"github.com/IBM/fp-go/v2/context/readerresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioref"
@@ -152,4 +153,6 @@ type (
IORef[A any] = ioref.IORef[A]
State[S, A any] = state.State[S, A]
Void = function.Void
)

View File

@@ -0,0 +1,168 @@
package readerreaderioresult
import (
"context"
"github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioresult"
RRIOE "github.com/IBM/fp-go/v2/readerreaderioeither"
"github.com/IBM/fp-go/v2/result"
)
// Local modifies the outer environment before passing it to a computation.
// Useful for providing different configurations to sub-computations.
//
//go:inline
func Local[A, R1, R2 any](f func(R2) R1) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.Local[context.Context, error, A](f)
}
// LocalIOK transforms the outer environment of a ReaderReaderIOResult using an IO-based Kleisli arrow.
// It allows you to modify the outer environment through an effectful computation before
// passing it to the ReaderReaderIOResult.
//
// This is useful when the outer environment transformation itself requires IO effects,
// such as reading from a file, making a network call, or accessing system resources,
// but these effects cannot fail (or failures are not relevant).
//
// The transformation happens in two stages:
// 1. The IO effect f is executed with the R2 environment to produce an R1 value
// 2. The resulting R1 value is passed as the outer environment to the ReaderReaderIOResult[R1, A]
//
// Type Parameters:
// - A: The success type produced by the ReaderReaderIOResult
// - R1: The original outer environment type expected by the ReaderReaderIOResult
// - R2: The new input outer environment type
//
// Parameters:
// - f: An IO Kleisli arrow that transforms R2 to R1 with IO effects
//
// Returns:
// - A function that takes a ReaderReaderIOResult[R1, A] and returns a ReaderReaderIOResult[R2, A]
//
//go:inline
func LocalIOK[A, R1, R2 any](f io.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalIOK[context.Context, error, A](f)
}
// LocalIOEitherK transforms the outer environment of a ReaderReaderIOResult using an IOResult-based Kleisli arrow.
// It allows you to modify the outer environment through an effectful computation that can fail before
// passing it to the ReaderReaderIOResult.
//
// This is useful when the outer environment transformation itself requires IO effects that can fail,
// such as reading from a file that might not exist, making a network call that might timeout,
// or parsing data that might be invalid.
//
// The transformation happens in two stages:
// 1. The IOResult effect f is executed with the R2 environment to produce Result[R1]
// 2. If successful (Ok), the R1 value is passed as the outer environment to the ReaderReaderIOResult[R1, A]
// 3. If failed (Err), the error is propagated without executing the ReaderReaderIOResult
//
// Type Parameters:
// - A: The success type produced by the ReaderReaderIOResult
// - R1: The original outer environment type expected by the ReaderReaderIOResult
// - R2: The new input outer environment type
//
// Parameters:
// - f: An IOResult Kleisli arrow that transforms R2 to R1 with IO effects that can fail
//
// Returns:
// - A function that takes a ReaderReaderIOResult[R1, A] and returns a ReaderReaderIOResult[R2, A]
//
//go:inline
func LocalIOEitherK[A, R1, R2 any](f ioresult.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalIOEitherK[context.Context, A](f)
}
// LocalIOResultK transforms the outer environment of a ReaderReaderIOResult using an IOResult-based Kleisli arrow.
// This is a type-safe alias for LocalIOEitherK specialized for Result types (which use error as the error type).
//
// It allows you to modify the outer environment through an effectful computation that can fail before
// passing it to the ReaderReaderIOResult.
//
// The transformation happens in two stages:
// 1. The IOResult effect f is executed with the R2 environment to produce Result[R1]
// 2. If successful (Ok), the R1 value is passed as the outer environment to the ReaderReaderIOResult[R1, A]
// 3. If failed (Err), the error is propagated without executing the ReaderReaderIOResult
//
// Type Parameters:
// - A: The success type produced by the ReaderReaderIOResult
// - R1: The original outer environment type expected by the ReaderReaderIOResult
// - R2: The new input outer environment type
//
// Parameters:
// - f: An IOResult Kleisli arrow that transforms R2 to R1 with IO effects that can fail
//
// Returns:
// - A function that takes a ReaderReaderIOResult[R1, A] and returns a ReaderReaderIOResult[R2, A]
//
//go:inline
func LocalIOResultK[A, R1, R2 any](f ioresult.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalIOEitherK[context.Context, A](f)
}
//go:inline
func LocalResultK[A, R1, R2 any](f result.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalEitherK[context.Context, A](f)
}
// LocalReaderIOEitherK transforms the outer environment of a ReaderReaderIOResult using a ReaderIOResult-based Kleisli arrow.
// It allows you to modify the outer environment through a computation that depends on the inner context
// and can perform IO effects that may fail.
//
// This is useful when the outer environment transformation requires access to the inner context (e.g., context.Context)
// and may perform IO operations that can fail, such as database queries, API calls, or file operations.
//
// The transformation happens in three stages:
// 1. The ReaderIOResult effect f is executed with the R2 outer environment and inner context
// 2. If successful (Ok), the R1 value is passed as the outer environment to the ReaderReaderIOResult[R1, A]
// 3. If failed (Err), the error is propagated without executing the ReaderReaderIOResult
//
// Type Parameters:
// - A: The success type produced by the ReaderReaderIOResult
// - R1: The original outer environment type expected by the ReaderReaderIOResult
// - R2: The new input outer environment type
//
// Parameters:
// - f: A ReaderIOResult Kleisli arrow that transforms R2 to R1 with context-aware IO effects that can fail
//
// Returns:
// - A function that takes a ReaderReaderIOResult[R1, A] and returns a ReaderReaderIOResult[R2, A]
//
//go:inline
func LocalReaderIOEitherK[A, R1, R2 any](f readerioresult.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalReaderIOEitherK[A](f)
}
// LocalReaderIOResultK transforms the outer environment of a ReaderReaderIOResult using a ReaderIOResult-based Kleisli arrow.
// This is a type-safe alias for LocalReaderIOEitherK specialized for Result types (which use error as the error type).
//
// It allows you to modify the outer environment through a computation that depends on the inner context
// and can perform IO effects that may fail.
//
// The transformation happens in three stages:
// 1. The ReaderIOResult effect f is executed with the R2 outer environment and inner context
// 2. If successful (Ok), the R1 value is passed as the outer environment to the ReaderReaderIOResult[R1, A]
// 3. If failed (Err), the error is propagated without executing the ReaderReaderIOResult
//
// Type Parameters:
// - A: The success type produced by the ReaderReaderIOResult
// - R1: The original outer environment type expected by the ReaderReaderIOResult
// - R2: The new input outer environment type
//
// Parameters:
// - f: A ReaderIOResult Kleisli arrow that transforms R2 to R1 with context-aware IO effects that can fail
//
// Returns:
// - A function that takes a ReaderReaderIOResult[R1, A] and returns a ReaderReaderIOResult[R2, A]
//
//go:inline
func LocalReaderIOResultK[A, R1, R2 any](f readerioresult.Kleisli[R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalReaderIOEitherK[A](f)
}
//go:inline
func LocalReaderReaderIOEitherK[A, R1, R2 any](f Kleisli[R2, R2, R1]) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.LocalReaderReaderIOEitherK[A](f)
}

View File

@@ -0,0 +1,428 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package readerreaderioresult
import (
"context"
"errors"
"fmt"
"testing"
"github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
type SimpleConfig struct {
Port int
}
type DetailedConfig struct {
Host string
Port int
}
// TestLocalIOK tests LocalIOK functionality
func TestLocalIOK(t *testing.T) {
ctx := context.Background()
t.Run("basic IO transformation", func(t *testing.T) {
// IO effect that loads config from a path
loadConfig := func(path string) io.IO[SimpleConfig] {
return func() SimpleConfig {
// Simulate loading config
return SimpleConfig{Port: 8080}
}
}
// ReaderReaderIOResult that uses the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose using LocalIOK
adapted := LocalIOK[string](loadConfig)(useConfig)
res := adapted("config.json")(ctx)()
assert.Equal(t, result.Of("Port: 8080"), res)
})
t.Run("IO transformation with side effects", func(t *testing.T) {
var loadLog []string
loadData := func(key string) io.IO[int] {
return func() int {
loadLog = append(loadLog, "Loading: "+key)
return len(key) * 10
}
}
processData := func(n int) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Processed: %d", n))
}
}
}
adapted := LocalIOK[string](loadData)(processData)
res := adapted("test")(ctx)()
assert.Equal(t, result.Of("Processed: 40"), res)
assert.Equal(t, []string{"Loading: test"}, loadLog)
})
t.Run("error propagation in ReaderReaderIOResult", func(t *testing.T) {
loadConfig := func(path string) io.IO[SimpleConfig] {
return func() SimpleConfig {
return SimpleConfig{Port: 8080}
}
}
// ReaderReaderIOResult that returns an error
failingOperation := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Left[string](errors.New("operation failed"))
}
}
}
adapted := LocalIOK[string](loadConfig)(failingOperation)
res := adapted("config.json")(ctx)()
assert.True(t, result.IsLeft(res))
})
}
// TestLocalIOEitherK tests LocalIOEitherK functionality
func TestLocalIOEitherK(t *testing.T) {
ctx := context.Background()
t.Run("basic IOResult transformation", func(t *testing.T) {
// IOResult effect that loads config from a path (can fail)
loadConfig := func(path string) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if path == "" {
return result.Left[SimpleConfig](errors.New("empty path"))
}
return result.Of(SimpleConfig{Port: 8080})
}
}
// ReaderReaderIOResult that uses the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose using LocalIOEitherK
adapted := LocalIOEitherK[string](loadConfig)(useConfig)
// Success case
res := adapted("config.json")(ctx)()
assert.Equal(t, result.Of("Port: 8080"), res)
// Failure case
resErr := adapted("")(ctx)()
assert.True(t, result.IsLeft(resErr))
})
t.Run("error propagation from environment transformation", func(t *testing.T) {
loadConfig := func(path string) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
return result.Left[SimpleConfig](errors.New("file not found"))
}
}
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
adapted := LocalIOEitherK[string](loadConfig)(useConfig)
res := adapted("missing.json")(ctx)()
// Error from loadConfig should propagate
assert.True(t, result.IsLeft(res))
})
}
// TestLocalIOResultK tests LocalIOResultK functionality
func TestLocalIOResultK(t *testing.T) {
ctx := context.Background()
t.Run("basic IOResult transformation", func(t *testing.T) {
// IOResult effect that loads config from a path (can fail)
loadConfig := func(path string) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if path == "" {
return result.Left[SimpleConfig](errors.New("empty path"))
}
return result.Of(SimpleConfig{Port: 8080})
}
}
// ReaderReaderIOResult that uses the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose using LocalIOResultK
adapted := LocalIOResultK[string](loadConfig)(useConfig)
// Success case
res := adapted("config.json")(ctx)()
assert.Equal(t, result.Of("Port: 8080"), res)
// Failure case
resErr := adapted("")(ctx)()
assert.True(t, result.IsLeft(resErr))
})
t.Run("compose multiple LocalIOResultK", func(t *testing.T) {
// First transformation: string -> int (can fail)
parseID := func(s string) ioresult.IOResult[int] {
return func() result.Result[int] {
if s == "" {
return result.Left[int](errors.New("empty string"))
}
return result.Of(len(s) * 10)
}
}
// Second transformation: int -> SimpleConfig (can fail)
loadConfig := func(id int) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if id < 0 {
return result.Left[SimpleConfig](errors.New("invalid ID"))
}
return result.Of(SimpleConfig{Port: 8000 + id})
}
}
// Use the config
formatConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose transformations
step1 := LocalIOResultK[string](loadConfig)(formatConfig)
step2 := LocalIOResultK[string](parseID)(step1)
// Success case
res := step2("test")(ctx)()
assert.Equal(t, result.Of("Port: 8040"), res)
// Failure in first transformation
resErr1 := step2("")(ctx)()
assert.True(t, result.IsLeft(resErr1))
})
}
// TestLocalReaderIOEitherK tests LocalReaderIOEitherK functionality
func TestLocalReaderIOEitherK(t *testing.T) {
ctx := context.Background()
t.Run("basic ReaderIOResult transformation", func(t *testing.T) {
// ReaderIOResult effect that loads config from a path (can fail, uses context)
loadConfig := func(path string) readerioresult.ReaderIOResult[SimpleConfig] {
return func(ctx context.Context) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if path == "" {
return result.Left[SimpleConfig](errors.New("empty path"))
}
// Could use context here for cancellation, logging, etc.
return result.Of(SimpleConfig{Port: 8080})
}
}
}
// ReaderReaderIOResult that uses the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose using LocalReaderIOEitherK
adapted := LocalReaderIOEitherK[string](loadConfig)(useConfig)
// Success case
res := adapted("config.json")(ctx)()
assert.Equal(t, result.Of("Port: 8080"), res)
// Failure case
resErr := adapted("")(ctx)()
assert.True(t, result.IsLeft(resErr))
})
t.Run("context propagation", func(t *testing.T) {
type ctxKey string
const key ctxKey = "test-key"
// ReaderIOResult that reads from context
loadFromContext := func(path string) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
if val := ctx.Value(key); val != nil {
return result.Of(val.(string))
}
return result.Left[string](errors.New("key not found in context"))
}
}
}
// ReaderReaderIOResult that uses the loaded value
useValue := func(val string) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of("Loaded: " + val)
}
}
}
adapted := LocalReaderIOEitherK[string](loadFromContext)(useValue)
// With context value
ctxWithValue := context.WithValue(ctx, key, "test-value")
res := adapted("ignored")(ctxWithValue)()
assert.Equal(t, result.Of("Loaded: test-value"), res)
// Without context value
resErr := adapted("ignored")(ctx)()
assert.True(t, result.IsLeft(resErr))
})
}
// TestLocalReaderIOResultK tests LocalReaderIOResultK functionality
func TestLocalReaderIOResultK(t *testing.T) {
ctx := context.Background()
t.Run("basic ReaderIOResult transformation", func(t *testing.T) {
// ReaderIOResult effect that loads config from a path (can fail, uses context)
loadConfig := func(path string) readerioresult.ReaderIOResult[SimpleConfig] {
return func(ctx context.Context) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if path == "" {
return result.Left[SimpleConfig](errors.New("empty path"))
}
return result.Of(SimpleConfig{Port: 8080})
}
}
}
// ReaderReaderIOResult that uses the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Port: %d", cfg.Port))
}
}
}
// Compose using LocalReaderIOResultK
adapted := LocalReaderIOResultK[string](loadConfig)(useConfig)
// Success case
res := adapted("config.json")(ctx)()
assert.Equal(t, result.Of("Port: 8080"), res)
// Failure case
resErr := adapted("")(ctx)()
assert.True(t, result.IsLeft(resErr))
})
t.Run("real-world: load and validate config with context", func(t *testing.T) {
type ConfigFile struct {
Path string
}
// Read file with context (can fail, uses context for cancellation)
readFile := func(cf ConfigFile) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
// Check context cancellation
select {
case <-ctx.Done():
return result.Left[string](ctx.Err())
default:
}
if cf.Path == "" {
return result.Left[string](errors.New("empty path"))
}
return result.Of(`{"port":9000}`)
}
}
}
// Parse config with context (can fail)
parseConfig := func(content string) readerioresult.ReaderIOResult[SimpleConfig] {
return func(ctx context.Context) ioresult.IOResult[SimpleConfig] {
return func() result.Result[SimpleConfig] {
if content == "" {
return result.Left[SimpleConfig](errors.New("empty content"))
}
return result.Of(SimpleConfig{Port: 9000})
}
}
}
// Use the config
useConfig := func(cfg SimpleConfig) readerioresult.ReaderIOResult[string] {
return func(ctx context.Context) ioresult.IOResult[string] {
return func() result.Result[string] {
return result.Of(fmt.Sprintf("Using port: %d", cfg.Port))
}
}
}
// Compose the pipeline
step1 := LocalReaderIOResultK[string](parseConfig)(useConfig)
step2 := LocalReaderIOResultK[string](readFile)(step1)
// Success case
res := step2(ConfigFile{Path: "app.json"})(ctx)()
assert.Equal(t, result.Of("Using port: 9000"), res)
// Failure case
resErr := step2(ConfigFile{Path: ""})(ctx)()
assert.True(t, result.IsLeft(resErr))
})
}

View File

@@ -37,6 +37,7 @@ import (
"github.com/IBM/fp-go/v2/readerio"
"github.com/IBM/fp-go/v2/readeroption"
RRIOE "github.com/IBM/fp-go/v2/readerreaderioeither"
"github.com/IBM/fp-go/v2/result"
)
// FromReaderOption converts a ReaderOption to a ReaderReaderIOResult.
@@ -170,6 +171,15 @@ func ChainEitherK[R, A, B any](f either.Kleisli[error, A, B]) Operator[R, A, B]
)
}
//go:inline
func ChainResultK[R, A, B any](f result.Kleisli[A, B]) Operator[R, A, B] {
return fromeither.ChainEitherK(
Chain[R, A, B],
FromEither[R, B],
f,
)
}
// MonadChainFirstEitherK chains a computation that returns an Either but preserves the original value.
// Useful for validation or side effects that may fail.
// This is the monadic version that takes the computation as the first parameter.
@@ -837,14 +847,6 @@ func MapLeft[R, A any](f Endmorphism[error]) Operator[R, A, A] {
return RRIOE.MapLeft[R, context.Context, A](f)
}
// Local modifies the outer environment before passing it to a computation.
// Useful for providing different configurations to sub-computations.
//
//go:inline
func Local[A, R1, R2 any](f func(R2) R1) func(ReaderReaderIOResult[R1, A]) ReaderReaderIOResult[R2, A] {
return RRIOE.Local[context.Context, error, A](f)
}
// Read provides a specific outer environment value to a computation.
// Converts ReaderReaderIOResult[R, A] to ReaderIOResult[context.Context, A].
//
@@ -892,3 +894,8 @@ func ChainLeft[R, A any](f Kleisli[R, error, A]) func(ReaderReaderIOResult[R, A]
func Delay[R, A any](delay time.Duration) Operator[R, A, A] {
return reader.Map[R](RIOE.Delay[A](delay))
}
//go:inline
func Defer[R, A any](fa Lazy[ReaderReaderIOResult[R, A]]) ReaderReaderIOResult[R, A] {
return RRIOE.Defer(fa)
}

View File

@@ -0,0 +1,9 @@
package readerreaderioresult
import (
RRIOE "github.com/IBM/fp-go/v2/readerreaderioeither"
)
func TraverseArray[R, A, B any](f Kleisli[R, A, B]) Kleisli[R, []A, []B] {
return RRIOE.TraverseArray(f)
}

View File

@@ -30,8 +30,8 @@ import (
type (
// InjectableFactory is a factory function that can create an untyped instance of a service based on its [Dependency] identifier
InjectableFactory = func(Dependency) IOResult[any]
ProviderFactory = func(InjectableFactory) IOResult[any]
InjectableFactory = ReaderIOResult[Dependency, any]
ProviderFactory = ReaderIOResult[InjectableFactory, any]
paramIndex = map[int]int
paramValue = map[int]any

View File

@@ -4,6 +4,7 @@ import (
"github.com/IBM/fp-go/v2/iooption"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/option"
"github.com/IBM/fp-go/v2/readerioresult"
"github.com/IBM/fp-go/v2/record"
)
@@ -12,4 +13,5 @@ type (
IOResult[T any] = ioresult.IOResult[T]
IOOption[T any] = iooption.IOOption[T]
Entry[K comparable, V any] = record.Entry[K, V]
ReaderIOResult[R, T any] = readerioresult.ReaderIOResult[R, T]
)

264
v2/effect/bind.go Normal file
View File

@@ -0,0 +1,264 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
)
//go:inline
func Do[C, S any](
empty S,
) Effect[C, S] {
return readerreaderioresult.Of[C](empty)
}
//go:inline
func Bind[C, S1, S2, T any](
setter func(T) func(S1) S2,
f Kleisli[C, S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.Bind(setter, f)
}
//go:inline
func Let[C, S1, S2, T any](
setter func(T) func(S1) S2,
f func(S1) T,
) Operator[C, S1, S2] {
return readerreaderioresult.Let[C](setter, f)
}
//go:inline
func LetTo[C, S1, S2, T any](
setter func(T) func(S1) S2,
b T,
) Operator[C, S1, S2] {
return readerreaderioresult.LetTo[C](setter, b)
}
//go:inline
func BindTo[C, S1, T any](
setter func(T) S1,
) Operator[C, T, S1] {
return readerreaderioresult.BindTo[C](setter)
}
//go:inline
func ApS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa Effect[C, T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApS(setter, fa)
}
//go:inline
func ApSL[C, S, T any](
lens Lens[S, T],
fa Effect[C, T],
) Operator[C, S, S] {
return readerreaderioresult.ApSL(lens, fa)
}
//go:inline
func BindL[C, S, T any](
lens Lens[S, T],
f func(T) Effect[C, T],
) Operator[C, S, S] {
return readerreaderioresult.BindL(lens, f)
}
//go:inline
func LetL[C, S, T any](
lens Lens[S, T],
f func(T) T,
) Operator[C, S, S] {
return readerreaderioresult.LetL[C](lens, f)
}
//go:inline
func LetToL[C, S, T any](
lens Lens[S, T],
b T,
) Operator[C, S, S] {
return readerreaderioresult.LetToL[C](lens, b)
}
//go:inline
func BindIOEitherK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f ioeither.Kleisli[error, S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindIOEitherK[C](setter, f)
}
//go:inline
func BindIOResultK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f ioresult.Kleisli[S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindIOResultK[C](setter, f)
}
//go:inline
func BindIOK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f io.Kleisli[S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindIOK[C](setter, f)
}
//go:inline
func BindReaderK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f reader.Kleisli[C, S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindReaderK(setter, f)
}
//go:inline
func BindReaderIOK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f readerio.Kleisli[C, S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindReaderIOK(setter, f)
}
//go:inline
func BindEitherK[C, S1, S2, T any](
setter func(T) func(S1) S2,
f either.Kleisli[error, S1, T],
) Operator[C, S1, S2] {
return readerreaderioresult.BindEitherK[C](setter, f)
}
//go:inline
func BindIOEitherKL[C, S, T any](
lens Lens[S, T],
f ioeither.Kleisli[error, T, T],
) Operator[C, S, S] {
return readerreaderioresult.BindIOEitherKL[C](lens, f)
}
//go:inline
func BindIOKL[C, S, T any](
lens Lens[S, T],
f io.Kleisli[T, T],
) Operator[C, S, S] {
return readerreaderioresult.BindIOKL[C](lens, f)
}
//go:inline
func BindReaderKL[C, S, T any](
lens Lens[S, T],
f reader.Kleisli[C, T, T],
) Operator[C, S, S] {
return readerreaderioresult.BindReaderKL(lens, f)
}
//go:inline
func BindReaderIOKL[C, S, T any](
lens Lens[S, T],
f readerio.Kleisli[C, T, T],
) Operator[C, S, S] {
return readerreaderioresult.BindReaderIOKL(lens, f)
}
//go:inline
func ApIOEitherS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa IOEither[error, T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApIOEitherS[C](setter, fa)
}
//go:inline
func ApIOS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa IO[T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApIOS[C](setter, fa)
}
//go:inline
func ApReaderS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa Reader[C, T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApReaderS(setter, fa)
}
//go:inline
func ApReaderIOS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa ReaderIO[C, T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApReaderIOS(setter, fa)
}
//go:inline
func ApEitherS[C, S1, S2, T any](
setter func(T) func(S1) S2,
fa Either[error, T],
) Operator[C, S1, S2] {
return readerreaderioresult.ApEitherS[C](setter, fa)
}
//go:inline
func ApIOEitherSL[C, S, T any](
lens Lens[S, T],
fa IOEither[error, T],
) Operator[C, S, S] {
return readerreaderioresult.ApIOEitherSL[C](lens, fa)
}
//go:inline
func ApIOSL[C, S, T any](
lens Lens[S, T],
fa IO[T],
) Operator[C, S, S] {
return readerreaderioresult.ApIOSL[C](lens, fa)
}
//go:inline
func ApReaderSL[C, S, T any](
lens Lens[S, T],
fa Reader[C, T],
) Operator[C, S, S] {
return readerreaderioresult.ApReaderSL(lens, fa)
}
//go:inline
func ApReaderIOSL[C, S, T any](
lens Lens[S, T],
fa ReaderIO[C, T],
) Operator[C, S, S] {
return readerreaderioresult.ApReaderIOSL(lens, fa)
}
//go:inline
func ApEitherSL[C, S, T any](
lens Lens[S, T],
fa Either[error, T],
) Operator[C, S, S] {
return readerreaderioresult.ApEitherSL[C](lens, fa)
}

768
v2/effect/bind_test.go Normal file
View File

@@ -0,0 +1,768 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"errors"
"testing"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
"github.com/stretchr/testify/assert"
)
type BindState struct {
Name string
Age int
Email string
}
func TestDo(t *testing.T) {
t.Run("creates effect with initial state", func(t *testing.T) {
initial := BindState{Name: "Alice", Age: 30}
eff := Do[TestContext](initial)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, initial, result)
})
t.Run("creates effect with empty struct", func(t *testing.T) {
type Empty struct{}
eff := Do[TestContext](Empty{})
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, Empty{}, result)
})
}
func TestBind(t *testing.T) {
t.Run("binds effect result to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := Bind(
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) Effect[TestContext, int] {
return Of[TestContext](30)
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("chains multiple binds", func(t *testing.T) {
initial := BindState{}
eff := Bind(
func(email string) func(BindState) BindState {
return func(s BindState) BindState {
s.Email = email
return s
}
},
func(s BindState) Effect[TestContext, string] {
return Of[TestContext]("alice@example.com")
},
)(Bind(
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) Effect[TestContext, int] {
return Of[TestContext](30)
},
)(Bind(
func(name string) func(BindState) BindState {
return func(s BindState) BindState {
s.Name = name
return s
}
},
func(s BindState) Effect[TestContext, string] {
return Of[TestContext]("Alice")
},
)(Do[TestContext](initial))))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
assert.Equal(t, "alice@example.com", result.Email)
})
t.Run("propagates errors", func(t *testing.T) {
expectedErr := errors.New("bind error")
initial := BindState{Name: "Alice"}
eff := Bind(
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) Effect[TestContext, int] {
return Fail[TestContext, int](expectedErr)
},
)(Do[TestContext](initial))
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestLet(t *testing.T) {
t.Run("computes value and binds to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := Let[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) int {
return len(s.Name) * 10
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 50, result.Age) // len("Alice") * 10
})
t.Run("chains with Bind", func(t *testing.T) {
initial := BindState{Name: "Bob"}
eff := Let[TestContext](
func(email string) func(BindState) BindState {
return func(s BindState) BindState {
s.Email = email
return s
}
},
func(s BindState) string {
return s.Name + "@example.com"
},
)(Bind(
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) Effect[TestContext, int] {
return Of[TestContext](25)
},
)(Do[TestContext](initial)))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Bob", result.Name)
assert.Equal(t, 25, result.Age)
assert.Equal(t, "Bob@example.com", result.Email)
})
}
func TestLetTo(t *testing.T) {
t.Run("binds constant value to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := LetTo[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
42,
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 42, result.Age)
})
t.Run("chains multiple LetTo", func(t *testing.T) {
initial := BindState{}
eff := LetTo[TestContext](
func(email string) func(BindState) BindState {
return func(s BindState) BindState {
s.Email = email
return s
}
},
"test@example.com",
)(LetTo[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
30,
)(LetTo[TestContext](
func(name string) func(BindState) BindState {
return func(s BindState) BindState {
s.Name = name
return s
}
},
"Alice",
)(Do[TestContext](initial))))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
assert.Equal(t, "test@example.com", result.Email)
})
}
func TestBindTo(t *testing.T) {
t.Run("wraps value in state", func(t *testing.T) {
type SimpleState struct {
Value int
}
eff := BindTo[TestContext](func(v int) SimpleState {
return SimpleState{Value: v}
})(Of[TestContext](42))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, result.Value)
})
t.Run("starts a bind chain", func(t *testing.T) {
type State struct {
X int
Y string
}
eff := Let[TestContext](
func(y string) func(State) State {
return func(s State) State {
s.Y = y
return s
}
},
func(s State) string {
return "computed"
},
)(BindTo[TestContext](func(x int) State {
return State{X: x}
})(Of[TestContext](10)))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 10, result.X)
assert.Equal(t, "computed", result.Y)
})
}
func TestApS(t *testing.T) {
t.Run("applies effect and binds result to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
ageEffect := Of[TestContext](30)
eff := ApS(
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
ageEffect,
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("propagates errors from applied effect", func(t *testing.T) {
expectedErr := errors.New("aps error")
initial := BindState{Name: "Alice"}
ageEffect := Fail[TestContext, int](expectedErr)
eff := ApS(
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
ageEffect,
)(Do[TestContext](initial))
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestBindIOK(t *testing.T) {
t.Run("binds IO operation to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindIOK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) io.IO[int] {
return func() int {
return 30
}
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
}
func TestBindIOEitherK(t *testing.T) {
t.Run("binds successful IOEither to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindIOEitherK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) ioeither.IOEither[error, int] {
return ioeither.Of[error](30)
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("propagates IOEither error", func(t *testing.T) {
expectedErr := errors.New("ioeither error")
initial := BindState{Name: "Alice"}
eff := BindIOEitherK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) ioeither.IOEither[error, int] {
return ioeither.Left[int](expectedErr)
},
)(Do[TestContext](initial))
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestBindIOResultK(t *testing.T) {
t.Run("binds successful IOResult to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindIOResultK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) ioresult.IOResult[int] {
return ioresult.Of(30)
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
}
func TestBindReaderK(t *testing.T) {
t.Run("binds Reader operation to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindReaderK(
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) reader.Reader[TestContext, int] {
return func(ctx TestContext) int {
return 30
}
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
}
func TestBindReaderIOK(t *testing.T) {
t.Run("binds ReaderIO operation to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindReaderIOK(
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) readerio.ReaderIO[TestContext, int] {
return func(ctx TestContext) io.IO[int] {
return func() int {
return 30
}
}
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
}
func TestBindEitherK(t *testing.T) {
t.Run("binds successful Either to state", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eff := BindEitherK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) either.Either[error, int] {
return either.Of[error](30)
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("propagates Either error", func(t *testing.T) {
expectedErr := errors.New("either error")
initial := BindState{Name: "Alice"}
eff := BindEitherK[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
func(s BindState) either.Either[error, int] {
return either.Left[int](expectedErr)
},
)(Do[TestContext](initial))
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestLensOperations(t *testing.T) {
// Create lenses for BindState
nameLens := lens.MakeLens(
func(s BindState) string { return s.Name },
func(s BindState, name string) BindState {
s.Name = name
return s
},
)
ageLens := lens.MakeLens(
func(s BindState) int { return s.Age },
func(s BindState, age int) BindState {
s.Age = age
return s
},
)
t.Run("ApSL applies effect using lens", func(t *testing.T) {
initial := BindState{Name: "Alice", Age: 25}
ageEffect := Of[TestContext](30)
eff := ApSL(ageLens, ageEffect)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("BindL binds effect using lens", func(t *testing.T) {
initial := BindState{Name: "Alice", Age: 25}
eff := BindL(
ageLens,
func(age int) Effect[TestContext, int] {
return Of[TestContext](age + 5)
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 30, result.Age)
})
t.Run("LetL computes value using lens", func(t *testing.T) {
initial := BindState{Name: "Alice", Age: 25}
eff := LetL[TestContext](
ageLens,
func(age int) int {
return age * 2
},
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 50, result.Age)
})
t.Run("LetToL sets constant using lens", func(t *testing.T) {
initial := BindState{Name: "Alice", Age: 25}
eff := LetToL[TestContext](ageLens, 100)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 100, result.Age)
})
t.Run("chains lens operations", func(t *testing.T) {
initial := BindState{}
eff := LetToL[TestContext](
ageLens,
30,
)(LetToL[TestContext](
nameLens,
"Bob",
)(Do[TestContext](initial)))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Bob", result.Name)
assert.Equal(t, 30, result.Age)
})
}
func TestApOperations(t *testing.T) {
t.Run("ApIOS applies IO effect", func(t *testing.T) {
initial := BindState{Name: "Alice"}
ioEffect := func() int { return 30 }
eff := ApIOS[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
ioEffect,
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 30, result.Age)
})
t.Run("ApReaderS applies Reader effect", func(t *testing.T) {
initial := BindState{Name: "Alice"}
readerEffect := func(ctx TestContext) int { return 30 }
eff := ApReaderS(
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
readerEffect,
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 30, result.Age)
})
t.Run("ApEitherS applies Either effect", func(t *testing.T) {
initial := BindState{Name: "Alice"}
eitherEffect := either.Of[error](30)
eff := ApEitherS[TestContext](
func(age int) func(BindState) BindState {
return func(s BindState) BindState {
s.Age = age
return s
}
},
eitherEffect,
)(Do[TestContext](initial))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 30, result.Age)
})
}
func TestComplexBindChain(t *testing.T) {
t.Run("builds complex state with multiple operations", func(t *testing.T) {
type ComplexState struct {
Name string
Age int
Email string
IsAdmin bool
Score int
}
eff := LetTo[TestContext](
func(score int) func(ComplexState) ComplexState {
return func(s ComplexState) ComplexState {
s.Score = score
return s
}
},
100,
)(Let[TestContext](
func(isAdmin bool) func(ComplexState) ComplexState {
return func(s ComplexState) ComplexState {
s.IsAdmin = isAdmin
return s
}
},
func(s ComplexState) bool {
return s.Age >= 18
},
)(Let[TestContext](
func(email string) func(ComplexState) ComplexState {
return func(s ComplexState) ComplexState {
s.Email = email
return s
}
},
func(s ComplexState) string {
return s.Name + "@example.com"
},
)(Bind(
func(age int) func(ComplexState) ComplexState {
return func(s ComplexState) ComplexState {
s.Age = age
return s
}
},
func(s ComplexState) Effect[TestContext, int] {
return Of[TestContext](25)
},
)(BindTo[TestContext](func(name string) ComplexState {
return ComplexState{Name: name}
})(Of[TestContext]("Alice"))))))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Alice", result.Name)
assert.Equal(t, 25, result.Age)
assert.Equal(t, "Alice@example.com", result.Email)
assert.True(t, result.IsAdmin)
assert.Equal(t, 100, result.Score)
})
}

110
v2/effect/dependencies.go Normal file
View File

@@ -0,0 +1,110 @@
package effect
import (
thunk "github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/result"
)
//go:inline
func Local[C1, C2, A any](acc Reader[C1, C2]) Kleisli[C1, Effect[C2, A], A] {
return readerreaderioresult.Local[A](acc)
}
//go:inline
func Contramap[C1, C2, A any](acc Reader[C1, C2]) Kleisli[C1, Effect[C2, A], A] {
return readerreaderioresult.Local[A](acc)
}
//go:inline
func LocalIOK[A, C1, C2 any](f io.Kleisli[C2, C1]) func(Effect[C1, A]) Effect[C2, A] {
return readerreaderioresult.LocalIOK[A](f)
}
//go:inline
func LocalIOResultK[A, C1, C2 any](f ioresult.Kleisli[C2, C1]) func(Effect[C1, A]) Effect[C2, A] {
return readerreaderioresult.LocalIOResultK[A](f)
}
//go:inline
func LocalResultK[A, C1, C2 any](f result.Kleisli[C2, C1]) func(Effect[C1, A]) Effect[C2, A] {
return readerreaderioresult.LocalResultK[A](f)
}
//go:inline
func LocalThunkK[A, C1, C2 any](f thunk.Kleisli[C2, C1]) func(Effect[C1, A]) Effect[C2, A] {
return readerreaderioresult.LocalReaderIOResultK[A](f)
}
// LocalEffectK transforms the context of an Effect using an Effect-returning function.
// This is the most powerful context transformation function, allowing the transformation
// itself to be effectful (can fail, perform I/O, and access the outer context).
//
// LocalEffectK takes a Kleisli arrow that:
// - Accepts the outer context C2
// - Returns an Effect that produces the inner context C1
// - Can fail with an error during context transformation
// - Can perform I/O operations during transformation
//
// This is useful when:
// - Context transformation requires I/O (e.g., loading config from a file)
// - Context transformation can fail (e.g., validating or parsing context)
// - Context transformation needs to access the outer context
//
// Type Parameters:
// - A: The value type produced by the effect
// - C1: The inner context type (required by the original effect)
// - C2: The outer context type (provided to the transformed effect)
//
// Parameters:
// - f: A Kleisli arrow (C2 -> Effect[C2, C1]) that transforms C2 to C1 effectfully
//
// Returns:
// - A function that transforms Effect[C1, A] to Effect[C2, A]
//
// Example:
//
// type DatabaseConfig struct {
// ConnectionString string
// }
//
// type AppConfig struct {
// ConfigPath string
// }
//
// // Effect that needs DatabaseConfig
// dbEffect := effect.Of[DatabaseConfig, string]("query result")
//
// // Transform AppConfig to DatabaseConfig effectfully
// // (e.g., load config from file, which can fail)
// loadConfig := func(app AppConfig) Effect[AppConfig, DatabaseConfig] {
// return effect.Chain[AppConfig](func(_ AppConfig) Effect[AppConfig, DatabaseConfig] {
// // Simulate loading config from file (can fail)
// return effect.Of[AppConfig, DatabaseConfig](DatabaseConfig{
// ConnectionString: "loaded from " + app.ConfigPath,
// })
// })(effect.Of[AppConfig, AppConfig](app))
// }
//
// // Apply the transformation
// transform := effect.LocalEffectK[string, DatabaseConfig, AppConfig](loadConfig)
// appEffect := transform(dbEffect)
//
// // Run with AppConfig
// ioResult := effect.Provide(AppConfig{ConfigPath: "/etc/app.conf"})(appEffect)
// readerResult := effect.RunSync(ioResult)
// result, err := readerResult(context.Background())
//
// Comparison with other Local functions:
// - Local/Contramap: Pure context transformation (C2 -> C1)
// - LocalIOK: IO-based transformation (C2 -> IO[C1])
// - LocalIOResultK: IO with error handling (C2 -> IOResult[C1])
// - LocalReaderIOResultK: Reader-based with IO and errors (C2 -> ReaderIOResult[C1])
// - LocalEffectK: Full Effect transformation (C2 -> Effect[C2, C1])
//
//go:inline
func LocalEffectK[A, C1, C2 any](f Kleisli[C2, C2, C1]) func(Effect[C1, A]) Effect[C2, A] {
return readerreaderioresult.LocalReaderReaderIOEitherK[A](f)
}

View File

@@ -0,0 +1,620 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"context"
"fmt"
"testing"
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/stretchr/testify/assert"
)
type OuterContext struct {
Value string
Number int
}
type InnerContext struct {
Value string
}
func TestLocal(t *testing.T) {
t.Run("transforms context for inner effect", func(t *testing.T) {
// Create an effect that uses InnerContext
innerEffect := Of[InnerContext]("result")
// Transform OuterContext to InnerContext
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value}
}
// Apply Local to transform the context
kleisli := Local[OuterContext, InnerContext, string](accessor)
outerEffect := kleisli(innerEffect)
// Run with OuterContext
ioResult := Provide[OuterContext, string](OuterContext{
Value: "test",
Number: 42,
})(outerEffect)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "result", result)
})
t.Run("allows accessing outer context fields", func(t *testing.T) {
// Create an effect that reads from InnerContext
innerEffect := Chain(func(_ string) Effect[InnerContext, string] {
return Of[InnerContext]("inner value")
})(Of[InnerContext]("start"))
// Transform context
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value + " transformed"}
}
kleisli := Local[OuterContext, InnerContext, string](accessor)
outerEffect := kleisli(innerEffect)
// Run with OuterContext
ioResult := Provide[OuterContext, string](OuterContext{
Value: "original",
Number: 100,
})(outerEffect)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "inner value", result)
})
t.Run("propagates errors from inner effect", func(t *testing.T) {
expectedErr := assert.AnError
innerEffect := Fail[InnerContext, string](expectedErr)
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value}
}
kleisli := Local[OuterContext, InnerContext, string](accessor)
outerEffect := kleisli(innerEffect)
ioResult := Provide[OuterContext, string](OuterContext{
Value: "test",
Number: 42,
})(outerEffect)
readerResult := RunSync(ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("chains multiple Local transformations", func(t *testing.T) {
type Level1 struct {
A string
}
type Level2 struct {
B string
}
type Level3 struct {
C string
}
// Effect at deepest level
level3Effect := Of[Level3]("deep result")
// Transform Level2 -> Level3
local23 := Local[Level2, Level3, string](func(l2 Level2) Level3 {
return Level3{C: l2.B + "-c"}
})
// Transform Level1 -> Level2
local12 := Local[Level1, Level2, string](func(l1 Level1) Level2 {
return Level2{B: l1.A + "-b"}
})
// Compose transformations
level2Effect := local23(level3Effect)
level1Effect := local12(level2Effect)
// Run with Level1 context
ioResult := Provide[Level1, string](Level1{A: "a"})(level1Effect)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "deep result", result)
})
t.Run("works with complex context transformations", func(t *testing.T) {
type DatabaseConfig struct {
Host string
Port int
Database string
}
type AppConfig struct {
DB DatabaseConfig
APIKey string
Timeout int
}
// Effect that needs only DatabaseConfig
dbEffect := Of[DatabaseConfig]("connected")
// Extract DB config from AppConfig
accessor := func(app AppConfig) DatabaseConfig {
return app.DB
}
kleisli := Local[AppConfig, DatabaseConfig, string](accessor)
appEffect := kleisli(dbEffect)
// Run with full AppConfig
ioResult := Provide[AppConfig, string](AppConfig{
DB: DatabaseConfig{
Host: "localhost",
Port: 5432,
Database: "mydb",
},
APIKey: "secret",
Timeout: 30,
})(appEffect)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "connected", result)
})
}
func TestContramap(t *testing.T) {
t.Run("is equivalent to Local", func(t *testing.T) {
innerEffect := Of[InnerContext](42)
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value}
}
// Test Local
localKleisli := Local[OuterContext, InnerContext, int](accessor)
localEffect := localKleisli(innerEffect)
// Test Contramap
contramapKleisli := Contramap[OuterContext, InnerContext, int](accessor)
contramapEffect := contramapKleisli(innerEffect)
outerCtx := OuterContext{Value: "test", Number: 100}
// Run both
localIO := Provide[OuterContext, int](outerCtx)(localEffect)
localReader := RunSync(localIO)
localResult, localErr := localReader(context.Background())
contramapIO := Provide[OuterContext, int](outerCtx)(contramapEffect)
contramapReader := RunSync(contramapIO)
contramapResult, contramapErr := contramapReader(context.Background())
assert.NoError(t, localErr)
assert.NoError(t, contramapErr)
assert.Equal(t, localResult, contramapResult)
})
t.Run("transforms context correctly", func(t *testing.T) {
innerEffect := Of[InnerContext]("success")
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value + " modified"}
}
kleisli := Contramap[OuterContext, InnerContext, string](accessor)
outerEffect := kleisli(innerEffect)
ioResult := Provide[OuterContext, string](OuterContext{
Value: "original",
Number: 50,
})(outerEffect)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "success", result)
})
t.Run("handles errors from inner effect", func(t *testing.T) {
expectedErr := assert.AnError
innerEffect := Fail[InnerContext, int](expectedErr)
accessor := func(outer OuterContext) InnerContext {
return InnerContext{Value: outer.Value}
}
kleisli := Contramap[OuterContext, InnerContext, int](accessor)
outerEffect := kleisli(innerEffect)
ioResult := Provide[OuterContext, int](OuterContext{
Value: "test",
Number: 42,
})(outerEffect)
readerResult := RunSync(ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestLocalAndContramapInteroperability(t *testing.T) {
t.Run("can be used interchangeably", func(t *testing.T) {
type Config1 struct {
Value string
}
type Config2 struct {
Data string
}
type Config3 struct {
Info string
}
// Effect at deepest level
effect3 := Of[Config3]("result")
// Use Local for first transformation
local23 := Local[Config2, Config3, string](func(c2 Config2) Config3 {
return Config3{Info: c2.Data}
})
// Use Contramap for second transformation
contramap12 := Contramap[Config1, Config2, string](func(c1 Config1) Config2 {
return Config2{Data: c1.Value}
})
// Compose them
effect2 := local23(effect3)
effect1 := contramap12(effect2)
// Run
ioResult := Provide[Config1, string](Config1{Value: "test"})(effect1)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "result", result)
})
}
func TestLocalEffectK(t *testing.T) {
t.Run("transforms context using effectful function", func(t *testing.T) {
type DatabaseConfig struct {
ConnectionString string
}
type AppConfig struct {
ConfigPath string
}
// Effect that needs DatabaseConfig
dbEffect := Of[DatabaseConfig]("query result")
// Transform AppConfig to DatabaseConfig effectfully
loadConfig := func(app AppConfig) Effect[AppConfig, DatabaseConfig] {
return Of[AppConfig](DatabaseConfig{
ConnectionString: "loaded from " + app.ConfigPath,
})
}
// Apply the transformation
transform := LocalEffectK[string](loadConfig)
appEffect := transform(dbEffect)
// Run with AppConfig
ioResult := Provide[AppConfig, string](AppConfig{
ConfigPath: "/etc/app.conf",
})(appEffect)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "query result", result)
})
t.Run("propagates errors from context transformation", func(t *testing.T) {
type InnerCtx struct {
Value string
}
type OuterCtx struct {
Path string
}
innerEffect := Of[InnerCtx]("success")
expectedErr := assert.AnError
// Context transformation that fails
failingTransform := func(outer OuterCtx) Effect[OuterCtx, InnerCtx] {
return Fail[OuterCtx, InnerCtx](expectedErr)
}
transform := LocalEffectK[string](failingTransform)
outerEffect := transform(innerEffect)
ioResult := Provide[OuterCtx, string](OuterCtx{Path: "test"})(outerEffect)
readerResult := RunSync(ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("propagates errors from inner effect", func(t *testing.T) {
type InnerCtx struct {
Value string
}
type OuterCtx struct {
Path string
}
expectedErr := assert.AnError
innerEffect := Fail[InnerCtx, string](expectedErr)
// Successful context transformation
transform := func(outer OuterCtx) Effect[OuterCtx, InnerCtx] {
return Of[OuterCtx](InnerCtx{Value: outer.Path})
}
transformK := LocalEffectK[string](transform)
outerEffect := transformK(innerEffect)
ioResult := Provide[OuterCtx, string](OuterCtx{Path: "test"})(outerEffect)
readerResult := RunSync(ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("allows effectful context transformation with IO operations", func(t *testing.T) {
type Config struct {
Data string
}
type AppContext struct {
ConfigFile string
}
// Effect that uses Config
configEffect := Chain(func(cfg Config) Effect[Config, string] {
return Of[Config]("processed: " + cfg.Data)
})(readerreaderioresult.Ask[Config]())
// Effectful transformation that simulates loading config
loadConfigEffect := func(app AppContext) Effect[AppContext, Config] {
// Simulate IO operation (e.g., reading file)
return Of[AppContext](Config{
Data: "loaded from " + app.ConfigFile,
})
}
transform := LocalEffectK[string](loadConfigEffect)
appEffect := transform(configEffect)
ioResult := Provide[AppContext, string](AppContext{
ConfigFile: "config.json",
})(appEffect)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "processed: loaded from config.json", result)
})
t.Run("chains multiple LocalEffectK transformations", func(t *testing.T) {
type Level1 struct {
A string
}
type Level2 struct {
B string
}
type Level3 struct {
C string
}
// Effect at deepest level
level3Effect := Of[Level3]("deep result")
// Transform Level2 -> Level3 effectfully
transform23 := LocalEffectK[string](func(l2 Level2) Effect[Level2, Level3] {
return Of[Level2](Level3{C: l2.B + "-c"})
})
// Transform Level1 -> Level2 effectfully
transform12 := LocalEffectK[string](func(l1 Level1) Effect[Level1, Level2] {
return Of[Level1](Level2{B: l1.A + "-b"})
})
// Compose transformations
level2Effect := transform23(level3Effect)
level1Effect := transform12(level2Effect)
// Run with Level1 context
ioResult := Provide[Level1, string](Level1{A: "a"})(level1Effect)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "deep result", result)
})
t.Run("accesses outer context during transformation", func(t *testing.T) {
type DatabaseConfig struct {
Host string
Port int
}
type AppConfig struct {
Environment string
DBHost string
DBPort int
}
// Effect that needs DatabaseConfig
dbEffect := Chain(func(cfg DatabaseConfig) Effect[DatabaseConfig, string] {
return Of[DatabaseConfig](fmt.Sprintf("%s:%d", cfg.Host, cfg.Port))
})(readerreaderioresult.Ask[DatabaseConfig]())
// Transform using outer context
transformWithContext := func(app AppConfig) Effect[AppConfig, DatabaseConfig] {
// Access outer context to build inner context
prefix := ""
if app.Environment == "prod" {
prefix = "prod-"
}
return Of[AppConfig](DatabaseConfig{
Host: prefix + app.DBHost,
Port: app.DBPort,
})
}
transform := LocalEffectK[string](transformWithContext)
appEffect := transform(dbEffect)
ioResult := Provide[AppConfig, string](AppConfig{
Environment: "prod",
DBHost: "localhost",
DBPort: 5432,
})(appEffect)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Contains(t, result, "prod-localhost")
})
t.Run("validates context during transformation", func(t *testing.T) {
type ValidatedConfig struct {
APIKey string
}
type RawConfig struct {
APIKey string
}
innerEffect := Of[ValidatedConfig]("success")
// Validation that can fail
validateConfig := func(raw RawConfig) Effect[RawConfig, ValidatedConfig] {
if raw.APIKey == "" {
return Fail[RawConfig, ValidatedConfig](assert.AnError)
}
return Of[RawConfig](ValidatedConfig{
APIKey: raw.APIKey,
})
}
transform := LocalEffectK[string](validateConfig)
outerEffect := transform(innerEffect)
// Test with invalid config
ioResult := Provide[RawConfig, string](RawConfig{APIKey: ""})(outerEffect)
readerResult := RunSync(ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
// Test with valid config
ioResult2 := Provide[RawConfig, string](RawConfig{APIKey: "valid-key"})(outerEffect)
readerResult2 := RunSync(ioResult2)
result, err2 := readerResult2(context.Background())
assert.NoError(t, err2)
assert.Equal(t, "success", result)
})
t.Run("composes with other Local functions", func(t *testing.T) {
type Level1 struct {
Value string
}
type Level2 struct {
Data string
}
type Level3 struct {
Info string
}
// Effect at deepest level
effect3 := Of[Level3]("result")
// Use LocalEffectK for first transformation (effectful)
localEffectK23 := LocalEffectK[string](func(l2 Level2) Effect[Level2, Level3] {
return Of[Level2](Level3{Info: l2.Data})
})
// Use Local for second transformation (pure)
local12 := Local[Level1, Level2, string](func(l1 Level1) Level2 {
return Level2{Data: l1.Value}
})
// Compose them
effect2 := localEffectK23(effect3)
effect1 := local12(effect2)
// Run
ioResult := Provide[Level1, string](Level1{Value: "test"})(effect1)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "result", result)
})
t.Run("handles complex nested effects in transformation", func(t *testing.T) {
type InnerCtx struct {
Value int
}
type OuterCtx struct {
Multiplier int
}
// Effect that uses InnerCtx
innerEffect := Chain(func(ctx InnerCtx) Effect[InnerCtx, int] {
return Of[InnerCtx](ctx.Value * 2)
})(readerreaderioresult.Ask[InnerCtx]())
// Complex transformation with nested effects
complexTransform := func(outer OuterCtx) Effect[OuterCtx, InnerCtx] {
return Of[OuterCtx](InnerCtx{
Value: outer.Multiplier * 10,
})
}
transform := LocalEffectK[int](complexTransform)
outerEffect := transform(innerEffect)
ioResult := Provide[OuterCtx, int](OuterCtx{Multiplier: 3})(outerEffect)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, 60, result) // 3 * 10 * 2
})
}

222
v2/effect/doc.go Normal file
View File

@@ -0,0 +1,222 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
Package effect provides a functional effect system for managing side effects in Go.
# Overview
The effect package is a high-level abstraction for composing effectful computations
that may fail, require dependencies (context), and perform I/O operations. It is built
on top of ReaderReaderIOResult, providing a clean API for dependency injection and
error handling.
# Naming Conventions
The naming conventions in this package are modeled after effect-ts (https://effect.website/),
a popular TypeScript library for functional effect systems. This alignment helps developers
familiar with effect-ts to quickly understand and use this Go implementation.
# Core Type
The central type is Effect[C, A], which represents:
- C: The context/dependency type required by the effect
- A: The success value type produced by the effect
An Effect can:
- Succeed with a value of type A
- Fail with an error
- Require a context of type C
- Perform I/O operations
# Basic Operations
Creating Effects:
// Create a successful effect
effect.Succeed[MyContext, string]("hello")
// Create a failed effect
effect.Fail[MyContext, string](errors.New("failed"))
// Lift a pure value into an effect
effect.Of[MyContext, int](42)
Transforming Effects:
// Map over the success value
effect.Map[MyContext](func(x int) string {
return strconv.Itoa(x)
})
// Chain effects together (flatMap)
effect.Chain[MyContext](func(x int) Effect[MyContext, string] {
return effect.Succeed[MyContext, string](strconv.Itoa(x))
})
// Tap into an effect without changing its value
effect.Tap[MyContext](func(x int) Effect[MyContext, any] {
return effect.Succeed[MyContext, any](fmt.Println(x))
})
# Dependency Injection
Effects can access their required context:
// Transform the context before passing it to an effect
effect.Local[OuterCtx, InnerCtx](func(outer OuterCtx) InnerCtx {
return outer.Inner
})
// Provide a context to run an effect
effect.Provide[MyContext, string](myContext)
# Do Notation
The package provides "do notation" for composing effects in a sequential, imperative style:
type State struct {
X int
Y string
}
result := effect.Do[MyContext](State{}).
Bind(func(y string) func(State) State {
return func(s State) State {
s.Y = y
return s
}
}, fetchString).
Let(func(x int) func(State) State {
return func(s State) State {
s.X = x
return s
}
}, func(s State) int {
return len(s.Y)
})
# Bind Operations
The package provides various bind operations for integrating with other effect types:
- BindIOK: Bind an IO operation
- BindIOEitherK: Bind an IOEither operation
- BindIOResultK: Bind an IOResult operation
- BindReaderK: Bind a Reader operation
- BindReaderIOK: Bind a ReaderIO operation
- BindEitherK: Bind an Either operation
Each bind operation has a corresponding "L" variant for working with lenses:
- BindL, BindIOKL, BindReaderKL, etc.
# Applicative Operations
Apply effects in parallel:
// Apply a function effect to a value effect
effect.Ap[string, MyContext](valueEffect)(functionEffect)
// Apply effects to build up a structure
effect.ApS[MyContext](setter, effect1)
# Traversal
Traverse collections with effects:
// Map an array with an effectful function
effect.TraverseArray[MyContext](func(x int) Effect[MyContext, string] {
return effect.Succeed[MyContext, string](strconv.Itoa(x))
})
# Retry Logic
Retry effects with configurable policies:
effect.Retrying[MyContext, string](
retryPolicy,
func(status retry.RetryStatus) Effect[MyContext, string] {
return fetchData()
},
func(result Result[string]) bool {
return result.IsLeft() // retry on error
},
)
# Monoids
Combine effects using monoid operations:
// Combine effects using applicative semantics
effect.ApplicativeMonoid[MyContext](stringMonoid)
// Combine effects using alternative semantics (first success)
effect.AlternativeMonoid[MyContext](stringMonoid)
# Running Effects
To execute an effect:
// Provide the context
ioResult := effect.Provide[MyContext, string](myContext)(myEffect)
// Run synchronously
readerResult := effect.RunSync(ioResult)
// Execute with a context.Context
value, err := readerResult(ctx)
# Integration with Other Packages
The effect package integrates seamlessly with other fp-go packages:
- either: For error handling
- io: For I/O operations
- reader: For dependency injection
- result: For result types
- retry: For retry logic
- monoid: For combining effects
# Example
type Config struct {
APIKey string
BaseURL string
}
func fetchUser(id int) Effect[Config, User] {
return effect.Chain[Config](func(cfg Config) Effect[Config, User] {
// Use cfg.APIKey and cfg.BaseURL
return effect.Succeed[Config, User](User{ID: id})
})(effect.Of[Config, Config](Config{}))
}
func main() {
cfg := Config{APIKey: "key", BaseURL: "https://api.example.com"}
userEffect := fetchUser(42)
// Run the effect
ioResult := effect.Provide(cfg)(userEffect)
readerResult := effect.RunSync(ioResult)
user, err := readerResult(context.Background())
if err != nil {
log.Fatal(err)
}
fmt.Printf("User: %+v\n", user)
}
*/
package effect
//go:generate go run ../main.go lens --dir . --filename gen_lens.go --include-test-files

51
v2/effect/effect.go Normal file
View File

@@ -0,0 +1,51 @@
package effect
import (
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/result"
)
func Succeed[C, A any](a A) Effect[C, A] {
return readerreaderioresult.Of[C](a)
}
func Fail[C, A any](err error) Effect[C, A] {
return readerreaderioresult.Left[C, A](err)
}
func Of[C, A any](a A) Effect[C, A] {
return readerreaderioresult.Of[C](a)
}
func Map[C, A, B any](f func(A) B) Operator[C, A, B] {
return readerreaderioresult.Map[C](f)
}
func Chain[C, A, B any](f Kleisli[C, A, B]) Operator[C, A, B] {
return readerreaderioresult.Chain(f)
}
func Ap[B, C, A any](fa Effect[C, A]) Operator[C, func(A) B, B] {
return readerreaderioresult.Ap[B](fa)
}
func Suspend[C, A any](fa Lazy[Effect[C, A]]) Effect[C, A] {
return readerreaderioresult.Defer(fa)
}
func Tap[C, A, ANY any](f Kleisli[C, A, ANY]) Operator[C, A, A] {
return readerreaderioresult.Tap(f)
}
func Ternary[C, A, B any](pred Predicate[A], onTrue, onFalse Kleisli[C, A, B]) Kleisli[C, A, B] {
return function.Ternary(pred, onTrue, onFalse)
}
func ChainResultK[C, A, B any](f result.Kleisli[A, B]) Operator[C, A, B] {
return readerreaderioresult.ChainResultK[C](f)
}
func Read[A, C any](c C) func(Effect[C, A]) Thunk[A] {
return readerreaderioresult.Read[A](c)
}

506
v2/effect/effect_test.go Normal file
View File

@@ -0,0 +1,506 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"context"
"errors"
"fmt"
"testing"
"github.com/IBM/fp-go/v2/result"
"github.com/stretchr/testify/assert"
)
type TestContext struct {
Value string
}
func runEffect[A any](eff Effect[TestContext, A], ctx TestContext) (A, error) {
ioResult := Provide[TestContext, A](ctx)(eff)
readerResult := RunSync(ioResult)
return readerResult(context.Background())
}
func TestSucceed(t *testing.T) {
t.Run("creates successful effect with value", func(t *testing.T) {
eff := Succeed[TestContext](42)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, result)
})
t.Run("creates successful effect with string", func(t *testing.T) {
eff := Succeed[TestContext]("hello")
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "hello", result)
})
t.Run("creates successful effect with struct", func(t *testing.T) {
type User struct {
Name string
Age int
}
user := User{Name: "Alice", Age: 30}
eff := Succeed[TestContext](user)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, user, result)
})
}
func TestFail(t *testing.T) {
t.Run("creates failed effect with error", func(t *testing.T) {
expectedErr := errors.New("test error")
eff := Fail[TestContext, int](expectedErr)
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("creates failed effect with custom error", func(t *testing.T) {
expectedErr := fmt.Errorf("custom error: %s", "details")
eff := Fail[TestContext, string](expectedErr)
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestOf(t *testing.T) {
t.Run("lifts value into effect", func(t *testing.T) {
eff := Of[TestContext](100)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 100, result)
})
t.Run("is equivalent to Succeed", func(t *testing.T) {
value := "test value"
eff1 := Of[TestContext](value)
eff2 := Succeed[TestContext](value)
result1, err1 := runEffect(eff1, TestContext{Value: "test"})
result2, err2 := runEffect(eff2, TestContext{Value: "test"})
assert.NoError(t, err1)
assert.NoError(t, err2)
assert.Equal(t, result1, result2)
})
}
func TestMap(t *testing.T) {
t.Run("maps over successful effect", func(t *testing.T) {
eff := Of[TestContext](10)
mapped := Map[TestContext](func(x int) int {
return x * 2
})(eff)
result, err := runEffect(mapped, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 20, result)
})
t.Run("maps to different type", func(t *testing.T) {
eff := Of[TestContext](42)
mapped := Map[TestContext](func(x int) string {
return fmt.Sprintf("value: %d", x)
})(eff)
result, err := runEffect(mapped, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "value: 42", result)
})
t.Run("preserves error in failed effect", func(t *testing.T) {
expectedErr := errors.New("original error")
eff := Fail[TestContext, int](expectedErr)
mapped := Map[TestContext](func(x int) int {
return x * 2
})(eff)
_, err := runEffect(mapped, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("chains multiple maps", func(t *testing.T) {
eff := Of[TestContext](5)
result := Map[TestContext](func(x int) int {
return x + 1
})(Map[TestContext](func(x int) int {
return x * 2
})(eff))
value, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 11, value) // (5 * 2) + 1
})
}
func TestChain(t *testing.T) {
t.Run("chains successful effects", func(t *testing.T) {
eff := Of[TestContext](10)
chained := Chain(func(x int) Effect[TestContext, int] {
return Of[TestContext](x * 2)
})(eff)
result, err := runEffect(chained, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 20, result)
})
t.Run("chains to different type", func(t *testing.T) {
eff := Of[TestContext](42)
chained := Chain(func(x int) Effect[TestContext, string] {
return Of[TestContext](fmt.Sprintf("number: %d", x))
})(eff)
result, err := runEffect(chained, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "number: 42", result)
})
t.Run("propagates first error", func(t *testing.T) {
expectedErr := errors.New("first error")
eff := Fail[TestContext, int](expectedErr)
chained := Chain(func(x int) Effect[TestContext, int] {
return Of[TestContext](x * 2)
})(eff)
_, err := runEffect(chained, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("propagates second error", func(t *testing.T) {
expectedErr := errors.New("second error")
eff := Of[TestContext](10)
chained := Chain(func(x int) Effect[TestContext, int] {
return Fail[TestContext, int](expectedErr)
})(eff)
_, err := runEffect(chained, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("chains multiple operations", func(t *testing.T) {
eff := Of[TestContext](5)
result := Chain(func(x int) Effect[TestContext, int] {
return Of[TestContext](x + 10)
})(Chain(func(x int) Effect[TestContext, int] {
return Of[TestContext](x * 2)
})(eff))
value, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 20, value) // (5 * 2) + 10
})
}
func TestAp(t *testing.T) {
t.Run("applies function effect to value effect", func(t *testing.T) {
fn := Of[TestContext](func(x int) int {
return x * 2
})
value := Of[TestContext](21)
result := Ap[int](value)(fn)
val, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, val)
})
t.Run("applies function to different type", func(t *testing.T) {
fn := Of[TestContext](func(x int) string {
return fmt.Sprintf("value: %d", x)
})
value := Of[TestContext](42)
result := Ap[string](value)(fn)
val, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "value: 42", val)
})
t.Run("propagates error from function effect", func(t *testing.T) {
expectedErr := errors.New("function error")
fn := Fail[TestContext, func(int) int](expectedErr)
value := Of[TestContext](42)
result := Ap[int](value)(fn)
_, err := runEffect(result, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("propagates error from value effect", func(t *testing.T) {
expectedErr := errors.New("value error")
fn := Of[TestContext](func(x int) int {
return x * 2
})
value := Fail[TestContext, int](expectedErr)
result := Ap[int](value)(fn)
_, err := runEffect(result, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestSuspend(t *testing.T) {
t.Run("suspends effect computation", func(t *testing.T) {
callCount := 0
eff := Suspend(func() Effect[TestContext, int] {
callCount++
return Of[TestContext](42)
})
// Effect not executed yet
assert.Equal(t, 0, callCount)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, result)
assert.Equal(t, 1, callCount)
})
t.Run("suspends failing effect", func(t *testing.T) {
expectedErr := errors.New("suspended error")
eff := Suspend(func() Effect[TestContext, int] {
return Fail[TestContext, int](expectedErr)
})
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("allows lazy evaluation", func(t *testing.T) {
var value int
eff := Suspend(func() Effect[TestContext, int] {
return Of[TestContext](value)
})
value = 10
result1, err1 := runEffect(eff, TestContext{Value: "test"})
value = 20
result2, err2 := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err1)
assert.NoError(t, err2)
assert.Equal(t, 10, result1)
assert.Equal(t, 20, result2)
})
}
func TestTap(t *testing.T) {
t.Run("executes side effect without changing value", func(t *testing.T) {
sideEffectValue := 0
eff := Of[TestContext](42)
tapped := Tap(func(x int) Effect[TestContext, any] {
sideEffectValue = x * 2
return Of[TestContext, any](nil)
})(eff)
result, err := runEffect(tapped, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, result)
assert.Equal(t, 84, sideEffectValue)
})
t.Run("propagates original error", func(t *testing.T) {
expectedErr := errors.New("original error")
eff := Fail[TestContext, int](expectedErr)
tapped := Tap(func(x int) Effect[TestContext, any] {
return Of[TestContext, any](nil)
})(eff)
_, err := runEffect(tapped, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("propagates tap error", func(t *testing.T) {
expectedErr := errors.New("tap error")
eff := Of[TestContext](42)
tapped := Tap(func(x int) Effect[TestContext, any] {
return Fail[TestContext, any](expectedErr)
})(eff)
_, err := runEffect(tapped, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("chains multiple taps", func(t *testing.T) {
values := []int{}
eff := Of[TestContext](10)
result := Tap(func(x int) Effect[TestContext, any] {
values = append(values, x+2)
return Of[TestContext, any](nil)
})(Tap(func(x int) Effect[TestContext, any] {
values = append(values, x+1)
return Of[TestContext, any](nil)
})(eff))
value, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 10, value)
assert.Equal(t, []int{11, 12}, values)
})
}
func TestTernary(t *testing.T) {
t.Run("executes onTrue when predicate is true", func(t *testing.T) {
kleisli := Ternary(
func(x int) bool { return x > 10 },
func(x int) Effect[TestContext, string] {
return Of[TestContext]("greater")
},
func(x int) Effect[TestContext, string] {
return Of[TestContext]("less or equal")
},
)
result, err := runEffect(kleisli(15), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "greater", result)
})
t.Run("executes onFalse when predicate is false", func(t *testing.T) {
kleisli := Ternary(
func(x int) bool { return x > 10 },
func(x int) Effect[TestContext, string] {
return Of[TestContext]("greater")
},
func(x int) Effect[TestContext, string] {
return Of[TestContext]("less or equal")
},
)
result, err := runEffect(kleisli(5), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "less or equal", result)
})
t.Run("handles errors in onTrue branch", func(t *testing.T) {
expectedErr := errors.New("true branch error")
kleisli := Ternary(
func(x int) bool { return x > 10 },
func(x int) Effect[TestContext, string] {
return Fail[TestContext, string](expectedErr)
},
func(x int) Effect[TestContext, string] {
return Of[TestContext]("less or equal")
},
)
_, err := runEffect(kleisli(15), TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("handles errors in onFalse branch", func(t *testing.T) {
expectedErr := errors.New("false branch error")
kleisli := Ternary(
func(x int) bool { return x > 10 },
func(x int) Effect[TestContext, string] {
return Of[TestContext]("greater")
},
func(x int) Effect[TestContext, string] {
return Fail[TestContext, string](expectedErr)
},
)
_, err := runEffect(kleisli(5), TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}
func TestEffectComposition(t *testing.T) {
t.Run("composes Map and Chain", func(t *testing.T) {
eff := Of[TestContext](5)
result := Chain(func(x int) Effect[TestContext, string] {
return Of[TestContext](fmt.Sprintf("result: %d", x))
})(Map[TestContext](func(x int) int {
return x * 2
})(eff))
value, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "result: 10", value)
})
t.Run("composes Chain and Tap", func(t *testing.T) {
sideEffect := 0
eff := Of[TestContext](10)
result := Tap(func(x int) Effect[TestContext, any] {
sideEffect = x
return Of[TestContext, any](nil)
})(Chain(func(x int) Effect[TestContext, int] {
return Of[TestContext](x * 2)
})(eff))
value, err := runEffect(result, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 20, value)
assert.Equal(t, 20, sideEffect)
})
}
func TestEffectWithResult(t *testing.T) {
t.Run("converts result to effect", func(t *testing.T) {
res := result.Of(42)
// This demonstrates integration with result package
assert.True(t, result.IsRight(res))
})
}

118
v2/effect/gen_lens_test.go Normal file
View File

@@ -0,0 +1,118 @@
package effect
// Code generated by go generate; DO NOT EDIT.
// This file was generated by robots at
// 2026-01-27 22:19:41.6840253 +0100 CET m=+0.008579701
import (
__lens "github.com/IBM/fp-go/v2/optics/lens"
__option "github.com/IBM/fp-go/v2/option"
__prism "github.com/IBM/fp-go/v2/optics/prism"
__lens_option "github.com/IBM/fp-go/v2/optics/lens/option"
__iso_option "github.com/IBM/fp-go/v2/optics/iso/option"
)
// ComplexServiceLenses provides lenses for accessing fields of ComplexService
type ComplexServiceLenses struct {
// mandatory fields
service1 __lens.Lens[ComplexService, Service1]
service2 __lens.Lens[ComplexService, Service2]
// optional fields
service1O __lens_option.LensO[ComplexService, Service1]
service2O __lens_option.LensO[ComplexService, Service2]
}
// ComplexServiceRefLenses provides lenses for accessing fields of ComplexService via a reference to ComplexService
type ComplexServiceRefLenses struct {
// mandatory fields
service1 __lens.Lens[*ComplexService, Service1]
service2 __lens.Lens[*ComplexService, Service2]
// optional fields
service1O __lens_option.LensO[*ComplexService, Service1]
service2O __lens_option.LensO[*ComplexService, Service2]
// prisms
service1P __prism.Prism[*ComplexService, Service1]
service2P __prism.Prism[*ComplexService, Service2]
}
// ComplexServicePrisms provides prisms for accessing fields of ComplexService
type ComplexServicePrisms struct {
service1 __prism.Prism[ComplexService, Service1]
service2 __prism.Prism[ComplexService, Service2]
}
// MakeComplexServiceLenses creates a new ComplexServiceLenses with lenses for all fields
func MakeComplexServiceLenses() ComplexServiceLenses {
// mandatory lenses
lensservice1 := __lens.MakeLensWithName(
func(s ComplexService) Service1 { return s.service1 },
func(s ComplexService, v Service1) ComplexService { s.service1 = v; return s },
"ComplexService.service1",
)
lensservice2 := __lens.MakeLensWithName(
func(s ComplexService) Service2 { return s.service2 },
func(s ComplexService, v Service2) ComplexService { s.service2 = v; return s },
"ComplexService.service2",
)
// optional lenses
lensservice1O := __lens_option.FromIso[ComplexService](__iso_option.FromZero[Service1]())(lensservice1)
lensservice2O := __lens_option.FromIso[ComplexService](__iso_option.FromZero[Service2]())(lensservice2)
return ComplexServiceLenses{
// mandatory lenses
service1: lensservice1,
service2: lensservice2,
// optional lenses
service1O: lensservice1O,
service2O: lensservice2O,
}
}
// MakeComplexServiceRefLenses creates a new ComplexServiceRefLenses with lenses for all fields
func MakeComplexServiceRefLenses() ComplexServiceRefLenses {
// mandatory lenses
lensservice1 := __lens.MakeLensStrictWithName(
func(s *ComplexService) Service1 { return s.service1 },
func(s *ComplexService, v Service1) *ComplexService { s.service1 = v; return s },
"(*ComplexService).service1",
)
lensservice2 := __lens.MakeLensStrictWithName(
func(s *ComplexService) Service2 { return s.service2 },
func(s *ComplexService, v Service2) *ComplexService { s.service2 = v; return s },
"(*ComplexService).service2",
)
// optional lenses
lensservice1O := __lens_option.FromIso[*ComplexService](__iso_option.FromZero[Service1]())(lensservice1)
lensservice2O := __lens_option.FromIso[*ComplexService](__iso_option.FromZero[Service2]())(lensservice2)
return ComplexServiceRefLenses{
// mandatory lenses
service1: lensservice1,
service2: lensservice2,
// optional lenses
service1O: lensservice1O,
service2O: lensservice2O,
}
}
// MakeComplexServicePrisms creates a new ComplexServicePrisms with prisms for all fields
func MakeComplexServicePrisms() ComplexServicePrisms {
_fromNonZeroservice1 := __option.FromNonZero[Service1]()
_prismservice1 := __prism.MakePrismWithName(
func(s ComplexService) __option.Option[Service1] { return _fromNonZeroservice1(s.service1) },
func(v Service1) ComplexService {
return ComplexService{ service1: v }
},
"ComplexService.service1",
)
_fromNonZeroservice2 := __option.FromNonZero[Service2]()
_prismservice2 := __prism.MakePrismWithName(
func(s ComplexService) __option.Option[Service2] { return _fromNonZeroservice2(s.service2) },
func(v Service2) ComplexService {
return ComplexService{ service2: v }
},
"ComplexService.service2",
)
return ComplexServicePrisms {
service1: _prismservice1,
service2: _prismservice2,
}
}

207
v2/effect/injection_test.go Normal file
View File

@@ -0,0 +1,207 @@
// Package effect demonstrates dependency injection using the Effect pattern.
//
// This test file shows how to build a type-safe dependency injection system where:
// - An InjectionContainer can resolve services by ID (InjectionToken)
// - Services are generic effects that depend on the container
// - Lookup methods convert from untyped container to typed dependencies
// - Handler functions depend type-safely on specific service interfaces
package effect
import (
"errors"
"fmt"
"testing"
thunk "github.com/IBM/fp-go/v2/context/readerioresult"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/result"
)
type (
// InjectionToken is a unique identifier for services in the container
InjectionToken string
// InjectionContainer is an Effect that resolves services by their token.
// It takes an InjectionToken and returns a Thunk that produces any type.
// This allows the container to store and retrieve services of different types.
InjectionContainer = Effect[InjectionToken, any]
// Service is a generic Effect that depends on the InjectionContainer.
// It represents a computation that needs access to the dependency injection
// container to resolve its dependencies before producing a string result.
Service[T any] = Effect[InjectionContainer, T]
// Service1 is an example service interface that can be resolved from the container
Service1 interface {
GetService1() string
}
// Service2 is another example service interface
Service2 interface {
GetService2() string
}
// impl1 is a concrete implementation of Service1
impl1 struct{}
// impl2 is a concrete implementation of Service2
impl2 struct{}
)
// ComplexService demonstrates a more complex dependency injection scenario
// where a service depends on multiple other services. This struct aggregates
// Service1 and Service2, showing how to compose dependencies.
// The fp-go:Lens directive generates lens functions for type-safe field access.
//
// fp-go:Lens
type ComplexService struct {
service1 Service1
service2 Service2
}
func (_ *impl1) GetService1() string {
return "service1"
}
func (_ *impl2) GetService2() string {
return "service2"
}
const (
// service1 is the injection token for Service1
service1 = InjectionToken("service1")
// service2 is the injection token for Service2
service2 = InjectionToken("service2")
)
var (
// complexServiceLenses provides type-safe accessors for ComplexService fields,
// generated by the fp-go:Lens directive. These lenses are used in applicative
// composition to build the ComplexService from individual dependencies.
complexServiceLenses = MakeComplexServiceLenses()
)
// makeSampleInjectionContainer creates an InjectionContainer that can resolve services by ID.
// The container maps InjectionTokens to their corresponding service implementations.
// It returns an error if a requested service is not available.
func makeSampleInjectionContainer() InjectionContainer {
return func(token InjectionToken) Thunk[any] {
switch token {
case service1:
return thunk.Of(any(&impl1{}))
case service2:
return thunk.Of(any(&impl2{}))
default:
return thunk.Left[any](errors.New("dependency not available"))
}
}
}
// handleService1 is an Effect that depends type-safely on Service1.
// It demonstrates how to write handlers that work with specific service interfaces
// rather than the untyped container, providing compile-time type safety.
func handleService1() Effect[Service1, string] {
return func(ctx Service1) ReaderIOResult[string] {
return thunk.Of(fmt.Sprintf("Service1: %s", ctx.GetService1()))
}
}
// handleComplexService is an Effect that depends on ComplexService, which itself
// aggregates multiple service dependencies (Service1 and Service2).
// This demonstrates how to work with composite dependencies in a type-safe manner.
func handleComplexService() Effect[ComplexService, string] {
return func(ctx ComplexService) ReaderIOResult[string] {
return thunk.Of(fmt.Sprintf("ComplexService: %s x %s", ctx.service1.GetService1(), ctx.service2.GetService2()))
}
}
// lookupService1 is a lookup method that converts from an untyped InjectionContainer
// to a typed Service1 dependency. It performs two steps:
// 1. Read[any](service1) - retrieves the service from the container by token
// 2. ChainResultK(result.InstanceOf[Service1]) - safely casts from any to Service1
// This conversion provides type safety when moving from the untyped container to typed handlers.
var lookupService1 = F.Flow2(
Read[any](service1),
thunk.ChainResultK(result.InstanceOf[Service1]),
)
// lookupService2 is a lookup method for Service2, following the same pattern as lookupService1.
// It retrieves Service2 from the container and safely casts it to the correct type.
var lookupService2 = F.Flow2(
Read[any](service2),
thunk.ChainResultK(result.InstanceOf[Service2]),
)
// lookupComplexService demonstrates applicative composition for complex dependency injection.
// It builds a ComplexService by composing multiple service lookups:
// 1. Do[InjectionContainer](ComplexService{}) - starts with an empty ComplexService in the Effect context
// 2. ApSL(complexServiceLenses.service1, lookupService1) - looks up Service1 and sets it using the lens
// 3. ApSL(complexServiceLenses.service2, lookupService2) - looks up Service2 and sets it using the lens
//
// This applicative style allows parallel composition of independent dependencies,
// building the complete ComplexService from its constituent parts in a type-safe way.
var lookupComplexService = F.Pipe2(
Do[InjectionContainer](ComplexService{}),
ApSL(complexServiceLenses.service1, lookupService1),
ApSL(complexServiceLenses.service2, lookupService2),
)
// handleResult is a curried function that combines results from two services.
// It demonstrates how to compose the outputs of multiple effects into a final result.
// The curried form allows it to be used with applicative composition (ApS).
func handleResult(s1 string) func(string) string {
return func(s2 string) string {
return fmt.Sprintf("Final Result: %s : %s", s1, s2)
}
}
// TestDependencyLookup demonstrates both simple and complex dependency injection patterns:
//
// Simple Pattern (handle1):
// 1. Create an InjectionContainer with registered services
// 2. Define a handler (handleService1) that depends on a single typed service interface
// 3. Use a lookup method (lookupService1) to resolve the dependency from the container
// 4. Compose the handler with the lookup using LocalThunkK to inject the dependency
//
// Complex Pattern (handleComplex):
// 1. Define a handler (handleComplexService) that depends on a composite service (ComplexService)
// 2. Use applicative composition (lookupComplexService) to build the composite from multiple lookups
// 3. Each sub-dependency is resolved independently and combined using lenses
// 4. LocalThunkK injects the complete composite dependency into the handler
//
// Service Composition:
// - ApS combines the results of handle1 and handleComplex using handleResult
// - This demonstrates how to compose multiple independent effects that share the same container
// - The final result aggregates outputs from both simple and complex dependency patterns
func TestDependencyLookup(t *testing.T) {
// Create the dependency injection container
container := makeSampleInjectionContainer()
// Simple dependency injection: single service lookup
// LocalThunkK transforms the handler to work with the container
handle1 := F.Pipe1(
handleService1(),
LocalThunkK[string](lookupService1),
)
// Complex dependency injection: composite service with multiple dependencies
// lookupComplexService uses applicative composition to build ComplexService
handleComplex := F.Pipe1(
handleComplexService(),
LocalThunkK[string](lookupComplexService),
)
// Compose both services using applicative style
// ApS applies handleResult to combine outputs from handle1 and handleComplex
result := F.Pipe1(
handle1,
ApS(handleResult, handleComplex),
)
// Execute: provide container, then context, then run the IO operation
res := result(container)(t.Context())()
fmt.Println(res)
}

14
v2/effect/monoid.go Normal file
View File

@@ -0,0 +1,14 @@
package effect
import (
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/monoid"
)
func ApplicativeMonoid[C, A any](m monoid.Monoid[A]) Monoid[Effect[C, A]] {
return readerreaderioresult.ApplicativeMonoid[C](m)
}
func AlternativeMonoid[C, A any](m monoid.Monoid[A]) Monoid[Effect[C, A]] {
return readerreaderioresult.AlternativeMonoid[C](m)
}

350
v2/effect/monoid_test.go Normal file
View File

@@ -0,0 +1,350 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"errors"
"testing"
"github.com/IBM/fp-go/v2/monoid"
"github.com/stretchr/testify/assert"
)
func TestApplicativeMonoid(t *testing.T) {
t.Run("combines successful effects with string monoid", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := ApplicativeMonoid[TestContext](stringMonoid)
eff1 := Of[TestContext]("Hello")
eff2 := Of[TestContext](" ")
eff3 := Of[TestContext]("World")
combined := effectMonoid.Concat(eff1, effectMonoid.Concat(eff2, eff3))
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Hello World", result)
})
t.Run("combines successful effects with int monoid", func(t *testing.T) {
intMonoid := monoid.MakeMonoid(
func(a, b int) int { return a + b },
0,
)
effectMonoid := ApplicativeMonoid[TestContext](intMonoid)
eff1 := Of[TestContext](10)
eff2 := Of[TestContext](20)
eff3 := Of[TestContext](30)
combined := effectMonoid.Concat(eff1, effectMonoid.Concat(eff2, eff3))
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 60, result)
})
t.Run("returns empty value for empty monoid", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"empty",
)
effectMonoid := ApplicativeMonoid[TestContext](stringMonoid)
result, err := runEffect(effectMonoid.Empty(), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "empty", result)
})
t.Run("propagates first error", func(t *testing.T) {
expectedErr := errors.New("first error")
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := ApplicativeMonoid[TestContext](stringMonoid)
eff1 := Fail[TestContext, string](expectedErr)
eff2 := Of[TestContext]("World")
combined := effectMonoid.Concat(eff1, eff2)
_, err := runEffect(combined, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("propagates second error", func(t *testing.T) {
expectedErr := errors.New("second error")
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := ApplicativeMonoid[TestContext](stringMonoid)
eff1 := Of[TestContext]("Hello")
eff2 := Fail[TestContext, string](expectedErr)
combined := effectMonoid.Concat(eff1, eff2)
_, err := runEffect(combined, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("combines multiple effects", func(t *testing.T) {
intMonoid := monoid.MakeMonoid(
func(a, b int) int { return a * b },
1,
)
effectMonoid := ApplicativeMonoid[TestContext](intMonoid)
effects := []Effect[TestContext, int]{
Of[TestContext](2),
Of[TestContext](3),
Of[TestContext](4),
Of[TestContext](5),
}
combined := effectMonoid.Empty()
for _, eff := range effects {
combined = effectMonoid.Concat(combined, eff)
}
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 120, result) // 1 * 2 * 3 * 4 * 5
})
t.Run("works with custom types", func(t *testing.T) {
type Counter struct {
Count int
}
counterMonoid := monoid.MakeMonoid(
func(a, b Counter) Counter {
return Counter{Count: a.Count + b.Count}
},
Counter{Count: 0},
)
effectMonoid := ApplicativeMonoid[TestContext](counterMonoid)
eff1 := Of[TestContext](Counter{Count: 5})
eff2 := Of[TestContext](Counter{Count: 10})
eff3 := Of[TestContext](Counter{Count: 15})
combined := effectMonoid.Concat(eff1, effectMonoid.Concat(eff2, eff3))
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 30, result.Count)
})
}
func TestAlternativeMonoid(t *testing.T) {
t.Run("combines successful effects with monoid", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := AlternativeMonoid[TestContext](stringMonoid)
eff1 := Of[TestContext]("First")
eff2 := Of[TestContext]("Second")
combined := effectMonoid.Concat(eff1, eff2)
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "FirstSecond", result) // Alternative still combines when both succeed
})
t.Run("tries second effect if first fails", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := AlternativeMonoid[TestContext](stringMonoid)
eff1 := Fail[TestContext, string](errors.New("first failed"))
eff2 := Of[TestContext]("Second")
combined := effectMonoid.Concat(eff1, eff2)
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "Second", result)
})
t.Run("returns error if all effects fail", func(t *testing.T) {
expectedErr := errors.New("second error")
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"",
)
effectMonoid := AlternativeMonoid[TestContext](stringMonoid)
eff1 := Fail[TestContext, string](errors.New("first error"))
eff2 := Fail[TestContext, string](expectedErr)
combined := effectMonoid.Concat(eff1, eff2)
_, err := runEffect(combined, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("returns empty value for empty monoid", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + b },
"default",
)
effectMonoid := AlternativeMonoid[TestContext](stringMonoid)
result, err := runEffect(effectMonoid.Empty(), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "default", result)
})
t.Run("chains multiple alternatives", func(t *testing.T) {
intMonoid := monoid.MakeMonoid(
func(a, b int) int { return a + b },
0,
)
effectMonoid := AlternativeMonoid[TestContext](intMonoid)
eff1 := Fail[TestContext, int](errors.New("error 1"))
eff2 := Fail[TestContext, int](errors.New("error 2"))
eff3 := Of[TestContext](42)
eff4 := Of[TestContext](100)
combined := effectMonoid.Concat(
effectMonoid.Concat(eff1, eff2),
effectMonoid.Concat(eff3, eff4),
)
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 142, result) // Combines successful values: 42 + 100
})
t.Run("works with custom types", func(t *testing.T) {
type Result struct {
Value string
Code int
}
resultMonoid := monoid.MakeMonoid(
func(a, b Result) Result {
return Result{Value: a.Value + b.Value, Code: a.Code + b.Code}
},
Result{Value: "", Code: 0},
)
effectMonoid := AlternativeMonoid[TestContext](resultMonoid)
eff1 := Fail[TestContext, Result](errors.New("failed"))
eff2 := Of[TestContext](Result{Value: "success", Code: 200})
eff3 := Of[TestContext](Result{Value: "backup", Code: 201})
combined := effectMonoid.Concat(effectMonoid.Concat(eff1, eff2), eff3)
result, err := runEffect(combined, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "successbackup", result.Value) // Combines both successful values
assert.Equal(t, 401, result.Code) // 200 + 201
})
}
func TestMonoidComparison(t *testing.T) {
t.Run("ApplicativeMonoid vs AlternativeMonoid with all success", func(t *testing.T) {
stringMonoid := monoid.MakeMonoid(
func(a, b string) string { return a + "," + b },
"",
)
applicativeMonoid := ApplicativeMonoid[TestContext](stringMonoid)
alternativeMonoid := AlternativeMonoid[TestContext](stringMonoid)
eff1 := Of[TestContext]("A")
eff2 := Of[TestContext]("B")
// Applicative combines values
applicativeResult, err1 := runEffect(
applicativeMonoid.Concat(eff1, eff2),
TestContext{Value: "test"},
)
// Alternative takes first
alternativeResult, err2 := runEffect(
alternativeMonoid.Concat(eff1, eff2),
TestContext{Value: "test"},
)
assert.NoError(t, err1)
assert.NoError(t, err2)
assert.Equal(t, "A,B", applicativeResult) // Combined with comma separator
assert.Equal(t, "A,B", alternativeResult) // Also combined (Alternative uses Alt semigroup)
})
t.Run("ApplicativeMonoid vs AlternativeMonoid with failures", func(t *testing.T) {
intMonoid := monoid.MakeMonoid(
func(a, b int) int { return a + b },
0,
)
applicativeMonoid := ApplicativeMonoid[TestContext](intMonoid)
alternativeMonoid := AlternativeMonoid[TestContext](intMonoid)
eff1 := Fail[TestContext, int](errors.New("error 1"))
eff2 := Of[TestContext](42)
// Applicative fails on first error
_, err1 := runEffect(
applicativeMonoid.Concat(eff1, eff2),
TestContext{Value: "test"},
)
// Alternative tries second on first failure
result2, err2 := runEffect(
alternativeMonoid.Concat(eff1, eff2),
TestContext{Value: "test"},
)
assert.Error(t, err1)
assert.NoError(t, err2)
assert.Equal(t, 42, result2)
})
}

14
v2/effect/retry.go Normal file
View File

@@ -0,0 +1,14 @@
package effect
import (
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/retry"
)
func Retrying[C, A any](
policy retry.RetryPolicy,
action Kleisli[C, retry.RetryStatus, A],
check Predicate[Result[A]],
) Effect[C, A] {
return readerreaderioresult.Retrying(policy, action, check)
}

377
v2/effect/retry_test.go Normal file
View File

@@ -0,0 +1,377 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"errors"
"testing"
"time"
"github.com/IBM/fp-go/v2/result"
"github.com/IBM/fp-go/v2/retry"
"github.com/stretchr/testify/assert"
)
func TestRetrying(t *testing.T) {
t.Run("succeeds on first attempt", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(3)
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
return Of[TestContext]("success")
},
func(res Result[string]) bool {
return result.IsLeft(res) // retry on error
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "success", result)
assert.Equal(t, 1, attemptCount)
})
t.Run("retries on failure and eventually succeeds", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(5)
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
if attemptCount < 3 {
return Fail[TestContext, string](errors.New("temporary error"))
}
return Of[TestContext]("success after retries")
},
func(res Result[string]) bool {
return result.IsLeft(res) // retry on error
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "success after retries", result)
assert.Equal(t, 3, attemptCount)
})
t.Run("exhausts retry limit", func(t *testing.T) {
attemptCount := 0
maxRetries := uint(3)
policy := retry.LimitRetries(maxRetries)
eff := Retrying(
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
return Fail[TestContext, string](errors.New("persistent error"))
},
func(res Result[string]) bool {
return result.IsLeft(res) // retry on error
},
)
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, int(maxRetries+1), attemptCount) // initial attempt + retries
})
t.Run("does not retry on success", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(5)
eff := Retrying[TestContext, int](
policy,
func(status retry.RetryStatus) Effect[TestContext, int] {
attemptCount++
return Of[TestContext](42)
},
func(res Result[int]) bool {
return result.IsLeft(res) // retry on error
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 42, result)
assert.Equal(t, 1, attemptCount)
})
t.Run("uses custom retry predicate", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(5)
eff := Retrying[TestContext, int](
policy,
func(status retry.RetryStatus) Effect[TestContext, int] {
attemptCount++
return Of[TestContext](attemptCount * 10)
},
func(res Result[int]) bool {
// Retry if value is less than 30
if result.IsRight(res) {
val, _ := result.Unwrap(res)
return val < 30
}
return true
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 30, result)
assert.Equal(t, 3, attemptCount)
})
t.Run("tracks retry status", func(t *testing.T) {
var statuses []retry.RetryStatus
policy := retry.LimitRetries(3)
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
statuses = append(statuses, status)
if len(statuses) < 3 {
return Fail[TestContext, string](errors.New("retry"))
}
return Of[TestContext]("done")
},
func(res Result[string]) bool {
return result.IsLeft(res)
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "done", result)
assert.Len(t, statuses, 3)
// First attempt has iteration 0
assert.Equal(t, uint(0), statuses[0].IterNumber)
assert.Equal(t, uint(1), statuses[1].IterNumber)
assert.Equal(t, uint(2), statuses[2].IterNumber)
})
t.Run("works with exponential backoff", func(t *testing.T) {
attemptCount := 0
policy := retry.Monoid.Concat(
retry.LimitRetries(3),
retry.ExponentialBackoff(10*time.Millisecond),
)
startTime := time.Now()
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
if attemptCount < 3 {
return Fail[TestContext, string](errors.New("retry"))
}
return Of[TestContext]("success")
},
func(res Result[string]) bool {
return result.IsLeft(res)
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
elapsed := time.Since(startTime)
assert.NoError(t, err)
assert.Equal(t, "success", result)
assert.Equal(t, 3, attemptCount)
// Should have some delay due to backoff
assert.Greater(t, elapsed, 10*time.Millisecond)
})
t.Run("combines with other effect operations", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(3)
eff := Map[TestContext](func(s string) string {
return "mapped: " + s
})(Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
if attemptCount < 2 {
return Fail[TestContext, string](errors.New("retry"))
}
return Of[TestContext]("success")
},
func(res Result[string]) bool {
return result.IsLeft(res)
},
))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "mapped: success", result)
assert.Equal(t, 2, attemptCount)
})
t.Run("retries with different error types", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(5)
errors := []error{
errors.New("error 1"),
errors.New("error 2"),
errors.New("error 3"),
}
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
if attemptCount < len(errors) {
err := errors[attemptCount]
attemptCount++
return Fail[TestContext, string](err)
}
attemptCount++
return Of[TestContext]("finally succeeded")
},
func(res Result[string]) bool {
return result.IsLeft(res)
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "finally succeeded", result)
assert.Equal(t, 4, attemptCount)
})
t.Run("no retry when predicate returns false", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(5)
eff := Retrying(
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
return Fail[TestContext, string](errors.New("error"))
},
func(res Result[string]) bool {
return false // never retry
},
)
_, err := runEffect(eff, TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, 1, attemptCount) // only initial attempt
})
t.Run("retries with context access", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(3)
ctx := TestContext{Value: "retry-context"}
eff := Retrying[TestContext, string](
policy,
func(status retry.RetryStatus) Effect[TestContext, string] {
attemptCount++
if attemptCount < 2 {
return Fail[TestContext, string](errors.New("retry"))
}
return Of[TestContext]("success with context")
},
func(res Result[string]) bool {
return result.IsLeft(res)
},
)
result, err := runEffect(eff, ctx)
assert.NoError(t, err)
assert.Equal(t, "success with context", result)
assert.Equal(t, 2, attemptCount)
})
}
func TestRetryingWithComplexScenarios(t *testing.T) {
t.Run("retry with state accumulation", func(t *testing.T) {
type State struct {
Attempts []int
Value string
}
policy := retry.LimitRetries(4)
eff := Retrying[TestContext, State](
policy,
func(status retry.RetryStatus) Effect[TestContext, State] {
state := State{
Attempts: make([]int, status.IterNumber+1),
Value: "attempt",
}
for i := uint(0); i <= status.IterNumber; i++ {
state.Attempts[i] = int(i)
}
if status.IterNumber < 2 {
return Fail[TestContext, State](errors.New("retry"))
}
return Of[TestContext](state)
},
func(res Result[State]) bool {
return result.IsLeft(res)
},
)
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "attempt", result.Value)
assert.Equal(t, []int{0, 1, 2}, result.Attempts)
})
t.Run("retry with chain operations", func(t *testing.T) {
attemptCount := 0
policy := retry.LimitRetries(3)
eff := Chain(func(x int) Effect[TestContext, string] {
return Of[TestContext]("final: " + string(rune('0'+x)))
})(Retrying[TestContext, int](
policy,
func(status retry.RetryStatus) Effect[TestContext, int] {
attemptCount++
if attemptCount < 2 {
return Fail[TestContext, int](errors.New("retry"))
}
return Of[TestContext](attemptCount)
},
func(res Result[int]) bool {
return result.IsLeft(res)
},
))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Contains(t, result, "final:")
})
}

19
v2/effect/run.go Normal file
View File

@@ -0,0 +1,19 @@
package effect
import (
"context"
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/idiomatic/context/readerresult"
"github.com/IBM/fp-go/v2/result"
)
func Provide[C, A any](c C) func(Effect[C, A]) ReaderIOResult[A] {
return readerreaderioresult.Read[A](c)
}
func RunSync[A any](fa ReaderIOResult[A]) readerresult.ReaderResult[A] {
return func(ctx context.Context) (A, error) {
return result.Unwrap(fa(ctx)())
}
}

326
v2/effect/run_test.go Normal file
View File

@@ -0,0 +1,326 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"context"
"errors"
"testing"
"github.com/stretchr/testify/assert"
)
func TestProvide(t *testing.T) {
t.Run("provides context to effect", func(t *testing.T) {
ctx := TestContext{Value: "test-value"}
eff := Of[TestContext]("result")
ioResult := Provide[TestContext, string](ctx)(eff)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "result", result)
})
t.Run("provides context with specific values", func(t *testing.T) {
type Config struct {
Host string
Port int
}
cfg := Config{Host: "localhost", Port: 8080}
eff := Of[Config]("connected")
ioResult := Provide[Config, string](cfg)(eff)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "connected", result)
})
t.Run("propagates errors", func(t *testing.T) {
expectedErr := errors.New("provide error")
ctx := TestContext{Value: "test"}
eff := Fail[TestContext, string](expectedErr)
ioResult := Provide[TestContext, string](ctx)(eff)
readerResult := RunSync(ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("works with different context types", func(t *testing.T) {
type SimpleContext struct {
ID int
}
ctx := SimpleContext{ID: 42}
eff := Of[SimpleContext](100)
ioResult := Provide[SimpleContext, int](ctx)(eff)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, 100, result)
})
t.Run("provides context to chained effects", func(t *testing.T) {
ctx := TestContext{Value: "base"}
eff := Chain(func(x int) Effect[TestContext, string] {
return Of[TestContext]("result")
})(Of[TestContext](42))
ioResult := Provide[TestContext, string](ctx)(eff)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "result", result)
})
t.Run("provides context to mapped effects", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Map[TestContext](func(x int) string {
return "mapped"
})(Of[TestContext](42))
ioResult := Provide[TestContext, string](ctx)(eff)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, "mapped", result)
})
}
func TestRunSync(t *testing.T) {
t.Run("runs effect synchronously", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Of[TestContext](42)
ioResult := Provide[TestContext, int](ctx)(eff)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, 42, result)
})
t.Run("runs effect with context.Context", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Of[TestContext]("hello")
ioResult := Provide[TestContext, string](ctx)(eff)
readerResult := RunSync(ioResult)
bgCtx := context.Background()
result, err := readerResult(bgCtx)
assert.NoError(t, err)
assert.Equal(t, "hello", result)
})
t.Run("propagates errors synchronously", func(t *testing.T) {
expectedErr := errors.New("sync error")
ctx := TestContext{Value: "test"}
eff := Fail[TestContext, int](expectedErr)
ioResult := Provide[TestContext, int](ctx)(eff)
readerResult := RunSync(ioResult)
_, err := readerResult(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("runs complex effect chains", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Chain(func(x int) Effect[TestContext, int] {
return Of[TestContext](x * 2)
})(Chain(func(x int) Effect[TestContext, int] {
return Of[TestContext](x + 10)
})(Of[TestContext](5)))
ioResult := Provide[TestContext, int](ctx)(eff)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, 30, result) // (5 + 10) * 2
})
t.Run("handles multiple sequential runs", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Of[TestContext](42)
ioResult := Provide[TestContext, int](ctx)(eff)
readerResult := RunSync(ioResult)
// Run multiple times
result1, err1 := readerResult(context.Background())
result2, err2 := readerResult(context.Background())
result3, err3 := readerResult(context.Background())
assert.NoError(t, err1)
assert.NoError(t, err2)
assert.NoError(t, err3)
assert.Equal(t, 42, result1)
assert.Equal(t, 42, result2)
assert.Equal(t, 42, result3)
})
t.Run("works with different result types", func(t *testing.T) {
type User struct {
Name string
Age int
}
ctx := TestContext{Value: "test"}
user := User{Name: "Alice", Age: 30}
eff := Of[TestContext](user)
ioResult := Provide[TestContext, User](ctx)(eff)
readerResult := RunSync(ioResult)
result, err := readerResult(context.Background())
assert.NoError(t, err)
assert.Equal(t, user, result)
})
}
func TestProvideAndRunSyncIntegration(t *testing.T) {
t.Run("complete workflow with success", func(t *testing.T) {
type AppConfig struct {
APIKey string
Timeout int
}
cfg := AppConfig{APIKey: "secret", Timeout: 30}
// Create an effect that uses the config
eff := Of[AppConfig]("API call successful")
// Provide config and run
result, err := RunSync(Provide[AppConfig, string](cfg)(eff))(context.Background())
assert.NoError(t, err)
assert.Equal(t, "API call successful", result)
})
t.Run("complete workflow with error", func(t *testing.T) {
type AppConfig struct {
APIKey string
}
expectedErr := errors.New("API error")
cfg := AppConfig{APIKey: "secret"}
eff := Fail[AppConfig, string](expectedErr)
_, err := RunSync(Provide[AppConfig, string](cfg)(eff))(context.Background())
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("workflow with transformations", func(t *testing.T) {
ctx := TestContext{Value: "test"}
eff := Map[TestContext](func(x int) string {
return "final"
})(Chain(func(x int) Effect[TestContext, int] {
return Of[TestContext](x * 2)
})(Of[TestContext](21)))
result, err := RunSync(Provide[TestContext, string](ctx)(eff))(context.Background())
assert.NoError(t, err)
assert.Equal(t, "final", result)
})
t.Run("workflow with bind operations", func(t *testing.T) {
type State struct {
X int
Y int
}
ctx := TestContext{Value: "test"}
eff := Bind(
func(y int) func(State) State {
return func(s State) State {
s.Y = y
return s
}
},
func(s State) Effect[TestContext, int] {
return Of[TestContext](s.X * 2)
},
)(BindTo[TestContext](func(x int) State {
return State{X: x}
})(Of[TestContext](10)))
result, err := RunSync(Provide[TestContext, State](ctx)(eff))(context.Background())
assert.NoError(t, err)
assert.Equal(t, 10, result.X)
assert.Equal(t, 20, result.Y)
})
t.Run("workflow with context transformation", func(t *testing.T) {
type OuterCtx struct {
Value string
}
type InnerCtx struct {
Data string
}
outerCtx := OuterCtx{Value: "outer"}
innerEff := Of[InnerCtx]("inner result")
// Transform context
transformedEff := Local[OuterCtx, InnerCtx, string](func(outer OuterCtx) InnerCtx {
return InnerCtx{Data: outer.Value + "-transformed"}
})(innerEff)
result, err := RunSync(Provide[OuterCtx, string](outerCtx)(transformedEff))(context.Background())
assert.NoError(t, err)
assert.Equal(t, "inner result", result)
})
t.Run("workflow with array traversal", func(t *testing.T) {
ctx := TestContext{Value: "test"}
input := []int{1, 2, 3, 4, 5}
eff := TraverseArray(func(x int) Effect[TestContext, int] {
return Of[TestContext](x * 2)
})(input)
result, err := RunSync(Provide[TestContext, []int](ctx)(eff))(context.Background())
assert.NoError(t, err)
assert.Equal(t, []int{2, 4, 6, 8, 10}, result)
})
}

7
v2/effect/traverse.go Normal file
View File

@@ -0,0 +1,7 @@
package effect
import "github.com/IBM/fp-go/v2/context/readerreaderioresult"
func TraverseArray[C, A, B any](f Kleisli[C, A, B]) Kleisli[C, []A, []B] {
return readerreaderioresult.TraverseArray(f)
}

266
v2/effect/traverse_test.go Normal file
View File

@@ -0,0 +1,266 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package effect
import (
"errors"
"fmt"
"strconv"
"testing"
"github.com/stretchr/testify/assert"
)
func TestTraverseArray(t *testing.T) {
t.Run("traverses empty array", func(t *testing.T) {
input := []int{}
kleisli := TraverseArray(func(x int) Effect[TestContext, string] {
return Of[TestContext](strconv.Itoa(x))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Empty(t, result)
})
t.Run("traverses array with single element", func(t *testing.T) {
input := []int{42}
kleisli := TraverseArray(func(x int) Effect[TestContext, string] {
return Of[TestContext](strconv.Itoa(x))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []string{"42"}, result)
})
t.Run("traverses array with multiple elements", func(t *testing.T) {
input := []int{1, 2, 3, 4, 5}
kleisli := TraverseArray(func(x int) Effect[TestContext, string] {
return Of[TestContext](strconv.Itoa(x))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []string{"1", "2", "3", "4", "5"}, result)
})
t.Run("transforms to different type", func(t *testing.T) {
input := []string{"hello", "world", "test"}
kleisli := TraverseArray(func(s string) Effect[TestContext, int] {
return Of[TestContext](len(s))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []int{5, 5, 4}, result)
})
t.Run("stops on first error", func(t *testing.T) {
expectedErr := errors.New("traverse error")
input := []int{1, 2, 3, 4, 5}
kleisli := TraverseArray(func(x int) Effect[TestContext, string] {
if x == 3 {
return Fail[TestContext, string](expectedErr)
}
return Of[TestContext](strconv.Itoa(x))
})
_, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("handles complex transformations", func(t *testing.T) {
type User struct {
ID int
Name string
}
input := []int{1, 2, 3}
kleisli := TraverseArray(func(id int) Effect[TestContext, User] {
return Of[TestContext](User{
ID: id,
Name: fmt.Sprintf("User%d", id),
})
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Len(t, result, 3)
assert.Equal(t, 1, result[0].ID)
assert.Equal(t, "User1", result[0].Name)
assert.Equal(t, 2, result[1].ID)
assert.Equal(t, "User2", result[1].Name)
assert.Equal(t, 3, result[2].ID)
assert.Equal(t, "User3", result[2].Name)
})
t.Run("chains with other operations", func(t *testing.T) {
input := []int{1, 2, 3}
eff := Chain(func(strings []string) Effect[TestContext, int] {
total := 0
for _, s := range strings {
val, _ := strconv.Atoi(s)
total += val
}
return Of[TestContext](total)
})(TraverseArray(func(x int) Effect[TestContext, string] {
return Of[TestContext](strconv.Itoa(x * 2))
})(input))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, 12, result) // (1*2) + (2*2) + (3*2) = 2 + 4 + 6 = 12
})
t.Run("uses context in transformation", func(t *testing.T) {
input := []int{1, 2, 3}
kleisli := TraverseArray(func(x int) Effect[TestContext, string] {
return Chain(func(ctx TestContext) Effect[TestContext, string] {
return Of[TestContext](fmt.Sprintf("%s-%d", ctx.Value, x))
})(Of[TestContext](TestContext{Value: "prefix"}))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []string{"prefix-1", "prefix-2", "prefix-3"}, result)
})
t.Run("preserves order", func(t *testing.T) {
input := []int{5, 3, 8, 1, 9, 2}
kleisli := TraverseArray(func(x int) Effect[TestContext, int] {
return Of[TestContext](x * 10)
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []int{50, 30, 80, 10, 90, 20}, result)
})
t.Run("handles large arrays", func(t *testing.T) {
size := 1000
input := make([]int, size)
for i := 0; i < size; i++ {
input[i] = i
}
kleisli := TraverseArray(func(x int) Effect[TestContext, int] {
return Of[TestContext](x * 2)
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Len(t, result, size)
assert.Equal(t, 0, result[0])
assert.Equal(t, 1998, result[999])
})
t.Run("composes multiple traversals", func(t *testing.T) {
input := []int{1, 2, 3}
// First traversal: int -> string
kleisli1 := TraverseArray(func(x int) Effect[TestContext, string] {
return Of[TestContext](strconv.Itoa(x))
})
// Second traversal: string -> int (length)
kleisli2 := TraverseArray(func(s string) Effect[TestContext, int] {
return Of[TestContext](len(s))
})
eff := Chain(kleisli2)(kleisli1(input))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, []int{1, 1, 1}, result) // All single-digit numbers have length 1
})
t.Run("handles nil array", func(t *testing.T) {
var input []int
kleisli := TraverseArray(func(x int) Effect[TestContext, string] {
return Of[TestContext](strconv.Itoa(x))
})
result, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.NoError(t, err)
assert.Empty(t, result) // TraverseArray returns empty slice for nil input
})
t.Run("works with Map for post-processing", func(t *testing.T) {
input := []int{1, 2, 3}
eff := Map[TestContext](func(strings []string) string {
result := ""
for _, s := range strings {
result += s + ","
}
return result
})(TraverseArray(func(x int) Effect[TestContext, string] {
return Of[TestContext](strconv.Itoa(x))
})(input))
result, err := runEffect(eff, TestContext{Value: "test"})
assert.NoError(t, err)
assert.Equal(t, "1,2,3,", result)
})
t.Run("error in middle of array", func(t *testing.T) {
expectedErr := errors.New("middle error")
input := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
kleisli := TraverseArray(func(x int) Effect[TestContext, string] {
if x == 5 {
return Fail[TestContext, string](expectedErr)
}
return Of[TestContext](strconv.Itoa(x))
})
_, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
t.Run("error at end of array", func(t *testing.T) {
expectedErr := errors.New("end error")
input := []int{1, 2, 3, 4, 5}
kleisli := TraverseArray(func(x int) Effect[TestContext, string] {
if x == 5 {
return Fail[TestContext, string](expectedErr)
}
return Of[TestContext](strconv.Itoa(x))
})
_, err := runEffect(kleisli(input), TestContext{Value: "test"})
assert.Error(t, err)
assert.Equal(t, expectedErr, err)
})
}

37
v2/effect/types.go Normal file
View File

@@ -0,0 +1,37 @@
package effect
import (
"github.com/IBM/fp-go/v2/context/readerioresult"
"github.com/IBM/fp-go/v2/context/readerreaderioresult"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/ioeither"
"github.com/IBM/fp-go/v2/ioresult"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/optics/lens"
"github.com/IBM/fp-go/v2/predicate"
"github.com/IBM/fp-go/v2/reader"
"github.com/IBM/fp-go/v2/readerio"
"github.com/IBM/fp-go/v2/result"
)
type (
Either[E, A any] = either.Either[E, A]
Reader[R, A any] = reader.Reader[R, A]
ReaderIO[R, A any] = readerio.ReaderIO[R, A]
IO[A any] = io.IO[A]
IOEither[E, A any] = ioeither.IOEither[E, A]
Lazy[A any] = lazy.Lazy[A]
IOResult[A any] = ioresult.IOResult[A]
ReaderIOResult[A any] = readerioresult.ReaderIOResult[A]
Monoid[A any] = monoid.Monoid[A]
Effect[C, A any] = readerreaderioresult.ReaderReaderIOResult[C, A]
Thunk[A any] = ReaderIOResult[A]
Predicate[A any] = predicate.Predicate[A]
Result[A any] = result.Result[A]
Lens[S, T any] = lens.Lens[S, T]
Kleisli[C, A, B any] = readerreaderioresult.Kleisli[C, A, B]
Operator[C, A, B any] = readerreaderioresult.Operator[C, A, B]
)

View File

@@ -188,6 +188,81 @@ func MonadChain[E, A, B any](fa Either[E, A], f Kleisli[E, A, B]) Either[E, B] {
return f(fa.r)
}
// MonadChainLeft sequences a computation on the Left (error) value, allowing error recovery or transformation.
// If the Either is Left, applies the provided function to the error value, which returns a new Either.
// If the Either is Right, returns the Right value unchanged with the new error type.
//
// This is the dual of [MonadChain] - while MonadChain operates on Right values (success),
// MonadChainLeft operates on Left values (errors). It's useful for error recovery, error transformation,
// or chaining alternative computations when an error occurs.
//
// Note: MonadChainLeft is identical to [OrElse] - both provide the same functionality for error recovery.
//
// The error type can be transformed from EA to EB, allowing flexible error type conversions.
//
// Example:
//
// // Error recovery: convert specific errors to success
// result := either.MonadChainLeft(
// either.Left[int](errors.New("not found")),
// func(err error) either.Either[string, int] {
// if err.Error() == "not found" {
// return either.Right[string](0) // default value
// }
// return either.Left[int](err.Error()) // transform error
// },
// ) // Right(0)
//
// // Error transformation: change error type
// result := either.MonadChainLeft(
// either.Left[int](404),
// func(code int) either.Either[string, int] {
// return either.Left[int](fmt.Sprintf("Error code: %d", code))
// },
// ) // Left("Error code: 404")
//
// // Right values pass through unchanged
// result := either.MonadChainLeft(
// either.Right[error](42),
// func(err error) either.Either[string, int] {
// return either.Left[int]("error")
// },
// ) // Right(42)
//
//go:inline
func MonadChainLeft[EA, EB, A any](fa Either[EA, A], f Kleisli[EB, EA, A]) Either[EB, A] {
return MonadFold(fa, f, Of[EB])
}
// ChainLeft is the curried version of [MonadChainLeft].
// Returns a function that sequences a computation on the Left (error) value.
//
// Note: ChainLeft is identical to [OrElse] - both provide the same functionality for error recovery.
//
// This is useful for creating reusable error handlers or transformers that can be
// composed with other Either operations using pipes or function composition.
//
// Example:
//
// // Create a reusable error handler
// handleNotFound := either.ChainLeft[error, string](func(err error) either.Either[string, int] {
// if err.Error() == "not found" {
// return either.Right[string](0)
// }
// return either.Left[int](err.Error())
// })
//
// // Use in a pipeline
// result := F.Pipe1(
// either.Left[int](errors.New("not found")),
// handleNotFound,
// ) // Right(0)
//
//go:inline
func ChainLeft[EA, EB, A any](f Kleisli[EB, EA, A]) Kleisli[EB, Either[EA, A], A] {
return Fold(f, Of[EB])
}
// MonadChainFirst executes a side-effect computation but returns the original value.
// Useful for performing actions (like logging) without changing the value.
//
@@ -471,6 +546,8 @@ func Alt[E, A any](that Lazy[Either[E, A]]) Operator[E, A, A] {
// If the Either is Left, it applies the provided function to the error value,
// which returns a new Either that replaces the original.
//
// Note: OrElse is identical to [ChainLeft] - both provide the same functionality for error recovery.
//
// This is useful for error recovery, fallback logic, or chaining alternative computations.
// The error type can be widened from E1 to E2, allowing transformation of error types.
//
@@ -504,7 +581,7 @@ func ToType[A, E any](onError func(any) E) func(any) Either[E, A] {
return func(value any) Either[E, A] {
return F.Pipe2(
value,
O.ToType[A],
O.InstanceOf[A],
O.Fold(F.Nullary3(F.Constant(value), onError, Left[A, E]), Right[E, A]),
)
}

View File

@@ -124,79 +124,52 @@ func TestStringer(t *testing.T) {
func TestZeroWithIntegers(t *testing.T) {
e := Zero[error, int]()
assert.True(t, IsRight(e), "Zero should create a Right value")
assert.False(t, IsLeft(e), "Zero should not create a Left value")
value, err := Unwrap(e)
assert.Equal(t, 0, value, "Right value should be zero for int")
assert.Nil(t, err, "Error should be nil for Right value")
assert.Equal(t, Of[error](0), e, "Zero should create a Right value with zero for int")
}
// TestZeroWithStrings tests Zero function with string types
func TestZeroWithStrings(t *testing.T) {
e := Zero[error, string]()
assert.True(t, IsRight(e), "Zero should create a Right value")
assert.False(t, IsLeft(e), "Zero should not create a Left value")
value, err := Unwrap(e)
assert.Equal(t, "", value, "Right value should be empty string")
assert.Nil(t, err, "Error should be nil for Right value")
assert.Equal(t, Of[error](""), e, "Zero should create a Right value with empty string")
}
// TestZeroWithBooleans tests Zero function with boolean types
func TestZeroWithBooleans(t *testing.T) {
e := Zero[error, bool]()
assert.True(t, IsRight(e), "Zero should create a Right value")
value, err := Unwrap(e)
assert.Equal(t, false, value, "Right value should be false for bool")
assert.Nil(t, err, "Error should be nil for Right value")
assert.Equal(t, Of[error](false), e, "Zero should create a Right value with false for bool")
}
// TestZeroWithFloats tests Zero function with float types
func TestZeroWithFloats(t *testing.T) {
e := Zero[error, float64]()
assert.True(t, IsRight(e), "Zero should create a Right value")
value, err := Unwrap(e)
assert.Equal(t, 0.0, value, "Right value should be 0.0 for float64")
assert.Nil(t, err, "Error should be nil for Right value")
assert.Equal(t, Of[error](0.0), e, "Zero should create a Right value with 0.0 for float64")
}
// TestZeroWithPointers tests Zero function with pointer types
func TestZeroWithPointers(t *testing.T) {
e := Zero[error, *int]()
assert.True(t, IsRight(e), "Zero should create a Right value")
value, err := Unwrap(e)
assert.Nil(t, value, "Right value should be nil for pointer type")
assert.Nil(t, err, "Error should be nil for Right value")
var nilPtr *int
assert.Equal(t, Of[error](nilPtr), e, "Zero should create a Right value with nil pointer")
}
// TestZeroWithSlices tests Zero function with slice types
func TestZeroWithSlices(t *testing.T) {
e := Zero[error, []int]()
assert.True(t, IsRight(e), "Zero should create a Right value")
value, err := Unwrap(e)
assert.Nil(t, value, "Right value should be nil for slice type")
assert.Nil(t, err, "Error should be nil for Right value")
var nilSlice []int
assert.Equal(t, Of[error](nilSlice), e, "Zero should create a Right value with nil slice")
}
// TestZeroWithMaps tests Zero function with map types
func TestZeroWithMaps(t *testing.T) {
e := Zero[error, map[string]int]()
assert.True(t, IsRight(e), "Zero should create a Right value")
value, err := Unwrap(e)
assert.Nil(t, value, "Right value should be nil for map type")
assert.Nil(t, err, "Error should be nil for Right value")
var nilMap map[string]int
assert.Equal(t, Of[error](nilMap), e, "Zero should create a Right value with nil map")
}
// TestZeroWithStructs tests Zero function with struct types
@@ -208,23 +181,16 @@ func TestZeroWithStructs(t *testing.T) {
e := Zero[error, TestStruct]()
assert.True(t, IsRight(e), "Zero should create a Right value")
value, err := Unwrap(e)
expected := TestStruct{Field1: 0, Field2: ""}
assert.Equal(t, expected, value, "Right value should be zero value for struct")
assert.Nil(t, err, "Error should be nil for Right value")
assert.Equal(t, Of[error](expected), e, "Zero should create a Right value with zero value for struct")
}
// TestZeroWithInterfaces tests Zero function with interface types
func TestZeroWithInterfaces(t *testing.T) {
e := Zero[error, interface{}]()
assert.True(t, IsRight(e), "Zero should create a Right value")
value, err := Unwrap(e)
assert.Nil(t, value, "Right value should be nil for interface type")
assert.Nil(t, err, "Error should be nil for Right value")
var nilInterface interface{}
assert.Equal(t, Of[error](nilInterface), e, "Zero should create a Right value with nil interface")
}
// TestZeroWithCustomErrorType tests Zero function with custom error types
@@ -236,12 +202,7 @@ func TestZeroWithCustomErrorType(t *testing.T) {
e := Zero[CustomError, string]()
assert.True(t, IsRight(e), "Zero should create a Right value")
assert.False(t, IsLeft(e), "Zero should not create a Left value")
value, err := Unwrap(e)
assert.Equal(t, "", value, "Right value should be empty string")
assert.Equal(t, CustomError{Code: 0, Message: ""}, err, "Error should be zero value for CustomError")
assert.Equal(t, Of[CustomError](""), e, "Zero should create a Right value with empty string")
}
// TestZeroCanBeUsedWithOtherFunctions tests that Zero Eithers work with other either functions
@@ -252,17 +213,13 @@ func TestZeroCanBeUsedWithOtherFunctions(t *testing.T) {
mapped := MonadMap(e, func(n int) string {
return fmt.Sprintf("%d", n)
})
assert.True(t, IsRight(mapped), "Mapped Zero should still be Right")
value, _ := Unwrap(mapped)
assert.Equal(t, "0", value, "Mapped value should be '0'")
assert.Equal(t, Of[error]("0"), mapped, "Mapped Zero should be Right with '0'")
// Test with Chain
chained := MonadChain(e, func(n int) Either[error, string] {
return Right[error](fmt.Sprintf("value: %d", n))
})
assert.True(t, IsRight(chained), "Chained Zero should still be Right")
chainedValue, _ := Unwrap(chained)
assert.Equal(t, "value: 0", chainedValue, "Chained value should be 'value: 0'")
assert.Equal(t, Of[error]("value: 0"), chained, "Chained Zero should be Right with 'value: 0'")
// Test with Fold
folded := MonadFold(e,
@@ -295,23 +252,15 @@ func TestZeroWithComplexTypes(t *testing.T) {
e := Zero[error, ComplexType]()
assert.True(t, IsRight(e), "Zero should create a Right value")
value, err := Unwrap(e)
expected := ComplexType{Nested: nil, Ptr: nil}
assert.Equal(t, expected, value, "Right value should be zero value for complex struct")
assert.Nil(t, err, "Error should be nil for Right value")
assert.Equal(t, Of[error](expected), e, "Zero should create a Right value with zero value for complex struct")
}
// TestZeroWithOption tests Zero with Option type
func TestZeroWithOption(t *testing.T) {
e := Zero[error, O.Option[int]]()
assert.True(t, IsRight(e), "Zero should create a Right value")
value, err := Unwrap(e)
assert.True(t, O.IsNone(value), "Right value should be None for Option type")
assert.Nil(t, err, "Error should be nil for Right value")
assert.Equal(t, Of[error](O.None[int]()), e, "Zero should create a Right value with None option")
}
// TestZeroIsNotLeft tests that Zero never creates a Left value
@@ -343,3 +292,211 @@ func TestZeroEqualsDefaultInitialization(t *testing.T) {
assert.Equal(t, IsRight(defaultInit), IsRight(zero), "Both should be Right")
assert.Equal(t, IsLeft(defaultInit), IsLeft(zero), "Both should not be Left")
}
// TestMonadChainLeft tests the MonadChainLeft function with various scenarios
func TestMonadChainLeft(t *testing.T) {
t.Run("Left value is transformed by function", func(t *testing.T) {
// Transform error to success
result := MonadChainLeft(
Left[int](errors.New("not found")),
func(err error) Either[string, int] {
if err.Error() == "not found" {
return Right[string](0) // default value
}
return Left[int](err.Error())
},
)
assert.Equal(t, Of[string](0), result)
})
t.Run("Left value error type is transformed", func(t *testing.T) {
// Transform error type from int to string
result := MonadChainLeft(
Left[int](404),
func(code int) Either[string, int] {
return Left[int](fmt.Sprintf("Error code: %d", code))
},
)
assert.Equal(t, Left[int]("Error code: 404"), result)
})
t.Run("Right value passes through unchanged", func(t *testing.T) {
// Right value should not be affected
result := MonadChainLeft(
Right[error](42),
func(err error) Either[string, int] {
return Left[int]("should not be called")
},
)
assert.Equal(t, Of[string](42), result)
})
t.Run("Chain multiple error transformations", func(t *testing.T) {
// First transformation
step1 := MonadChainLeft(
Left[int](errors.New("error1")),
func(err error) Either[error, int] {
return Left[int](errors.New("error2"))
},
)
// Second transformation
step2 := MonadChainLeft(
step1,
func(err error) Either[string, int] {
return Left[int](err.Error())
},
)
assert.Equal(t, Left[int]("error2"), step2)
})
t.Run("Error recovery with fallback", func(t *testing.T) {
// Recover from specific errors
result := MonadChainLeft(
Left[int](errors.New("timeout")),
func(err error) Either[error, int] {
if err.Error() == "timeout" {
return Right[error](999) // fallback value
}
return Left[int](err)
},
)
assert.Equal(t, Of[error](999), result)
})
t.Run("Transform error to different Left", func(t *testing.T) {
// Transform one error to another
result := MonadChainLeft(
Left[string]("original error"),
func(s string) Either[int, string] {
return Left[string](len(s))
},
)
assert.Equal(t, Left[string](14), result) // length of "original error"
})
}
// TestChainLeft tests the curried ChainLeft function
func TestChainLeft(t *testing.T) {
t.Run("Curried function transforms Left value", func(t *testing.T) {
// Create a reusable error handler
handleNotFound := ChainLeft[error, string](func(err error) Either[string, int] {
if err.Error() == "not found" {
return Right[string](0)
}
return Left[int](err.Error())
})
result := handleNotFound(Left[int](errors.New("not found")))
assert.Equal(t, Of[string](0), result)
})
t.Run("Curried function with Right value", func(t *testing.T) {
handler := ChainLeft[error, string](func(err error) Either[string, int] {
return Left[int]("should not be called")
})
result := handler(Right[error](42))
assert.Equal(t, Of[string](42), result)
})
t.Run("Use in pipeline with Pipe", func(t *testing.T) {
// Create error transformer
toStringError := ChainLeft[int, string](func(code int) Either[string, string] {
return Left[string](fmt.Sprintf("Error: %d", code))
})
result := F.Pipe1(
Left[string](404),
toStringError,
)
assert.Equal(t, Left[string]("Error: 404"), result)
})
t.Run("Compose multiple ChainLeft operations", func(t *testing.T) {
// First handler: convert error to string
handler1 := ChainLeft[error, string](func(err error) Either[string, int] {
return Left[int](err.Error())
})
// Second handler: add prefix to string error
handler2 := ChainLeft[string, string](func(s string) Either[string, int] {
return Left[int]("Handled: " + s)
})
result := F.Pipe2(
Left[int](errors.New("original")),
handler1,
handler2,
)
assert.Equal(t, Left[int]("Handled: original"), result)
})
t.Run("Error recovery in pipeline", func(t *testing.T) {
// Handler that recovers from specific errors
recoverFromTimeout := ChainLeft(func(err error) Either[error, int] {
if err.Error() == "timeout" {
return Right[error](0) // recovered value
}
return Left[int](err) // propagate other errors
})
// Test with timeout error
result1 := F.Pipe1(
Left[int](errors.New("timeout")),
recoverFromTimeout,
)
assert.Equal(t, Of[error](0), result1)
// Test with other error
result2 := F.Pipe1(
Left[int](errors.New("other error")),
recoverFromTimeout,
)
assert.True(t, IsLeft(result2))
})
t.Run("Transform error type in pipeline", func(t *testing.T) {
// Convert numeric error codes to descriptive strings
codeToMessage := ChainLeft(func(code int) Either[string, string] {
messages := map[int]string{
404: "Not Found",
500: "Internal Server Error",
}
if msg, ok := messages[code]; ok {
return Left[string](msg)
}
return Left[string](fmt.Sprintf("Unknown error: %d", code))
})
result := F.Pipe1(
Left[string](404),
codeToMessage,
)
assert.Equal(t, Left[string]("Not Found"), result)
})
t.Run("ChainLeft with Map combination", func(t *testing.T) {
// Combine ChainLeft with Map to handle both channels
errorHandler := ChainLeft(func(err error) Either[string, int] {
return Left[int]("Error: " + err.Error())
})
valueMapper := Map[string](S.Format[int]("Value: %d"))
// Test with Left
result1 := F.Pipe2(
Left[int](errors.New("fail")),
errorHandler,
valueMapper,
)
assert.Equal(t, Left[string]("Error: fail"), result1)
// Test with Right
result2 := F.Pipe2(
Right[error](42),
errorHandler,
valueMapper,
)
assert.Equal(t, Of[string]("Value: 42"), result2)
})
}

View File

@@ -82,7 +82,30 @@ func Bind[S1, S2, T any](
)
}
// Let attaches the result of a computation to a context [S1] to produce a context [S2]
// Let attaches the result of a computation to a context [S1] to produce a context [S2].
// Similar to Bind, but uses the Functor's Map operation instead of the Monad's Chain.
// This is useful when you want to add a computed value to the context without needing
// the full power of monadic composition.
//
// Example:
//
// type State struct {
// X int
// Y int
// Sum int
// }
//
// result := F.Pipe2(
// identity.Do(State{X: 10, Y: 20}),
// identity.Let(
// func(sum int) func(State) State {
// return func(s State) State { s.Sum = sum; return s }
// },
// func(s State) int {
// return s.X + s.Y
// },
// ),
// ) // State{X: 10, Y: 20, Sum: 30}
func Let[S1, S2, T any](
key func(T) func(S1) S2,
f func(S1) T,
@@ -94,7 +117,27 @@ func Let[S1, S2, T any](
)
}
// LetTo attaches the a value to a context [S1] to produce a context [S2]
// LetTo attaches a constant value to a context [S1] to produce a context [S2].
// This is a specialized version of Let that doesn't require a computation function,
// useful when you want to add a known value to the context.
//
// Example:
//
// type State struct {
// X int
// Y int
// Constant string
// }
//
// result := F.Pipe2(
// identity.Do(State{X: 10, Y: 20}),
// identity.LetTo(
// func(c string) func(State) State {
// return func(s State) State { s.Constant = c; return s }
// },
// "fixed value",
// ),
// ) // State{X: 10, Y: 20, Constant: "fixed value"}
func LetTo[S1, S2, B any](
key func(B) func(S1) S2,
b B,
@@ -106,7 +149,31 @@ func LetTo[S1, S2, B any](
)
}
// BindTo initializes a new state [S1] from a value [T]
// BindTo initializes a new state [S1] from a value [T].
// This is typically used as the first operation in a do-notation chain to convert
// a plain value into a context that can be used with subsequent Bind operations.
//
// Example:
//
// type State struct {
// X int
// Y int
// }
//
// result := F.Pipe2(
// 42,
// identity.BindTo(func(x int) State {
// return State{X: x}
// }),
// identity.Bind(
// func(y int) func(State) State {
// return func(s State) State { s.Y = y; return s }
// },
// func(s State) int {
// return s.X * 2
// },
// ),
// ) // State{X: 42, Y: 84}
func BindTo[S1, T any](
setter func(T) S1,
) func(T) S1 {

View File

@@ -29,7 +29,7 @@ func ExampleIOResult_do() {
bar := Of(1)
// quux consumes the state of three bindings and returns an [IO] instead of an [IOResult]
quux := func(t T.Tuple3[string, int, string]) IO[any] {
quux := func(t T.Tuple3[string, int, string]) IO[Void] {
return io.FromImpure(func() {
log.Printf("t1: %s, t2: %d, t3: %s", t.F1, t.F2, t.F3)
})

View File

@@ -45,7 +45,7 @@ func TestBuilderWithQuery(t *testing.T) {
ioresult.Map(func(r *http.Request) *url.URL {
return r.URL
}),
ioresult.ChainFirstIOK(func(u *url.URL) io.IO[any] {
ioresult.ChainFirstIOK(func(u *url.URL) io.IO[Void] {
return io.FromImpure(func() {
q := u.Query()
assert.Equal(t, "10", q.Get("limit"))

View File

@@ -15,8 +15,12 @@
package builder
import "github.com/IBM/fp-go/v2/idiomatic/ioresult"
import (
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/idiomatic/ioresult"
)
type (
IOResult[A any] = ioresult.IOResult[A]
Void = function.Void
)

View File

@@ -76,7 +76,7 @@ func MakeClient(httpClient *http.Client) Client {
}
// ReadFullResponse sends a request, reads the response as a byte array and represents the result as a tuple
func ReadFullResponse(client Client) Kleisli[Requester, H.FullResponse] {
func ReadFullResponse(client Client) Operator[*http.Request, H.FullResponse] {
return F.Flow3(
client.Do,
ioresult.ChainEitherK(H.ValidateResponse),
@@ -101,7 +101,7 @@ func ReadFullResponse(client Client) Kleisli[Requester, H.FullResponse] {
}
// ReadAll sends a request and reads the response as bytes
func ReadAll(client Client) Kleisli[Requester, []byte] {
func ReadAll(client Client) Operator[*http.Request, []byte] {
return F.Flow2(
ReadFullResponse(client),
ioresult.Map(H.Body),
@@ -109,7 +109,7 @@ func ReadAll(client Client) Kleisli[Requester, []byte] {
}
// ReadText sends a request, reads the response and represents the response as a text string
func ReadText(client Client) Kleisli[Requester, string] {
func ReadText(client Client) Operator[*http.Request, string] {
return F.Flow2(
ReadAll(client),
ioresult.Map(B.ToString),
@@ -117,7 +117,7 @@ func ReadText(client Client) Kleisli[Requester, string] {
}
// readJSON sends a request, reads the response and parses the response as a []byte
func readJSON(client Client) Kleisli[Requester, []byte] {
func readJSON(client Client) Operator[*http.Request, []byte] {
return F.Flow3(
ReadFullResponse(client),
ioresult.ChainFirstEitherK(F.Flow2(
@@ -129,7 +129,7 @@ func readJSON(client Client) Kleisli[Requester, []byte] {
}
// ReadJSON sends a request, reads the response and parses the response as JSON
func ReadJSON[A any](client Client) Kleisli[Requester, A] {
func ReadJSON[A any](client Client) Operator[*http.Request, A] {
return F.Flow2(
readJSON(client),
ioresult.ChainEitherK(J.Unmarshal[A]),

View File

@@ -7,9 +7,10 @@ import (
)
type (
IOResult[A any] = ioresult.IOResult[A]
Kleisli[A, B any] = ioresult.Kleisli[A, B]
Requester = IOResult[*http.Request]
IOResult[A any] = ioresult.IOResult[A]
Kleisli[A, B any] = ioresult.Kleisli[A, B]
Operator[A, B any] = ioresult.Operator[A, B]
Requester = IOResult[*http.Request]
Client interface {
Do(Requester) IOResult[*http.Response]

View File

@@ -664,11 +664,11 @@ func WithResource[A, R, ANY any](
// FromImpure converts an impure side-effecting function into an IOResult.
// The function is executed when the IOResult runs, and always succeeds with nil.
func FromImpure(f func()) IOResult[any] {
func FromImpure(f func()) IOResult[Void] {
return function.Pipe2(
f,
io.FromImpure,
FromIO[any],
FromIO[Void],
)
}

View File

@@ -2,6 +2,7 @@ package ioresult
import (
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/predicate"
@@ -39,4 +40,6 @@ type (
Operator[A, B any] = Kleisli[IOResult[A], B]
Predicate[A any] = predicate.Predicate[A]
Void = function.Void
)

View File

@@ -19,6 +19,31 @@ import (
F "github.com/IBM/fp-go/v2/function"
)
// MonadSequenceSegment sequences a segment of an array of effects using a divide-and-conquer approach.
// It recursively splits the array segment in half, sequences each half, and concatenates the results.
//
// This function is optimized for performance by using a divide-and-conquer strategy that reduces
// the depth of nested function calls compared to a linear fold approach.
//
// Type parameters:
// - HKTB: The higher-kinded type containing values (e.g., Option[B], Either[E, B])
// - HKTRB: The higher-kinded type containing an array of values (e.g., Option[[]B], Either[E, []B])
//
// Parameters:
// - fof: Function to lift a single HKTB into HKTRB
// - empty: The empty/identity value for HKTRB
// - concat: Function to concatenate two HKTRB values
// - fbs: The array of effects to sequence
// - start: The starting index of the segment (inclusive)
// - end: The ending index of the segment (exclusive)
//
// Returns:
// - HKTRB: The sequenced result for the segment
//
// The function handles three cases:
// - Empty segment (end - start == 0): returns empty
// - Single element (end - start == 1): returns fof(fbs[start])
// - Multiple elements: recursively divides and conquers
func MonadSequenceSegment[HKTB, HKTRB any](
fof func(HKTB) HKTRB,
empty HKTRB,
@@ -41,6 +66,23 @@ func MonadSequenceSegment[HKTB, HKTRB any](
}
}
// SequenceSegment creates a function that sequences a segment of an array of effects.
// Unlike MonadSequenceSegment, this returns a curried function that can be reused.
//
// This function builds a computation tree at construction time, which can be more efficient
// when the same sequencing pattern needs to be applied multiple times to arrays of the same length.
//
// Type parameters:
// - HKTB: The higher-kinded type containing values
// - HKTRB: The higher-kinded type containing an array of values
//
// Parameters:
// - fof: Function to lift a single HKTB into HKTRB
// - empty: The empty/identity value for HKTRB
// - concat: Function to concatenate two HKTRB values
//
// Returns:
// - A function that takes an array of HKTB and returns HKTRB
func SequenceSegment[HKTB, HKTRB any](
fof func(HKTB) HKTRB,
empty HKTRB,
@@ -85,14 +127,39 @@ func SequenceSegment[HKTB, HKTRB any](
}
}
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
// MonadTraverse maps each element of an array to an effect, then sequences the results.
// This is the monadic version that takes the array as a direct parameter.
//
// Traverse combines mapping and sequencing in one operation. It's useful when you want to
// transform each element of an array into an effect (like Option, Either, IO, etc.) and
// then collect all those effects into a single effect containing an array.
//
// We need to pass the members of the applicative explicitly, because golang does neither
// support higher kinded types nor template methods on structs or interfaces.
//
// Type parameters:
// - GA: The input array type (e.g., []A)
// - GB: The output array type (e.g., []B)
// - A: The input element type
// - B: The output element type
// - HKTB: HKT<B> - The effect containing B (e.g., Option[B])
// - HKTAB: HKT<func(B)GB> - Intermediate applicative type
// - HKTRB: HKT<GB> - The effect containing the result array (e.g., Option[[]B])
//
// Parameters:
// - fof: Function to lift a value into the effect (Of/Pure)
// - fmap: Function to map over the effect (Map)
// - fap: Function to apply an effect of a function to an effect of a value (Ap)
// - ta: The input array to traverse
// - f: The function to apply to each element, producing an effect
//
// Returns:
// - HKTRB: An effect containing the array of transformed values
//
// Example:
//
// If any element produces None, the entire result is None.
// If all elements produce Some, the result is Some containing all values.
func MonadTraverse[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -103,14 +170,20 @@ func MonadTraverse[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
return MonadTraverseReduce(fof, fmap, fap, ta, f, Append[GB, B], Empty[GB]())
}
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
// MonadTraverseWithIndex is like MonadTraverse but the transformation function also receives the index.
// This is useful when the transformation depends on the element's position in the array.
//
// Type parameters: Same as MonadTraverse
//
// Parameters:
// - fof: Function to lift a value into the effect (Of/Pure)
// - fmap: Function to map over the effect (Map)
// - fap: Function to apply an effect of a function to an effect of a value (Ap)
// - ta: The input array to traverse
// - f: The function to apply to each element with its index, producing an effect
//
// Returns:
// - HKTRB: An effect containing the array of transformed values
func MonadTraverseWithIndex[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -121,6 +194,19 @@ func MonadTraverseWithIndex[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
return MonadTraverseReduceWithIndex(fof, fmap, fap, ta, f, Append[GB, B], Empty[GB]())
}
// Traverse creates a curried function that maps each element to an effect and sequences the results.
// This is the curried version of MonadTraverse, useful for partial application and composition.
//
// Type parameters: Same as MonadTraverse
//
// Parameters:
// - fof: Function to lift a value into the effect (Of/Pure)
// - fmap: Function to map over the effect (Map)
// - fap: Function to apply an effect of a function to an effect of a value (Ap)
// - f: The function to apply to each element, producing an effect
//
// Returns:
// - A function that takes an array and returns an effect containing the transformed array
func Traverse[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -133,6 +219,19 @@ func Traverse[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
}
}
// TraverseWithIndex creates a curried function like Traverse but with index-aware transformation.
// This is the curried version of MonadTraverseWithIndex.
//
// Type parameters: Same as MonadTraverse
//
// Parameters:
// - fof: Function to lift a value into the effect (Of/Pure)
// - fmap: Function to map over the effect (Map)
// - fap: Function to apply an effect of a function to an effect of a value (Ap)
// - f: The function to apply to each element with its index, producing an effect
//
// Returns:
// - A function that takes an array and returns an effect containing the transformed array
func TraverseWithIndex[GA ~[]A, GB ~[]B, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -231,6 +330,16 @@ func TraverseReduce[GA ~[]A, GB, A, B, HKTB, HKTAB, HKTRB any](
}
}
// TraverseReduceWithIndex creates a curried function for index-aware custom reduction during traversal.
// This is the curried version of MonadTraverseReduceWithIndex.
//
// Type parameters: Same as MonadTraverseReduce
//
// Parameters: Same as TraverseReduce, except:
// - transform: Function that takes index and element, producing an effect
//
// Returns:
// - A function that takes an array and returns an effect containing the accumulated value
func TraverseReduceWithIndex[GA ~[]A, GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,

View File

@@ -1,10 +1,60 @@
// Copyright (c) 2024 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package iter provides functional programming utilities for working with Go 1.23+ iterators.
// It offers operations for reducing, mapping, concatenating, and transforming iterator sequences
// in a functional style, compatible with the range-over-func pattern.
package iter
import (
"slices"
F "github.com/IBM/fp-go/v2/function"
M "github.com/IBM/fp-go/v2/monoid"
)
func From[A any](as ...A) Seq[A] {
return slices.Values(as)
}
// MonadReduceWithIndex reduces an iterator sequence to a single value using a reducer function
// that receives the current index, accumulated value, and current element.
//
// The function iterates through all elements in the sequence, applying the reducer function
// at each step with the element's index. This is useful when the position of elements matters
// in the reduction logic.
//
// Parameters:
// - fa: The iterator sequence to reduce
// - f: The reducer function that takes (index, accumulator, element) and returns the new accumulator
// - initial: The initial value for the accumulator
//
// Returns:
// - The final accumulated value after processing all elements
//
// Example:
//
// iter := func(yield func(int) bool) {
// yield(10)
// yield(20)
// yield(30)
// }
// // Sum with index multiplier: 0*10 + 1*20 + 2*30 = 80
// result := MonadReduceWithIndex(iter, func(i, acc, val int) int {
// return acc + i*val
// }, 0)
func MonadReduceWithIndex[GA ~func(yield func(A) bool), A, B any](fa GA, f func(int, B, A) B, initial B) B {
current := initial
var i int
@@ -15,6 +65,29 @@ func MonadReduceWithIndex[GA ~func(yield func(A) bool), A, B any](fa GA, f func(
return current
}
// MonadReduce reduces an iterator sequence to a single value using a reducer function.
//
// This is similar to MonadReduceWithIndex but without index tracking, making it more
// efficient when the position of elements is not needed in the reduction logic.
//
// Parameters:
// - fa: The iterator sequence to reduce
// - f: The reducer function that takes (accumulator, element) and returns the new accumulator
// - initial: The initial value for the accumulator
//
// Returns:
// - The final accumulated value after processing all elements
//
// Example:
//
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// yield(3)
// }
// sum := MonadReduce(iter, func(acc, val int) int {
// return acc + val
// }, 0) // Returns: 6
func MonadReduce[GA ~func(yield func(A) bool), A, B any](fa GA, f func(B, A) B, initial B) B {
current := initial
for a := range fa {
@@ -23,7 +96,30 @@ func MonadReduce[GA ~func(yield func(A) bool), A, B any](fa GA, f func(B, A) B,
return current
}
// Concat concatenates two sequences, yielding all elements from left followed by all elements from right.
// Concat concatenates two iterator sequences, yielding all elements from left followed by all elements from right.
//
// The resulting iterator will first yield all elements from the left sequence, then all elements
// from the right sequence. If the consumer stops early (yield returns false), iteration stops
// immediately without processing remaining elements.
//
// Parameters:
// - left: The first iterator sequence
// - right: The second iterator sequence
//
// Returns:
// - A new iterator that yields elements from both sequences in order
//
// Example:
//
// left := func(yield func(int) bool) {
// yield(1)
// yield(2)
// }
// right := func(yield func(int) bool) {
// yield(3)
// yield(4)
// }
// combined := Concat(left, right) // Yields: 1, 2, 3, 4
func Concat[GT ~func(yield func(T) bool), T any](left, right GT) GT {
return func(yield func(T) bool) {
for t := range left {
@@ -39,28 +135,129 @@ func Concat[GT ~func(yield func(T) bool), T any](left, right GT) GT {
}
}
// Of creates an iterator sequence containing a single element.
//
// This is the unit/return operation for the iterator monad, lifting a single value
// into the iterator context.
//
// Parameters:
// - a: The element to wrap in an iterator
//
// Returns:
// - An iterator that yields exactly one element
//
// Example:
//
// iter := Of[func(yield func(int) bool)](42)
// // Yields: 42
func Of[GA ~func(yield func(A) bool), A any](a A) GA {
return func(yield func(A) bool) {
yield(a)
}
}
// MonadAppend appends a single element to the end of an iterator sequence.
//
// This creates a new iterator that yields all elements from the original sequence
// followed by the tail element.
//
// Parameters:
// - f: The original iterator sequence
// - tail: The element to append
//
// Returns:
// - A new iterator with the tail element appended
//
// Example:
//
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// }
// result := MonadAppend(iter, 3) // Yields: 1, 2, 3
func MonadAppend[GA ~func(yield func(A) bool), A any](f GA, tail A) GA {
return Concat(f, Of[GA](tail))
}
// Append returns a function that appends a single element to the end of an iterator sequence.
//
// This is the curried version of MonadAppend, useful for partial application and composition.
//
// Parameters:
// - tail: The element to append
//
// Returns:
// - A function that takes an iterator and returns a new iterator with the tail element appended
//
// Example:
//
// appendThree := Append[func(yield func(int) bool)](3)
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// }
// result := appendThree(iter) // Yields: 1, 2, 3
func Append[GA ~func(yield func(A) bool), A any](tail A) func(GA) GA {
return F.Bind2nd(Concat[GA], Of[GA](tail))
}
// Prepend returns a function that prepends a single element to the beginning of an iterator sequence.
//
// This is the curried version for prepending, useful for partial application and composition.
//
// Parameters:
// - head: The element to prepend
//
// Returns:
// - A function that takes an iterator and returns a new iterator with the head element prepended
//
// Example:
//
// prependZero := Prepend[func(yield func(int) bool)](0)
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// }
// result := prependZero(iter) // Yields: 0, 1, 2
func Prepend[GA ~func(yield func(A) bool), A any](head A) func(GA) GA {
return F.Bind1st(Concat[GA], Of[GA](head))
}
// Empty creates an empty iterator sequence that yields no elements.
//
// This is the identity element for the Concat operation and represents an empty collection
// in the iterator context.
//
// Returns:
// - An iterator that yields no elements
//
// Example:
//
// iter := Empty[func(yield func(int) bool), int]()
// // Yields nothing
func Empty[GA ~func(yield func(A) bool), A any]() GA {
return func(_ func(A) bool) {}
}
// ToArray collects all elements from an iterator sequence into a slice.
//
// This eagerly evaluates the entire iterator sequence and materializes all elements
// into memory as a slice.
//
// Parameters:
// - fa: The iterator sequence to collect
//
// Returns:
// - A slice containing all elements from the iterator
//
// Example:
//
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// yield(3)
// }
// arr := ToArray[func(yield func(int) bool), []int](iter) // Returns: []int{1, 2, 3}
func ToArray[GA ~func(yield func(A) bool), GB ~[]A, A any](fa GA) GB {
bs := make(GB, 0)
for a := range fa {
@@ -69,6 +266,28 @@ func ToArray[GA ~func(yield func(A) bool), GB ~[]A, A any](fa GA) GB {
return bs
}
// MonadMapToArray maps each element of an iterator sequence through a function and collects the results into a slice.
//
// This combines mapping and collection into a single operation, eagerly evaluating the entire
// iterator sequence and materializing the transformed elements into memory.
//
// Parameters:
// - fa: The iterator sequence to map and collect
// - f: The mapping function to apply to each element
//
// Returns:
// - A slice containing the mapped elements
//
// Example:
//
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// yield(3)
// }
// doubled := MonadMapToArray[func(yield func(int) bool), []int](iter, func(x int) int {
// return x * 2
// }) // Returns: []int{2, 4, 6}
func MonadMapToArray[GA ~func(yield func(A) bool), GB ~[]B, A, B any](fa GA, f func(A) B) GB {
bs := make(GB, 0)
for a := range fa {
@@ -77,10 +296,54 @@ func MonadMapToArray[GA ~func(yield func(A) bool), GB ~[]B, A, B any](fa GA, f f
return bs
}
// MapToArray returns a function that maps each element through a function and collects the results into a slice.
//
// This is the curried version of MonadMapToArray, useful for partial application and composition.
//
// Parameters:
// - f: The mapping function to apply to each element
//
// Returns:
// - A function that takes an iterator and returns a slice of mapped elements
//
// Example:
//
// double := MapToArray[func(yield func(int) bool), []int](func(x int) int {
// return x * 2
// })
// iter := func(yield func(int) bool) {
// yield(1)
// yield(2)
// }
// result := double(iter) // Returns: []int{2, 4}
func MapToArray[GA ~func(yield func(A) bool), GB ~[]B, A, B any](f func(A) B) func(GA) GB {
return F.Bind2nd(MonadMapToArray[GA, GB], f)
}
// MonadMapToArrayWithIndex maps each element of an iterator sequence through a function that receives
// the element's index, and collects the results into a slice.
//
// This is similar to MonadMapToArray but the mapping function also receives the zero-based index
// of each element, useful when the position matters in the transformation logic.
//
// Parameters:
// - fa: The iterator sequence to map and collect
// - f: The mapping function that takes (index, element) and returns the transformed element
//
// Returns:
// - A slice containing the mapped elements
//
// Example:
//
// iter := func(yield func(string) bool) {
// yield("a")
// yield("b")
// yield("c")
// }
// indexed := MonadMapToArrayWithIndex[func(yield func(string) bool), []string](iter,
// func(i int, s string) string {
// return fmt.Sprintf("%d:%s", i, s)
// }) // Returns: []string{"0:a", "1:b", "2:c"}
func MonadMapToArrayWithIndex[GA ~func(yield func(A) bool), GB ~[]B, A, B any](fa GA, f func(int, A) B) GB {
bs := make(GB, 0)
var i int
@@ -91,10 +354,49 @@ func MonadMapToArrayWithIndex[GA ~func(yield func(A) bool), GB ~[]B, A, B any](f
return bs
}
// MapToArrayWithIndex returns a function that maps each element through an indexed function
// and collects the results into a slice.
//
// This is the curried version of MonadMapToArrayWithIndex, useful for partial application and composition.
//
// Parameters:
// - f: The mapping function that takes (index, element) and returns the transformed element
//
// Returns:
// - A function that takes an iterator and returns a slice of mapped elements
//
// Example:
//
// addIndex := MapToArrayWithIndex[func(yield func(string) bool), []string](
// func(i int, s string) string {
// return fmt.Sprintf("%d:%s", i, s)
// })
// iter := func(yield func(string) bool) {
// yield("a")
// yield("b")
// }
// result := addIndex(iter) // Returns: []string{"0:a", "1:b"}
func MapToArrayWithIndex[GA ~func(yield func(A) bool), GB ~[]B, A, B any](f func(int, A) B) func(GA) GB {
return F.Bind2nd(MonadMapToArrayWithIndex[GA, GB], f)
}
// Monoid returns a Monoid instance for iterator sequences.
//
// The monoid uses Concat as the binary operation and Empty as the identity element,
// allowing iterator sequences to be combined in an associative way with a neutral element.
// This enables generic operations that work with any monoid, such as folding a collection
// of iterators into a single iterator.
//
// Returns:
// - A Monoid instance with Concat and Empty operations
//
// Example:
//
// m := Monoid[func(yield func(int) bool), int]()
// iter1 := func(yield func(int) bool) { yield(1); yield(2) }
// iter2 := func(yield func(int) bool) { yield(3); yield(4) }
// combined := m.Concat(iter1, iter2) // Yields: 1, 2, 3, 4
// empty := m.Empty() // Yields nothing
func Monoid[GA ~func(yield func(A) bool), A any]() M.Monoid[GA] {
return M.MakeMonoid(Concat[GA], Empty[GA]())
}

View File

@@ -21,18 +21,50 @@ import (
M "github.com/IBM/fp-go/v2/monoid"
)
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
// MonadTraverse traverses an iterator sequence, applying an effectful function to each element
// and collecting the results in an applicative context.
//
// This is a fundamental operation in functional programming that allows you to "turn inside out"
// a structure containing effects. It maps each element through a function that produces an effect,
// then sequences all those effects together while preserving the iterator structure.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The output iterator type ~func(yield func(B) bool)
// - A: The input element type
// - B: The output element type
// - HKT_B: The higher-kinded type representing an effect containing B
// - HKT_GB_GB: The higher-kinded type for a function from GB to GB in the effect context
// - HKT_GB: The higher-kinded type representing an effect containing GB (the result iterator)
//
// Parameters:
// - fmap_b: Maps a function over HKT_B to produce HKT_GB
// - fof_gb: Lifts a GB value into the effect context (pure/of operation)
// - fmap_gb: Maps a function over HKT_GB to produce HKT_GB_GB
// - fap_gb: Applies an effectful function to an effectful value (ap operation)
// - ta: The input iterator sequence to traverse
// - f: The effectful function to apply to each element
//
// Returns:
// - An effect containing an iterator of transformed elements
//
// Note: We need to pass the applicative operations explicitly because Go doesn't support
// higher-kinded types or template methods on structs/interfaces.
//
// Example (conceptual with Option):
//
// // Traverse an iterator of strings, parsing each as an integer
// // If any parse fails, the whole result is None
// iter := func(yield func(string) bool) {
// yield("1")
// yield("2")
// yield("3")
// }
// result := MonadTraverse(..., iter, parseInt) // Some(iterator of [1,2,3]) or None
func MonadTraverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKT_B, HKT_GB_GB, HKT_GB any](
fmap_b func(HKT_B, func(B) GB) HKT_GB,
fof_gb func(GB) HKT_GB,
fof_gb OfType[GB, HKT_GB],
fmap_gb func(HKT_GB, func(GB) func(GB) GB) HKT_GB_GB,
fap_gb func(HKT_GB_GB, HKT_GB) HKT_GB,
@@ -54,14 +86,43 @@ func MonadTraverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A
return INTA.MonadSequenceSegment(fof, empty, concat, hktb, 0, len(hktb))
}
// Traverse is the curried version of MonadTraverse, returning a function that traverses an iterator.
//
// This version uses type aliases for better readability and is more suitable for partial application
// and function composition. It returns a Kleisli arrow (a function from GA to HKT_GB).
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The output iterator type ~func(yield func(B) bool)
// - A: The input element type
// - B: The output element type
// - HKT_B: The higher-kinded type representing an effect containing B
// - HKT_GB_GB: The higher-kinded type for a function from GB to GB in the effect context
// - HKT_GB: The higher-kinded type representing an effect containing GB
//
// Parameters:
// - fmap_b: Maps a function over HKT_B to produce HKT_GB
// - fof_gb: Lifts a GB value into the effect context
// - fmap_gb: Maps a function over HKT_GB to produce HKT_GB_GB
// - fap_gb: Applies an effectful function to an effectful value
// - f: The effectful function to apply to each element (Kleisli arrow)
//
// Returns:
// - A function that takes an iterator and returns an effect containing an iterator of transformed elements
//
// Example (conceptual):
//
// parseInts := Traverse[...](fmap, fof, fmap_gb, fap, parseInt)
// iter := func(yield func(string) bool) { yield("1"); yield("2") }
// result := parseInts(iter) // Effect containing iterator of integers
func Traverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B, HKT_B, HKT_GB_GB, HKT_GB any](
fmap_b func(func(B) GB) func(HKT_B) HKT_GB,
fmap_b MapType[B, GB, HKT_B, HKT_GB],
fof_gb func(GB) HKT_GB,
fmap_gb func(func(GB) func(GB) GB) func(HKT_GB) HKT_GB_GB,
fap_gb func(HKT_GB_GB, HKT_GB) HKT_GB,
fof_gb OfType[GB, HKT_GB],
fmap_gb MapType[GB, Endomorphism[GB], HKT_GB, HKT_GB_GB],
fap_gb ApType[HKT_GB, HKT_GB, HKT_GB_GB],
f func(A) HKT_B) func(GA) HKT_GB {
f Kleisli[A, HKT_B]) Kleisli[GA, HKT_GB] {
fof := fmap_b(Of[GB])
empty := fof_gb(Empty[GB]())
@@ -69,18 +130,50 @@ func Traverse[GA ~func(yield func(A) bool), GB ~func(yield func(B) bool), A, B,
concat_gb := fmap_gb(cb)
concat := func(first, second HKT_GB) HKT_GB {
return fap_gb(concat_gb(first), second)
return fap_gb(second)(concat_gb(first))
}
return func(ma GA) HKT_GB {
// return INTA.SequenceSegment(fof, empty, concat)(MapToArray[GA, []HKT_B](f)(ma))
hktb := MonadMapToArray[GA, []HKT_B](ma, f)
return INTA.MonadSequenceSegment(fof, empty, concat, hktb, 0, len(hktb))
}
return F.Flow2(
MapToArray[GA, []HKT_B](f),
INTA.SequenceSegment(fof, empty, concat),
)
}
// MonadSequence sequences an iterator of effects into an effect containing an iterator.
//
// This is a special case of traverse where the transformation function is the identity.
// It "flips" the nesting of the iterator and effect types, collecting all effects into
// a single effect containing an iterator of values.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(HKTA) bool)
// - HKTA: The higher-kinded type representing an effect containing A
// - HKTRA: The higher-kinded type representing an effect containing an iterator of A
//
// Parameters:
// - fof: Lifts an HKTA value into the HKTRA context
// - m: A monoid for combining HKTRA values
// - ta: The input iterator of effects to sequence
//
// Returns:
// - An effect containing an iterator of values
//
// Example (conceptual with Option):
//
// iter := func(yield func(Option[int]) bool) {
// yield(Some(1))
// yield(Some(2))
// yield(Some(3))
// }
// result := MonadSequence(..., iter) // Some(iterator of [1,2,3])
//
// iter2 := func(yield func(Option[int]) bool) {
// yield(Some(1))
// yield(None)
// }
// result2 := MonadSequence(..., iter2) // None
func MonadSequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
fof func(HKTA) HKTRA,
fof OfType[HKTA, HKTRA],
m M.Monoid[HKTRA],
ta GA) HKTRA {
@@ -90,14 +183,37 @@ func MonadSequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
return INTA.MonadSequenceSegment(fof, m.Empty(), m.Concat, hktb, 0, len(hktb))
}
/*
*
We need to pass the members of the applicative explicitly, because golang does neither support higher kinded types nor template methods on structs or interfaces
HKTRB = HKT<GB>
HKTB = HKT<B>
HKTAB = HKT<func(A)B>
*/
// MonadTraverseWithIndex traverses an iterator sequence with index tracking, applying an effectful
// function to each element along with its index.
//
// This is similar to MonadTraverse but the transformation function receives both the element's
// zero-based index and the element itself, useful when the position matters in the transformation.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - A: The input element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTRB: The higher-kinded type representing an effect containing an iterator of B
//
// Parameters:
// - fof: Lifts an HKTB value into the HKTRB context
// - m: A monoid for combining HKTRB values
// - ta: The input iterator sequence to traverse
// - f: The effectful function that takes (index, element) and returns an effect
//
// Returns:
// - An effect containing an iterator of transformed elements
//
// Example (conceptual):
//
// iter := func(yield func(string) bool) {
// yield("a")
// yield("b")
// }
// // Add index prefix to each element
// result := MonadTraverseWithIndex(..., iter, func(i int, s string) Effect[string] {
// return Pure(fmt.Sprintf("%d:%s", i, s))
// }) // Effect containing iterator of ["0:a", "1:b"]
func MonadTraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
fof func(HKTB) HKTRB,
m M.Monoid[HKTRB],
@@ -110,8 +226,29 @@ func MonadTraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
return INTA.MonadSequenceSegment(fof, m.Empty(), m.Concat, hktb, 0, len(hktb))
}
// Sequence is the curried version of MonadSequence, returning a function that sequences an iterator of effects.
//
// This version is more suitable for partial application and function composition.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(HKTA) bool)
// - HKTA: The higher-kinded type representing an effect containing A
// - HKTRA: The higher-kinded type representing an effect containing an iterator of A
//
// Parameters:
// - fof: Lifts an HKTA value into the HKTRA context
// - m: A monoid for combining HKTRA values
//
// Returns:
// - A function that takes an iterator of effects and returns an effect containing an iterator
//
// Example (conceptual):
//
// sequenceOptions := Sequence[...](fof, monoid)
// iter := func(yield func(Option[int]) bool) { yield(Some(1)); yield(Some(2)) }
// result := sequenceOptions(iter) // Some(iterator of [1,2])
func Sequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
fof func(HKTA) HKTRA,
fof OfType[HKTA, HKTRA],
m M.Monoid[HKTRA]) func(GA) HKTRA {
return func(ma GA) HKTRA {
@@ -119,6 +256,32 @@ func Sequence[GA ~func(yield func(HKTA) bool), HKTA, HKTRA any](
}
}
// TraverseWithIndex is the curried version of MonadTraverseWithIndex, returning a function that
// traverses an iterator with index tracking.
//
// This version is more suitable for partial application and function composition.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - A: The input element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTRB: The higher-kinded type representing an effect containing an iterator of B
//
// Parameters:
// - fof: Lifts an HKTB value into the HKTRB context
// - m: A monoid for combining HKTRB values
// - f: The effectful function that takes (index, element) and returns an effect
//
// Returns:
// - A function that takes an iterator and returns an effect containing an iterator of transformed elements
//
// Example (conceptual):
//
// addIndexPrefix := TraverseWithIndex[...](fof, monoid, func(i int, s string) Effect[string] {
// return Pure(fmt.Sprintf("%d:%s", i, s))
// })
// iter := func(yield func(string) bool) { yield("a"); yield("b") }
// result := addIndexPrefix(iter) // Effect containing iterator of ["0:a", "1:b"]
func TraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
fof func(HKTB) HKTRB,
m M.Monoid[HKTRB],
@@ -130,6 +293,39 @@ func TraverseWithIndex[GA ~func(yield func(A) bool), A, HKTB, HKTRB any](
}
}
// MonadTraverseReduce combines traversal with reduction, applying an effectful transformation
// and accumulating results using a reducer function.
//
// This is a more efficient operation when you want to both transform elements through effects
// and reduce them to a single accumulated value, avoiding intermediate collections.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The accumulator type
// - A: The input element type
// - B: The transformed element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTAB: The higher-kinded type for a function from B to GB in the effect context
// - HKTRB: The higher-kinded type representing an effect containing GB
//
// Parameters:
// - fof: Lifts a GB value into the effect context
// - fmap: Maps a function over the effect to produce an effectful function
// - fap: Applies an effectful function to an effectful value
// - ta: The input iterator sequence to traverse and reduce
// - transform: The effectful function to apply to each element
// - reduce: The reducer function that combines the accumulator with a transformed element
// - initial: The initial accumulator value
//
// Returns:
// - An effect containing the final accumulated value
//
// Example (conceptual):
//
// iter := func(yield func(string) bool) { yield("1"); yield("2"); yield("3") }
// // Parse strings to ints and sum them
// result := MonadTraverseReduce(..., iter, parseInt, add, 0)
// // Returns: Some(6) or None if any parse fails
func MonadTraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -152,6 +348,44 @@ func MonadTraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HK
}, fof(initial))
}
// MonadTraverseReduceWithIndex combines indexed traversal with reduction, applying an effectful
// transformation that receives element indices and accumulating results using a reducer function.
//
// This is similar to MonadTraverseReduce but the transformation function also receives the
// zero-based index of each element, useful when position matters in the transformation logic.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The accumulator type
// - A: The input element type
// - B: The transformed element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTAB: The higher-kinded type for a function from B to GB in the effect context
// - HKTRB: The higher-kinded type representing an effect containing GB
//
// Parameters:
// - fof: Lifts a GB value into the effect context
// - fmap: Maps a function over the effect to produce an effectful function
// - fap: Applies an effectful function to an effectful value
// - ta: The input iterator sequence to traverse and reduce
// - transform: The effectful function that takes (index, element) and returns an effect
// - reduce: The reducer function that combines the accumulator with a transformed element
// - initial: The initial accumulator value
//
// Returns:
// - An effect containing the final accumulated value
//
// Example (conceptual):
//
// iter := func(yield func(string) bool) { yield("a"); yield("b"); yield("c") }
// // Create indexed strings and concatenate
// result := MonadTraverseReduceWithIndex(..., iter,
// func(i int, s string) Effect[string] {
// return Pure(fmt.Sprintf("%d:%s", i, s))
// },
// func(acc, s string) string { return acc + "," + s },
// "")
// // Returns: Effect containing "0:a,1:b,2:c"
func MonadTraverseReduceWithIndex[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -174,6 +408,36 @@ func MonadTraverseReduceWithIndex[GA ~func(yield func(A) bool), GB, A, B, HKTB,
}, fof(initial))
}
// TraverseReduce is the curried version of MonadTraverseReduce, returning a function that
// traverses and reduces an iterator.
//
// This version is more suitable for partial application and function composition.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The accumulator type
// - A: The input element type
// - B: The transformed element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTAB: The higher-kinded type for a function from B to GB in the effect context
// - HKTRB: The higher-kinded type representing an effect containing GB
//
// Parameters:
// - fof: Lifts a GB value into the effect context
// - fmap: Maps a function over the effect to produce an effectful function
// - fap: Applies an effectful function to an effectful value
// - transform: The effectful function to apply to each element
// - reduce: The reducer function that combines the accumulator with a transformed element
// - initial: The initial accumulator value
//
// Returns:
// - A function that takes an iterator and returns an effect containing the accumulated value
//
// Example (conceptual):
//
// sumParsedInts := TraverseReduce[...](fof, fmap, fap, parseInt, add, 0)
// iter := func(yield func(string) bool) { yield("1"); yield("2"); yield("3") }
// result := sumParsedInts(iter) // Some(6) or None if any parse fails
func TraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,
@@ -188,6 +452,41 @@ func TraverseReduce[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB a
}
}
// TraverseReduceWithIndex is the curried version of MonadTraverseReduceWithIndex, returning a
// function that traverses and reduces an iterator with index tracking.
//
// This version is more suitable for partial application and function composition.
//
// Type Parameters:
// - GA: The input iterator type ~func(yield func(A) bool)
// - GB: The accumulator type
// - A: The input element type
// - B: The transformed element type
// - HKTB: The higher-kinded type representing an effect containing B
// - HKTAB: The higher-kinded type for a function from B to GB in the effect context
// - HKTRB: The higher-kinded type representing an effect containing GB
//
// Parameters:
// - fof: Lifts a GB value into the effect context
// - fmap: Maps a function over the effect to produce an effectful function
// - fap: Applies an effectful function to an effectful value
// - transform: The effectful function that takes (index, element) and returns an effect
// - reduce: The reducer function that combines the accumulator with a transformed element
// - initial: The initial accumulator value
//
// Returns:
// - A function that takes an iterator and returns an effect containing the accumulated value
//
// Example (conceptual):
//
// concatIndexed := TraverseReduceWithIndex[...](fof, fmap, fap,
// func(i int, s string) Effect[string] {
// return Pure(fmt.Sprintf("%d:%s", i, s))
// },
// func(acc, s string) string { return acc + "," + s },
// "")
// iter := func(yield func(string) bool) { yield("a"); yield("b") }
// result := concatIndexed(iter) // Effect containing "0:a,1:b"
func TraverseReduceWithIndex[GA ~func(yield func(A) bool), GB, A, B, HKTB, HKTAB, HKTRB any](
fof func(GB) HKTRB,
fmap func(func(GB) func(B) GB) func(HKTRB) HKTAB,

View File

@@ -2,10 +2,23 @@ package iter
import (
I "iter"
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/internal/functor"
"github.com/IBM/fp-go/v2/internal/pointed"
)
type (
// Seq represents Go's standard library iterator type for single values.
// It's an alias for iter.Seq[A] and provides interoperability with Go 1.23+ range-over-func.
Seq[A any] = I.Seq[A]
Endomorphism[A any] = endomorphism.Endomorphism[A]
OfType[A, HKT_A any] = pointed.OfType[A, HKT_A]
MapType[A, B, HKT_A, HKT_B any] = functor.MapType[A, B, HKT_A, HKT_B]
ApType[HKT_A, HKT_B, HKT_AB any] = apply.ApType[HKT_A, HKT_B, HKT_AB]
Kleisli[A, HKT_B any] = func(A) HKT_B
)

View File

@@ -247,7 +247,7 @@ func TestBracket(t *testing.T) {
return Of(x * 2)
}
release := func(x int, result int) IO[any] {
release := func(x int, result int) IO[Void] {
return FromImpure(func() {
released = true
})
@@ -271,7 +271,7 @@ func TestWithResource(t *testing.T) {
return 42
}
onRelease := func(x int) IO[any] {
onRelease := func(x int) IO[Void] {
return FromImpure(func() {
released = true
})

View File

@@ -18,6 +18,7 @@ package io
import (
"time"
"github.com/IBM/fp-go/v2/function"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/apply"
"github.com/IBM/fp-go/v2/internal/chain"
@@ -31,11 +32,6 @@ const (
useParallel = true
)
var (
// undefined represents an undefined value
undefined = struct{}{}
)
// Of wraps a pure value in an IO context, creating a computation that returns that value.
// This is the monadic return operation for IO.
//
@@ -58,10 +54,10 @@ func FromIO[A any](a IO[A]) IO[A] {
}
// FromImpure converts a side effect without a return value into a side effect that returns any
func FromImpure[ANY ~func()](f ANY) IO[any] {
return func() any {
func FromImpure[ANY ~func()](f ANY) IO[Void] {
return func() Void {
f()
return undefined
return function.VOID
}
}

View File

@@ -61,18 +61,105 @@ func TraverseArray[A, B any](f Kleisli[A, B]) Kleisli[[]A, []B] {
)
}
// TraverseIter applies an IO-returning function to each element of an iterator sequence
// and collects the results into an IO of an iterator sequence. Executes in parallel by default.
//
// This function is useful for processing lazy sequences where each element requires an IO operation.
// The resulting iterator is also lazy and will only execute IO operations when iterated.
//
// Type Parameters:
// - A: The input element type
// - B: The output element type
//
// Parameters:
// - f: A function that takes an element of type A and returns an IO computation producing B
//
// Returns:
// - A function that takes an iterator sequence of A and returns an IO of an iterator sequence of B
//
// Example:
//
// // Fetch user data for each ID in a sequence
// fetchUser := func(id int) io.IO[User] {
// return func() User {
// // Simulate fetching user from database
// return User{ID: id, Name: fmt.Sprintf("User%d", id)}
// }
// }
//
// // Create an iterator of user IDs
// userIDs := func(yield func(int) bool) {
// for _, id := range []int{1, 2, 3, 4, 5} {
// if !yield(id) { return }
// }
// }
//
// // Traverse the iterator, fetching each user
// fetchUsers := io.TraverseIter(fetchUser)
// usersIO := fetchUsers(userIDs)
//
// // Execute the IO to get the iterator of users
// users := usersIO()
// for user := range users {
// fmt.Printf("User: %v\n", user)
// }
func TraverseIter[A, B any](f Kleisli[A, B]) Kleisli[Seq[A], Seq[B]] {
return INTI.Traverse[Seq[A]](
Map[B],
Of[Seq[B]],
Map[Seq[B]],
MonadAp[Seq[B]],
Ap[Seq[B]],
f,
)
}
// SequenceIter converts an iterator sequence of IO computations into an IO of an iterator sequence of results.
// All computations are executed in parallel by default when the resulting IO is invoked.
//
// This is a special case of TraverseIter where the transformation function is the identity.
// It "flips" the nesting of the iterator and IO types, executing all IO operations and collecting
// their results into a lazy iterator.
//
// Type Parameters:
// - A: The element type
//
// Parameters:
// - as: An iterator sequence where each element is an IO computation
//
// Returns:
// - An IO computation that, when executed, produces an iterator sequence of results
//
// Example:
//
// // Create an iterator of IO operations
// operations := func(yield func(io.IO[int]) bool) {
// yield(func() int { return 1 })
// yield(func() int { return 2 })
// yield(func() int { return 3 })
// }
//
// // Sequence the operations
// resultsIO := io.SequenceIter(operations)
//
// // Execute all IO operations and get the iterator of results
// results := resultsIO()
// for result := range results {
// fmt.Printf("Result: %d\n", result)
// }
//
// Note: The IO operations are executed when resultsIO() is called, not when iterating
// over the results. The resulting iterator is lazy but the computations have already
// been performed.
func SequenceIter[A any](as Seq[IO[A]]) IO[Seq[A]] {
return INTI.MonadSequence(
Map(INTI.Of[Seq[A]]),
ApplicativeMonoid(INTI.Monoid[Seq[A]]()),
as,
)
}
// TraverseArrayWithIndex is like TraverseArray but the function also receives the index.
// Executes in parallel by default.
//

View File

@@ -1,9 +1,12 @@
package io
import (
"fmt"
"slices"
"strings"
"testing"
A "github.com/IBM/fp-go/v2/array"
"github.com/stretchr/testify/assert"
)
@@ -36,3 +39,265 @@ func TestTraverseCustomSlice(t *testing.T) {
assert.Equal(t, res(), []string{"A", "B"})
}
func TestTraverseIter(t *testing.T) {
t.Run("transforms all elements successfully", func(t *testing.T) {
// Create an iterator of strings
input := slices.Values(A.From("hello", "world", "test"))
// Transform each string to uppercase
transform := func(s string) IO[string] {
return Of(strings.ToUpper(s))
}
// Traverse the iterator
traverseFn := TraverseIter(transform)
resultIO := traverseFn(input)
// Execute the IO and collect results
result := resultIO()
var collected []string
for s := range result {
collected = append(collected, s)
}
assert.Equal(t, []string{"HELLO", "WORLD", "TEST"}, collected)
})
t.Run("works with empty iterator", func(t *testing.T) {
// Create an empty iterator
input := func(yield func(string) bool) {}
transform := func(s string) IO[string] {
return Of(strings.ToUpper(s))
}
traverseFn := TraverseIter(transform)
resultIO := traverseFn(input)
result := resultIO()
var collected []string
for s := range result {
collected = append(collected, s)
}
assert.Empty(t, collected)
})
t.Run("works with single element", func(t *testing.T) {
input := func(yield func(int) bool) {
yield(42)
}
transform := func(n int) IO[int] {
return Of(n * 2)
}
traverseFn := TraverseIter(transform)
resultIO := traverseFn(input)
result := resultIO()
var collected []int
for n := range result {
collected = append(collected, n)
}
assert.Equal(t, []int{84}, collected)
})
t.Run("preserves order of elements", func(t *testing.T) {
input := func(yield func(int) bool) {
for i := 1; i <= 5; i++ {
if !yield(i) {
return
}
}
}
transform := func(n int) IO[string] {
return Of(fmt.Sprintf("item-%d", n))
}
traverseFn := TraverseIter(transform)
resultIO := traverseFn(input)
result := resultIO()
var collected []string
for s := range result {
collected = append(collected, s)
}
expected := []string{"item-1", "item-2", "item-3", "item-4", "item-5"}
assert.Equal(t, expected, collected)
})
t.Run("handles complex transformations", func(t *testing.T) {
type User struct {
ID int
Name string
}
input := func(yield func(int) bool) {
for _, id := range []int{1, 2, 3} {
if !yield(id) {
return
}
}
}
transform := func(id int) IO[User] {
return Of(User{ID: id, Name: fmt.Sprintf("User%d", id)})
}
traverseFn := TraverseIter(transform)
resultIO := traverseFn(input)
result := resultIO()
var collected []User
for user := range result {
collected = append(collected, user)
}
expected := []User{
{ID: 1, Name: "User1"},
{ID: 2, Name: "User2"},
{ID: 3, Name: "User3"},
}
assert.Equal(t, expected, collected)
})
}
func TestSequenceIter(t *testing.T) {
t.Run("sequences multiple IO operations", func(t *testing.T) {
// Create an iterator of IO operations
input := slices.Values(A.From(Of(1), Of(2), Of(3)))
// Sequence the operations
resultIO := SequenceIter(input)
// Execute and collect results
result := resultIO()
var collected []int
for n := range result {
collected = append(collected, n)
}
assert.Equal(t, []int{1, 2, 3}, collected)
})
t.Run("works with empty iterator", func(t *testing.T) {
input := slices.Values(A.Empty[IO[string]]())
resultIO := SequenceIter(input)
result := resultIO()
var collected []string
for s := range result {
collected = append(collected, s)
}
assert.Empty(t, collected)
})
// TODO!!
// t.Run("executes all IO operations", func(t *testing.T) {
// // Track execution order
// var executed []int
// input := func(yield func(IO[int]) bool) {
// yield(func() int {
// executed = append(executed, 1)
// return 10
// })
// yield(func() int {
// executed = append(executed, 2)
// return 20
// })
// yield(func() int {
// executed = append(executed, 3)
// return 30
// })
// }
// resultIO := SequenceIter(input)
// // Before execution, nothing should be executed
// assert.Empty(t, executed)
// // Execute the IO
// result := resultIO()
// // Collect results
// var collected []int
// for n := range result {
// collected = append(collected, n)
// }
// // All operations should have been executed
// assert.Equal(t, []int{1, 2, 3}, executed)
// assert.Equal(t, []int{10, 20, 30}, collected)
// })
t.Run("works with single IO operation", func(t *testing.T) {
input := func(yield func(IO[string]) bool) {
yield(Of("hello"))
}
resultIO := SequenceIter(input)
result := resultIO()
var collected []string
for s := range result {
collected = append(collected, s)
}
assert.Equal(t, []string{"hello"}, collected)
})
t.Run("preserves order of results", func(t *testing.T) {
input := func(yield func(IO[int]) bool) {
for i := 5; i >= 1; i-- {
n := i // capture loop variable
yield(func() int { return n * 10 })
}
}
resultIO := SequenceIter(input)
result := resultIO()
var collected []int
for n := range result {
collected = append(collected, n)
}
assert.Equal(t, []int{50, 40, 30, 20, 10}, collected)
})
t.Run("works with complex types", func(t *testing.T) {
type Result struct {
Value int
Label string
}
input := func(yield func(IO[Result]) bool) {
yield(Of(Result{Value: 1, Label: "first"}))
yield(Of(Result{Value: 2, Label: "second"}))
yield(Of(Result{Value: 3, Label: "third"}))
}
resultIO := SequenceIter(input)
result := resultIO()
var collected []Result
for r := range result {
collected = append(collected, r)
}
expected := []Result{
{Value: 1, Label: "first"},
{Value: 2, Label: "second"},
{Value: 3, Label: "third"},
}
assert.Equal(t, expected, collected)
})
}

View File

@@ -29,7 +29,7 @@ func ExampleIOEither_do() {
bar := Of[error](1)
// quux consumes the state of three bindings and returns an [IO] instead of an [IOEither]
quux := func(t T.Tuple3[string, int, string]) IO[any] {
quux := func(t T.Tuple3[string, int, string]) IO[Void] {
return io.FromImpure(func() {
log.Printf("t1: %s, t2: %d, t3: %s", t.F1, t.F2, t.F3)
})

View File

@@ -45,7 +45,7 @@ func TestBuilderWithQuery(t *testing.T) {
ioeither.Map[error](func(r *http.Request) *url.URL {
return r.URL
}),
ioeither.ChainFirstIOK[error](func(u *url.URL) io.IO[any] {
ioeither.ChainFirstIOK[error](func(u *url.URL) io.IO[Void] {
return io.FromImpure(func() {
q := u.Query()
assert.Equal(t, "10", q.Get("limit"))

View File

@@ -15,8 +15,12 @@
package builder
import "github.com/IBM/fp-go/v2/ioeither"
import (
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/ioeither"
)
type (
IOEither[A any] = ioeither.IOEither[error, A]
Void = function.Void
)

View File

@@ -428,11 +428,11 @@ func Swap[E, A any](val IOEither[E, A]) IOEither[A, E] {
}
// FromImpure converts a side effect without a return value into an [IOEither] that returns any
func FromImpure[E any](f func()) IOEither[E, any] {
func FromImpure[E any](f func()) IOEither[E, Void] {
return function.Pipe2(
f,
io.FromImpure,
FromIO[E, any],
FromIO[E, Void],
)
}
@@ -489,6 +489,8 @@ func After[E, A any](timestamp time.Time) Operator[E, A, A] {
// If the input is a Left value, it applies the function f to transform the error and potentially
// change the error type from EA to EB. If the input is a Right value, it passes through unchanged.
//
// Note: MonadChainLeft is identical to [OrElse] - both provide the same functionality for error recovery.
//
// This is useful for error recovery or error transformation scenarios where you want to handle
// errors by performing another computation that may also fail.
//
@@ -523,6 +525,8 @@ func MonadChainLeft[EA, EB, A any](fa IOEither[EA, A], f Kleisli[EB, EA, A]) IOE
// ChainLeft is the curried version of [MonadChainLeft].
// It returns a function that chains a computation on the left (error) side of an [IOEither].
//
// Note: ChainLeft is identical to [OrElse] - both provide the same functionality for error recovery.
//
// This is particularly useful in functional composition pipelines where you want to handle
// errors by performing another computation that may also fail.
//
@@ -644,6 +648,8 @@ func TapLeft[A, EA, EB, B any](f Kleisli[EB, EA, B]) Operator[EA, A, A] {
// If the IOEither is Left, it applies the provided function to the error value,
// which returns a new IOEither that replaces the original.
//
// Note: OrElse is identical to [ChainLeft] - both provide the same functionality for error recovery.
//
// This is useful for error recovery, fallback logic, or chaining alternative IO computations.
// The error type can be widened from E1 to E2, allowing transformation of error types.
//

View File

@@ -490,3 +490,148 @@ func TestOrElseW(t *testing.T) {
preserved := preserveRecover(preservedRight)()
assert.Equal(t, E.Right[AppError](42), preserved)
}
// TestChainLeftIdenticalToOrElse proves that ChainLeft and OrElse are identical functions.
// This test verifies that both functions produce the same results for all scenarios:
// - Left values with error recovery
// - Left values with error transformation
// - Right values passing through unchanged
func TestChainLeftIdenticalToOrElse(t *testing.T) {
// Test 1: Left value with error recovery - both should recover to Right
t.Run("Left value recovery - ChainLeft equals OrElse", func(t *testing.T) {
recoveryFn := func(e string) IOEither[string, int] {
if e == "recoverable" {
return Right[string](42)
}
return Left[int](e)
}
input := Left[int]("recoverable")
// Using ChainLeft
resultChainLeft := ChainLeft(recoveryFn)(input)()
// Using OrElse
resultOrElse := OrElse(recoveryFn)(input)()
// Both should produce identical results
assert.Equal(t, resultOrElse, resultChainLeft)
assert.Equal(t, E.Right[string](42), resultChainLeft)
})
// Test 2: Left value with error transformation - both should transform error
t.Run("Left value transformation - ChainLeft equals OrElse", func(t *testing.T) {
transformFn := func(e string) IOEither[string, int] {
return Left[int]("transformed: " + e)
}
input := Left[int]("original error")
// Using ChainLeft
resultChainLeft := ChainLeft(transformFn)(input)()
// Using OrElse
resultOrElse := OrElse(transformFn)(input)()
// Both should produce identical results
assert.Equal(t, resultOrElse, resultChainLeft)
assert.Equal(t, E.Left[int]("transformed: original error"), resultChainLeft)
})
// Test 3: Right value - both should pass through unchanged
t.Run("Right value passthrough - ChainLeft equals OrElse", func(t *testing.T) {
handlerFn := func(e string) IOEither[string, int] {
return Left[int]("should not be called")
}
input := Right[string](100)
// Using ChainLeft
resultChainLeft := ChainLeft(handlerFn)(input)()
// Using OrElse
resultOrElse := OrElse(handlerFn)(input)()
// Both should produce identical results
assert.Equal(t, resultOrElse, resultChainLeft)
assert.Equal(t, E.Right[string](100), resultChainLeft)
})
// Test 4: Error type widening - both should handle type transformation
t.Run("Error type widening - ChainLeft equals OrElse", func(t *testing.T) {
widenFn := func(e string) IOEither[int, int] {
return Left[int](404)
}
input := Left[int]("not found")
// Using ChainLeft
resultChainLeft := ChainLeft(widenFn)(input)()
// Using OrElse
resultOrElse := OrElse(widenFn)(input)()
// Both should produce identical results
assert.Equal(t, resultOrElse, resultChainLeft)
assert.Equal(t, E.Left[int](404), resultChainLeft)
})
// Test 5: Composition in pipeline - both should work identically in F.Pipe
t.Run("Pipeline composition - ChainLeft equals OrElse", func(t *testing.T) {
recoveryFn := func(e string) IOEither[string, int] {
if e == "network error" {
return Right[string](0)
}
return Left[int](e)
}
input := Left[int]("network error")
// Using ChainLeft in pipeline
resultChainLeft := F.Pipe1(input, ChainLeft(recoveryFn))()
// Using OrElse in pipeline
resultOrElse := F.Pipe1(input, OrElse(recoveryFn))()
// Both should produce identical results
assert.Equal(t, resultOrElse, resultChainLeft)
assert.Equal(t, E.Right[string](0), resultChainLeft)
})
// Test 6: Multiple chained operations - both should behave identically
t.Run("Multiple operations - ChainLeft equals OrElse", func(t *testing.T) {
handler1 := func(e string) IOEither[string, int] {
if e == "error1" {
return Right[string](1)
}
return Left[int](e)
}
handler2 := func(e string) IOEither[string, int] {
if e == "error2" {
return Right[string](2)
}
return Left[int](e)
}
input := Left[int]("error2")
// Using ChainLeft
resultChainLeft := F.Pipe2(
input,
ChainLeft(handler1),
ChainLeft(handler2),
)()
// Using OrElse
resultOrElse := F.Pipe2(
input,
OrElse(handler1),
OrElse(handler2),
)()
// Both should produce identical results
assert.Equal(t, resultOrElse, resultChainLeft)
assert.Equal(t, E.Right[string](2), resultChainLeft)
})
}

View File

@@ -2,6 +2,7 @@ package ioeither
import (
"github.com/IBM/fp-go/v2/consumer"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/predicate"
"github.com/IBM/fp-go/v2/tailrec"
)
@@ -18,4 +19,6 @@ type (
// Trampoline represents a tail-recursive computation that can be evaluated safely
// without stack overflow. It's used for implementing stack-safe recursive algorithms.
Trampoline[B, L any] = tailrec.Trampoline[B, L]
Void = function.Void
)

View File

@@ -16,8 +16,10 @@
package ioref
import (
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/pair"
"github.com/IBM/fp-go/v2/readerio"
)
// MakeIORef creates a new IORef containing the given initial value.
@@ -49,6 +51,32 @@ func MakeIORef[A any](a A) IO[IORef[A]] {
}
}
// Write atomically writes a new value to an IORef and returns the written value.
//
// This function returns a Kleisli arrow that takes an IORef and produces an IO
// computation that writes the given value to the reference. The write operation
// is atomic and thread-safe, using a write lock to ensure exclusive access.
//
// Parameters:
// - a: The new value to write to the IORef
//
// Returns:
// - A Kleisli arrow from IORef[A] to IO[A] that writes the value and returns it
//
// Example:
//
// ref := ioref.MakeIORef(42)()
//
// // Write a new value
// newValue := ioref.Write(100)(ref)() // Returns 100, ref now contains 100
//
// // Chain writes
// pipe.Pipe2(
// ref,
// ioref.Write(50),
// io.Chain(ioref.Write(75)),
// )() // ref now contains 75
//
//go:inline
func Write[A any](a A) io.Kleisli[IORef[A], A] {
return func(ref IORef[A]) IO[A] {
@@ -124,20 +152,112 @@ func Read[A any](ref IORef[A]) IO[A] {
// ioref.Modify(func(x int) int { return x + 10 }),
// io.Chain(ioref.Modify(func(x int) int { return x * 2 })),
// )()
//
//go:inline
func Modify[A any](f Endomorphism[A]) io.Kleisli[IORef[A], A] {
return ModifyIOK(function.Flow2(f, io.Of))
}
// ModifyIOK atomically modifies the value in an IORef using an IO-based transformation.
//
// This is a more powerful version of Modify that allows the transformation function
// to perform IO effects. The function takes a Kleisli arrow (a function from A to IO[A])
// and returns a Kleisli arrow that modifies the IORef atomically.
//
// The modification is atomic and thread-safe, using a write lock to ensure exclusive
// access during the read-modify-write cycle. The IO effect in the transformation
// function is executed while holding the lock.
//
// Parameters:
// - f: A Kleisli arrow (io.Kleisli[A, A]) that transforms the current value with IO effects
//
// Returns:
// - A Kleisli arrow from IORef[A] to IO[A] that returns the new value
//
// Example:
//
// ref := ioref.MakeIORef(42)()
//
// // Modify with an IO effect (e.g., logging)
// modifyWithLog := ioref.ModifyIOK(func(x int) io.IO[int] {
// return func() int {
// fmt.Printf("Old value: %d\n", x)
// return x * 2
// }
// })
// newValue := modifyWithLog(ref)() // Logs and returns 84
//
// // Chain multiple IO-based modifications
// pipe.Pipe2(
// ref,
// ioref.ModifyIOK(func(x int) io.IO[int] {
// return io.Of(x + 10)
// }),
// io.Chain(ioref.ModifyIOK(func(x int) io.IO[int] {
// return io.Of(x * 2)
// })),
// )()
func ModifyIOK[A any](f io.Kleisli[A, A]) io.Kleisli[IORef[A], A] {
return func(ref IORef[A]) IO[A] {
return func() A {
ref.mu.Lock()
defer ref.mu.Unlock()
ref.a = f(ref.a)
ref.a = f(ref.a)()
return ref.a
}
}
}
// ModifyReaderIOK atomically modifies the value in an IORef using a ReaderIO-based transformation.
//
// This is a variant of ModifyIOK that works with ReaderIO computations, allowing the
// transformation function to access an environment of type R while performing IO effects.
// This is useful when the modification logic needs access to configuration, context,
// or other shared resources.
//
// The modification is atomic and thread-safe, using a write lock to ensure exclusive
// access during the read-modify-write cycle. The ReaderIO effect in the transformation
// function is executed while holding the lock.
//
// Parameters:
// - f: A ReaderIO Kleisli arrow (readerio.Kleisli[R, A, A]) that takes the current value
// and an environment R, and returns an IO computation producing the new value
//
// Returns:
// - A ReaderIO Kleisli arrow from IORef[A] to ReaderIO[R, A] that returns the new value
//
// Example:
//
// type Config struct {
// multiplier int
// }
//
// ref := ioref.MakeIORef(10)()
//
// // Modify using environment
// modifyWithConfig := ioref.ModifyReaderIOK(func(x int) readerio.ReaderIO[Config, int] {
// return func(cfg Config) io.IO[int] {
// return func() int {
// return x * cfg.multiplier
// }
// }
// })
//
// config := Config{multiplier: 5}
// newValue := modifyWithConfig(ref)(config)() // Returns 50, ref now contains 50
func ModifyReaderIOK[R, A any](f readerio.Kleisli[R, A, A]) readerio.Kleisli[R, IORef[A], A] {
return func(ref IORef[A]) ReaderIO[R, A] {
return func(r R) readerio.IO[A] {
return func() A {
ref.mu.Lock()
defer ref.mu.Unlock()
ref.a = f(ref.a)(r)()
return ref.a
}
}
}
}
// ModifyWithResult atomically modifies the value in an IORef and returns both
// the new value and an additional result computed from the old value.
//
@@ -167,14 +287,122 @@ func Modify[A any](f Endomorphism[A]) io.Kleisli[IORef[A], A] {
//
//go:inline
func ModifyWithResult[A, B any](f func(A) Pair[A, B]) io.Kleisli[IORef[A], B] {
return ModifyIOKWithResult(function.Flow2(f, io.Of))
}
// ModifyIOKWithResult atomically modifies the value in an IORef and returns a result,
// using an IO-based transformation function.
//
// This is a more powerful version of ModifyWithResult that allows the transformation
// function to perform IO effects. The function takes a Kleisli arrow that transforms
// the old value into an IO computation producing a Pair of (new value, result).
//
// This is useful when you need to:
// - Both transform the stored value and compute some result based on the old value
// - Perform IO effects during the transformation (e.g., logging, validation)
// - Ensure atomicity of the entire read-transform-write-compute cycle
//
// The modification is atomic and thread-safe, using a write lock to ensure exclusive
// access. The IO effect in the transformation function is executed while holding the lock.
//
// Parameters:
// - f: A Kleisli arrow (io.Kleisli[A, Pair[A, B]]) that takes the old value and
// returns an IO computation producing a Pair of (new value, result)
//
// Returns:
// - A Kleisli arrow from IORef[A] to IO[B] that produces the result
//
// Example:
//
// ref := ioref.MakeIORef(42)()
//
// // Increment with IO effect and return old value
// incrementWithLog := ioref.ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
// return func() pair.Pair[int, int] {
// fmt.Printf("Incrementing from %d\n", x)
// return pair.MakePair(x+1, x)
// }
// })
// oldValue := incrementWithLog(ref)() // Logs and returns 42, ref now contains 43
//
// // Swap with validation
// swapWithValidation := ioref.ModifyIOKWithResult(func(old int) io.IO[pair.Pair[int, string]] {
// return func() pair.Pair[int, string] {
// if old < 0 {
// return pair.MakePair(0, "reset negative")
// }
// return pair.MakePair(100, fmt.Sprintf("swapped %d", old))
// }
// })
// message := swapWithValidation(ref)()
func ModifyIOKWithResult[A, B any](f io.Kleisli[A, Pair[A, B]]) io.Kleisli[IORef[A], B] {
return func(ref IORef[A]) IO[B] {
return func() B {
ref.mu.Lock()
defer ref.mu.Unlock()
result := f(ref.a)
result := f(ref.a)()
ref.a = pair.Head(result)
return pair.Tail(result)
}
}
}
// ModifyReaderIOKWithResult atomically modifies the value in an IORef and returns a result,
// using a ReaderIO-based transformation function.
//
// This combines the capabilities of ModifyIOKWithResult and ModifyReaderIOK, allowing the
// transformation function to:
// - Access an environment of type R (like configuration or context)
// - Perform IO effects during the transformation
// - Both update the stored value and compute a result based on the old value
// - Ensure atomicity of the entire read-transform-write-compute cycle
//
// The modification is atomic and thread-safe, using a write lock to ensure exclusive
// access. The ReaderIO effect in the transformation function is executed while holding the lock.
//
// Parameters:
// - f: A ReaderIO Kleisli arrow (readerio.Kleisli[R, A, Pair[A, B]]) that takes the old value
// and an environment R, and returns an IO computation producing a Pair of (new value, result)
//
// Returns:
// - A ReaderIO Kleisli arrow from IORef[A] to ReaderIO[R, B] that produces the result
//
// Example:
//
// type Config struct {
// logEnabled bool
// }
//
// ref := ioref.MakeIORef(42)()
//
// // Increment with conditional logging, return old value
// incrementWithLog := ioref.ModifyReaderIOKWithResult(
// func(x int) readerio.ReaderIO[Config, pair.Pair[int, int]] {
// return func(cfg Config) io.IO[pair.Pair[int, int]] {
// return func() pair.Pair[int, int] {
// if cfg.logEnabled {
// fmt.Printf("Incrementing from %d\n", x)
// }
// return pair.MakePair(x+1, x)
// }
// }
// },
// )
//
// config := Config{logEnabled: true}
// oldValue := incrementWithLog(ref)(config)() // Logs and returns 42, ref now contains 43
func ModifyReaderIOKWithResult[R, A, B any](f readerio.Kleisli[R, A, Pair[A, B]]) readerio.Kleisli[R, IORef[A], B] {
return func(ref IORef[A]) ReaderIO[R, B] {
return func(r R) readerio.IO[B] {
return func() B {
ref.mu.Lock()
defer ref.mu.Unlock()
result := f(ref.a)(r)()
ref.a = pair.Head(result)
return pair.Tail(result)
}
}
}
}

919
v2/ioref/ioref_test.go Normal file
View File

@@ -0,0 +1,919 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ioref
import (
"fmt"
"sync"
"testing"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
N "github.com/IBM/fp-go/v2/number"
"github.com/IBM/fp-go/v2/pair"
"github.com/IBM/fp-go/v2/readerio"
"github.com/stretchr/testify/assert"
)
func TestMakeIORef(t *testing.T) {
t.Run("creates IORef with integer value", func(t *testing.T) {
ref := MakeIORef(42)()
assert.NotNil(t, ref)
assert.Equal(t, 42, Read(ref)())
})
t.Run("creates IORef with string value", func(t *testing.T) {
ref := MakeIORef("hello")()
assert.NotNil(t, ref)
assert.Equal(t, "hello", Read(ref)())
})
t.Run("creates IORef with slice value", func(t *testing.T) {
slice := []int{1, 2, 3}
ref := MakeIORef(slice)()
assert.NotNil(t, ref)
assert.Equal(t, slice, Read(ref)())
})
t.Run("creates IORef with struct value", func(t *testing.T) {
type Person struct {
Name string
Age int
}
person := Person{Name: "Alice", Age: 30}
ref := MakeIORef(person)()
assert.NotNil(t, ref)
assert.Equal(t, person, Read(ref)())
})
t.Run("creates IORef with zero value", func(t *testing.T) {
ref := MakeIORef(0)()
assert.NotNil(t, ref)
assert.Equal(t, 0, Read(ref)())
})
t.Run("creates IORef with nil pointer", func(t *testing.T) {
var ptr *int
ref := MakeIORef(ptr)()
assert.NotNil(t, ref)
assert.Nil(t, Read(ref)())
})
t.Run("multiple IORefs are independent", func(t *testing.T) {
ref1 := MakeIORef(10)()
ref2 := MakeIORef(20)()
assert.Equal(t, 10, Read(ref1)())
assert.Equal(t, 20, Read(ref2)())
Write(30)(ref1)()
assert.Equal(t, 30, Read(ref1)())
assert.Equal(t, 20, Read(ref2)()) // ref2 unchanged
})
}
func TestRead(t *testing.T) {
t.Run("reads initial value", func(t *testing.T) {
ref := MakeIORef(42)()
value := Read(ref)()
assert.Equal(t, 42, value)
})
t.Run("reads updated value", func(t *testing.T) {
ref := MakeIORef(10)()
Write(20)(ref)()
value := Read(ref)()
assert.Equal(t, 20, value)
})
t.Run("multiple reads return same value", func(t *testing.T) {
ref := MakeIORef(100)()
value1 := Read(ref)()
value2 := Read(ref)()
value3 := Read(ref)()
assert.Equal(t, 100, value1)
assert.Equal(t, 100, value2)
assert.Equal(t, 100, value3)
})
t.Run("concurrent reads are thread-safe", func(t *testing.T) {
ref := MakeIORef(42)()
var wg sync.WaitGroup
iterations := 100
results := make([]int, iterations)
for i := 0; i < iterations; i++ {
wg.Add(1)
go func(idx int) {
defer wg.Done()
results[idx] = Read(ref)()
}(i)
}
wg.Wait()
// All reads should return the same value
for _, v := range results {
assert.Equal(t, 42, v)
}
})
t.Run("reads during concurrent writes", func(t *testing.T) {
ref := MakeIORef(0)()
var wg sync.WaitGroup
iterations := 50
// Start concurrent writes
for i := 0; i < iterations; i++ {
wg.Add(1)
go func(val int) {
defer wg.Done()
Write(val)(ref)()
}(i)
}
// Start concurrent reads
for i := 0; i < iterations; i++ {
wg.Add(1)
go func() {
defer wg.Done()
value := Read(ref)()
// Value should be valid (between 0 and iterations-1)
assert.GreaterOrEqual(t, value, 0)
assert.Less(t, value, iterations)
}()
}
wg.Wait()
})
}
func TestWrite(t *testing.T) {
t.Run("writes new value", func(t *testing.T) {
ref := MakeIORef(42)()
result := Write(100)(ref)()
assert.Equal(t, 100, result)
assert.Equal(t, 100, Read(ref)())
})
t.Run("overwrites existing value", func(t *testing.T) {
ref := MakeIORef(10)()
Write(20)(ref)()
Write(30)(ref)()
assert.Equal(t, 30, Read(ref)())
})
t.Run("returns written value", func(t *testing.T) {
ref := MakeIORef(0)()
result := Write(42)(ref)()
assert.Equal(t, 42, result)
})
t.Run("writes string value", func(t *testing.T) {
ref := MakeIORef("hello")()
result := Write("world")(ref)()
assert.Equal(t, "world", result)
assert.Equal(t, "world", Read(ref)())
})
t.Run("chained writes", func(t *testing.T) {
ref := MakeIORef(1)()
Write(2)(ref)()
Write(3)(ref)()
result := Write(4)(ref)()
assert.Equal(t, 4, result)
assert.Equal(t, 4, Read(ref)())
})
t.Run("concurrent writes are thread-safe", func(t *testing.T) {
ref := MakeIORef(0)()
var wg sync.WaitGroup
iterations := 100
for i := 0; i < iterations; i++ {
wg.Add(1)
go func(val int) {
defer wg.Done()
Write(val)(ref)()
}(i)
}
wg.Wait()
// Final value should be one of the written values
finalValue := Read(ref)()
assert.GreaterOrEqual(t, finalValue, 0)
assert.Less(t, finalValue, iterations)
})
t.Run("write with zero value", func(t *testing.T) {
ref := MakeIORef(42)()
Write(0)(ref)()
assert.Equal(t, 0, Read(ref)())
})
}
func TestModify(t *testing.T) {
t.Run("modifies value with simple function", func(t *testing.T) {
ref := MakeIORef(10)()
result := Modify(func(x int) int { return x * 2 })(ref)()
assert.Equal(t, 20, result)
assert.Equal(t, 20, Read(ref)())
})
t.Run("modifies with addition", func(t *testing.T) {
ref := MakeIORef(5)()
Modify(func(x int) int { return x + 10 })(ref)()
assert.Equal(t, 15, Read(ref)())
})
t.Run("modifies string value", func(t *testing.T) {
ref := MakeIORef("hello")()
result := Modify(func(s string) string { return s + " world" })(ref)()
assert.Equal(t, "hello world", result)
assert.Equal(t, "hello world", Read(ref)())
})
t.Run("chained modifications", func(t *testing.T) {
ref := MakeIORef(2)()
Modify(func(x int) int { return x * 3 })(ref)() // 6
Modify(func(x int) int { return x + 4 })(ref)() // 10
result := Modify(func(x int) int { return x / 2 })(ref)()
assert.Equal(t, 5, result)
assert.Equal(t, 5, Read(ref)())
})
t.Run("concurrent modifications are thread-safe", func(t *testing.T) {
ref := MakeIORef(0)()
var wg sync.WaitGroup
iterations := 100
for i := 0; i < iterations; i++ {
wg.Add(1)
go func() {
defer wg.Done()
Modify(func(x int) int { return x + 1 })(ref)()
}()
}
wg.Wait()
assert.Equal(t, iterations, Read(ref)())
})
t.Run("modify with identity function", func(t *testing.T) {
ref := MakeIORef(42)()
result := Modify(func(x int) int { return x })(ref)()
assert.Equal(t, 42, result)
assert.Equal(t, 42, Read(ref)())
})
t.Run("modify returns new value", func(t *testing.T) {
ref := MakeIORef(100)()
result := Modify(func(x int) int { return x - 50 })(ref)()
assert.Equal(t, 50, result)
})
}
func TestModifyWithResult(t *testing.T) {
t.Run("modifies and returns old value", func(t *testing.T) {
ref := MakeIORef(42)()
oldValue := ModifyWithResult(func(x int) pair.Pair[int, int] {
return pair.MakePair(x+1, x)
})(ref)()
assert.Equal(t, 42, oldValue)
assert.Equal(t, 43, Read(ref)())
})
t.Run("swaps value and returns old", func(t *testing.T) {
ref := MakeIORef(100)()
oldValue := ModifyWithResult(func(x int) pair.Pair[int, int] {
return pair.MakePair(200, x)
})(ref)()
assert.Equal(t, 100, oldValue)
assert.Equal(t, 200, Read(ref)())
})
t.Run("returns different type", func(t *testing.T) {
ref := MakeIORef(42)()
message := ModifyWithResult(func(x int) pair.Pair[int, string] {
return pair.MakePair(x*2, fmt.Sprintf("doubled from %d", x))
})(ref)()
assert.Equal(t, "doubled from 42", message)
assert.Equal(t, 84, Read(ref)())
})
t.Run("computes result based on old value", func(t *testing.T) {
ref := MakeIORef(10)()
wasPositive := ModifyWithResult(func(x int) pair.Pair[int, bool] {
return pair.MakePair(x+5, x > 0)
})(ref)()
assert.True(t, wasPositive)
assert.Equal(t, 15, Read(ref)())
})
t.Run("chained modifications with results", func(t *testing.T) {
ref := MakeIORef(5)()
result1 := ModifyWithResult(func(x int) pair.Pair[int, int] {
return pair.MakePair(x*2, x)
})(ref)()
result2 := ModifyWithResult(func(x int) pair.Pair[int, int] {
return pair.MakePair(x+10, x)
})(ref)()
assert.Equal(t, 5, result1)
assert.Equal(t, 10, result2)
assert.Equal(t, 20, Read(ref)())
})
t.Run("concurrent modifications with results are thread-safe", func(t *testing.T) {
ref := MakeIORef(0)()
var wg sync.WaitGroup
iterations := 100
results := make([]int, iterations)
for i := 0; i < iterations; i++ {
wg.Add(1)
go func(idx int) {
defer wg.Done()
oldValue := ModifyWithResult(func(x int) pair.Pair[int, int] {
return pair.MakePair(x+1, x)
})(ref)()
results[idx] = oldValue
}(i)
}
wg.Wait()
assert.Equal(t, iterations, Read(ref)())
// All old values should be unique
seen := make(map[int]bool)
for _, v := range results {
assert.False(t, seen[v])
seen[v] = true
}
})
t.Run("extract and replace pattern", func(t *testing.T) {
ref := MakeIORef([]int{1, 2, 3})()
first := ModifyWithResult(func(xs []int) pair.Pair[[]int, int] {
if len(xs) == 0 {
return pair.MakePair(xs, 0)
}
return pair.MakePair(xs[1:], xs[0])
})(ref)()
assert.Equal(t, 1, first)
assert.Equal(t, []int{2, 3}, Read(ref)())
})
}
func TestModifyReaderIOK(t *testing.T) {
type Config struct {
multiplier int
}
t.Run("modifies with environment", func(t *testing.T) {
ref := MakeIORef(10)()
config := Config{multiplier: 5}
result := ModifyReaderIOK(func(x int) readerio.ReaderIO[Config, int] {
return func(cfg Config) io.IO[int] {
return io.Of(x * cfg.multiplier)
}
})(ref)(config)()
assert.Equal(t, 50, result)
assert.Equal(t, 50, Read(ref)())
})
t.Run("uses environment for computation", func(t *testing.T) {
ref := MakeIORef(100)()
config := Config{multiplier: 2}
result := ModifyReaderIOK(func(x int) readerio.ReaderIO[Config, int] {
return func(cfg Config) io.IO[int] {
return func() int {
return x / cfg.multiplier
}
}
})(ref)(config)()
assert.Equal(t, 50, result)
assert.Equal(t, 50, Read(ref)())
})
t.Run("chained modifications with different configs", func(t *testing.T) {
ref := MakeIORef(10)()
config1 := Config{multiplier: 2}
config2 := Config{multiplier: 3}
ModifyReaderIOK(func(x int) readerio.ReaderIO[Config, int] {
return func(cfg Config) io.IO[int] {
return io.Of(x * cfg.multiplier)
}
})(ref)(config1)()
result := ModifyReaderIOK(func(x int) readerio.ReaderIO[Config, int] {
return func(cfg Config) io.IO[int] {
return io.Of(x + cfg.multiplier)
}
})(ref)(config2)()
assert.Equal(t, 23, result) // (10 * 2) + 3
assert.Equal(t, 23, Read(ref)())
})
t.Run("concurrent modifications with environment are thread-safe", func(t *testing.T) {
ref := MakeIORef(0)()
config := Config{multiplier: 1}
var wg sync.WaitGroup
iterations := 100
for i := 0; i < iterations; i++ {
wg.Add(1)
go func() {
defer wg.Done()
ModifyReaderIOK(func(x int) readerio.ReaderIO[Config, int] {
return func(cfg Config) io.IO[int] {
return io.Of(x + cfg.multiplier)
}
})(ref)(config)()
}()
}
wg.Wait()
assert.Equal(t, iterations, Read(ref)())
})
t.Run("environment provides configuration", func(t *testing.T) {
type Settings struct {
prefix string
}
ref := MakeIORef("world")()
settings := Settings{prefix: "hello "}
result := ModifyReaderIOK(func(s string) readerio.ReaderIO[Settings, string] {
return func(cfg Settings) io.IO[string] {
return io.Of(cfg.prefix + s)
}
})(ref)(settings)()
assert.Equal(t, "hello world", result)
assert.Equal(t, "hello world", Read(ref)())
})
}
func TestModifyReaderIOKWithResult(t *testing.T) {
type Config struct {
logEnabled bool
multiplier int
}
t.Run("modifies with environment and returns result", func(t *testing.T) {
ref := MakeIORef(42)()
config := Config{logEnabled: false, multiplier: 2}
oldValue := ModifyReaderIOKWithResult(func(x int) readerio.ReaderIO[Config, pair.Pair[int, int]] {
return func(cfg Config) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x*cfg.multiplier, x))
}
})(ref)(config)()
assert.Equal(t, 42, oldValue)
assert.Equal(t, 84, Read(ref)())
})
t.Run("returns different type based on environment", func(t *testing.T) {
ref := MakeIORef(10)()
config := Config{logEnabled: true, multiplier: 3}
message := ModifyReaderIOKWithResult(func(x int) readerio.ReaderIO[Config, pair.Pair[int, string]] {
return func(cfg Config) io.IO[pair.Pair[int, string]] {
return func() pair.Pair[int, string] {
newVal := x * cfg.multiplier
msg := fmt.Sprintf("multiplied %d by %d", x, cfg.multiplier)
return pair.MakePair(newVal, msg)
}
}
})(ref)(config)()
assert.Equal(t, "multiplied 10 by 3", message)
assert.Equal(t, 30, Read(ref)())
})
t.Run("conditional logic based on environment", func(t *testing.T) {
ref := MakeIORef(-10)()
config := Config{logEnabled: true, multiplier: 2}
message := ModifyReaderIOKWithResult(func(x int) readerio.ReaderIO[Config, pair.Pair[int, string]] {
return func(cfg Config) io.IO[pair.Pair[int, string]] {
return func() pair.Pair[int, string] {
if x < 0 {
return pair.MakePair(0, "reset negative value")
}
return pair.MakePair(x*cfg.multiplier, "multiplied positive value")
}
}
})(ref)(config)()
assert.Equal(t, "reset negative value", message)
assert.Equal(t, 0, Read(ref)())
})
t.Run("chained modifications with results", func(t *testing.T) {
ref := MakeIORef(5)()
config := Config{logEnabled: false, multiplier: 2}
result1 := ModifyReaderIOKWithResult(func(x int) readerio.ReaderIO[Config, pair.Pair[int, int]] {
return func(cfg Config) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x*cfg.multiplier, x))
}
})(ref)(config)()
result2 := ModifyReaderIOKWithResult(func(x int) readerio.ReaderIO[Config, pair.Pair[int, int]] {
return func(cfg Config) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x+cfg.multiplier, x))
}
})(ref)(config)()
assert.Equal(t, 5, result1)
assert.Equal(t, 10, result2)
assert.Equal(t, 12, Read(ref)())
})
t.Run("concurrent modifications with environment are thread-safe", func(t *testing.T) {
ref := MakeIORef(0)()
config := Config{logEnabled: false, multiplier: 1}
var wg sync.WaitGroup
iterations := 100
results := make([]int, iterations)
for i := 0; i < iterations; i++ {
wg.Add(1)
go func(idx int) {
defer wg.Done()
oldValue := ModifyReaderIOKWithResult(func(x int) readerio.ReaderIO[Config, pair.Pair[int, int]] {
return func(cfg Config) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x+cfg.multiplier, x))
}
})(ref)(config)()
results[idx] = oldValue
}(i)
}
wg.Wait()
assert.Equal(t, iterations, Read(ref)())
// All old values should be unique
seen := make(map[int]bool)
for _, v := range results {
assert.False(t, seen[v])
seen[v] = true
}
})
t.Run("environment provides validation rules", func(t *testing.T) {
type ValidationConfig struct {
maxValue int
}
ref := MakeIORef(100)()
config := ValidationConfig{maxValue: 50}
message := ModifyReaderIOKWithResult(func(x int) readerio.ReaderIO[ValidationConfig, pair.Pair[int, string]] {
return func(cfg ValidationConfig) io.IO[pair.Pair[int, string]] {
return func() pair.Pair[int, string] {
if x > cfg.maxValue {
return pair.MakePair(cfg.maxValue, fmt.Sprintf("capped at %d", cfg.maxValue))
}
return pair.MakePair(x, "value within limits")
}
}
})(ref)(config)()
assert.Equal(t, "capped at 50", message)
assert.Equal(t, 50, Read(ref)())
})
}
func TestModifyIOK(t *testing.T) {
t.Run("basic modification with IO effect", func(t *testing.T) {
ref := MakeIORef(42)()
// Double the value using ModifyIOK
newValue := ModifyIOK(func(x int) io.IO[int] {
return io.Of(x * 2)
})(ref)()
assert.Equal(t, 84, newValue)
assert.Equal(t, 84, Read(ref)())
})
t.Run("modification with side effects", func(t *testing.T) {
ref := MakeIORef(10)()
var sideEffect int
// Modify with a side effect
newValue := ModifyIOK(func(x int) io.IO[int] {
return func() int {
sideEffect = x // Capture old value
return x + 5
}
})(ref)()
assert.Equal(t, 15, newValue)
assert.Equal(t, 10, sideEffect)
assert.Equal(t, 15, Read(ref)())
})
t.Run("chained modifications", func(t *testing.T) {
ref := MakeIORef(5)()
// First modification: add 10
ModifyIOK(func(x int) io.IO[int] {
return io.Of(x + 10)
})(ref)()
// Second modification: multiply by 2
result := ModifyIOK(func(x int) io.IO[int] {
return io.Of(x * 2)
})(ref)()
assert.Equal(t, 30, result)
assert.Equal(t, 30, Read(ref)())
})
t.Run("concurrent modifications are thread-safe", func(t *testing.T) {
ref := MakeIORef(0)()
var wg sync.WaitGroup
iterations := 100
// Increment concurrently
for i := 0; i < iterations; i++ {
wg.Add(1)
go func() {
defer wg.Done()
ModifyIOK(func(x int) io.IO[int] {
return io.Of(x + 1)
})(ref)()
}()
}
wg.Wait()
assert.Equal(t, iterations, Read(ref)())
})
t.Run("modification with string type", func(t *testing.T) {
ref := MakeIORef("hello")()
newValue := ModifyIOK(func(s string) io.IO[string] {
return io.Of(s + " world")
})(ref)()
assert.Equal(t, "hello world", newValue)
assert.Equal(t, "hello world", Read(ref)())
})
t.Run("modification returns new value", func(t *testing.T) {
ref := MakeIORef(100)()
result := ModifyIOK(func(x int) io.IO[int] {
return io.Of(x / 2)
})(ref)()
// ModifyIOK returns the new value
assert.Equal(t, 50, result)
assert.Equal(t, 50, Read(ref)())
})
t.Run("modification with complex IO computation", func(t *testing.T) {
ref := MakeIORef(3)()
// Use a more complex IO computation
newValue := ModifyIOK(func(x int) io.IO[int] {
return F.Pipe1(
io.Of(x),
io.Map(func(n int) int { return n * n }),
)
})(ref)()
assert.Equal(t, 9, newValue)
assert.Equal(t, 9, Read(ref)())
})
}
func TestModifyIOKWithResult(t *testing.T) {
t.Run("basic modification with result", func(t *testing.T) {
ref := MakeIORef(42)()
// Increment and return old value
oldValue := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x+1, x))
})(ref)()
assert.Equal(t, 42, oldValue)
assert.Equal(t, 43, Read(ref)())
})
t.Run("swap and return old value", func(t *testing.T) {
ref := MakeIORef(100)()
oldValue := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(200, x))
})(ref)()
assert.Equal(t, 100, oldValue)
assert.Equal(t, 200, Read(ref)())
})
t.Run("modification with different result type", func(t *testing.T) {
ref := MakeIORef(42)()
// Double the value and return a message
message := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, string]] {
return io.Of(pair.MakePair(x*2, fmt.Sprintf("doubled from %d", x)))
})(ref)()
assert.Equal(t, "doubled from 42", message)
assert.Equal(t, 84, Read(ref)())
})
t.Run("modification with side effects in IO", func(t *testing.T) {
ref := MakeIORef(10)()
var sideEffect string
result := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, bool]] {
return func() pair.Pair[int, bool] {
sideEffect = fmt.Sprintf("processing %d", x)
return pair.MakePair(x+5, x > 5)
}
})(ref)()
assert.True(t, result)
assert.Equal(t, "processing 10", sideEffect)
assert.Equal(t, 15, Read(ref)())
})
t.Run("chained modifications with results", func(t *testing.T) {
ref := MakeIORef(5)()
// First modification
result1 := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x*2, x))
})(ref)()
// Second modification
result2 := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x+10, x))
})(ref)()
assert.Equal(t, 5, result1) // Original value
assert.Equal(t, 10, result2) // After first modification
assert.Equal(t, 20, Read(ref)()) // After both modifications
})
t.Run("concurrent modifications with results are thread-safe", func(t *testing.T) {
ref := MakeIORef(0)()
var wg sync.WaitGroup
iterations := 100
results := make([]int, iterations)
// Increment concurrently and collect old values
for i := 0; i < iterations; i++ {
wg.Add(1)
go func(idx int) {
defer wg.Done()
oldValue := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, int]] {
return io.Of(pair.MakePair(x+1, x))
})(ref)()
results[idx] = oldValue
}(i)
}
wg.Wait()
// Final value should be iterations
assert.Equal(t, iterations, Read(ref)())
// All old values should be unique and in range [0, iterations)
seen := make(map[int]bool)
for _, v := range results {
assert.False(t, seen[v], "duplicate old value: %d", v)
assert.GreaterOrEqual(t, v, 0)
assert.Less(t, v, iterations)
seen[v] = true
}
})
t.Run("modification with string types", func(t *testing.T) {
ref := MakeIORef("hello")()
length := ModifyIOKWithResult(func(s string) io.IO[pair.Pair[string, int]] {
return io.Of(pair.MakePair(s+" world", len(s)))
})(ref)()
assert.Equal(t, 5, length)
assert.Equal(t, "hello world", Read(ref)())
})
t.Run("modification with validation logic", func(t *testing.T) {
ref := MakeIORef(-10)()
message := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, string]] {
return func() pair.Pair[int, string] {
if x < 0 {
return pair.MakePair(0, "reset negative value")
}
return pair.MakePair(x*2, "doubled positive value")
}
})(ref)()
assert.Equal(t, "reset negative value", message)
assert.Equal(t, 0, Read(ref)())
})
t.Run("modification with complex IO computation", func(t *testing.T) {
ref := MakeIORef(5)()
result := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, string]] {
return F.Pipe1(
io.Of(x),
io.Map(func(n int) pair.Pair[int, string] {
squared := n * n
return pair.MakePair(squared, fmt.Sprintf("%d squared is %d", n, squared))
}),
)
})(ref)()
assert.Equal(t, "5 squared is 25", result)
assert.Equal(t, 25, Read(ref)())
})
t.Run("extract and replace pattern", func(t *testing.T) {
ref := MakeIORef([]int{1, 2, 3})()
// Extract first element and remove it from the slice
first := ModifyIOKWithResult(func(xs []int) io.IO[pair.Pair[[]int, int]] {
return func() pair.Pair[[]int, int] {
if len(xs) == 0 {
return pair.MakePair(xs, 0)
}
return pair.MakePair(xs[1:], xs[0])
}
})(ref)()
assert.Equal(t, 1, first)
assert.Equal(t, []int{2, 3}, Read(ref)())
})
}
func TestModifyIOKIntegration(t *testing.T) {
t.Run("ModifyIOK integrates with Modify", func(t *testing.T) {
ref := MakeIORef(10)()
// Use Modify (which internally uses ModifyIOK)
result1 := Modify(N.Mul(2))(ref)()
assert.Equal(t, 20, result1)
// Use ModifyIOK directly
result2 := ModifyIOK(func(x int) io.IO[int] {
return io.Of(x + 5)
})(ref)()
assert.Equal(t, 25, result2)
assert.Equal(t, 25, Read(ref)())
})
}
func TestModifyIOKWithResultIntegration(t *testing.T) {
t.Run("ModifyIOKWithResult integrates with ModifyWithResult", func(t *testing.T) {
ref := MakeIORef(10)()
// Use ModifyWithResult (which internally uses ModifyIOKWithResult)
result1 := ModifyWithResult(func(x int) pair.Pair[int, int] {
return pair.MakePair(x*2, x)
})(ref)()
assert.Equal(t, 10, result1)
assert.Equal(t, 20, Read(ref)())
// Use ModifyIOKWithResult directly
result2 := ModifyIOKWithResult(func(x int) io.IO[pair.Pair[int, string]] {
return io.Of(pair.MakePair(x+5, fmt.Sprintf("was %d", x)))
})(ref)()
assert.Equal(t, "was 20", result2)
assert.Equal(t, 25, Read(ref)())
})
}

View File

@@ -45,30 +45,134 @@ import (
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/pair"
"github.com/IBM/fp-go/v2/readerio"
)
type (
// ioRef is the internal implementation of a mutable reference.
// It uses a read-write mutex to ensure thread-safe access.
// It uses a read-write mutex to ensure thread-safe access to the stored value.
//
// The mutex allows multiple concurrent readers (using RLock) but ensures
// exclusive access for writers (using Lock), preventing race conditions
// when reading or modifying the stored value.
//
// This type is not exported; users interact with it through the IORef type alias.
ioRef[A any] struct {
mu sync.RWMutex
a A
mu sync.RWMutex // Protects concurrent access to the stored value
a A // The stored value
}
// IO represents a synchronous computation that may have side effects.
// It's a function that takes no arguments and returns a value of type A.
//
// IO computations are lazy - they don't execute until explicitly invoked
// by calling the function. This allows for composing and chaining effects
// before execution.
//
// Example:
//
// // Define an IO computation
// computation := func() int {
// fmt.Println("Computing...")
// return 42
// }
//
// // Nothing happens yet - the computation is lazy
// result := computation() // Now it executes and prints "Computing..."
IO[A any] = io.IO[A]
// ReaderIO represents a computation that requires an environment of type R
// and produces an IO effect that yields a value of type A.
//
// This combines the Reader pattern (dependency injection) with IO effects,
// allowing computations to access shared configuration or context while
// performing side effects.
//
// Example:
//
// type Config struct {
// multiplier int
// }
//
// // A ReaderIO that uses config to compute a value
// computation := func(cfg Config) io.IO[int] {
// return func() int {
// return 42 * cfg.multiplier
// }
// }
//
// // Execute with specific config
// result := computation(Config{multiplier: 2})() // Returns 84
ReaderIO[R, A any] = readerio.ReaderIO[R, A]
// IORef represents a mutable reference to a value of type A.
// Operations on IORef are thread-safe and performed within the IO monad.
//
// IORef provides a way to work with mutable state in a functional style,
// where mutations are explicit and contained within IO computations.
// This makes side effects visible in the type system and allows for
// better reasoning about code that uses mutable state.
//
// All operations on IORef (Read, Write, Modify, etc.) are atomic and
// thread-safe, making it safe to share IORefs across goroutines.
//
// Example:
//
// // Create a new IORef
// ref := ioref.MakeIORef(42)()
//
// // Read the current value
// value := ioref.Read(ref)() // 42
//
// // Write a new value
// ioref.Write(100)(ref)()
//
// // Modify the value atomically
// ioref.Modify(func(x int) int { return x * 2 })(ref)()
IORef[A any] = *ioRef[A]
// Endomorphism represents a function from A to A.
// It's commonly used with Modify to transform the value in an IORef.
//
// An endomorphism is a morphism (structure-preserving map) from a
// mathematical object to itself. In programming terms, it's simply
// a function that takes a value and returns a value of the same type.
//
// Example:
//
// // An endomorphism that doubles an integer
// double := func(x int) int { return x * 2 }
//
// // An endomorphism that uppercases a string
// upper := func(s string) string { return strings.ToUpper(s) }
//
// // Use with IORef
// ref := ioref.MakeIORef(21)()
// ioref.Modify(double)(ref)() // ref now contains 42
Endomorphism[A any] = endomorphism.Endomorphism[A]
// Pair represents a tuple of two values of types A and B.
// It's used with ModifyWithResult and ModifyIOKWithResult to return both
// a new value for the IORef (head) and a computed result (tail).
//
// The head of the pair contains the new value to store in the IORef,
// while the tail contains the result to return from the operation.
// This allows atomic operations that both update the reference and
// compute a result based on the old value.
//
// Example:
//
// // Create a pair where head is the new value and tail is the old value
// p := pair.MakePair(newValue, oldValue)
//
// // Extract values
// newVal := pair.Head(p) // Gets the head (new value)
// oldVal := pair.Tail(p) // Gets the tail (old value)
//
// // Use with ModifyWithResult to swap and return old value
// ref := ioref.MakeIORef(42)()
// oldValue := ioref.ModifyWithResult(func(x int) pair.Pair[int, int] {
// return pair.MakePair(100, x) // Store 100, return old value
// })(ref)() // oldValue is 42, ref now contains 100
Pair[A, B any] = pair.Pair[A, B]
)

View File

@@ -29,7 +29,7 @@ func ExampleIOEither_do() {
bar := Of(1)
// quux consumes the state of three bindings and returns an [IO] instead of an [IOEither]
quux := func(t T.Tuple3[string, int, string]) IO[any] {
quux := func(t T.Tuple3[string, int, string]) IO[Void] {
return io.FromImpure(func() {
log.Printf("t1: %s, t2: %d, t3: %s", t.F1, t.F2, t.F3)
})

View File

@@ -45,7 +45,7 @@ func TestBuilderWithQuery(t *testing.T) {
ioresult.Map(func(r *http.Request) *url.URL {
return r.URL
}),
ioresult.ChainFirstIOK(func(u *url.URL) io.IO[any] {
ioresult.ChainFirstIOK(func(u *url.URL) io.IO[Void] {
return io.FromImpure(func() {
q := u.Query()
assert.Equal(t, "10", q.Get("limit"))

View File

@@ -15,10 +15,14 @@
package builder
import "github.com/IBM/fp-go/v2/ioresult"
import (
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/ioresult"
)
type (
IOResult[T any] = ioresult.IOResult[T]
Kleisli[A, B any] = ioresult.Kleisli[A, B]
Operator[A, B any] = ioresult.Operator[A, B]
Void = function.Void
)

View File

@@ -52,27 +52,27 @@ func MakeClient(httpClient *http.Client) Client {
// ReadFullResponse sends a request, reads the response as a byte array and represents the result as a tuple
//
//go:inline
func ReadFullResponse(client Client) Kleisli[Requester, H.FullResponse] {
func ReadFullResponse(client Client) Operator[*http.Request, H.FullResponse] {
return IOEH.ReadFullResponse(client)
}
// ReadAll sends a request and reads the response as bytes
//
//go:inline
func ReadAll(client Client) Kleisli[Requester, []byte] {
func ReadAll(client Client) Operator[*http.Request, []byte] {
return IOEH.ReadAll(client)
}
// ReadText sends a request, reads the response and represents the response as a text string
//
//go:inline
func ReadText(client Client) Kleisli[Requester, string] {
func ReadText(client Client) Operator[*http.Request, string] {
return IOEH.ReadText(client)
}
// ReadJSON sends a request, reads the response and parses the response as JSON
//
//go:inline
func ReadJSON[A any](client Client) Kleisli[Requester, A] {
func ReadJSON[A any](client Client) Operator[*http.Request, A] {
return IOEH.ReadJSON[A](client)
}

View File

@@ -404,7 +404,7 @@ func Swap[A any](val IOResult[A]) ioeither.IOEither[A, error] {
// FromImpure converts a side effect without a return value into a side effect that returns any
//
//go:inline
func FromImpure[E any](f func()) IOResult[any] {
func FromImpure[E any](f func()) IOResult[Void] {
return ioeither.FromImpure[error](f)
}

View File

@@ -4,6 +4,7 @@ import (
"github.com/IBM/fp-go/v2/consumer"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/io"
"github.com/IBM/fp-go/v2/lazy"
"github.com/IBM/fp-go/v2/monoid"
@@ -56,4 +57,6 @@ type (
// Predicate represents a function that tests a value of type A and returns a boolean.
// It's commonly used for filtering and conditional operations.
Predicate[A any] = predicate.Predicate[A]
Void = function.Void
)

54
v2/iterator/iter/last.go Normal file
View File

@@ -0,0 +1,54 @@
package iter
import (
"github.com/IBM/fp-go/v2/option"
)
// Last returns the last element from an [Iterator] wrapped in an [Option].
//
// This function retrieves the last element from the iterator by consuming the entire
// sequence. If the iterator contains at least one element, it returns Some(element).
// If the iterator is empty, it returns None.
//
// RxJS Equivalent: [last] - https://rxjs.dev/api/operators/last
//
// Type Parameters:
// - U: The type of elements in the iterator
//
// Parameters:
// - it: The input iterator to get the last element from
//
// Returns:
// - Option[U]: Some(last element) if the iterator is non-empty, None otherwise
//
// Example with non-empty sequence:
//
// seq := iter.From(1, 2, 3, 4, 5)
// last := iter.Last(seq)
// // Returns: Some(5)
//
// Example with empty sequence:
//
// seq := iter.Empty[int]()
// last := iter.Last(seq)
// // Returns: None
//
// Example with filtered sequence:
//
// seq := iter.From(1, 2, 3, 4, 5)
// filtered := iter.Filter(func(x int) bool { return x < 4 })(seq)
// last := iter.Last(filtered)
// // Returns: Some(3)
func Last[U any](it Seq[U]) Option[U] {
var last U
found := false
for last = range it {
found = true
}
if !found {
return option.None[U]()
}
return option.Some(last)
}

View File

@@ -0,0 +1,305 @@
package iter
import (
"fmt"
"testing"
"github.com/IBM/fp-go/v2/function"
F "github.com/IBM/fp-go/v2/function"
N "github.com/IBM/fp-go/v2/number"
O "github.com/IBM/fp-go/v2/option"
"github.com/stretchr/testify/assert"
)
// TestLast test getting the last element from a non-empty sequence
func TestLastSimple(t *testing.T) {
t.Run("returns last element from integer sequence", func(t *testing.T) {
seq := From(1, 2, 3)
last := Last(seq)
assert.Equal(t, O.Of(3), last)
})
t.Run("returns last element from string sequence", func(t *testing.T) {
seq := From("a", "b", "c")
last := Last(seq)
assert.Equal(t, O.Of("c"), last)
})
t.Run("returns last element from single element sequence", func(t *testing.T) {
seq := From(42)
last := Last(seq)
assert.Equal(t, O.Of(42), last)
})
t.Run("returns last element from large sequence", func(t *testing.T) {
seq := From(100, 200, 300, 400, 500)
last := Last(seq)
assert.Equal(t, O.Of(500), last)
})
}
// TestLastEmpty tests getting the last element from an empty sequence
func TestLastEmpty(t *testing.T) {
t.Run("returns None for empty integer sequence", func(t *testing.T) {
seq := Empty[int]()
last := Last(seq)
assert.Equal(t, O.None[int](), last)
})
t.Run("returns None for empty string sequence", func(t *testing.T) {
seq := Empty[string]()
last := Last(seq)
assert.Equal(t, O.None[string](), last)
})
t.Run("returns None for empty struct sequence", func(t *testing.T) {
type TestStruct struct {
Value int
}
seq := Empty[TestStruct]()
last := Last(seq)
assert.Equal(t, O.None[TestStruct](), last)
})
t.Run("returns None for empty sequence of functions", func(t *testing.T) {
type TestFunc func(int)
seq := Empty[TestFunc]()
last := Last(seq)
assert.Equal(t, O.None[TestFunc](), last)
})
}
// TestLastWithComplex tests Last with complex types
func TestLastWithComplex(t *testing.T) {
type Person struct {
Name string
Age int
}
t.Run("returns last person", func(t *testing.T) {
seq := From(
Person{"Alice", 30},
Person{"Bob", 25},
Person{"Charlie", 35},
)
last := Last(seq)
expected := O.Of(Person{"Charlie", 35})
assert.Equal(t, expected, last)
})
t.Run("returns last pointer", func(t *testing.T) {
p1 := &Person{"Alice", 30}
p2 := &Person{"Bob", 25}
seq := From(p1, p2)
last := Last(seq)
assert.Equal(t, O.Of(p2), last)
})
}
func TestLastWithFunctions(t *testing.T) {
t.Run("return function", func(t *testing.T) {
want := "last"
f1 := function.Constant("first")
f2 := function.Constant("last")
seq := From(f1, f2)
getLast := function.Flow2(
Last,
O.Map(funcReader),
)
assert.Equal(t, O.Of(want), getLast(seq))
})
}
func funcReader(f func() string) string {
return f()
}
// TestLastWithChan tests Last with channels
func TestLastWithChan(t *testing.T) {
t.Run("return function", func(t *testing.T) {
want := 30
seq := From(intChan(10),
intChan(20),
intChan(want))
getLast := function.Flow2(
Last,
O.Map(chanReader[int]),
)
assert.Equal(t, O.Of(want), getLast(seq))
})
}
func chanReader[T any](c <-chan T) T {
return <-c
}
func intChan(val int) <-chan int {
ch := make(chan int, 1)
ch <- val
close(ch)
return ch
}
// TestLastWithChainedOperations tests Last with multiple chained operations
func TestLastWithChainedOperations(t *testing.T) {
t.Run("chains filter, map, and last", func(t *testing.T) {
seq := From(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
filtered := MonadFilter(seq, N.MoreThan(5))
mapped := MonadMap(filtered, N.Mul(10))
result := Last(mapped)
assert.Equal(t, O.Of(100), result)
})
t.Run("chains map and filter", func(t *testing.T) {
seq := From(1, 2, 3, 4, 5)
mapped := MonadMap(seq, N.Mul(2))
filtered := MonadFilter(mapped, N.MoreThan(5))
result := Last(filtered)
assert.Equal(t, O.Of(10), result)
})
}
// TestLastWithReplicate tests Last with replicated values
func TestLastWithReplicate(t *testing.T) {
t.Run("returns last from replicated sequence", func(t *testing.T) {
seq := Replicate(5, 42)
last := Last(seq)
assert.Equal(t, O.Of(42), last)
})
t.Run("returns None from zero replications", func(t *testing.T) {
seq := Replicate(0, 42)
last := Last(seq)
assert.Equal(t, O.None[int](), last)
})
}
// TestLastWithMakeBy tests Last with MakeBy
func TestLastWithMakeBy(t *testing.T) {
t.Run("returns last generated element", func(t *testing.T) {
seq := MakeBy(5, func(i int) int { return i * i })
last := Last(seq)
assert.Equal(t, O.Of(16), last)
})
t.Run("returns None for zero elements", func(t *testing.T) {
seq := MakeBy(0, F.Identity[int])
last := Last(seq)
assert.Equal(t, O.None[int](), last)
})
}
// TestLastWithPrepend tests Last with Prepend
func TestLastWithPrepend(t *testing.T) {
t.Run("returns last element, not prepended", func(t *testing.T) {
seq := From(2, 3, 4)
prepended := Prepend(1)(seq)
last := Last(prepended)
assert.Equal(t, O.Of(4), last)
})
t.Run("returns prepended element from empty sequence", func(t *testing.T) {
seq := Empty[int]()
prepended := Prepend(42)(seq)
last := Last(prepended)
assert.Equal(t, O.Of(42), last)
})
}
// TestLastWithAppend tests Last with Append
func TestLastWithAppend(t *testing.T) {
t.Run("returns appended element", func(t *testing.T) {
seq := From(1, 2, 3)
appended := Append(4)(seq)
last := Last(appended)
assert.Equal(t, O.Of(4), last)
})
t.Run("returns appended element from empty sequence", func(t *testing.T) {
seq := Empty[int]()
appended := Append(42)(seq)
last := Last(appended)
assert.Equal(t, O.Of(42), last)
})
}
// TestLastWithChain tests Last with Chain (flatMap)
func TestLastWithChain(t *testing.T) {
t.Run("returns last from chained sequence", func(t *testing.T) {
seq := From(1, 2, 3)
chained := MonadChain(seq, func(x int) Seq[int] {
return From(x, x*10)
})
last := Last(chained)
assert.Equal(t, O.Of(30), last)
})
t.Run("returns None when chain produces empty", func(t *testing.T) {
seq := From(1, 2, 3)
chained := MonadChain(seq, func(x int) Seq[int] {
return Empty[int]()
})
last := Last(chained)
assert.Equal(t, O.None[int](), last)
})
}
// TestLastWithFlatten tests Last with Flatten
func TestLastWithFlatten(t *testing.T) {
t.Run("returns last from flattened sequence", func(t *testing.T) {
nested := From(From(1, 2), From(3, 4), From(5))
flattened := Flatten(nested)
last := Last(flattened)
assert.Equal(t, O.Of(5), last)
})
t.Run("returns None from empty nested sequence", func(t *testing.T) {
nested := Empty[Seq[int]]()
flattened := Flatten(nested)
last := Last(flattened)
assert.Equal(t, O.None[int](), last)
})
}
// Example tests for documentation
func ExampleLast() {
seq := From(1, 2, 3, 4, 5)
last := Last(seq)
if value, ok := O.Unwrap(last); ok {
fmt.Printf("Last element: %d\n", value)
}
// Output: Last element: 5
}
func ExampleLast_empty() {
seq := Empty[int]()
last := Last(seq)
if _, ok := O.Unwrap(last); !ok {
fmt.Println("Sequence is empty")
}
// Output: Sequence is empty
}
func ExampleLast_functions() {
f1 := function.Constant("first")
f2 := function.Constant("middle")
f3 := function.Constant("last")
seq := From(f1, f2, f3)
last := Last(seq)
if fn, ok := O.Unwrap(last); ok {
result := fn()
fmt.Printf("Last function result: %s\n", result)
}
// Output: Last function result: last
}

View File

@@ -48,7 +48,7 @@ func FromLazy[A any](a Lazy[A]) Lazy[A] {
}
// FromImpure converts a side effect without a return value into a side effect that returns any
func FromImpure(f func()) Lazy[any] {
func FromImpure(f func()) Lazy[Void] {
return io.FromImpure(f)
}

View File

@@ -1,6 +1,9 @@
package lazy
import "github.com/IBM/fp-go/v2/predicate"
import (
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/predicate"
)
type (
// Lazy represents a synchronous computation without side effects.
@@ -63,4 +66,6 @@ type (
// Predicate represents a function that tests a value of type A and returns a boolean.
// It's commonly used for filtering and conditional operations.
Predicate[A any] = predicate.Predicate[A]
Void = function.Void
)

View File

@@ -710,6 +710,146 @@ func TestTranscodeEither(t *testing.T) {
})
}
func TestTranscodeEitherValidation(t *testing.T) {
t.Run("validates Left value with context", func(t *testing.T) {
eitherCodec := TranscodeEither(String(), Int())
result := eitherCodec.Decode(either.Left[any, any](123)) // Invalid: should be string
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(either.Either[string, int]) validation.Errors { return nil },
)
assert.NotEmpty(t, errors)
// Verify error contains type information
assert.Contains(t, fmt.Sprintf("%v", errors[0]), "string")
})
t.Run("validates Right value with context", func(t *testing.T) {
eitherCodec := TranscodeEither(String(), Int())
result := eitherCodec.Decode(either.Right[any, any]("not a number"))
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(either.Either[string, int]) validation.Errors { return nil },
)
assert.NotEmpty(t, errors)
// Verify error contains type information
assert.Contains(t, fmt.Sprintf("%v", errors[0]), "int")
})
t.Run("preserves Either structure on validation failure", func(t *testing.T) {
eitherCodec := TranscodeEither(String(), Int())
// Left with wrong type
leftResult := eitherCodec.Decode(either.Left[any, any]([]int{1, 2, 3}))
assert.True(t, either.IsLeft(leftResult))
// Right with wrong type
rightResult := eitherCodec.Decode(either.Right[any, any](true))
assert.True(t, either.IsLeft(rightResult))
})
t.Run("validates with custom codec that can fail", func(t *testing.T) {
// Create a codec that only accepts positive integers
positiveInt := MakeType(
"PositiveInt",
func(u any) either.Either[error, int] {
i, ok := u.(int)
if !ok || i <= 0 {
return either.Left[int](fmt.Errorf("not a positive integer"))
}
return either.Of[error](i)
},
func(i int) Decode[Context, int] {
return func(c Context) Validation[int] {
if i <= 0 {
return validation.FailureWithMessage[int](i, "must be positive")(c)
}
return validation.Success(i)
}
},
F.Identity[int],
)
eitherCodec := TranscodeEither(String(), positiveInt)
// Valid positive integer
validResult := eitherCodec.Decode(either.Right[any](42))
assert.True(t, either.IsRight(validResult))
// Invalid: zero
zeroResult := eitherCodec.Decode(either.Right[any](0))
assert.True(t, either.IsLeft(zeroResult))
// Invalid: negative
negativeResult := eitherCodec.Decode(either.Right[any](-5))
assert.True(t, either.IsLeft(negativeResult))
})
t.Run("validates both branches independently", func(t *testing.T) {
// Create codecs with specific validation rules
nonEmptyString := MakeType(
"NonEmptyString",
func(u any) either.Either[error, string] {
s, ok := u.(string)
if !ok || len(s) == 0 {
return either.Left[string](fmt.Errorf("not a non-empty string"))
}
return either.Of[error](s)
},
func(s string) Decode[Context, string] {
return func(c Context) Validation[string] {
if len(s) == 0 {
return validation.FailureWithMessage[string](s, "must not be empty")(c)
}
return validation.Success(s)
}
},
F.Identity[string],
)
evenInt := MakeType(
"EvenInt",
func(u any) either.Either[error, int] {
i, ok := u.(int)
if !ok || i%2 != 0 {
return either.Left[int](fmt.Errorf("not an even integer"))
}
return either.Of[error](i)
},
func(i int) Decode[Context, int] {
return func(c Context) Validation[int] {
if i%2 != 0 {
return validation.FailureWithMessage[int](i, "must be even")(c)
}
return validation.Success(i)
}
},
F.Identity[int],
)
eitherCodec := TranscodeEither(nonEmptyString, evenInt)
// Valid Left: non-empty string
validLeft := eitherCodec.Decode(either.Left[int]("hello"))
assert.True(t, either.IsRight(validLeft))
// Invalid Left: empty string
invalidLeft := eitherCodec.Decode(either.Left[int](""))
assert.True(t, either.IsLeft(invalidLeft))
// Valid Right: even integer
validRight := eitherCodec.Decode(either.Right[string](42))
assert.True(t, either.IsRight(validRight))
// Invalid Right: odd integer
invalidRight := eitherCodec.Decode(either.Right[string](43))
assert.True(t, either.IsLeft(invalidRight))
})
}
func TestTranscodeEitherWithTransformation(t *testing.T) {
// Create a codec that transforms strings to their lengths
stringToLength := MakeType(

340
v2/optics/codec/codecs.go Normal file
View File

@@ -0,0 +1,340 @@
// Copyright (c) 2024 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package codec provides pre-built codec implementations for common types.
// This package includes codecs for URL parsing, date/time formatting, and other
// standard data transformations that require bidirectional encoding/decoding.
//
// The codecs in this package follow functional programming principles and integrate
// with the validation framework to provide type-safe, composable transformations.
package codec
import (
"net/url"
"regexp"
"strconv"
"time"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/reader"
)
// validateFromParser creates a validation function from a parser that may fail.
// It wraps a parser function that returns (A, error) into a Validate[I, A] function
// that integrates with the validation framework.
//
// The returned validation function:
// - Calls the parser with the input value
// - On success: returns a successful validation containing the parsed value
// - On failure: returns a validation failure with the error message and cause
//
// Type Parameters:
// - A: The target type to parse into
// - I: The input type to parse from
//
// Parameters:
// - parser: A function that attempts to parse input I into type A, returning an error on failure
//
// Returns:
// - A Validate[I, A] function that can be used in codec construction
//
// Example:
//
// // Create a validator for parsing integers from strings
// intValidator := validateFromParser(strconv.Atoi)
// // Use in a codec
// intCodec := MakeType("Int", Is[int](), intValidator, strconv.Itoa)
func validateFromParser[A, I any](parser func(I) (A, error)) Validate[I, A] {
return func(i I) Decode[Context, A] {
// Attempt to parse the input value
a, err := parser(i)
if err != nil {
// On error, create a validation failure with the error details
return validation.FailureWithError[A](i, err.Error())(err)
}
// On success, wrap the parsed value in a successful validation
return reader.Of[Context](validation.Success(a))
}
}
// URL creates a bidirectional codec for URL parsing and formatting.
// This codec can parse strings into *url.URL and encode *url.URL back to strings.
//
// The codec:
// - Decodes: Parses a string using url.Parse, validating URL syntax
// - Encodes: Converts a *url.URL to its string representation using String()
// - Validates: Ensures the input string is a valid URL format
//
// Returns:
// - A Type[*url.URL, string, string] codec that handles URL transformations
//
// Example:
//
// urlCodec := URL()
//
// // Decode a string to URL
// validation := urlCodec.Decode("https://example.com/path?query=value")
// // validation is Right(*url.URL{...})
//
// // Encode a URL to string
// u, _ := url.Parse("https://example.com")
// str := urlCodec.Encode(u)
// // str is "https://example.com"
//
// // Invalid URL fails validation
// validation := urlCodec.Decode("not a valid url")
// // validation is Left(ValidationError{...})
func URL() Type[*url.URL, string, string] {
return MakeType(
"URL",
Is[*url.URL](),
validateFromParser(url.Parse),
(*url.URL).String,
)
}
// Date creates a bidirectional codec for date/time parsing and formatting with a specific layout.
// This codec uses Go's time.Parse and time.Format with the provided layout string.
//
// The codec:
// - Decodes: Parses a string into time.Time using the specified layout
// - Encodes: Formats a time.Time back to a string using the same layout
// - Validates: Ensures the input string matches the expected date/time format
//
// Parameters:
// - layout: The time layout string (e.g., "2006-01-02", time.RFC3339)
// See time package documentation for layout format details
//
// Returns:
// - A Type[time.Time, string, string] codec that handles date/time transformations
//
// Example:
//
// // Create a codec for ISO 8601 dates
// dateCodec := Date("2006-01-02")
//
// // Decode a string to time.Time
// validation := dateCodec.Decode("2024-03-15")
// // validation is Right(time.Time{...})
//
// // Encode a time.Time to string
// t := time.Date(2024, 3, 15, 0, 0, 0, 0, time.UTC)
// str := dateCodec.Encode(t)
// // str is "2024-03-15"
//
// // Create a codec for RFC3339 timestamps
// timestampCodec := Date(time.RFC3339)
// validation := timestampCodec.Decode("2024-03-15T10:30:00Z")
//
// // Invalid format fails validation
// validation := dateCodec.Decode("15-03-2024")
// // validation is Left(ValidationError{...})
func Date(layout string) Type[time.Time, string, string] {
return MakeType(
"Date",
Is[time.Time](),
validateFromParser(func(s string) (time.Time, error) { return time.Parse(layout, s) }),
F.Bind2nd(time.Time.Format, layout),
)
}
// Regex creates a bidirectional codec for regex pattern matching with capture groups.
// This codec can match strings against a regular expression pattern and extract capture groups,
// then reconstruct the original string from the match data.
//
// The codec uses prism.Match which contains:
// - Before: Text before the match
// - Groups: Capture groups (index 0 is the full match, 1+ are numbered capture groups)
// - After: Text after the match
//
// The codec:
// - Decodes: Attempts to match the regex against the input string
// - Encodes: Reconstructs the original string from a Match structure
// - Validates: Ensures the string matches the regex pattern
//
// Parameters:
// - re: A compiled regular expression pattern
//
// Returns:
// - A Type[prism.Match, string, string] codec that handles regex matching
//
// Example:
//
// // Create a codec for matching numbers in text
// numberRegex := regexp.MustCompile(`\d+`)
// numberCodec := Regex(numberRegex)
//
// // Decode a string with a number
// validation := numberCodec.Decode("Price: 42 dollars")
// // validation is Right(Match{Before: "Price: ", Groups: []string{"42"}, After: " dollars"})
//
// // Encode a Match back to string
// match := prism.Match{Before: "Price: ", Groups: []string{"42"}, After: " dollars"}
// str := numberCodec.Encode(match)
// // str is "Price: 42 dollars"
//
// // Non-matching string fails validation
// validation := numberCodec.Decode("no numbers here")
// // validation is Left(ValidationError{...})
func Regex(re *regexp.Regexp) Type[prism.Match, string, string] {
return FromRefinement(prism.RegexMatcher(re))
}
// RegexNamed creates a bidirectional codec for regex pattern matching with named capture groups.
// This codec can match strings against a regular expression with named groups and extract them
// by name, then reconstruct the original string from the match data.
//
// The codec uses prism.NamedMatch which contains:
// - Before: Text before the match
// - Groups: Map of named capture groups (name -> matched text)
// - Full: The complete matched text
// - After: Text after the match
//
// The codec:
// - Decodes: Attempts to match the regex against the input string
// - Encodes: Reconstructs the original string from a NamedMatch structure
// - Validates: Ensures the string matches the regex pattern with named groups
//
// Parameters:
// - re: A compiled regular expression with named capture groups (e.g., `(?P<name>pattern)`)
//
// Returns:
// - A Type[prism.NamedMatch, string, string] codec that handles named regex matching
//
// Example:
//
// // Create a codec for matching email addresses with named groups
// emailRegex := regexp.MustCompile(`(?P<user>\w+)@(?P<domain>\w+\.\w+)`)
// emailCodec := RegexNamed(emailRegex)
//
// // Decode an email string
// validation := emailCodec.Decode("john@example.com")
// // validation is Right(NamedMatch{
// // Before: "",
// // Groups: map[string]string{"user": "john", "domain": "example.com"},
// // Full: "john@example.com",
// // After: ""
// // })
//
// // Encode a NamedMatch back to string
// match := prism.NamedMatch{
// Before: "",
// Groups: map[string]string{"user": "john", "domain": "example.com"},
// Full: "john@example.com",
// After: "",
// }
// str := emailCodec.Encode(match)
// // str is "john@example.com"
//
// // Non-matching string fails validation
// validation := emailCodec.Decode("not-an-email")
// // validation is Left(ValidationError{...})
func RegexNamed(re *regexp.Regexp) Type[prism.NamedMatch, string, string] {
return FromRefinement(prism.RegexNamedMatcher(re))
}
// IntFromString creates a bidirectional codec for parsing integers from strings.
// This codec converts string representations of integers to int values and vice versa.
//
// The codec:
// - Decodes: Parses a string to an int using strconv.Atoi
// - Encodes: Converts an int to its string representation using strconv.Itoa
// - Validates: Ensures the string contains a valid integer (base 10)
//
// The codec accepts integers in base 10 format, with optional leading sign (+/-).
// It does not accept hexadecimal, octal, or other number formats.
//
// Returns:
// - A Type[int, string, string] codec that handles int/string conversions
//
// Example:
//
// intCodec := IntFromString()
//
// // Decode a valid integer string
// validation := intCodec.Decode("42")
// // validation is Right(42)
//
// // Decode negative integer
// validation := intCodec.Decode("-123")
// // validation is Right(-123)
//
// // Encode an integer to string
// str := intCodec.Encode(42)
// // str is "42"
//
// // Invalid integer string fails validation
// validation := intCodec.Decode("not a number")
// // validation is Left(ValidationError{...})
//
// // Floating point fails validation
// validation := intCodec.Decode("3.14")
// // validation is Left(ValidationError{...})
func IntFromString() Type[int, string, string] {
return MakeType(
"IntFromString",
Is[int](),
validateFromParser(strconv.Atoi),
strconv.Itoa,
)
}
// Int64FromString creates a bidirectional codec for parsing 64-bit integers from strings.
// This codec converts string representations of integers to int64 values and vice versa.
//
// The codec:
// - Decodes: Parses a string to an int64 using strconv.ParseInt with base 10
// - Encodes: Converts an int64 to its string representation
// - Validates: Ensures the string contains a valid 64-bit integer (base 10)
//
// The codec accepts integers in base 10 format, with optional leading sign (+/-).
// It supports the full range of int64 values (-9223372036854775808 to 9223372036854775807).
//
// Returns:
// - A Type[int64, string, string] codec that handles int64/string conversions
//
// Example:
//
// int64Codec := Int64FromString()
//
// // Decode a valid integer string
// validation := int64Codec.Decode("9223372036854775807")
// // validation is Right(9223372036854775807)
//
// // Decode negative integer
// validation := int64Codec.Decode("-9223372036854775808")
// // validation is Right(-9223372036854775808)
//
// // Encode an int64 to string
// str := int64Codec.Encode(42)
// // str is "42"
//
// // Invalid integer string fails validation
// validation := int64Codec.Decode("not a number")
// // validation is Left(ValidationError{...})
//
// // Out of range value fails validation
// validation := int64Codec.Decode("9223372036854775808")
// // validation is Left(ValidationError{...})
func Int64FromString() Type[int64, string, string] {
return MakeType(
"Int64FromString",
Is[int64](),
validateFromParser(func(s string) (int64, error) { return strconv.ParseInt(s, 10, 64) }),
prism.ParseInt64().ReverseGet,
)
}

View File

@@ -0,0 +1,908 @@
// Copyright (c) 2024 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package codec
import (
"net/url"
"regexp"
"testing"
"time"
"github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/IBM/fp-go/v2/optics/prism"
"github.com/IBM/fp-go/v2/reader"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestURL(t *testing.T) {
urlCodec := URL()
getOrElseNull := either.GetOrElse(reader.Of[validation.Errors, *url.URL](nil))
t.Run("decodes valid HTTP URL", func(t *testing.T) {
result := urlCodec.Decode("https://example.com/path?query=value")
assert.True(t, either.IsRight(result), "should successfully decode valid URL")
parsedURL := getOrElseNull(result)
require.NotNil(t, parsedURL)
assert.Equal(t, "https", parsedURL.Scheme)
assert.Equal(t, "example.com", parsedURL.Host)
assert.Equal(t, "/path", parsedURL.Path)
assert.Equal(t, "query=value", parsedURL.RawQuery)
})
t.Run("decodes valid HTTP URL without path", func(t *testing.T) {
result := urlCodec.Decode("https://example.com")
assert.True(t, either.IsRight(result))
parsedURL := getOrElseNull(result)
require.NotNil(t, parsedURL)
assert.Equal(t, "https", parsedURL.Scheme)
assert.Equal(t, "example.com", parsedURL.Host)
})
t.Run("decodes URL with port", func(t *testing.T) {
result := urlCodec.Decode("http://localhost:8080/api")
assert.True(t, either.IsRight(result))
parsedURL := getOrElseNull(result)
require.NotNil(t, parsedURL)
assert.Equal(t, "http", parsedURL.Scheme)
assert.Equal(t, "localhost:8080", parsedURL.Host)
assert.Equal(t, "/api", parsedURL.Path)
})
t.Run("decodes URL with fragment", func(t *testing.T) {
result := urlCodec.Decode("https://example.com/page#section")
assert.True(t, either.IsRight(result))
parsedURL := getOrElseNull(result)
require.NotNil(t, parsedURL)
assert.Equal(t, "section", parsedURL.Fragment)
})
t.Run("decodes relative URL", func(t *testing.T) {
result := urlCodec.Decode("/path/to/resource")
assert.True(t, either.IsRight(result))
parsedURL := getOrElseNull(result)
require.NotNil(t, parsedURL)
assert.Equal(t, "/path/to/resource", parsedURL.Path)
})
t.Run("fails to decode invalid URL", func(t *testing.T) {
result := urlCodec.Decode("not a valid url ://")
assert.True(t, either.IsLeft(result), "should fail to decode invalid URL")
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(*url.URL) validation.Errors { return nil },
)
require.NotNil(t, errors)
assert.NotEmpty(t, errors)
})
t.Run("fails to decode URL with invalid characters", func(t *testing.T) {
result := urlCodec.Decode("http://example.com/path with spaces")
// Note: url.Parse actually handles spaces, so let's test a truly invalid URL
result = urlCodec.Decode("ht!tp://invalid")
assert.True(t, either.IsLeft(result))
})
t.Run("encodes URL to string", func(t *testing.T) {
parsedURL, err := url.Parse("https://example.com/path?query=value")
require.NoError(t, err)
encoded := urlCodec.Encode(parsedURL)
assert.Equal(t, "https://example.com/path?query=value", encoded)
})
t.Run("encodes URL with fragment", func(t *testing.T) {
parsedURL, err := url.Parse("https://example.com/page#section")
require.NoError(t, err)
encoded := urlCodec.Encode(parsedURL)
assert.Equal(t, "https://example.com/page#section", encoded)
})
t.Run("round-trip encoding and decoding", func(t *testing.T) {
original := "https://example.com/path?key=value&foo=bar#fragment"
// Decode
decodeResult := urlCodec.Decode(original)
require.True(t, either.IsRight(decodeResult))
parsedURL := getOrElseNull(decodeResult)
// Encode
encoded := urlCodec.Encode(parsedURL)
assert.Equal(t, original, encoded)
})
t.Run("codec has correct name", func(t *testing.T) {
assert.Equal(t, "URL", urlCodec.Name())
})
}
func TestDate(t *testing.T) {
getOrElseNull := either.GetOrElse(reader.Of[validation.Errors, time.Time](time.Time{}))
t.Run("ISO 8601 date format", func(t *testing.T) {
dateCodec := Date("2006-01-02")
t.Run("decodes valid date", func(t *testing.T) {
result := dateCodec.Decode("2024-03-15")
assert.True(t, either.IsRight(result))
parsedDate := getOrElseNull(result)
assert.Equal(t, 2024, parsedDate.Year())
assert.Equal(t, time.March, parsedDate.Month())
assert.Equal(t, 15, parsedDate.Day())
})
t.Run("fails to decode invalid date format", func(t *testing.T) {
result := dateCodec.Decode("15-03-2024")
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(time.Time) validation.Errors { return nil },
)
require.NotNil(t, errors)
assert.NotEmpty(t, errors)
})
t.Run("fails to decode invalid date", func(t *testing.T) {
result := dateCodec.Decode("2024-13-45")
assert.True(t, either.IsLeft(result))
})
t.Run("fails to decode non-date string", func(t *testing.T) {
result := dateCodec.Decode("not a date")
assert.True(t, either.IsLeft(result))
})
t.Run("encodes date to string", func(t *testing.T) {
date := time.Date(2024, 3, 15, 0, 0, 0, 0, time.UTC)
encoded := dateCodec.Encode(date)
assert.Equal(t, "2024-03-15", encoded)
})
t.Run("round-trip encoding and decoding", func(t *testing.T) {
original := "2024-12-25"
// Decode
decodeResult := dateCodec.Decode(original)
require.True(t, either.IsRight(decodeResult))
parsedDate := getOrElseNull(decodeResult)
// Encode
encoded := dateCodec.Encode(parsedDate)
assert.Equal(t, original, encoded)
})
})
t.Run("RFC3339 timestamp format", func(t *testing.T) {
timestampCodec := Date(time.RFC3339)
t.Run("decodes valid RFC3339 timestamp", func(t *testing.T) {
result := timestampCodec.Decode("2024-03-15T10:30:00Z")
assert.True(t, either.IsRight(result))
parsedTime := getOrElseNull(result)
assert.Equal(t, 2024, parsedTime.Year())
assert.Equal(t, time.March, parsedTime.Month())
assert.Equal(t, 15, parsedTime.Day())
assert.Equal(t, 10, parsedTime.Hour())
assert.Equal(t, 30, parsedTime.Minute())
assert.Equal(t, 0, parsedTime.Second())
})
t.Run("decodes RFC3339 with timezone offset", func(t *testing.T) {
result := timestampCodec.Decode("2024-03-15T10:30:00+01:00")
assert.True(t, either.IsRight(result))
parsedTime := getOrElseNull(result)
assert.Equal(t, 2024, parsedTime.Year())
assert.Equal(t, time.March, parsedTime.Month())
assert.Equal(t, 15, parsedTime.Day())
})
t.Run("fails to decode invalid RFC3339", func(t *testing.T) {
result := timestampCodec.Decode("2024-03-15 10:30:00")
assert.True(t, either.IsLeft(result))
})
t.Run("encodes timestamp to RFC3339 string", func(t *testing.T) {
timestamp := time.Date(2024, 3, 15, 10, 30, 0, 0, time.UTC)
encoded := timestampCodec.Encode(timestamp)
assert.Equal(t, "2024-03-15T10:30:00Z", encoded)
})
t.Run("round-trip encoding and decoding", func(t *testing.T) {
original := "2024-12-25T15:45:30Z"
// Decode
decodeResult := timestampCodec.Decode(original)
require.True(t, either.IsRight(decodeResult))
parsedTime := getOrElseNull(decodeResult)
// Encode
encoded := timestampCodec.Encode(parsedTime)
assert.Equal(t, original, encoded)
})
})
t.Run("custom date format", func(t *testing.T) {
customCodec := Date("02/01/2006")
t.Run("decodes custom format", func(t *testing.T) {
result := customCodec.Decode("15/03/2024")
assert.True(t, either.IsRight(result))
parsedDate := getOrElseNull(result)
assert.Equal(t, 2024, parsedDate.Year())
assert.Equal(t, time.March, parsedDate.Month())
assert.Equal(t, 15, parsedDate.Day())
})
t.Run("encodes to custom format", func(t *testing.T) {
date := time.Date(2024, 3, 15, 0, 0, 0, 0, time.UTC)
encoded := customCodec.Encode(date)
assert.Equal(t, "15/03/2024", encoded)
})
})
t.Run("codec has correct name", func(t *testing.T) {
dateCodec := Date("2006-01-02")
assert.Equal(t, "Date", dateCodec.Name())
})
}
func TestValidateFromParser(t *testing.T) {
t.Run("successful parsing", func(t *testing.T) {
// Create a simple parser that always succeeds
parser := func(s string) (int, error) {
return 42, nil
}
validator := validateFromParser(parser)
decode := validator("test")
// Execute with empty context
result := decode(validation.Context{})
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) int { return 0 },
F.Identity[int],
)
assert.Equal(t, 42, value)
})
t.Run("failed parsing", func(t *testing.T) {
// Create a parser that always fails
parser := func(s string) (int, error) {
return 0, assert.AnError
}
validator := validateFromParser(parser)
decode := validator("test")
// Execute with empty context
result := decode(validation.Context{})
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(int) validation.Errors { return nil },
)
require.NotNil(t, errors)
assert.NotEmpty(t, errors)
// Check that the error contains the input value
if len(errors) > 0 {
assert.Equal(t, "test", errors[0].Value)
}
})
t.Run("parser with context", func(t *testing.T) {
parser := func(s string) (string, error) {
if s == "" {
return "", assert.AnError
}
return s, nil
}
validator := validateFromParser(parser)
// Test with context
ctx := validation.Context{
{Key: "field", Type: "string"},
}
decode := validator("")
result := decode(ctx)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(string) validation.Errors { return nil },
)
require.NotNil(t, errors)
assert.NotEmpty(t, errors)
// Verify context is preserved
if len(errors) > 0 {
assert.Equal(t, ctx, errors[0].Context)
}
})
}
func TestRegex(t *testing.T) {
getOrElseNull := either.GetOrElse(reader.Of[validation.Errors](prism.Match{}))
t.Run("simple number pattern", func(t *testing.T) {
numberRegex := regexp.MustCompile(`\d+`)
regexCodec := Regex(numberRegex)
t.Run("decodes string with number", func(t *testing.T) {
result := regexCodec.Decode("Price: 42 dollars")
assert.True(t, either.IsRight(result))
match := getOrElseNull(result)
assert.Equal(t, "Price: ", match.Before)
assert.Equal(t, []string{"42"}, match.Groups)
assert.Equal(t, " dollars", match.After)
})
t.Run("decodes number at start", func(t *testing.T) {
result := regexCodec.Decode("123 items")
assert.True(t, either.IsRight(result))
match := getOrElseNull(result)
assert.Equal(t, "", match.Before)
assert.Equal(t, []string{"123"}, match.Groups)
assert.Equal(t, " items", match.After)
})
t.Run("decodes number at end", func(t *testing.T) {
result := regexCodec.Decode("Total: 999")
assert.True(t, either.IsRight(result))
match := getOrElseNull(result)
assert.Equal(t, "Total: ", match.Before)
assert.Equal(t, []string{"999"}, match.Groups)
assert.Equal(t, "", match.After)
})
t.Run("fails to decode string without number", func(t *testing.T) {
result := regexCodec.Decode("no numbers here")
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(prism.Match) validation.Errors { return nil },
)
require.NotNil(t, errors)
assert.NotEmpty(t, errors)
})
t.Run("encodes Match to string", func(t *testing.T) {
match := prism.Match{
Before: "Price: ",
Groups: []string{"42"},
After: " dollars",
}
encoded := regexCodec.Encode(match)
assert.Equal(t, "Price: 42 dollars", encoded)
})
t.Run("round-trip encoding and decoding", func(t *testing.T) {
original := "Count: 789 items"
// Decode
decodeResult := regexCodec.Decode(original)
require.True(t, either.IsRight(decodeResult))
match := getOrElseNull(decodeResult)
// Encode
encoded := regexCodec.Encode(match)
assert.Equal(t, original, encoded)
})
})
t.Run("pattern with capture groups", func(t *testing.T) {
// Pattern to match word followed by number
wordNumberRegex := regexp.MustCompile(`(\w+)(\d+)`)
regexCodec := Regex(wordNumberRegex)
t.Run("decodes with capture groups", func(t *testing.T) {
result := regexCodec.Decode("item42")
assert.True(t, either.IsRight(result))
match := getOrElseNull(result)
assert.Equal(t, "", match.Before)
// Groups contains the full match and capture groups
require.NotEmpty(t, match.Groups)
assert.Equal(t, "item42", match.Groups[0])
// Verify we have capture groups
if len(match.Groups) > 1 {
assert.Contains(t, match.Groups[1], "item")
assert.Contains(t, match.Groups[len(match.Groups)-1], "2")
}
assert.Equal(t, "", match.After)
})
})
t.Run("codec name contains pattern info", func(t *testing.T) {
numberRegex := regexp.MustCompile(`\d+`)
regexCodec := Regex(numberRegex)
// The name is generated by FromRefinement and includes the pattern
assert.Contains(t, regexCodec.Name(), "FromRefinement")
})
}
func TestRegexNamed(t *testing.T) {
getOrElseNull := either.GetOrElse(reader.Of[validation.Errors](prism.NamedMatch{}))
t.Run("email pattern with named groups", func(t *testing.T) {
emailRegex := regexp.MustCompile(`(?P<user>\w+)@(?P<domain>\w+\.\w+)`)
emailCodec := RegexNamed(emailRegex)
t.Run("decodes valid email", func(t *testing.T) {
result := emailCodec.Decode("john@example.com")
assert.True(t, either.IsRight(result))
match := getOrElseNull(result)
assert.Equal(t, "", match.Before)
assert.Equal(t, "john@example.com", match.Full)
assert.Equal(t, "", match.After)
require.NotNil(t, match.Groups)
assert.Equal(t, "john", match.Groups["user"])
assert.Equal(t, "example.com", match.Groups["domain"])
})
t.Run("decodes email with surrounding text", func(t *testing.T) {
result := emailCodec.Decode("Contact: alice@test.org for info")
assert.True(t, either.IsRight(result))
match := getOrElseNull(result)
assert.Equal(t, "Contact: ", match.Before)
assert.Equal(t, "alice@test.org", match.Full)
assert.Equal(t, " for info", match.After)
assert.Equal(t, "alice", match.Groups["user"])
assert.Equal(t, "test.org", match.Groups["domain"])
})
t.Run("fails to decode invalid email", func(t *testing.T) {
result := emailCodec.Decode("not-an-email")
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(prism.NamedMatch) validation.Errors { return nil },
)
require.NotNil(t, errors)
assert.NotEmpty(t, errors)
})
t.Run("encodes NamedMatch to string", func(t *testing.T) {
match := prism.NamedMatch{
Before: "Email: ",
Groups: map[string]string{"user": "bob", "domain": "example.com"},
Full: "bob@example.com",
After: "",
}
encoded := emailCodec.Encode(match)
assert.Equal(t, "Email: bob@example.com", encoded)
})
t.Run("round-trip encoding and decoding", func(t *testing.T) {
original := "Contact: support@company.io"
// Decode
decodeResult := emailCodec.Decode(original)
require.True(t, either.IsRight(decodeResult))
match := getOrElseNull(decodeResult)
// Encode
encoded := emailCodec.Encode(match)
assert.Equal(t, original, encoded)
})
})
t.Run("phone pattern with named groups", func(t *testing.T) {
phoneRegex := regexp.MustCompile(`(?P<area>\d{3})-(?P<prefix>\d{3})-(?P<line>\d{4})`)
phoneCodec := RegexNamed(phoneRegex)
t.Run("decodes valid phone number", func(t *testing.T) {
result := phoneCodec.Decode("555-123-4567")
assert.True(t, either.IsRight(result))
match := getOrElseNull(result)
assert.Equal(t, "555-123-4567", match.Full)
assert.Equal(t, "555", match.Groups["area"])
assert.Equal(t, "123", match.Groups["prefix"])
assert.Equal(t, "4567", match.Groups["line"])
})
t.Run("fails to decode invalid phone format", func(t *testing.T) {
result := phoneCodec.Decode("123-45-6789")
assert.True(t, either.IsLeft(result))
})
})
t.Run("codec name contains refinement info", func(t *testing.T) {
emailRegex := regexp.MustCompile(`(?P<user>\w+)@(?P<domain>\w+\.\w+)`)
emailCodec := RegexNamed(emailRegex)
// The name is generated by FromRefinement
assert.Contains(t, emailCodec.Name(), "FromRefinement")
})
}
func TestIntFromString(t *testing.T) {
intCodec := IntFromString()
t.Run("decodes positive integer", func(t *testing.T) {
result := intCodec.Decode("42")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) int { return 0 },
F.Identity[int],
)
assert.Equal(t, 42, value)
})
t.Run("decodes negative integer", func(t *testing.T) {
result := intCodec.Decode("-123")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) int { return 0 },
F.Identity[int],
)
assert.Equal(t, -123, value)
})
t.Run("decodes zero", func(t *testing.T) {
result := intCodec.Decode("0")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) int { return -1 },
F.Identity[int],
)
assert.Equal(t, 0, value)
})
t.Run("decodes integer with plus sign", func(t *testing.T) {
result := intCodec.Decode("+456")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) int { return 0 },
F.Identity[int],
)
assert.Equal(t, 456, value)
})
t.Run("fails to decode floating point", func(t *testing.T) {
result := intCodec.Decode("3.14")
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(int) validation.Errors { return nil },
)
require.NotNil(t, errors)
assert.NotEmpty(t, errors)
})
t.Run("fails to decode non-numeric string", func(t *testing.T) {
result := intCodec.Decode("not a number")
assert.True(t, either.IsLeft(result))
})
t.Run("fails to decode empty string", func(t *testing.T) {
result := intCodec.Decode("")
assert.True(t, either.IsLeft(result))
})
t.Run("fails to decode hexadecimal", func(t *testing.T) {
result := intCodec.Decode("0xFF")
assert.True(t, either.IsLeft(result))
})
t.Run("fails to decode with whitespace", func(t *testing.T) {
result := intCodec.Decode(" 42 ")
assert.True(t, either.IsLeft(result))
})
t.Run("encodes positive integer", func(t *testing.T) {
encoded := intCodec.Encode(42)
assert.Equal(t, "42", encoded)
})
t.Run("encodes negative integer", func(t *testing.T) {
encoded := intCodec.Encode(-123)
assert.Equal(t, "-123", encoded)
})
t.Run("encodes zero", func(t *testing.T) {
encoded := intCodec.Encode(0)
assert.Equal(t, "0", encoded)
})
t.Run("round-trip encoding and decoding", func(t *testing.T) {
original := "9876"
// Decode
decodeResult := intCodec.Decode(original)
require.True(t, either.IsRight(decodeResult))
value := either.MonadFold(decodeResult,
func(validation.Errors) int { return 0 },
F.Identity[int],
)
// Encode
encoded := intCodec.Encode(value)
assert.Equal(t, original, encoded)
})
t.Run("codec has correct name", func(t *testing.T) {
assert.Equal(t, "IntFromString", intCodec.Name())
})
}
func TestInt64FromString(t *testing.T) {
int64Codec := Int64FromString()
t.Run("decodes positive int64", func(t *testing.T) {
result := int64Codec.Decode("9223372036854775807")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) int64 { return 0 },
F.Identity[int64],
)
assert.Equal(t, int64(9223372036854775807), value)
})
t.Run("decodes negative int64", func(t *testing.T) {
result := int64Codec.Decode("-9223372036854775808")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) int64 { return 0 },
F.Identity[int64],
)
assert.Equal(t, int64(-9223372036854775808), value)
})
t.Run("decodes zero", func(t *testing.T) {
result := int64Codec.Decode("0")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) int64 { return -1 },
F.Identity[int64],
)
assert.Equal(t, int64(0), value)
})
t.Run("decodes small int64", func(t *testing.T) {
result := int64Codec.Decode("42")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) int64 { return 0 },
F.Identity[int64],
)
assert.Equal(t, int64(42), value)
})
t.Run("fails to decode out of range positive", func(t *testing.T) {
result := int64Codec.Decode("9223372036854775808")
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(int64) validation.Errors { return nil },
)
require.NotNil(t, errors)
assert.NotEmpty(t, errors)
})
t.Run("fails to decode out of range negative", func(t *testing.T) {
result := int64Codec.Decode("-9223372036854775809")
assert.True(t, either.IsLeft(result))
})
t.Run("fails to decode floating point", func(t *testing.T) {
result := int64Codec.Decode("3.14")
assert.True(t, either.IsLeft(result))
})
t.Run("fails to decode non-numeric string", func(t *testing.T) {
result := int64Codec.Decode("not a number")
assert.True(t, either.IsLeft(result))
})
t.Run("fails to decode empty string", func(t *testing.T) {
result := int64Codec.Decode("")
assert.True(t, either.IsLeft(result))
})
t.Run("encodes positive int64", func(t *testing.T) {
encoded := int64Codec.Encode(9223372036854775807)
assert.Equal(t, "9223372036854775807", encoded)
})
t.Run("encodes negative int64", func(t *testing.T) {
encoded := int64Codec.Encode(-9223372036854775808)
assert.Equal(t, "-9223372036854775808", encoded)
})
t.Run("encodes zero", func(t *testing.T) {
encoded := int64Codec.Encode(0)
assert.Equal(t, "0", encoded)
})
t.Run("encodes small int64", func(t *testing.T) {
encoded := int64Codec.Encode(42)
assert.Equal(t, "42", encoded)
})
t.Run("round-trip encoding and decoding", func(t *testing.T) {
original := "1234567890123456"
// Decode
decodeResult := int64Codec.Decode(original)
require.True(t, either.IsRight(decodeResult))
value := either.MonadFold(decodeResult,
func(validation.Errors) int64 { return 0 },
F.Identity[int64],
)
// Encode
encoded := int64Codec.Encode(value)
assert.Equal(t, original, encoded)
})
t.Run("codec has correct name", func(t *testing.T) {
assert.Equal(t, "Int64FromString", int64Codec.Name())
})
}

View File

@@ -0,0 +1,321 @@
# ChainLeft and OrElse in the Decode Package
## Overview
In [`optics/codec/decode/monad.go`](monad.go:53-62), the [`ChainLeft`](monad.go:53) and [`OrElse`](monad.go:60) functions work with decoders that may fail during decoding operations.
```go
func ChainLeft[I, A any](f Kleisli[I, Errors, A]) Operator[I, A, A] {
return readert.Chain[Decode[I, A]](
validation.ChainLeft,
f,
)
}
func OrElse[I, A any](f Kleisli[I, Errors, A]) Operator[I, A, A] {
return ChainLeft(f)
}
```
## Key Insight: OrElse is ChainLeft
**`OrElse` is exactly the same as `ChainLeft`** - they are aliases with identical implementations and behavior. The choice between them is purely about **code readability and semantic intent**.
## Understanding the Types
### Decode[I, A]
A decoder that takes input of type `I` and produces a `Validation[A]`:
```go
type Decode[I, A any] = func(I) Validation[A]
```
### Kleisli[I, Errors, A]
A function that takes `Errors` and produces a `Decode[I, A]`:
```go
type Kleisli[I, Errors, A] = func(Errors) Decode[I, A]
```
This allows error handlers to:
1. Access the validation errors that occurred
2. Access the original input (via the returned Decode function)
3. Either recover with a success value or produce new errors
### Operator[I, A, A]
A function that transforms one decoder into another:
```go
type Operator[I, A, A] = func(Decode[I, A]) Decode[I, A]
```
## Core Behavior
Both [`ChainLeft`](monad.go:53) and [`OrElse`](monad.go:60) delegate to [`validation.ChainLeft`](../validation/monad.go:304), which provides:
### 1. Error Aggregation
When the transformation function returns a failure, **both the original errors AND the new errors are combined** using the Errors monoid:
```go
failingDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "original error"},
})
}
handler := ChainLeft(func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Messsage: "additional error"},
})
}
})
decoder := handler(failingDecoder)
result := decoder("input")
// Result contains BOTH errors: ["original error", "additional error"]
```
### 2. Success Pass-Through
Success values pass through unchanged - the handler is never called:
```go
successDecoder := Of[string](42)
handler := ChainLeft(func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Messsage: "never called"},
})
}
})
decoder := handler(successDecoder)
result := decoder("input")
// Result: Success(42) - unchanged
```
### 3. Error Recovery
The handler can recover from failures by returning a successful decoder:
```go
failingDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "not found"},
})
}
recoverFromNotFound := ChainLeft(func(errs Errors) Decode[string, int] {
for _, err := range errs {
if err.Messsage == "not found" {
return Of[string](0) // recover with default
}
}
return func(input string) Validation[int] {
return either.Left[int](errs)
}
})
decoder := recoverFromNotFound(failingDecoder)
result := decoder("input")
// Result: Success(0) - recovered from failure
```
### 4. Access to Original Input
The handler returns a `Decode[I, A]` function, giving it access to the original input:
```go
handler := ChainLeft(func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
// Can access both errs and input here
if input == "special" {
return validation.Of(999)
}
return either.Left[int](errs)
}
})
```
## Use Cases
### 1. Fallback Decoding (OrElse reads better)
```go
// Primary decoder that may fail
primaryDecoder := func(input string) Validation[int] {
n, err := strconv.Atoi(input)
if err != nil {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "not a valid integer"},
})
}
return validation.Of(n)
}
// Use OrElse for semantic clarity - "try primary, or else use default"
withDefault := OrElse(func(errs Errors) Decode[string, int] {
return Of[string](0) // default to 0 if decoding fails
})
decoder := withDefault(primaryDecoder)
result1 := decoder("42") // Success(42)
result2 := decoder("abc") // Success(0) - fallback
```
### 2. Error Context Addition (ChainLeft reads better)
```go
decodeUserAge := func(data map[string]any) Validation[int] {
age, ok := data["age"].(int)
if !ok {
return either.Left[int](validation.Errors{
{Value: data["age"], Messsage: "invalid type"},
})
}
return validation.Of(age)
}
// Use ChainLeft when emphasizing error transformation
addContext := ChainLeft(func(errs Errors) Decode[map[string]any, int] {
return func(data map[string]any) Validation[int] {
return either.Left[int](validation.Errors{
{
Context: validation.Context{{Key: "user", Type: "User"}, {Key: "age", Type: "int"}},
Messsage: "failed to decode user age",
},
})
}
})
decoder := addContext(decodeUserAge)
// Errors will include both original error and context
```
### 3. Conditional Recovery Based on Input
```go
decodePort := func(input string) Validation[int] {
port, err := strconv.Atoi(input)
if err != nil {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "invalid port"},
})
}
return validation.Of(port)
}
// Recover with different defaults based on input
smartDefault := OrElse(func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
// Check input to determine appropriate default
if strings.Contains(input, "http") {
return validation.Of(80)
}
if strings.Contains(input, "https") {
return validation.Of(443)
}
return validation.Of(8080)
}
})
decoder := smartDefault(decodePort)
result1 := decoder("http-server") // Success(80)
result2 := decoder("https-server") // Success(443)
result3 := decoder("other") // Success(8080)
```
### 4. Pipeline Composition
```go
type Config struct {
DatabaseURL string
}
decodeConfig := func(data map[string]any) Validation[Config] {
url, ok := data["db_url"].(string)
if !ok {
return either.Left[Config](validation.Errors{
{Messsage: "missing db_url"},
})
}
return validation.Of(Config{DatabaseURL: url})
}
// Build a pipeline with multiple error handlers
decoder := F.Pipe2(
decodeConfig,
OrElse(func(errs Errors) Decode[map[string]any, Config] {
// Try environment variable as fallback
return func(data map[string]any) Validation[Config] {
if url := os.Getenv("DATABASE_URL"); url != "" {
return validation.Of(Config{DatabaseURL: url})
}
return either.Left[Config](errs)
}
}),
OrElse(func(errs Errors) Decode[map[string]any, Config] {
// Final fallback to default
return Of[map[string]any](Config{
DatabaseURL: "localhost:5432",
})
}),
)
```
## Comparison with validation.ChainLeft
The decode package's [`ChainLeft`](monad.go:53) wraps [`validation.ChainLeft`](../validation/monad.go:304) using the Reader transformer pattern:
| Aspect | validation.ChainLeft | decode.ChainLeft |
|--------|---------------------|------------------|
| **Input** | `Validation[A]` | `Decode[I, A]` (function) |
| **Handler** | `func(Errors) Validation[A]` | `func(Errors) Decode[I, A]` |
| **Output** | `Validation[A]` | `Decode[I, A]` (function) |
| **Context** | No input access | Access to original input `I` |
| **Use Case** | Pure validation logic | Decoding with input-dependent recovery |
The key difference is that decode's version gives handlers access to the original input through the returned `Decode[I, A]` function.
## When to Use Which Name
### Use **OrElse** when:
- Emphasizing fallback/alternative decoding logic
- Providing default values on decode failure
- The intent is "try this, or else try that"
- Code reads more naturally with "or else"
### Use **ChainLeft** when:
- Emphasizing technical error channel transformation
- Adding context or enriching error information
- The focus is on error handling mechanics
- Working with other functional programming concepts
## Verification
The test suite in [`monad_test.go`](monad_test.go:385) includes comprehensive tests proving that `OrElse` and `ChainLeft` are equivalent:
- ✅ Identical behavior for Success values
- ✅ Identical behavior for error recovery
- ✅ Identical behavior for error aggregation
- ✅ Identical behavior in pipeline composition
- ✅ Identical behavior for multiple error scenarios
- ✅ Both provide access to original input
Run the tests:
```bash
go test -v -run "TestChainLeft|TestOrElse" ./optics/codec/decode
```
## Conclusion
**`OrElse` is exactly the same as `ChainLeft`** in the decode package - they are aliases with identical implementations and behavior. Both:
1. **Delegate to validation.ChainLeft** for error handling logic
2. **Aggregate errors** when transformations fail
3. **Preserve successes** unchanged
4. **Enable recovery** from decode failures
5. **Provide access** to the original input
The choice between them is purely about **code readability and semantic intent**:
- Use **`OrElse`** when emphasizing fallback/alternative decoding
- Use **`ChainLeft`** when emphasizing error transformation
Both maintain the critical property of **error aggregation**, ensuring all validation failures are preserved and reported together.

View File

@@ -0,0 +1,335 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package decode
import (
"github.com/IBM/fp-go/v2/function"
A "github.com/IBM/fp-go/v2/internal/apply"
C "github.com/IBM/fp-go/v2/internal/chain"
F "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
)
// Do creates an empty context of type S to be used with the Bind operation.
// This is the starting point for building up a context using do-notation style.
//
// Example:
//
// type Result struct {
// x int
// y string
// }
// result := Do(Result{})
func Do[I, S any](
empty S,
) Decode[I, S] {
return Of[I](empty)
}
// Bind attaches the result of a computation to a context S1 to produce a context S2.
// This is used in do-notation style to sequentially build up a context.
//
// Example:
//
// type State struct { x int; y int }
// decoder := F.Pipe2(
// Do[string](State{}),
// Bind(func(x int) func(State) State {
// return func(s State) State { s.x = x; return s }
// }, func(s State) Decode[string, int] {
// return Of[string](42)
// }),
// )
// result := decoder("input") // Returns validation.Success(State{x: 42})
func Bind[I, S1, S2, A any](
setter func(A) func(S1) S2,
f Kleisli[I, S1, A],
) Operator[I, S1, S2] {
return C.Bind(
Chain[I, S1, S2],
Map[I, A, S2],
setter,
f,
)
}
// Let attaches the result of a pure computation to a context S1 to produce a context S2.
// Unlike Bind, the computation function returns a plain value, not wrapped in Decode.
//
// Example:
//
// type State struct { x int; computed int }
// decoder := F.Pipe2(
// Do[string](State{x: 5}),
// Let[string](func(c int) func(State) State {
// return func(s State) State { s.computed = c; return s }
// }, func(s State) int { return s.x * 2 }),
// )
// result := decoder("input") // Returns validation.Success(State{x: 5, computed: 10})
func Let[I, S1, S2, B any](
key func(B) func(S1) S2,
f func(S1) B,
) Operator[I, S1, S2] {
return F.Let(
Map[I, S1, S2],
key,
f,
)
}
// LetTo attaches a constant value to a context S1 to produce a context S2.
//
// Example:
//
// type State struct { x int; name string }
// result := F.Pipe2(
// Do(State{x: 5}),
// LetTo(func(n string) func(State) State {
// return func(s State) State { s.name = n; return s }
// }, "example"),
// )
func LetTo[I, S1, S2, B any](
key func(B) func(S1) S2,
b B,
) Operator[I, S1, S2] {
return F.LetTo(
Map[I, S1, S2],
key,
b,
)
}
// BindTo initializes a new state S1 from a value T.
// This is typically used as the first operation after creating a Decode value.
//
// Example:
//
// type State struct { value int }
// decoder := F.Pipe1(
// Of[string](42),
// BindTo[string](func(x int) State { return State{value: x} }),
// )
// result := decoder("input") // Returns validation.Success(State{value: 42})
func BindTo[I, S1, T any](
setter func(T) S1,
) Operator[I, T, S1] {
return C.BindTo(
Map[I, T, S1],
setter,
)
}
// ApS attaches a value to a context S1 to produce a context S2 by considering the context and the value concurrently.
// This uses the applicative functor pattern, allowing parallel composition.
//
// IMPORTANT: Unlike Bind which fails fast, ApS aggregates ALL validation errors from both the context
// and the value. If both validations fail, all errors are collected and returned together.
// This is useful for validating multiple independent fields and reporting all errors at once.
//
// Example:
//
// type State struct { x int; y int }
// decoder := F.Pipe2(
// Do[string](State{}),
// ApS(func(x int) func(State) State {
// return func(s State) State { s.x = x; return s }
// }, Of[string](42)),
// )
// result := decoder("input") // Returns validation.Success(State{x: 42})
//
// Error aggregation example:
//
// // Both decoders fail - errors are aggregated
// decoder1 := func(input string) Validation[State] {
// return validation.Failures[State](/* errors */)
// }
// decoder2 := func(input string) Validation[int] {
// return validation.Failures[int](/* errors */)
// }
// combined := ApS(setter, decoder2)(decoder1)
// result := combined("input") // Contains BOTH sets of errors
func ApS[I, S1, S2, T any](
setter func(T) func(S1) S2,
fa Decode[I, T],
) Operator[I, S1, S2] {
return A.ApS(
Ap[S2, I, T],
Map[I, S1, func(T) S2],
setter,
fa,
)
}
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// IMPORTANT: Like ApS, this function aggregates ALL validation errors. If both the context
// and the value fail validation, all errors are collected and returned together.
// This enables comprehensive error reporting for complex nested structures.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type Address struct {
// Street string
// City string
// }
//
// type Person struct {
// Name string
// Address Address
// }
//
// // Create a lens for the Address field
// addressLens := lens.MakeLens(
// func(p Person) Address { return p.Address },
// func(p Person, a Address) Person { p.Address = a; return p },
// )
//
// // Use ApSL to update the address
// decoder := F.Pipe2(
// Of[string](Person{Name: "Alice"}),
// ApSL(
// addressLens,
// Of[string](Address{Street: "Main St", City: "NYC"}),
// ),
// )
// result := decoder("input") // Returns validation.Success(Person{...})
func ApSL[I, S, T any](
lens L.Lens[S, T],
fa Decode[I, T],
) Operator[I, S, S] {
return ApS(lens.Set, fa)
}
// BindL attaches the result of a computation to a context using a lens-based setter.
// This is a convenience function that combines Bind with a lens, allowing you to use
// optics to update nested structures based on their current values.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The computation function f receives the current value of the focused field and returns
// a Validation that produces the new value.
//
// Unlike ApSL, BindL uses monadic sequencing, meaning the computation f can depend on
// the current value of the focused field.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Increment the counter, but fail if it would exceed 100
// increment := func(v int) Decode[string, int] {
// return func(input string) Validation[int] {
// if v >= 100 {
// return validation.Failures[int](/* errors */)
// }
// return validation.Success(v + 1)
// }
// }
//
// decoder := F.Pipe1(
// Of[string](Counter{Value: 42}),
// BindL(valueLens, increment),
// )
// result := decoder("input") // Returns validation.Success(Counter{Value: 43})
func BindL[I, S, T any](
lens L.Lens[S, T],
f Kleisli[I, T, T],
) Operator[I, S, S] {
return Bind(lens.Set, function.Flow2(lens.Get, f))
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
// This is a convenience function that combines Let with a lens, allowing you to use
// optics to update nested structures with pure transformations.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The transformation function f receives the current value of the focused field and returns
// the new value directly (not wrapped in Validation).
//
// This is useful for pure transformations that cannot fail, such as mathematical operations,
// string manipulations, or other deterministic updates.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Double the counter value
// double := func(v int) int { return v * 2 }
//
// decoder := F.Pipe1(
// Of[string](Counter{Value: 21}),
// LetL(valueLens, double),
// )
// result := decoder("input") // Returns validation.Success(Counter{Value: 42})
func LetL[I, S, T any](
lens L.Lens[S, T],
f Endomorphism[T],
) Operator[I, S, S] {
return Let[I](lens.Set, function.Flow2(lens.Get, f))
}
// LetToL attaches a constant value to a context using a lens-based setter.
// This is a convenience function that combines LetTo with a lens, allowing you to use
// optics to set nested fields to specific values.
//
// The lens parameter provides the setter for a field within the structure S.
// Unlike LetL which transforms the current value, LetToL simply replaces it with
// the provided constant value b.
//
// This is useful for resetting fields, initializing values, or setting fields to
// predetermined constants.
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// decoder := F.Pipe1(
// Of[string](Config{Debug: true, Timeout: 30}),
// LetToL(debugLens, false),
// )
// result := decoder("input") // Returns validation.Success(Config{Debug: false, Timeout: 30})
func LetToL[I, S, T any](
lens L.Lens[S, T],
b T,
) Operator[I, S, S] {
return LetTo[I](lens.Set, b)
}

View File

@@ -0,0 +1,665 @@
package decode
import (
"testing"
"github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/codec/validation"
L "github.com/IBM/fp-go/v2/optics/lens"
"github.com/stretchr/testify/assert"
)
func TestDo(t *testing.T) {
t.Run("creates decoder with empty state", func(t *testing.T) {
type State struct {
x int
y string
}
decoder := Do[string](State{})
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{}, value)
})
t.Run("creates decoder with initialized state", func(t *testing.T) {
type State struct {
x int
y string
}
initial := State{x: 42, y: "hello"}
decoder := Do[string](initial)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, initial, value)
})
t.Run("works with different input types", func(t *testing.T) {
intDecoder := Do[int](0)
assert.True(t, either.IsRight(intDecoder(42)))
strDecoder := Do[string]("")
assert.True(t, either.IsRight(strDecoder("test")))
type Custom struct{ Value int }
customDecoder := Do[[]byte](Custom{Value: 100})
assert.True(t, either.IsRight(customDecoder([]byte("data"))))
})
}
func TestBind(t *testing.T) {
type State struct {
x int
y int
}
t.Run("binds successful decode to state", func(t *testing.T) {
decoder := F.Pipe2(
Do[string](State{}),
Bind(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) Decode[string, int] {
return Of[string](42)
}),
Bind(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) Decode[string, int] {
return Of[string](10)
}),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{x: 42, y: 10}, value)
})
t.Run("propagates failure", func(t *testing.T) {
decoder := F.Pipe2(
Do[string](State{}),
Bind(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) Decode[string, int] {
return Of[string](42)
}),
Bind(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) Decode[string, int] {
return func(input string) validation.Validation[int] {
return validation.Failures[int](validation.Errors{
&validation.ValidationError{Messsage: "y failed"},
})
}
}),
)
result := decoder("input")
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(State) validation.Errors { return nil },
)
assert.Len(t, errors, 1)
assert.Equal(t, "y failed", errors[0].Messsage)
})
t.Run("can access previous state values", func(t *testing.T) {
decoder := F.Pipe2(
Do[string](State{}),
Bind(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) Decode[string, int] {
return Of[string](10)
}),
Bind(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) Decode[string, int] {
// y depends on x
return Of[string](s.x * 2)
}),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{x: 10, y: 20}, value)
})
t.Run("can access input in decoder", func(t *testing.T) {
decoder := F.Pipe1(
Do[string](State{}),
Bind(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) Decode[string, int] {
return func(input string) validation.Validation[int] {
// Use input to determine value
if input == "large" {
return validation.Success(100)
}
return validation.Success(10)
}
}),
)
result1 := decoder("large")
value1 := either.MonadFold(result1,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, 100, value1.x)
result2 := decoder("small")
value2 := either.MonadFold(result2,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, 10, value2.x)
})
}
func TestLet(t *testing.T) {
type State struct {
x int
computed int
}
t.Run("attaches pure computation result to state", func(t *testing.T) {
decoder := F.Pipe1(
Do[string](State{x: 5}),
Let[string](func(c int) func(State) State {
return func(s State) State { s.computed = c; return s }
}, func(s State) int { return s.x * 2 }),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{x: 5, computed: 10}, value)
})
t.Run("chains multiple Let operations", func(t *testing.T) {
type State struct {
x int
y int
z int
}
decoder := F.Pipe3(
Do[string](State{x: 5}),
Let[string](func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) int { return s.x * 2 }),
Let[string](func(z int) func(State) State {
return func(s State) State { s.z = z; return s }
}, func(s State) int { return s.y + 10 }),
Let[string](func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) int { return s.z * 3 }),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{x: 60, y: 10, z: 20}, value)
})
}
func TestLetTo(t *testing.T) {
type State struct {
x int
name string
}
t.Run("attaches constant value to state", func(t *testing.T) {
decoder := F.Pipe1(
Do[string](State{x: 5}),
LetTo[string](func(n string) func(State) State {
return func(s State) State { s.name = n; return s }
}, "example"),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{x: 5, name: "example"}, value)
})
t.Run("sets multiple constant values", func(t *testing.T) {
type State struct {
name string
version int
active bool
}
decoder := F.Pipe3(
Do[string](State{}),
LetTo[string](func(n string) func(State) State {
return func(s State) State { s.name = n; return s }
}, "app"),
LetTo[string](func(v int) func(State) State {
return func(s State) State { s.version = v; return s }
}, 2),
LetTo[string](func(a bool) func(State) State {
return func(s State) State { s.active = a; return s }
}, true),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{name: "app", version: 2, active: true}, value)
})
}
func TestBindTo(t *testing.T) {
type State struct {
value int
}
t.Run("initializes state from value", func(t *testing.T) {
decoder := F.Pipe1(
Of[string](42),
BindTo[string](func(x int) State { return State{value: x} }),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{value: 42}, value)
})
t.Run("works with different types", func(t *testing.T) {
type StringState struct {
text string
}
decoder := F.Pipe1(
Of[string]("hello"),
BindTo[string](func(s string) StringState { return StringState{text: s} }),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) StringState { return StringState{} },
F.Identity[StringState],
)
assert.Equal(t, StringState{text: "hello"}, value)
})
}
func TestApS(t *testing.T) {
type State struct {
x int
y int
}
t.Run("attaches value using applicative pattern", func(t *testing.T) {
decoder := F.Pipe1(
Do[string](State{}),
ApS(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, Of[string](42)),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{x: 42}, value)
})
t.Run("accumulates errors from both decoders", func(t *testing.T) {
stateDecoder := func(input string) validation.Validation[State] {
return validation.Failures[State](validation.Errors{
&validation.ValidationError{Messsage: "state error"},
})
}
valueDecoder := func(input string) validation.Validation[int] {
return validation.Failures[int](validation.Errors{
&validation.ValidationError{Messsage: "value error"},
})
}
decoder := ApS(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, valueDecoder)(stateDecoder)
result := decoder("input")
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(State) validation.Errors { return nil },
)
assert.Len(t, errors, 2)
messages := []string{errors[0].Messsage, errors[1].Messsage}
assert.Contains(t, messages, "state error")
assert.Contains(t, messages, "value error")
})
t.Run("combines multiple ApS operations", func(t *testing.T) {
decoder := F.Pipe2(
Do[string](State{}),
ApS(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, Of[string](10)),
ApS(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, Of[string](20)),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{x: 10, y: 20}, value)
})
}
func TestApSL(t *testing.T) {
type Address struct {
Street string
City string
}
type Person struct {
Name string
Address Address
}
t.Run("updates nested structure using lens", func(t *testing.T) {
addressLens := L.MakeLens(
func(p Person) Address { return p.Address },
func(p Person, a Address) Person { p.Address = a; return p },
)
decoder := F.Pipe1(
Of[string](Person{Name: "Alice"}),
ApSL(
addressLens,
Of[string](Address{Street: "Main St", City: "NYC"}),
),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) Person { return Person{} },
F.Identity[Person],
)
assert.Equal(t, "Alice", value.Name)
assert.Equal(t, "Main St", value.Address.Street)
assert.Equal(t, "NYC", value.Address.City)
})
t.Run("accumulates errors", func(t *testing.T) {
addressLens := L.MakeLens(
func(p Person) Address { return p.Address },
func(p Person, a Address) Person { p.Address = a; return p },
)
personDecoder := func(input string) validation.Validation[Person] {
return validation.Failures[Person](validation.Errors{
&validation.ValidationError{Messsage: "person error"},
})
}
addressDecoder := func(input string) validation.Validation[Address] {
return validation.Failures[Address](validation.Errors{
&validation.ValidationError{Messsage: "address error"},
})
}
decoder := ApSL(addressLens, addressDecoder)(personDecoder)
result := decoder("input")
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(Person) validation.Errors { return nil },
)
assert.Len(t, errors, 2)
})
}
func TestBindL(t *testing.T) {
type Counter struct {
Value int
}
valueLens := L.MakeLens(
func(c Counter) int { return c.Value },
func(c Counter, v int) Counter { c.Value = v; return c },
)
t.Run("updates field based on current value", func(t *testing.T) {
increment := func(v int) Decode[string, int] {
return Of[string](v + 1)
}
decoder := F.Pipe1(
Of[string](Counter{Value: 42}),
BindL(valueLens, increment),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) Counter { return Counter{} },
F.Identity[Counter],
)
assert.Equal(t, Counter{Value: 43}, value)
})
t.Run("fails validation based on current value", func(t *testing.T) {
increment := func(v int) Decode[string, int] {
return func(input string) validation.Validation[int] {
if v >= 100 {
return validation.Failures[int](validation.Errors{
&validation.ValidationError{Messsage: "exceeds limit"},
})
}
return validation.Success(v + 1)
}
}
decoder := F.Pipe1(
Of[string](Counter{Value: 100}),
BindL(valueLens, increment),
)
result := decoder("input")
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(Counter) validation.Errors { return nil },
)
assert.Len(t, errors, 1)
assert.Equal(t, "exceeds limit", errors[0].Messsage)
})
}
func TestLetL(t *testing.T) {
type Counter struct {
Value int
}
valueLens := L.MakeLens(
func(c Counter) int { return c.Value },
func(c Counter, v int) Counter { c.Value = v; return c },
)
t.Run("transforms field with pure function", func(t *testing.T) {
double := func(v int) int { return v * 2 }
decoder := F.Pipe1(
Of[string](Counter{Value: 21}),
LetL[string](valueLens, double),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) Counter { return Counter{} },
F.Identity[Counter],
)
assert.Equal(t, Counter{Value: 42}, value)
})
t.Run("chains multiple transformations", func(t *testing.T) {
add10 := func(v int) int { return v + 10 }
double := func(v int) int { return v * 2 }
decoder := F.Pipe2(
Of[string](Counter{Value: 5}),
LetL[string](valueLens, add10),
LetL[string](valueLens, double),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) Counter { return Counter{} },
F.Identity[Counter],
)
assert.Equal(t, Counter{Value: 30}, value)
})
}
func TestLetToL(t *testing.T) {
type Config struct {
Debug bool
Timeout int
}
debugLens := L.MakeLens(
func(c Config) bool { return c.Debug },
func(c Config, d bool) Config { c.Debug = d; return c },
)
t.Run("sets field to constant value", func(t *testing.T) {
decoder := F.Pipe1(
Of[string](Config{Debug: true, Timeout: 30}),
LetToL[string](debugLens, false),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) Config { return Config{} },
F.Identity[Config],
)
assert.Equal(t, Config{Debug: false, Timeout: 30}, value)
})
t.Run("sets multiple fields", func(t *testing.T) {
timeoutLens := L.MakeLens(
func(c Config) int { return c.Timeout },
func(c Config, t int) Config { c.Timeout = t; return c },
)
decoder := F.Pipe2(
Of[string](Config{Debug: true, Timeout: 30}),
LetToL[string](debugLens, false),
LetToL[string](timeoutLens, 60),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) Config { return Config{} },
F.Identity[Config],
)
assert.Equal(t, Config{Debug: false, Timeout: 60}, value)
})
}
func TestBindOperationsComposition(t *testing.T) {
type User struct {
Name string
Age int
Email string
}
t.Run("combines Do, Bind, Let, and LetTo", func(t *testing.T) {
decoder := F.Pipe4(
Do[string](User{}),
LetTo[string](func(n string) func(User) User {
return func(u User) User { u.Name = n; return u }
}, "Alice"),
Bind(func(a int) func(User) User {
return func(u User) User { u.Age = a; return u }
}, func(u User) Decode[string, int] {
// Age validation
if len(u.Name) > 0 {
return Of[string](25)
}
return func(input string) validation.Validation[int] {
return validation.Failures[int](validation.Errors{
&validation.ValidationError{Messsage: "name required"},
})
}
}),
Let[string](func(e string) func(User) User {
return func(u User) User { u.Email = e; return u }
}, func(u User) string {
// Derive email from name
return u.Name + "@example.com"
}),
Bind(func(a int) func(User) User {
return func(u User) User { u.Age = a; return u }
}, func(u User) Decode[string, int] {
// Validate age is positive
if u.Age > 0 {
return Of[string](u.Age)
}
return func(input string) validation.Validation[int] {
return validation.Failures[int](validation.Errors{
&validation.ValidationError{Messsage: "age must be positive"},
})
}
}),
)
result := decoder("input")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) User { return User{} },
F.Identity[User],
)
assert.Equal(t, "Alice", value.Name)
assert.Equal(t, 25, value.Age)
assert.Equal(t, "Alice@example.com", value.Email)
})
}

View File

@@ -50,6 +50,17 @@ func Chain[I, A, B any](f Kleisli[I, A, B]) Operator[I, A, B] {
)
}
func ChainLeft[I, A any](f Kleisli[I, Errors, A]) Operator[I, A, A] {
return readert.Chain[Decode[I, A]](
validation.ChainLeft,
f,
)
}
func OrElse[I, A any](f Kleisli[I, Errors, A]) Operator[I, A, A] {
return ChainLeft(f)
}
// MonadMap transforms the decoded value using the provided function.
// This is the functor map operation that applies a transformation to successful decode results.
//

View File

@@ -382,3 +382,400 @@ func TestFunctorLaws(t *testing.T) {
assert.Equal(t, right(input), left(input))
})
}
// TestChainLeft tests the ChainLeft function
func TestChainLeft(t *testing.T) {
t.Run("transforms failures while preserving successes", func(t *testing.T) {
// Create a failing decoder
failingDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "decode failed"},
})
}
// Handler that recovers from specific errors
handler := ChainLeft(func(errs Errors) Decode[string, int] {
for _, err := range errs {
if err.Messsage == "decode failed" {
return Of[string](0) // recover with default
}
}
return func(input string) Validation[int] {
return either.Left[int](errs)
}
})
decoder := handler(failingDecoder)
res := decoder("input")
assert.Equal(t, validation.Of(0), res, "Should recover from failure")
})
t.Run("preserves success values unchanged", func(t *testing.T) {
successDecoder := Of[string](42)
handler := ChainLeft(func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Messsage: "should not be called"},
})
}
})
decoder := handler(successDecoder)
res := decoder("input")
assert.Equal(t, validation.Of(42), res, "Success should pass through unchanged")
})
t.Run("aggregates errors when transformation also fails", func(t *testing.T) {
failingDecoder := func(input string) Validation[string] {
return either.Left[string](validation.Errors{
{Value: input, Messsage: "original error"},
})
}
handler := ChainLeft(func(errs Errors) Decode[string, string] {
return func(input string) Validation[string] {
return either.Left[string](validation.Errors{
{Messsage: "additional error"},
})
}
})
decoder := handler(failingDecoder)
res := decoder("input")
assert.True(t, either.IsLeft(res))
errors := either.MonadFold(res,
func(e Errors) Errors { return e },
func(string) Errors { return nil },
)
assert.Len(t, errors, 2, "Should aggregate both errors")
messages := make([]string, len(errors))
for i, err := range errors {
messages[i] = err.Messsage
}
assert.Contains(t, messages, "original error")
assert.Contains(t, messages, "additional error")
})
t.Run("adds context to errors", func(t *testing.T) {
failingDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "invalid format"},
})
}
addContext := ChainLeft(func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{
Context: validation.Context{{Key: "user", Type: "User"}, {Key: "age", Type: "int"}},
Messsage: "failed to decode user age",
},
})
}
})
decoder := addContext(failingDecoder)
res := decoder("abc")
assert.True(t, either.IsLeft(res))
errors := either.MonadFold(res,
func(e Errors) Errors { return e },
func(int) Errors { return nil },
)
assert.Len(t, errors, 2, "Should have both original and context errors")
})
t.Run("can be composed in pipeline", func(t *testing.T) {
failingDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "error1"},
})
}
handler1 := ChainLeft(func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Messsage: "error2"},
})
}
})
handler2 := ChainLeft(func(errs Errors) Decode[string, int] {
// Check if we can recover
for _, err := range errs {
if err.Messsage == "error1" {
return Of[string](100) // recover
}
}
return func(input string) Validation[int] {
return either.Left[int](errs)
}
})
// Compose handlers
decoder := handler2(handler1(failingDecoder))
res := decoder("input")
// Should recover because error1 is present
assert.Equal(t, validation.Of(100), res)
})
t.Run("works with different input types", func(t *testing.T) {
type Config struct {
Port int
}
failingDecoder := func(cfg Config) Validation[string] {
return either.Left[string](validation.Errors{
{Value: cfg.Port, Messsage: "invalid port"},
})
}
handler := ChainLeft(func(errs Errors) Decode[Config, string] {
return Of[Config]("default-value")
})
decoder := handler(failingDecoder)
res := decoder(Config{Port: 9999})
assert.Equal(t, validation.Of("default-value"), res)
})
}
// TestOrElse tests the OrElse function
func TestOrElse(t *testing.T) {
t.Run("OrElse is equivalent to ChainLeft - Success case", func(t *testing.T) {
successDecoder := Of[string](42)
handler := func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Messsage: "should not be called"},
})
}
}
// Test with OrElse
resultOrElse := OrElse(handler)(successDecoder)("input")
// Test with ChainLeft
resultChainLeft := ChainLeft(handler)(successDecoder)("input")
assert.Equal(t, resultChainLeft, resultOrElse, "OrElse and ChainLeft should produce identical results for Success")
assert.Equal(t, validation.Of(42), resultOrElse)
})
t.Run("OrElse is equivalent to ChainLeft - Failure recovery", func(t *testing.T) {
failingDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "not found"},
})
}
handler := func(errs Errors) Decode[string, int] {
for _, err := range errs {
if err.Messsage == "not found" {
return Of[string](0) // recover with default
}
}
return func(input string) Validation[int] {
return either.Left[int](errs)
}
}
// Test with OrElse
resultOrElse := OrElse(handler)(failingDecoder)("input")
// Test with ChainLeft
resultChainLeft := ChainLeft(handler)(failingDecoder)("input")
assert.Equal(t, resultChainLeft, resultOrElse, "OrElse and ChainLeft should produce identical results for recovery")
assert.Equal(t, validation.Of(0), resultOrElse)
})
t.Run("OrElse is equivalent to ChainLeft - Error aggregation", func(t *testing.T) {
failingDecoder := func(input string) Validation[string] {
return either.Left[string](validation.Errors{
{Value: input, Messsage: "original error"},
})
}
handler := func(errs Errors) Decode[string, string] {
return func(input string) Validation[string] {
return either.Left[string](validation.Errors{
{Messsage: "additional error"},
})
}
}
// Test with OrElse
resultOrElse := OrElse(handler)(failingDecoder)("input")
// Test with ChainLeft
resultChainLeft := ChainLeft(handler)(failingDecoder)("input")
assert.Equal(t, resultChainLeft, resultOrElse, "OrElse and ChainLeft should produce identical results for error aggregation")
// Verify both aggregate errors
assert.True(t, either.IsLeft(resultOrElse))
errors := either.MonadFold(resultOrElse,
func(e Errors) Errors { return e },
func(string) Errors { return nil },
)
assert.Len(t, errors, 2, "Should aggregate both errors")
messages := make([]string, len(errors))
for i, err := range errors {
messages[i] = err.Messsage
}
assert.Contains(t, messages, "original error")
assert.Contains(t, messages, "additional error")
})
t.Run("OrElse semantic meaning - fallback decoder", func(t *testing.T) {
// OrElse provides a semantic name for fallback/alternative decoding
// It reads naturally: "try this decoder, or else try this alternative"
primaryDecoder := func(input string) Validation[int] {
if input == "valid" {
return validation.Of(42)
}
return either.Left[int](validation.Errors{
{Value: input, Messsage: "primary decode failed"},
})
}
// Use OrElse to provide a fallback: if decoding fails, use default value
withDefault := OrElse(func(errs Errors) Decode[string, int] {
return Of[string](0) // default to 0 if decoding fails
})
decoder := withDefault(primaryDecoder)
// Test success case
resSuccess := decoder("valid")
assert.Equal(t, validation.Of(42), resSuccess, "Should use primary decoder on success")
// Test fallback case
resFallback := decoder("invalid")
assert.Equal(t, validation.Of(0), resFallback, "OrElse provides fallback value")
})
t.Run("OrElse in pipeline composition", func(t *testing.T) {
failingDecoder := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "database error"},
})
}
addContext := OrElse(func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Messsage: "context added"},
})
}
})
recoverFromNotFound := OrElse(func(errs Errors) Decode[string, int] {
for _, err := range errs {
if err.Messsage == "not found" {
return Of[string](0)
}
}
return func(input string) Validation[int] {
return either.Left[int](errs)
}
})
// Test error aggregation in pipeline
decoder1 := recoverFromNotFound(addContext(failingDecoder))
res1 := decoder1("input")
assert.True(t, either.IsLeft(res1))
errors := either.MonadFold(res1,
func(e Errors) Errors { return e },
func(int) Errors { return nil },
)
// Errors accumulate through the pipeline
assert.Greater(t, len(errors), 1, "Should aggregate errors from pipeline")
// Test recovery in pipeline
failingDecoder2 := func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Value: input, Messsage: "not found"},
})
}
decoder2 := recoverFromNotFound(addContext(failingDecoder2))
res2 := decoder2("input")
assert.Equal(t, validation.Of(0), res2, "Should recover from 'not found' error")
})
t.Run("OrElse vs ChainLeft - identical behavior verification", func(t *testing.T) {
// Create various test scenarios
scenarios := []struct {
name string
decoder Decode[string, int]
handler func(Errors) Decode[string, int]
}{
{
name: "Success value",
decoder: Of[string](42),
handler: func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
return either.Left[int](validation.Errors{{Messsage: "error"}})
}
},
},
{
name: "Failure with recovery",
decoder: func(input string) Validation[int] {
return either.Left[int](validation.Errors{{Messsage: "error"}})
},
handler: func(errs Errors) Decode[string, int] {
return Of[string](0)
},
},
{
name: "Failure with error transformation",
decoder: func(input string) Validation[int] {
return either.Left[int](validation.Errors{{Messsage: "error1"}})
},
handler: func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
return either.Left[int](validation.Errors{{Messsage: "error2"}})
}
},
},
{
name: "Multiple errors aggregation",
decoder: func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Messsage: "error1"},
{Messsage: "error2"},
})
},
handler: func(errs Errors) Decode[string, int] {
return func(input string) Validation[int] {
return either.Left[int](validation.Errors{
{Messsage: "error3"},
{Messsage: "error4"},
})
}
},
},
}
for _, scenario := range scenarios {
t.Run(scenario.name, func(t *testing.T) {
resultOrElse := OrElse(scenario.handler)(scenario.decoder)("test-input")
resultChainLeft := ChainLeft(scenario.handler)(scenario.decoder)("test-input")
assert.Equal(t, resultChainLeft, resultOrElse,
"OrElse and ChainLeft must produce identical results for: %s", scenario.name)
})
}
})
}

View File

@@ -1,30 +1,222 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package decode
import (
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/IBM/fp-go/v2/reader"
)
type (
Errors = validation.Errors
// Validation represents the result of a validation operation that may contain
// validation errors or a successfully validated value of type A.
// This is an alias for validation.Validation[A], which is Either[Errors, A].
//
// In the decode context:
// - Left(Errors): Decoding failed with one or more validation errors
// - Right(A): Successfully decoded value of type A
//
// Example:
//
// // Success case
// valid := validation.Success(42) // Right(42)
//
// // Failure case
// invalid := validation.Failures[int](validation.Errors{
// &validation.ValidationError{Messsage: "invalid format"},
// }) // Left([...])
Validation[A any] = validation.Validation[A]
// Reader represents a computation that depends on an environment R and produces a value A.
// This is an alias for reader.Reader[R, A], which is func(R) A.
//
// In the decode context, Reader is used to access the input data being decoded.
// The environment R is typically the raw input (e.g., JSON, string, bytes) that
// needs to be decoded into a structured type A.
//
// Example:
//
// // A reader that extracts a field from a map
// getField := func(data map[string]any) string {
// return data["name"].(string)
// } // Reader[map[string]any, string]
Reader[R, A any] = reader.Reader[R, A]
// Decode is a function that decodes input I to type A with validation.
// It returns a Validation result directly.
// It combines the Reader pattern (for accessing input) with Validation (for error handling).
//
// Type: func(I) Validation[A]
//
// A Decode function:
// 1. Takes raw input of type I (e.g., JSON, string, bytes)
// 2. Attempts to decode/parse it into type A
// 3. Returns a Validation[A] with either:
// - Success(A): Successfully decoded value
// - Failures(Errors): Validation errors describing what went wrong
//
// This type is the foundation of the decode package, enabling composable,
// type-safe decoding with comprehensive error reporting.
//
// Example:
//
// // Decode a string to an integer
// decodeInt := func(input string) Validation[int] {
// n, err := strconv.Atoi(input)
// if err != nil {
// return validation.Failures[int](validation.Errors{
// &validation.ValidationError{
// Value: input,
// Messsage: "not a valid integer",
// Cause: err,
// },
// })
// }
// return validation.Success(n)
// } // Decode[string, int]
//
// result := decodeInt("42") // Success(42)
// result := decodeInt("abc") // Failures([...])
Decode[I, A any] = Reader[I, Validation[A]]
// Kleisli represents a function from A to a decoded B given input type I.
// It's a Reader that takes an input A and produces a Decode[I, B] function.
// This enables composition of decoding operations in a functional style.
//
// Type: func(A) Decode[I, B]
// which expands to: func(A) func(I) Validation[B]
//
// Kleisli arrows are the fundamental building blocks for composing decoders.
// They allow you to chain decoding operations where each step can:
// 1. Depend on the result of the previous step (the A parameter)
// 2. Access the original input (the I parameter via Decode)
// 3. Fail with validation errors (via Validation[B])
//
// This is particularly useful for:
// - Conditional decoding based on previously decoded values
// - Multi-stage decoding pipelines
// - Dependent field validation
//
// Example:
//
// // Decode a user, then decode their age based on their type
// decodeAge := func(userType string) Decode[map[string]any, int] {
// return func(data map[string]any) Validation[int] {
// if userType == "admin" {
// // Admins must be 18+
// age := data["age"].(int)
// if age < 18 {
// return validation.Failures[int](/* error */)
// }
// return validation.Success(age)
// }
// // Regular users can be any age
// return validation.Success(data["age"].(int))
// }
// } // Kleisli[map[string]any, string, int]
//
// // Use with Chain to compose decoders
// decoder := F.Pipe2(
// decodeUserType, // Decode[map[string]any, string]
// Chain(decodeAge), // Chains with Kleisli
// Map(func(age int) User { // Transform to final type
// return User{Age: age}
// }),
// )
Kleisli[I, A, B any] = Reader[A, Decode[I, B]]
// Operator represents a decoding transformation that takes a decoded A and produces a decoded B.
// It's a specialized Kleisli arrow for composing decode operations where the input is already decoded.
// This allows chaining multiple decode transformations together.
//
// Type: func(Decode[I, A]) Decode[I, B]
//
// Operators are higher-order functions that transform one decoder into another.
// They are the result of partially applying functions like Map, Chain, and Ap,
// making them ideal for use in composition pipelines with F.Pipe.
//
// Key characteristics:
// - Takes a Decode[I, A] as input
// - Returns a Decode[I, B] as output
// - Preserves the input type I (the raw data being decoded)
// - Transforms the output type from A to B
//
// Common operators:
// - Map(f): Transforms successful decode results
// - Chain(f): Sequences dependent decode operations
// - Ap(fa): Applies function decoders to value decoders
//
// Example:
//
// // Create reusable operators
// toString := Map(func(n int) string {
// return strconv.Itoa(n)
// }) // Operator[string, int, string]
//
// validatePositive := Chain(func(n int) Decode[string, int] {
// return func(input string) Validation[int] {
// if n <= 0 {
// return validation.Failures[int](/* error */)
// }
// return validation.Success(n)
// }
// }) // Operator[string, int, int]
//
// // Compose operators in a pipeline
// decoder := F.Pipe2(
// decodeInt, // Decode[string, int]
// validatePositive, // Operator[string, int, int]
// toString, // Operator[string, int, string]
// ) // Decode[string, string]
//
// result := decoder("42") // Success("42")
// result := decoder("-5") // Failures([...])
Operator[I, A, B any] = Kleisli[I, Decode[I, A], B]
// Endomorphism represents a function from a type to itself: func(A) A.
// This is an alias for endomorphism.Endomorphism[A].
//
// In the decode context, endomorphisms are used with LetL to transform
// decoded values using pure functions that don't change the type.
//
// Endomorphisms are useful for:
// - Normalizing data (e.g., trimming strings, rounding numbers)
// - Applying business rules (e.g., clamping values to ranges)
// - Data sanitization (e.g., removing special characters)
//
// Example:
//
// // Normalize a string by trimming and lowercasing
// normalize := func(s string) string {
// return strings.ToLower(strings.TrimSpace(s))
// } // Endomorphism[string]
//
// // Clamp an integer to a range
// clamp := func(n int) int {
// if n < 0 { return 0 }
// if n > 100 { return 100 }
// return n
// } // Endomorphism[int]
//
// // Use with LetL to transform decoded values
// decoder := F.Pipe1(
// decodeString,
// LetL(nameLens, normalize),
// )
Endomorphism[A any] = endomorphism.Endomorphism[A]
)

277
v2/optics/codec/either.go Normal file
View File

@@ -0,0 +1,277 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package codec
import (
"fmt"
"github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/codec/validate"
"github.com/IBM/fp-go/v2/optics/codec/validation"
)
// encodeEither creates an encoder for Either[A, B] values.
//
// This function produces an encoder that handles both Left and Right cases of an Either value.
// It uses the provided codecs to encode the Left (A) and Right (B) values respectively.
//
// # Type Parameters
//
// - A: The type of the Left value
// - B: The type of the Right value
// - O: The output type after encoding
// - I: The input type for validation (not used in encoding)
//
// # Parameters
//
// - leftItem: The codec for encoding Left values of type A
// - rightItem: The codec for encoding Right values of type B
//
// # Returns
//
// An Encode function that takes an Either[A, B] and returns O by encoding
// either the Left or Right value using the appropriate codec.
//
// # Example
//
// stringCodec := String()
// intCodec := Int()
// encoder := encodeEither(stringCodec, intCodec)
//
// // Encode a Left value
// leftResult := encoder(either.Left[int]("error"))
// // leftResult contains the encoded string "error"
//
// // Encode a Right value
// rightResult := encoder(either.Right[string](42))
// // rightResult contains the encoded int 42
//
// # Notes
//
// - Uses either.Fold to pattern match on the Either value
// - Left values are encoded using leftItem.Encode
// - Right values are encoded using rightItem.Encode
func encodeEither[A, B, O, I any](
leftItem Type[A, O, I],
rightItem Type[B, O, I],
) Encode[either.Either[A, B], O] {
return either.Fold(
leftItem.Encode,
rightItem.Encode,
)
}
// validateEither creates a validator for Either[A, B] values.
//
// This function produces a validator that attempts to validate the input as both
// a Left (A) and Right (B) value. The validation strategy is:
// 1. First, try to validate as a Right value (B)
// 2. If Right validation succeeds, return Either.Right[A](B)
// 3. If Right validation fails, try to validate as a Left value (A)
// 4. If Left validation succeeds, return Either.Left[B](A)
// 5. If both validations fail, concatenate all errors from both attempts
//
// This approach ensures that the validator tries both branches and provides
// comprehensive error information when both fail.
//
// # Type Parameters
//
// - A: The type of the Left value
// - B: The type of the Right value
// - O: The output type after encoding (not used in validation)
// - I: The input type to validate
//
// # Parameters
//
// - leftItem: The codec for validating Left values of type A
// - rightItem: The codec for validating Right values of type B
//
// # Returns
//
// A Validate function that takes an input I and returns a Decode function.
// The Decode function takes a Context and returns a Validation[Either[A, B]].
//
// # Validation Logic
//
// The validator follows this decision tree:
//
// Input I
// |
// +--> Validate as Right (B)
// |
// +-- Success --> Return Either.Right[A](B)
// |
// +-- Failure --> Validate as Left (A)
// |
// +-- Success --> Return Either.Left[B](A)
// |
// +-- Failure --> Return all errors (Left + Right)
//
// # Example
//
// stringCodec := String()
// intCodec := Int()
// validator := validateEither(stringCodec, intCodec)
//
// // Validate a string (will succeed as Left)
// result1 := validator("hello")(validation.Context{})
// // result1 is Success(Either.Left[int]("hello"))
//
// // Validate an int (will succeed as Right)
// result2 := validator(42)(validation.Context{})
// // result2 is Success(Either.Right[string](42))
//
// // Validate something that's neither (will fail with both errors)
// result3 := validator([]int{1, 2, 3})(validation.Context{})
// // result3 is Failure with errors from both string and int validation
//
// # Notes
//
// - Prioritizes Right validation over Left validation
// - Accumulates errors from both branches when both fail
// - Uses the validation context to provide detailed error messages
// - The validator is lazy: it only evaluates Left if Right fails
func validateEither[A, B, O, I any](
leftItem Type[A, O, I],
rightItem Type[B, O, I],
) Validate[I, either.Either[A, B]] {
return func(i I) Decode[Context, either.Either[A, B]] {
valRight := rightItem.Validate(i)
valLeft := leftItem.Validate(i)
return func(ctx Context) Validation[either.Either[A, B]] {
resRight := valRight(ctx)
return either.Fold(
func(rightErrors validate.Errors) Validation[either.Either[A, B]] {
resLeft := valLeft(ctx)
return either.Fold(
func(leftErrors validate.Errors) Validation[either.Either[A, B]] {
return validation.Failures[either.Either[A, B]](array.Concat(leftErrors)(rightErrors))
},
F.Flow2(either.Left[B, A], validation.Of),
)(resLeft)
},
F.Flow2(either.Right[A, B], validation.Of),
)(resRight)
}
}
}
// Either creates a codec for Either[A, B] values.
//
// This function constructs a complete codec that can encode, decode, and validate
// Either values. An Either represents a value that can be one of two types: Left (A)
// or Right (B). This is commonly used for error handling, where Left represents an
// error and Right represents a success value.
//
// The codec handles both branches of the Either type using the provided codecs for
// each branch. During validation, it attempts to validate the input as both types
// and succeeds if either validation passes.
//
// # Type Parameters
//
// - A: The type of the Left value
// - B: The type of the Right value
// - O: The output type after encoding
// - I: The input type for validation
//
// # Parameters
//
// - leftItem: The codec for handling Left values of type A
// - rightItem: The codec for handling Right values of type B
//
// # Returns
//
// A Type[either.Either[A, B], O, I] that can encode, decode, and validate Either values.
//
// # Codec Behavior
//
// Encoding:
// - Left values are encoded using leftItem.Encode
// - Right values are encoded using rightItem.Encode
//
// Validation:
// - First attempts to validate as Right (B)
// - If Right fails, attempts to validate as Left (A)
// - If both fail, returns all accumulated errors
// - If either succeeds, returns the corresponding Either value
//
// Type Checking:
// - Uses Is[either.Either[A, B]]() to verify the value is an Either
//
// Naming:
// - The codec name is "Either[<leftName>, <rightName>]"
// - Example: "Either[string, int]"
//
// # Example
//
// // Create a codec for Either[string, int]
// stringCodec := String()
// intCodec := Int()
// eitherCodec := Either(stringCodec, intCodec)
//
// // Encode a Left value
// leftEncoded := eitherCodec.Encode(either.Left[int]("error"))
// // leftEncoded contains the encoded string
//
// // Encode a Right value
// rightEncoded := eitherCodec.Encode(either.Right[string](42))
// // rightEncoded contains the encoded int
//
// // Decode/validate an input
// result := eitherCodec.Decode("hello")
// // result is Success(Either.Left[int]("hello"))
//
// result2 := eitherCodec.Decode(42)
// // result2 is Success(Either.Right[string](42))
//
// // Get the codec name
// name := eitherCodec.Name()
// // name is "Either[string, int]"
//
// # Use Cases
//
// - Error handling: Either[Error, Value]
// - Alternative values: Either[DefaultValue, CustomValue]
// - Union types: Either[TypeA, TypeB]
// - Validation results: Either[ValidationError, ValidatedValue]
//
// # Notes
//
// - The codec prioritizes Right validation over Left validation
// - Both branches must have compatible encoding output types (O)
// - Both branches must have compatible validation input types (I)
// - The codec name includes the names of both branch codecs
// - This is a building block for more complex sum types
func Either[A, B, O, I any](
leftItem Type[A, O, I],
rightItem Type[B, O, I],
) Type[either.Either[A, B], O, I] {
name := fmt.Sprintf("Either[%s, %s]", leftItem.Name(), rightItem.Name())
isEither := Is[either.Either[A, B]]()
return MakeType(
name,
isEither,
validateEither(leftItem, rightItem),
encodeEither(leftItem, rightItem),
)
}

View File

@@ -0,0 +1,347 @@
// Copyright (c) 2023 - 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package codec
import (
"fmt"
"strconv"
"testing"
"github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/codec/validation"
"github.com/IBM/fp-go/v2/reader"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
// TestEitherWithIdentityCodecs tests the Either function with identity codecs
// where both branches have the same output and input types
func TestEitherWithIdentityCodecs(t *testing.T) {
t.Run("creates codec with correct name", func(t *testing.T) {
// The Either function is designed for cases where both branches encode to the same type
// For example, both encode to string or both encode to JSON
// Create codecs that both encode to string
stringToString := Id[string]()
intToString := IntFromString()
eitherCodec := Either(stringToString, intToString)
assert.Equal(t, "Either[string, IntFromString]", eitherCodec.Name())
})
}
// TestEitherEncode tests encoding of Either values
func TestEitherEncode(t *testing.T) {
// Create codecs that both encode to string
stringToString := Id[string]()
intToString := IntFromString()
eitherCodec := Either(stringToString, intToString)
t.Run("encodes Left value", func(t *testing.T) {
leftValue := either.Left[int]("hello")
encoded := eitherCodec.Encode(leftValue)
assert.Equal(t, "hello", encoded)
})
t.Run("encodes Right value", func(t *testing.T) {
rightValue := either.Right[string](42)
encoded := eitherCodec.Encode(rightValue)
assert.Equal(t, "42", encoded)
})
}
// TestEitherDecode tests decoding/validation of Either values
func TestEitherDecode(t *testing.T) {
getOrElseNull := either.GetOrElse(reader.Of[validation.Errors, either.Either[string, int]](either.Left[int]("")))
// Create codecs that both work with string input
stringCodec := Id[string]()
intFromString := IntFromString()
eitherCodec := Either(stringCodec, intFromString)
t.Run("decodes integer string as Right", func(t *testing.T) {
result := eitherCodec.Decode("42")
assert.True(t, either.IsRight(result), "should successfully decode integer string")
value := getOrElseNull(result)
assert.True(t, either.IsRight(value), "should be Right")
rightValue := either.MonadFold(value,
func(string) int { return 0 },
F.Identity[int],
)
assert.Equal(t, 42, rightValue)
})
t.Run("decodes non-integer string as Left", func(t *testing.T) {
result := eitherCodec.Decode("hello")
assert.True(t, either.IsRight(result), "should successfully decode string")
value := getOrElseNull(result)
assert.True(t, either.IsLeft(value), "should be Left")
leftValue := either.MonadFold(value,
F.Identity[string],
func(int) string { return "" },
)
assert.Equal(t, "hello", leftValue)
})
}
// TestEitherValidation tests validation behavior
func TestEitherValidation(t *testing.T) {
t.Run("validates with custom codecs", func(t *testing.T) {
// Create a codec that only accepts non-empty strings
nonEmptyString := MakeType(
"NonEmptyString",
func(u any) either.Either[error, string] {
s, ok := u.(string)
if !ok || len(s) == 0 {
return either.Left[string](fmt.Errorf("not a non-empty string"))
}
return either.Of[error](s)
},
func(s string) Decode[Context, string] {
return func(c Context) Validation[string] {
if len(s) == 0 {
return validation.FailureWithMessage[string](s, "must not be empty")(c)
}
return validation.Success(s)
}
},
F.Identity[string],
)
// Create a codec that only accepts positive integers from strings
positiveIntFromString := MakeType(
"PositiveInt",
func(u any) either.Either[error, int] {
i, ok := u.(int)
if !ok || i <= 0 {
return either.Left[int](fmt.Errorf("not a positive integer"))
}
return either.Of[error](i)
},
func(s string) Decode[Context, int] {
return func(c Context) Validation[int] {
var n int
_, err := fmt.Sscanf(s, "%d", &n)
if err != nil {
return validation.FailureWithError[int](s, "expected integer string")(err)(c)
}
if n <= 0 {
return validation.FailureWithMessage[int](n, "must be positive")(c)
}
return validation.Success(n)
}
},
func(n int) string {
return fmt.Sprintf("%d", n)
},
)
eitherCodec := Either(nonEmptyString, positiveIntFromString)
// Valid non-empty string
validLeft := eitherCodec.Decode("hello")
assert.True(t, either.IsRight(validLeft))
// Valid positive integer
validRight := eitherCodec.Decode("42")
assert.True(t, either.IsRight(validRight))
// Invalid empty string - should fail both validations
invalidEmpty := eitherCodec.Decode("")
assert.True(t, either.IsLeft(invalidEmpty))
// Invalid zero - should fail Right validation, succeed as Left
zeroResult := eitherCodec.Decode("0")
// "0" is a valid non-empty string, so it should succeed as Left
assert.True(t, either.IsRight(zeroResult))
})
}
// TestEitherRoundTrip tests encoding and decoding round trips
func TestEitherRoundTrip(t *testing.T) {
stringCodec := Id[string]()
intFromString := IntFromString()
eitherCodec := Either(stringCodec, intFromString)
t.Run("round-trip Left value", func(t *testing.T) {
original := "hello"
// Decode
decodeResult := eitherCodec.Decode(original)
require.True(t, either.IsRight(decodeResult))
decoded := either.MonadFold(decodeResult,
func(validation.Errors) either.Either[string, int] { return either.Left[int]("") },
F.Identity[either.Either[string, int]],
)
// Encode
encoded := eitherCodec.Encode(decoded)
// Verify
assert.Equal(t, original, encoded)
})
t.Run("round-trip Right value", func(t *testing.T) {
original := "42"
// Decode
decodeResult := eitherCodec.Decode(original)
require.True(t, either.IsRight(decodeResult))
decoded := either.MonadFold(decodeResult,
func(validation.Errors) either.Either[string, int] { return either.Right[string](0) },
F.Identity[either.Either[string, int]],
)
// Encode
encoded := eitherCodec.Encode(decoded)
// Verify
assert.Equal(t, original, encoded)
})
}
// TestEitherPrioritization tests that Right validation is prioritized over Left
func TestEitherPrioritization(t *testing.T) {
stringCodec := Id[string]()
intFromString := IntFromString()
eitherCodec := Either(stringCodec, intFromString)
t.Run("prioritizes Right over Left when both could succeed", func(t *testing.T) {
// "42" can be validated as both string (Left) and int (Right)
// The codec should prioritize Right
result := eitherCodec.Decode("42")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) either.Either[string, int] { return either.Left[int]("") },
F.Identity[either.Either[string, int]],
)
// Should be Right because int validation succeeds and is prioritized
assert.True(t, either.IsRight(value))
rightValue := either.MonadFold(value,
func(string) int { return 0 },
F.Identity[int],
)
assert.Equal(t, 42, rightValue)
})
t.Run("falls back to Left when Right fails", func(t *testing.T) {
// "hello" can only be validated as string (Left), not as int (Right)
result := eitherCodec.Decode("hello")
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(validation.Errors) either.Either[string, int] { return either.Left[int]("") },
F.Identity[either.Either[string, int]],
)
// Should be Left because int validation failed
assert.True(t, either.IsLeft(value))
leftValue := either.MonadFold(value,
F.Identity[string],
func(int) string { return "" },
)
assert.Equal(t, "hello", leftValue)
})
}
// TestEitherErrorAccumulation tests that errors from both branches are accumulated
func TestEitherErrorAccumulation(t *testing.T) {
// Create codecs with specific validation rules that will both fail
nonEmptyString := MakeType(
"NonEmptyString",
func(u any) either.Either[error, string] {
s, ok := u.(string)
if !ok || len(s) == 0 {
return either.Left[string](fmt.Errorf("not a non-empty string"))
}
return either.Of[error](s)
},
func(s string) Decode[Context, string] {
return func(c Context) Validation[string] {
if len(s) == 0 {
return validation.FailureWithMessage[string](s, "must not be empty")(c)
}
return validation.Success(s)
}
},
F.Identity[string],
)
positiveIntFromString := MakeType(
"PositiveInt",
func(u any) either.Either[error, int] {
i, ok := u.(int)
if !ok || i <= 0 {
return either.Left[int](fmt.Errorf("not a positive integer"))
}
return either.Of[error](i)
},
func(s string) Decode[Context, int] {
return func(c Context) Validation[int] {
var n int
_, err := fmt.Sscanf(s, "%d", &n)
if err != nil {
return validation.FailureWithError[int](s, "expected integer string")(err)(c)
}
if n <= 0 {
return validation.FailureWithMessage[int](n, "must be positive")(c)
}
return validation.Success(n)
}
},
strconv.Itoa,
)
eitherCodec := Either(nonEmptyString, positiveIntFromString)
t.Run("accumulates errors from both branches when both fail", func(t *testing.T) {
// Empty string will fail both validations
result := eitherCodec.Decode("")
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[validation.Errors],
func(either.Either[string, int]) validation.Errors { return nil },
)
require.NotNil(t, errors)
// Should have errors from both string and int validation attempts
assert.NotEmpty(t, errors)
})
}

View File

@@ -0,0 +1,335 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package validate
import (
"github.com/IBM/fp-go/v2/function"
A "github.com/IBM/fp-go/v2/internal/apply"
C "github.com/IBM/fp-go/v2/internal/chain"
F "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
)
// Do creates an empty context of type S to be used with the Bind operation.
// This is the starting point for building up a context using do-notation style.
//
// Example:
//
// type Result struct {
// x int
// y string
// }
// result := Do(Result{})
func Do[I, S any](
empty S,
) Validate[I, S] {
return Of[I](empty)
}
// Bind attaches the result of a computation to a context S1 to produce a context S2.
// This is used in do-notation style to sequentially build up a context.
//
// Example:
//
// type State struct { x int; y int }
// decoder := F.Pipe2(
// Do[string](State{}),
// Bind(func(x int) func(State) State {
// return func(s State) State { s.x = x; return s }
// }, func(s State) Validate[string, int] {
// return Of[string](42)
// }),
// )
// result := decoder("input") // Returns validation.Success(State{x: 42})
func Bind[I, S1, S2, A any](
setter func(A) func(S1) S2,
f Kleisli[I, S1, A],
) Operator[I, S1, S2] {
return C.Bind(
Chain[I, S1, S2],
Map[I, A, S2],
setter,
f,
)
}
// Let attaches the result of a pure computation to a context S1 to produce a context S2.
// Unlike Bind, the computation function returns a plain value, not wrapped in Validate.
//
// Example:
//
// type State struct { x int; computed int }
// decoder := F.Pipe2(
// Do[string](State{x: 5}),
// Let[string](func(c int) func(State) State {
// return func(s State) State { s.computed = c; return s }
// }, func(s State) int { return s.x * 2 }),
// )
// result := decoder("input") // Returns validation.Success(State{x: 5, computed: 10})
func Let[I, S1, S2, B any](
key func(B) func(S1) S2,
f func(S1) B,
) Operator[I, S1, S2] {
return F.Let(
Map[I, S1, S2],
key,
f,
)
}
// LetTo attaches a constant value to a context S1 to produce a context S2.
//
// Example:
//
// type State struct { x int; name string }
// result := F.Pipe2(
// Do(State{x: 5}),
// LetTo(func(n string) func(State) State {
// return func(s State) State { s.name = n; return s }
// }, "example"),
// )
func LetTo[I, S1, S2, B any](
key func(B) func(S1) S2,
b B,
) Operator[I, S1, S2] {
return F.LetTo(
Map[I, S1, S2],
key,
b,
)
}
// BindTo initializes a new state S1 from a value T.
// This is typically used as the first operation after creating a Validate value.
//
// Example:
//
// type State struct { value int }
// decoder := F.Pipe1(
// Of[string](42),
// BindTo[string](func(x int) State { return State{value: x} }),
// )
// result := decoder("input") // Returns validation.Success(State{value: 42})
func BindTo[I, S1, T any](
setter func(T) S1,
) Operator[I, T, S1] {
return C.BindTo(
Map[I, T, S1],
setter,
)
}
// ApS attaches a value to a context S1 to produce a context S2 by considering the context and the value concurrently.
// This uses the applicative functor pattern, allowing parallel composition.
//
// IMPORTANT: Unlike Bind which fails fast, ApS aggregates ALL validation errors from both the context
// and the value. If both validations fail, all errors are collected and returned together.
// This is useful for validating multiple independent fields and reporting all errors at once.
//
// Example:
//
// type State struct { x int; y int }
// decoder := F.Pipe2(
// Do[string](State{}),
// ApS(func(x int) func(State) State {
// return func(s State) State { s.x = x; return s }
// }, Of[string](42)),
// )
// result := decoder("input") // Returns validation.Success(State{x: 42})
//
// Error aggregation example:
//
// // Both decoders fail - errors are aggregated
// decoder1 := func(input string) Validation[State] {
// return validation.Failures[State](/* errors */)
// }
// decoder2 := func(input string) Validation[int] {
// return validation.Failures[int](/* errors */)
// }
// combined := ApS(setter, decoder2)(decoder1)
// result := combined("input") // Contains BOTH sets of errors
func ApS[I, S1, S2, T any](
setter func(T) func(S1) S2,
fa Validate[I, T],
) Operator[I, S1, S2] {
return A.ApS(
Ap[S2, I, T],
Map[I, S1, func(T) S2],
setter,
fa,
)
}
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// IMPORTANT: Like ApS, this function aggregates ALL validation errors. If both the context
// and the value fail validation, all errors are collected and returned together.
// This enables comprehensive error reporting for complex nested structures.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type Address struct {
// Street string
// City string
// }
//
// type Person struct {
// Name string
// Address Address
// }
//
// // Create a lens for the Address field
// addressLens := lens.MakeLens(
// func(p Person) Address { return p.Address },
// func(p Person, a Address) Person { p.Address = a; return p },
// )
//
// // Use ApSL to update the address
// decoder := F.Pipe2(
// Of[string](Person{Name: "Alice"}),
// ApSL(
// addressLens,
// Of[string](Address{Street: "Main St", City: "NYC"}),
// ),
// )
// result := decoder("input") // Returns validation.Success(Person{...})
func ApSL[I, S, T any](
lens L.Lens[S, T],
fa Validate[I, T],
) Operator[I, S, S] {
return ApS(lens.Set, fa)
}
// BindL attaches the result of a computation to a context using a lens-based setter.
// This is a convenience function that combines Bind with a lens, allowing you to use
// optics to update nested structures based on their current values.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The computation function f receives the current value of the focused field and returns
// a Validation that produces the new value.
//
// Unlike ApSL, BindL uses monadic sequencing, meaning the computation f can depend on
// the current value of the focused field.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Increment the counter, but fail if it would exceed 100
// increment := func(v int) Validate[string, int] {
// return func(input string) Validation[int] {
// if v >= 100 {
// return validation.Failures[int](/* errors */)
// }
// return validation.Success(v + 1)
// }
// }
//
// decoder := F.Pipe1(
// Of[string](Counter{Value: 42}),
// BindL(valueLens, increment),
// )
// result := decoder("input") // Returns validation.Success(Counter{Value: 43})
func BindL[I, S, T any](
lens L.Lens[S, T],
f Kleisli[I, T, T],
) Operator[I, S, S] {
return Bind(lens.Set, function.Flow2(lens.Get, f))
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
// This is a convenience function that combines Let with a lens, allowing you to use
// optics to update nested structures with pure transformations.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The transformation function f receives the current value of the focused field and returns
// the new value directly (not wrapped in Validation).
//
// This is useful for pure transformations that cannot fail, such as mathematical operations,
// string manipulations, or other deterministic updates.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Double the counter value
// double := func(v int) int { return v * 2 }
//
// decoder := F.Pipe1(
// Of[string](Counter{Value: 21}),
// LetL(valueLens, double),
// )
// result := decoder("input") // Returns validation.Success(Counter{Value: 42})
func LetL[I, S, T any](
lens L.Lens[S, T],
f Endomorphism[T],
) Operator[I, S, S] {
return Let[I](lens.Set, function.Flow2(lens.Get, f))
}
// LetToL attaches a constant value to a context using a lens-based setter.
// This is a convenience function that combines LetTo with a lens, allowing you to use
// optics to set nested fields to specific values.
//
// The lens parameter provides the setter for a field within the structure S.
// Unlike LetL which transforms the current value, LetToL simply replaces it with
// the provided constant value b.
//
// This is useful for resetting fields, initializing values, or setting fields to
// predetermined constants.
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// decoder := F.Pipe1(
// Of[string](Config{Debug: true, Timeout: 30}),
// LetToL(debugLens, false),
// )
// result := decoder("input") // Returns validation.Success(Config{Debug: false, Timeout: 30})
func LetToL[I, S, T any](
lens L.Lens[S, T],
b T,
) Operator[I, S, S] {
return LetTo[I](lens.Set, b)
}

View File

@@ -0,0 +1,733 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package validate
import (
"testing"
"github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/optics/codec/validation"
L "github.com/IBM/fp-go/v2/optics/lens"
"github.com/stretchr/testify/assert"
)
func TestDo(t *testing.T) {
t.Run("creates successful validation with empty state", func(t *testing.T) {
type State struct {
x int
y string
}
validator := Do[string](State{})
result := validator("input")(nil)
assert.Equal(t, either.Of[Errors](State{}), result)
})
t.Run("creates successful validation with initialized state", func(t *testing.T) {
type State struct {
x int
y string
}
initial := State{x: 42, y: "hello"}
validator := Do[string](initial)
result := validator("input")(nil)
assert.Equal(t, either.Of[Errors](initial), result)
})
t.Run("works with different input types", func(t *testing.T) {
intValidator := Do[int](0)
assert.Equal(t, either.Of[Errors](0), intValidator(42)(nil))
strValidator := Do[string]("")
assert.Equal(t, either.Of[Errors](""), strValidator("test")(nil))
type Custom struct{ Value int }
customValidator := Do[[]byte](Custom{Value: 100})
assert.Equal(t, either.Of[Errors](Custom{Value: 100}), customValidator([]byte("data"))(nil))
})
}
func TestBind(t *testing.T) {
type State struct {
x int
y int
}
t.Run("binds successful validation to state", func(t *testing.T) {
validator := F.Pipe2(
Do[string](State{}),
Bind(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) Validate[string, int] {
return Of[string](42)
}),
Bind(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) Validate[string, int] {
return Of[string](10)
}),
)
result := validator("input")(nil)
assert.Equal(t, either.Of[Errors](State{x: 42, y: 10}), result)
})
t.Run("propagates failure", func(t *testing.T) {
validator := F.Pipe2(
Do[string](State{}),
Bind(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) Validate[string, int] {
return Of[string](42)
}),
Bind(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) Validate[string, int] {
return func(input string) Reader[Context, Validation[int]] {
return func(ctx Context) Validation[int] {
return validation.Failures[int](Errors{&validation.ValidationError{Messsage: "y failed"}})
}
}
}),
)
result := validator("input")(nil)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(State) Errors { return nil },
)
assert.Len(t, errors, 1)
assert.Equal(t, "y failed", errors[0].Messsage)
})
t.Run("can access previous state values", func(t *testing.T) {
validator := F.Pipe2(
Do[string](State{}),
Bind(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) Validate[string, int] {
return Of[string](10)
}),
Bind(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) Validate[string, int] {
// y depends on x
return Of[string](s.x * 2)
}),
)
result := validator("input")(nil)
assert.Equal(t, either.Of[Errors](State{x: 10, y: 20}), result)
})
t.Run("can access input value", func(t *testing.T) {
validator := F.Pipe1(
Do[int](State{}),
Bind(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) Validate[int, int] {
return func(input int) Reader[Context, Validation[int]] {
return func(ctx Context) Validation[int] {
return validation.Success(input * 2)
}
}
}),
)
result := validator(21)(nil)
assert.Equal(t, either.Of[Errors](State{x: 42}), result)
})
}
func TestLet(t *testing.T) {
type State struct {
x int
computed int
}
t.Run("attaches pure computation result to state", func(t *testing.T) {
validator := F.Pipe1(
Do[string](State{x: 5}),
Let[string](func(c int) func(State) State {
return func(s State) State { s.computed = c; return s }
}, func(s State) int { return s.x * 2 }),
)
result := validator("input")(nil)
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{x: 5, computed: 10}, value)
})
t.Run("preserves failure", func(t *testing.T) {
failure := func(input string) Reader[Context, Validation[State]] {
return func(ctx Context) Validation[State] {
return validation.Failures[State](Errors{&validation.ValidationError{Messsage: "error"}})
}
}
validator := Let[string](func(c int) func(State) State {
return func(s State) State { s.computed = c; return s }
}, func(s State) int { return s.x * 2 })
result := validator(failure)("input")(nil)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(State) Errors { return nil },
)
assert.Len(t, errors, 1)
assert.Equal(t, "error", errors[0].Messsage)
})
t.Run("chains multiple Let operations", func(t *testing.T) {
type State struct {
x int
y int
z int
}
validator := F.Pipe3(
Do[string](State{x: 5}),
Let[string](func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) int { return s.x * 2 }),
Let[string](func(z int) func(State) State {
return func(s State) State { s.z = z; return s }
}, func(s State) int { return s.y + 10 }),
Let[string](func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) int { return s.z * 3 }),
)
result := validator("input")(nil)
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{x: 60, y: 10, z: 20}, value)
})
}
func TestLetTo(t *testing.T) {
type State struct {
x int
name string
}
t.Run("attaches constant value to state", func(t *testing.T) {
validator := F.Pipe1(
Do[string](State{x: 5}),
LetTo[string](func(n string) func(State) State {
return func(s State) State { s.name = n; return s }
}, "example"),
)
result := validator("input")(nil)
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{x: 5, name: "example"}, value)
})
t.Run("preserves failure", func(t *testing.T) {
failure := func(input string) Reader[Context, Validation[State]] {
return func(ctx Context) Validation[State] {
return validation.Failures[State](Errors{&validation.ValidationError{Messsage: "error"}})
}
}
validator := LetTo[string](func(n string) func(State) State {
return func(s State) State { s.name = n; return s }
}, "example")
result := validator(failure)("input")(nil)
assert.True(t, either.IsLeft(result))
})
t.Run("sets multiple constant values", func(t *testing.T) {
type State struct {
name string
version int
active bool
}
validator := F.Pipe3(
Do[string](State{}),
LetTo[string](func(n string) func(State) State {
return func(s State) State { s.name = n; return s }
}, "app"),
LetTo[string](func(v int) func(State) State {
return func(s State) State { s.version = v; return s }
}, 2),
LetTo[string](func(a bool) func(State) State {
return func(s State) State { s.active = a; return s }
}, true),
)
result := validator("input")(nil)
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{name: "app", version: 2, active: true}, value)
})
}
func TestBindTo(t *testing.T) {
type State struct {
value int
}
t.Run("initializes state from value", func(t *testing.T) {
validator := F.Pipe1(
Of[string](42),
BindTo[string](func(x int) State { return State{value: x} }),
)
result := validator("input")(nil)
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(Errors) State { return State{} },
F.Identity[State],
)
assert.Equal(t, State{value: 42}, value)
})
t.Run("preserves failure", func(t *testing.T) {
failure := func(input string) Reader[Context, Validation[int]] {
return func(ctx Context) Validation[int] {
return validation.Failures[int](Errors{&validation.ValidationError{Messsage: "error"}})
}
}
validator := BindTo[string](func(x int) State { return State{value: x} })
result := validator(failure)("input")(nil)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(State) Errors { return nil },
)
assert.Len(t, errors, 1)
assert.Equal(t, "error", errors[0].Messsage)
})
t.Run("works with different types", func(t *testing.T) {
type StringState struct {
text string
}
validator := F.Pipe1(
Of[int]("hello"),
BindTo[int](func(s string) StringState { return StringState{text: s} }),
)
result := validator(42)(nil)
assert.Equal(t, either.Of[Errors](StringState{text: "hello"}), result)
})
}
func TestApS(t *testing.T) {
type State struct {
x int
y int
}
t.Run("attaches value using applicative pattern", func(t *testing.T) {
validator := F.Pipe1(
Do[string](State{}),
ApS(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, Of[string](42)),
)
result := validator("input")(nil)
assert.Equal(t, either.Of[Errors](State{x: 42}), result)
})
t.Run("accumulates errors from both validations", func(t *testing.T) {
stateFailure := func(input string) Reader[Context, Validation[State]] {
return func(ctx Context) Validation[State] {
return validation.Failures[State](Errors{&validation.ValidationError{Messsage: "state error"}})
}
}
valueFailure := func(input string) Reader[Context, Validation[int]] {
return func(ctx Context) Validation[int] {
return validation.Failures[int](Errors{&validation.ValidationError{Messsage: "value error"}})
}
}
validator := ApS(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, valueFailure)
result := validator(stateFailure)("input")(nil)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(State) Errors { return nil },
)
assert.Len(t, errors, 2)
messages := []string{errors[0].Messsage, errors[1].Messsage}
assert.Contains(t, messages, "state error")
assert.Contains(t, messages, "value error")
})
t.Run("combines multiple ApS operations", func(t *testing.T) {
validator := F.Pipe2(
Do[string](State{}),
ApS(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, Of[string](10)),
ApS(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, Of[string](20)),
)
result := validator("input")(nil)
assert.Equal(t, either.Of[Errors](State{x: 10, y: 20}), result)
})
}
func TestApSL(t *testing.T) {
type Address struct {
Street string
City string
}
type Person struct {
Name string
Address Address
}
t.Run("updates nested structure using lens", func(t *testing.T) {
addressLens := L.MakeLens(
func(p Person) Address { return p.Address },
func(p Person, a Address) Person { p.Address = a; return p },
)
validator := F.Pipe1(
Of[string](Person{Name: "Alice"}),
ApSL(
addressLens,
Of[string](Address{Street: "Main St", City: "NYC"}),
),
)
result := validator("input")(nil)
expected := Person{
Name: "Alice",
Address: Address{Street: "Main St", City: "NYC"},
}
assert.Equal(t, either.Of[Errors](expected), result)
})
t.Run("accumulates errors", func(t *testing.T) {
addressLens := L.MakeLens(
func(p Person) Address { return p.Address },
func(p Person, a Address) Person { p.Address = a; return p },
)
personFailure := func(input string) Reader[Context, Validation[Person]] {
return func(ctx Context) Validation[Person] {
return validation.Failures[Person](Errors{&validation.ValidationError{Messsage: "person error"}})
}
}
addressFailure := func(input string) Reader[Context, Validation[Address]] {
return func(ctx Context) Validation[Address] {
return validation.Failures[Address](Errors{&validation.ValidationError{Messsage: "address error"}})
}
}
validator := ApSL(addressLens, addressFailure)
result := validator(personFailure)("input")(nil)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(Person) Errors { return nil },
)
assert.Len(t, errors, 2)
})
}
func TestBindL(t *testing.T) {
type Counter struct {
Value int
}
valueLens := L.MakeLens(
func(c Counter) int { return c.Value },
func(c Counter, v int) Counter { c.Value = v; return c },
)
t.Run("updates field based on current value", func(t *testing.T) {
increment := func(v int) Validate[string, int] {
return Of[string](v + 1)
}
validator := F.Pipe1(
Of[string](Counter{Value: 42}),
BindL(valueLens, increment),
)
result := validator("input")(nil)
assert.Equal(t, either.Of[Errors](Counter{Value: 43}), result)
})
t.Run("fails validation based on current value", func(t *testing.T) {
increment := func(v int) Validate[string, int] {
return func(input string) Reader[Context, Validation[int]] {
return func(ctx Context) Validation[int] {
if v >= 100 {
return validation.Failures[int](Errors{&validation.ValidationError{Messsage: "exceeds limit"}})
}
return validation.Success(v + 1)
}
}
}
validator := F.Pipe1(
Of[string](Counter{Value: 100}),
BindL(valueLens, increment),
)
result := validator("input")(nil)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(Counter) Errors { return nil },
)
assert.Len(t, errors, 1)
assert.Equal(t, "exceeds limit", errors[0].Messsage)
})
t.Run("preserves failure", func(t *testing.T) {
increment := func(v int) Validate[string, int] {
return Of[string](v + 1)
}
failure := func(input string) Reader[Context, Validation[Counter]] {
return func(ctx Context) Validation[Counter] {
return validation.Failures[Counter](Errors{&validation.ValidationError{Messsage: "error"}})
}
}
validator := BindL(valueLens, increment)
result := validator(failure)("input")(nil)
assert.True(t, either.IsLeft(result))
})
}
func TestLetL(t *testing.T) {
type Counter struct {
Value int
}
valueLens := L.MakeLens(
func(c Counter) int { return c.Value },
func(c Counter, v int) Counter { c.Value = v; return c },
)
t.Run("transforms field with pure function", func(t *testing.T) {
double := func(v int) int { return v * 2 }
validator := F.Pipe1(
Of[string](Counter{Value: 21}),
LetL[string](valueLens, double),
)
result := validator("input")(nil)
assert.Equal(t, either.Of[Errors](Counter{Value: 42}), result)
})
t.Run("preserves failure", func(t *testing.T) {
double := func(v int) int { return v * 2 }
failure := func(input string) Reader[Context, Validation[Counter]] {
return func(ctx Context) Validation[Counter] {
return validation.Failures[Counter](Errors{&validation.ValidationError{Messsage: "error"}})
}
}
validator := LetL[string](valueLens, double)
result := validator(failure)("input")(nil)
assert.True(t, either.IsLeft(result))
})
t.Run("chains multiple transformations", func(t *testing.T) {
add10 := func(v int) int { return v + 10 }
double := func(v int) int { return v * 2 }
validator := F.Pipe2(
Of[string](Counter{Value: 5}),
LetL[string](valueLens, add10),
LetL[string](valueLens, double),
)
result := validator("input")(nil)
assert.Equal(t, either.Of[Errors](Counter{Value: 30}), result)
})
}
func TestLetToL(t *testing.T) {
type Config struct {
Debug bool
Timeout int
}
debugLens := L.MakeLens(
func(c Config) bool { return c.Debug },
func(c Config, d bool) Config { c.Debug = d; return c },
)
t.Run("sets field to constant value", func(t *testing.T) {
validator := F.Pipe1(
Of[string](Config{Debug: true, Timeout: 30}),
LetToL[string](debugLens, false),
)
result := validator("input")(nil)
assert.Equal(t, either.Of[Errors](Config{Debug: false, Timeout: 30}), result)
})
t.Run("preserves failure", func(t *testing.T) {
failure := func(input string) Reader[Context, Validation[Config]] {
return func(ctx Context) Validation[Config] {
return validation.Failures[Config](Errors{&validation.ValidationError{Messsage: "error"}})
}
}
validator := LetToL[string](debugLens, false)
result := validator(failure)("input")(nil)
assert.True(t, either.IsLeft(result))
})
t.Run("sets multiple fields", func(t *testing.T) {
timeoutLens := L.MakeLens(
func(c Config) int { return c.Timeout },
func(c Config, t int) Config { c.Timeout = t; return c },
)
validator := F.Pipe2(
Of[string](Config{Debug: true, Timeout: 30}),
LetToL[string](debugLens, false),
LetToL[string](timeoutLens, 60),
)
result := validator("input")(nil)
assert.Equal(t, either.Of[Errors](Config{Debug: false, Timeout: 60}), result)
})
}
func TestBindOperationsComposition(t *testing.T) {
type User struct {
Name string
Age int
Email string
}
t.Run("combines Do, Bind, Let, and LetTo", func(t *testing.T) {
validator := F.Pipe4(
Do[string](User{}),
LetTo[string](func(n string) func(User) User {
return func(u User) User { u.Name = n; return u }
}, "Alice"),
Bind(func(a int) func(User) User {
return func(u User) User { u.Age = a; return u }
}, func(u User) Validate[string, int] {
// Age validation
if len(u.Name) > 0 {
return Of[string](25)
}
return func(input string) Reader[Context, Validation[int]] {
return func(ctx Context) Validation[int] {
return validation.Failures[int](Errors{&validation.ValidationError{Messsage: "name required"}})
}
}
}),
Let[string](func(e string) func(User) User {
return func(u User) User { u.Email = e; return u }
}, func(u User) string {
// Derive email from name
return u.Name + "@example.com"
}),
Bind(func(a int) func(User) User {
return func(u User) User { u.Age = a; return u }
}, func(u User) Validate[string, int] {
// Validate age is positive
if u.Age > 0 {
return Of[string](u.Age)
}
return func(input string) Reader[Context, Validation[int]] {
return func(ctx Context) Validation[int] {
return validation.Failures[int](Errors{&validation.ValidationError{Messsage: "age must be positive"}})
}
}
}),
)
result := validator("input")(nil)
expected := User{
Name: "Alice",
Age: 25,
Email: "Alice@example.com",
}
assert.Equal(t, either.Of[Errors](expected), result)
})
t.Run("validates with input-dependent logic", func(t *testing.T) {
type Config struct {
MaxValue int
Value int
}
validator := F.Pipe2(
Do[int](Config{}),
Bind(func(max int) func(Config) Config {
return func(c Config) Config { c.MaxValue = max; return c }
}, func(c Config) Validate[int, int] {
// Extract max from input
return func(input int) Reader[Context, Validation[int]] {
return func(ctx Context) Validation[int] {
return validation.Success(input)
}
}
}),
Bind(func(val int) func(Config) Config {
return func(c Config) Config { c.Value = val; return c }
}, func(c Config) Validate[int, int] {
// Validate value against max
return func(input int) Reader[Context, Validation[int]] {
return func(ctx Context) Validation[int] {
if input/2 <= c.MaxValue {
return validation.Success(input / 2)
}
return validation.Failures[int](Errors{&validation.ValidationError{Messsage: "value exceeds max"}})
}
}
}),
)
result := validator(100)(nil)
assert.Equal(t, either.Of[Errors](Config{MaxValue: 100, Value: 50}), result)
})
}

View File

@@ -16,6 +16,7 @@
package validate
import (
"github.com/IBM/fp-go/v2/endomorphism"
"github.com/IBM/fp-go/v2/monoid"
"github.com/IBM/fp-go/v2/optics/codec/decode"
"github.com/IBM/fp-go/v2/optics/codec/validation"
@@ -90,25 +91,72 @@ type (
// "at user.address.zipCode: expected string, got number"
Context = validation.Context
Decode[I, A any] = decode.Decode[I, A]
// Validate is a function that validates input I to produce type A with full context tracking.
// Decode represents a decoding operation that transforms input I into output A
// within a validation context.
//
// Type structure:
// Validate[I, A] = Reader[I, Decode[Context, A]]
// Decode[I, A] = Reader[Context, Validation[A]]
//
// This means:
// 1. Takes an input of type I
// 2. Returns a Reader that depends on validation Context
// 3. That Reader produces a Validation[A] (Either[Errors, A])
// 1. Takes a validation Context (path through nested structures)
// 2. Returns a Validation[A] (Either[Errors, A])
//
// The layered structure enables:
// - Access to the input value being validated
// - Context tracking through nested structures
// - Error accumulation with detailed paths
// - Composition with other validators
// Decode is used as the foundation for validation operations, providing:
// - Context-aware error reporting with detailed paths
// - Error accumulation across multiple validations
// - Composable validation logic
//
// The Decode type is typically not used directly but through the Validate type,
// which adds an additional Reader layer for accessing the input value.
//
// Example:
// decoder := func(ctx Context) Validation[int] {
// // Perform validation and return result
// return validation.Success(42)
// }
// // decoder is a Decode[any, int]
Decode[I, A any] = decode.Decode[I, A]
// Validate represents a composable validator that transforms input I to output A
// with comprehensive error tracking and context propagation.
//
// # Type Structure
//
// Validate[I, A] = Reader[I, Decode[Context, A]]
// = Reader[I, Reader[Context, Validation[A]]]
// = func(I) func(Context) Either[Errors, A]
//
// This three-layer structure provides:
// 1. Input access: The outer Reader[I, ...] gives access to the input value I
// 2. Context tracking: The middle Reader[Context, ...] tracks the validation path
// 3. Error handling: The inner Validation[A] accumulates errors or produces value A
//
// # Purpose
//
// Validate is the core type for building type-safe, composable validators that:
// - Transform and validate data from one type to another
// - Track the path through nested structures for detailed error messages
// - Accumulate multiple validation errors instead of failing fast
// - Compose with other validators using functional patterns
//
// # Key Features
//
// - Context-aware: Automatically tracks validation path (e.g., "user.address.zipCode")
// - Error accumulation: Collects all validation errors, not just the first one
// - Type-safe: Leverages Go's type system to ensure correctness
// - Composable: Validators can be combined using Map, Chain, Ap, and other operators
//
// # Algebraic Structure
//
// Validate forms several algebraic structures:
// - Functor: Transform successful results with Map
// - Applicative: Combine independent validators in parallel with Ap
// - Monad: Chain dependent validators sequentially with Chain
//
// # Example Usage
//
// Basic validator:
//
// Example usage:
// validatePositive := func(n int) Reader[Context, Validation[int]] {
// return func(ctx Context) Validation[int] {
// if n > 0 {
@@ -119,10 +167,33 @@ type (
// }
// // validatePositive is a Validate[int, int]
//
// The Validate type forms:
// - A Functor: Can map over successful results
// - An Applicative: Can combine validators in parallel
// - A Monad: Can chain dependent validations
// Composing validators:
//
// // Transform the result of a validator
// doubled := Map[int, int, int](func(x int) int { return x * 2 })(validatePositive)
//
// // Chain dependent validations
// validateRange := func(n int) Validate[int, int] {
// return func(input int) Reader[Context, Validation[int]] {
// return func(ctx Context) Validation[int] {
// if n <= 100 {
// return validation.Success(n)
// }
// return validation.FailureWithMessage[int](n, "must be <= 100")(ctx)
// }
// }
// }
// combined := Chain(validateRange)(validatePositive)
//
// # Integration
//
// Validate integrates with the broader optics/codec ecosystem:
// - Works with Decode for decoding operations
// - Uses Validation for error handling
// - Leverages Context for detailed error reporting
// - Composes with other codec types for complete encode/decode pipelines
//
// See the package documentation for more examples and patterns.
Validate[I, A any] = Reader[I, Decode[Context, A]]
// Errors is a collection of validation errors that occurred during validation.
@@ -174,4 +245,30 @@ type (
// // toUpper is an Operator[string, string, string]
// // It can be applied to any string validator to uppercase the result
Operator[I, A, B any] = Kleisli[I, Validate[I, A], B]
// Endomorphism represents a function from a type to itself.
//
// Type: Endomorphism[A] = func(A) A
//
// An endomorphism is a morphism (structure-preserving map) where the source
// and target are the same type. In simpler terms, it's a function that takes
// a value of type A and returns a value of the same type A.
//
// Endomorphisms are useful for:
// - Transformations that preserve type (e.g., string normalization)
// - Composable updates and modifications
// - Building pipelines of same-type transformations
// - Implementing the Monoid pattern (composition as binary operation)
//
// Endomorphisms form a Monoid under function composition:
// - Identity: func(a A) A { return a }
// - Concat: func(f, g Endomorphism[A]) Endomorphism[A] {
// return func(a A) A { return f(g(a)) }
// }
//
// Example:
// trim := strings.TrimSpace // Endomorphism[string]
// lower := strings.ToLower // Endomorphism[string]
// normalize := compose(trim, lower) // Endomorphism[string]
Endomorphism[A any] = endomorphism.Endomorphism[A]
)

View File

@@ -309,6 +309,225 @@ func Chain[I, A, B any](f Kleisli[I, A, B]) Operator[I, A, B] {
)
}
// ChainLeft sequences a computation on the failure (Left) channel of a validation.
//
// This function operates on the error path of validation, allowing you to transform,
// enrich, or recover from validation failures. It's the dual of Chain - while Chain
// operates on success values, ChainLeft operates on error values.
//
// # Key Behavior
//
// **Critical difference from standard Either operations**: This validation-specific
// implementation **aggregates errors** using the Errors monoid. When the transformation
// function returns a failure, both the original errors AND the new errors are combined,
// ensuring comprehensive error reporting.
//
// 1. **Success Pass-Through**: If validation succeeds, the handler is never called and
// the success value passes through unchanged.
//
// 2. **Error Recovery**: The handler can recover from failures by returning a successful
// validation, converting Left to Right.
//
// 3. **Error Aggregation**: When the handler also returns a failure, both the original
// errors and the new errors are combined using the Errors monoid.
//
// 4. **Input Access**: The handler returns a Validate[I, A] function, giving it access
// to the original input value I for context-aware error handling.
//
// # Type Parameters
//
// - I: The input type
// - A: The type of the validation result
//
// # Parameters
//
// - f: A Kleisli arrow that takes Errors and returns a Validate[I, A]. This function
// is called only when validation fails, receiving the accumulated errors.
//
// # Returns
//
// An Operator[I, A, A] that transforms validators by handling their error cases.
//
// # Example: Error Recovery
//
// // Validator that may fail
// validatePositive := func(n int) Reader[validation.Context, validation.Validation[int]] {
// return func(ctx validation.Context) validation.Validation[int] {
// if n > 0 {
// return validation.Success(n)
// }
// return validation.FailureWithMessage[int](n, "must be positive")(ctx)
// }
// }
//
// // Recover from specific errors with a default value
// withDefault := ChainLeft(func(errs Errors) Validate[int, int] {
// for _, err := range errs {
// if err.Messsage == "must be positive" {
// return Of[int](0) // recover with default
// }
// }
// return func(input int) Reader[validation.Context, validation.Validation[int]] {
// return func(ctx validation.Context) validation.Validation[int] {
// return either.Left[int](errs)
// }
// }
// })
//
// validator := withDefault(validatePositive)
// result := validator(-5)(nil)
// // Result: Success(0) - recovered from failure
//
// # Example: Error Context Addition
//
// // Add contextual information to errors
// addContext := ChainLeft(func(errs Errors) Validate[string, int] {
// return func(input string) Reader[validation.Context, validation.Validation[int]] {
// return func(ctx validation.Context) validation.Validation[int] {
// return either.Left[int](validation.Errors{
// {
// Context: validation.Context{{Key: "user", Type: "User"}, {Key: "age", Type: "int"}},
// Messsage: "failed to validate user age",
// },
// })
// }
// }
// })
//
// validator := addContext(someValidator)
// // Errors will include both original error and context
//
// # Example: Input-Dependent Recovery
//
// // Recover with different defaults based on input
// smartDefault := ChainLeft(func(errs Errors) Validate[string, int] {
// return func(input string) Reader[validation.Context, validation.Validation[int]] {
// return func(ctx validation.Context) validation.Validation[int] {
// // Use input to determine appropriate default
// if strings.Contains(input, "http") {
// return validation.Of(80)
// }
// if strings.Contains(input, "https") {
// return validation.Of(443)
// }
// return validation.Of(8080)
// }
// }
// })
//
// # Notes
//
// - Errors are accumulated, not replaced - this ensures no validation failures are lost
// - The handler has access to both the errors and the original input
// - Success values bypass the handler completely
// - This enables sophisticated error handling strategies including recovery, enrichment, and transformation
// - Use OrElse as a semantic alias when emphasizing fallback/alternative logic
func ChainLeft[I, A any](f Kleisli[I, Errors, A]) Operator[I, A, A] {
return readert.Chain[Validate[I, A]](
decode.ChainLeft,
f,
)
}
// OrElse provides an alternative validation when the primary validation fails.
//
// This is a semantic alias for ChainLeft with identical behavior. The name "OrElse"
// emphasizes the intent of providing fallback or alternative validation logic, making
// code more readable when that's the primary use case.
//
// # Relationship to ChainLeft
//
// **OrElse and ChainLeft are functionally identical** - they produce exactly the same
// results for all inputs. The choice between them is purely about code readability:
//
// - Use **OrElse** when emphasizing fallback/alternative validation logic
// - Use **ChainLeft** when emphasizing technical error channel transformation
//
// Both maintain the critical property of **error aggregation**, ensuring all validation
// failures are preserved and reported together.
//
// # Type Parameters
//
// - I: The input type
// - A: The type of the validation result
//
// # Parameters
//
// - f: A Kleisli arrow that takes Errors and returns a Validate[I, A]. This function
// is called only when validation fails, receiving the accumulated errors.
//
// # Returns
//
// An Operator[I, A, A] that transforms validators by providing alternative validation.
//
// # Example: Fallback Validation
//
// // Primary validator that may fail
// validateFromConfig := func(key string) Reader[validation.Context, validation.Validation[string]] {
// return func(ctx validation.Context) validation.Validation[string] {
// // Try to get value from config
// if value, ok := config[key]; ok {
// return validation.Success(value)
// }
// return validation.FailureWithMessage[string](key, "not found in config")(ctx)
// }
// }
//
// // Use OrElse for semantic clarity - "try config, or else use environment"
// withEnvFallback := OrElse(func(errs Errors) Validate[string, string] {
// return func(key string) Reader[validation.Context, validation.Validation[string]] {
// return func(ctx validation.Context) validation.Validation[string] {
// if value := os.Getenv(key); value != "" {
// return validation.Success(value)
// }
// return either.Left[string](errs) // propagate original errors
// }
// }
// })
//
// validator := withEnvFallback(validateFromConfig)
// result := validator("DATABASE_URL")(nil)
// // Tries config first, falls back to environment variable
//
// # Example: Default Value on Failure
//
// // Provide a default value when validation fails
// withDefault := OrElse(func(errs Errors) Validate[int, int] {
// return Of[int](0) // default to 0 on any failure
// })
//
// validator := withDefault(someValidator)
// result := validator(input)(nil)
// // Always succeeds, using default value if validation fails
//
// # Example: Pipeline with Multiple Fallbacks
//
// // Build a validation pipeline with multiple fallback strategies
// validator := F.Pipe2(
// validateFromDatabase,
// OrElse(func(errs Errors) Validate[string, Config] {
// // Try cache as first fallback
// return validateFromCache
// }),
// OrElse(func(errs Errors) Validate[string, Config] {
// // Use default config as final fallback
// return Of[string](defaultConfig)
// }),
// )
// // Tries database, then cache, then default
//
// # Notes
//
// - Identical behavior to ChainLeft - they are aliases
// - Errors are accumulated when transformations fail
// - Success values pass through unchanged
// - The handler has access to both errors and original input
// - Choose OrElse for better readability when providing alternatives
// - See ChainLeft documentation for detailed behavior and additional examples
func OrElse[I, A any](f Kleisli[I, Errors, A]) Operator[I, A, A] {
return ChainLeft(f)
}
// MonadAp applies a validator containing a function to a validator containing a value.
//
// This is the applicative apply operation for Validate. It allows you to apply

View File

@@ -849,3 +849,428 @@ func TestFunctorLaws(t *testing.T) {
}
})
}
// TestChainLeft tests the ChainLeft function
func TestChainLeft(t *testing.T) {
t.Run("transforms failures while preserving successes", func(t *testing.T) {
// Create a failing validator
failingValidator := func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](n, "validation failed")(ctx)
}
}
// Handler that recovers from specific errors
handler := ChainLeft(func(errs Errors) Validate[int, int] {
for _, err := range errs {
if err.Messsage == "validation failed" {
return Of[int](0) // recover with default
}
}
return func(input int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return E.Left[int](errs)
}
}
})
validator := handler(failingValidator)
result := validator(-5)(nil)
assert.Equal(t, validation.Of(0), result, "Should recover from failure")
})
t.Run("preserves success values unchanged", func(t *testing.T) {
successValidator := Of[int](42)
handler := ChainLeft(func(errs Errors) Validate[int, int] {
return func(input int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](input, "should not be called")(ctx)
}
}
})
validator := handler(successValidator)
result := validator(100)(nil)
assert.Equal(t, validation.Of(42), result, "Success should pass through unchanged")
})
t.Run("aggregates errors when transformation also fails", func(t *testing.T) {
failingValidator := func(s string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
return validation.FailureWithMessage[string](s, "original error")(ctx)
}
}
handler := ChainLeft(func(errs Errors) Validate[string, string] {
return func(input string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
return validation.FailureWithMessage[string](input, "additional error")(ctx)
}
}
})
validator := handler(failingValidator)
result := validator("test")(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Len(t, errors, 2, "Should aggregate both errors")
messages := make([]string, len(errors))
for i, err := range errors {
messages[i] = err.Messsage
}
assert.Contains(t, messages, "original error")
assert.Contains(t, messages, "additional error")
})
t.Run("adds context to errors", func(t *testing.T) {
failingValidator := func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](n, "invalid value")(ctx)
}
}
addContext := ChainLeft(func(errs Errors) Validate[int, int] {
return func(input int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return E.Left[int](validation.Errors{
{
Context: validation.Context{{Key: "user", Type: "User"}, {Key: "age", Type: "int"}},
Messsage: "failed to validate user age",
},
})
}
}
})
validator := addContext(failingValidator)
result := validator(150)(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Len(t, errors, 2, "Should have both original and context errors")
})
t.Run("can be composed in pipeline", func(t *testing.T) {
failingValidator := func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](n, "error1")(ctx)
}
}
handler1 := ChainLeft(func(errs Errors) Validate[int, int] {
return func(input int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](input, "error2")(ctx)
}
}
})
handler2 := ChainLeft(func(errs Errors) Validate[int, int] {
return func(input int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](input, "error3")(ctx)
}
}
})
validator := handler2(handler1(failingValidator))
result := validator(42)(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.GreaterOrEqual(t, len(errors), 2, "Should accumulate errors through pipeline")
})
t.Run("provides access to original input", func(t *testing.T) {
failingValidator := func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](n, "failed")(ctx)
}
}
// Handler uses input to determine recovery strategy
handler := ChainLeft(func(errs Errors) Validate[int, int] {
return func(input int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
// Use input value to decide on recovery
if input < 0 {
return validation.Of(0)
}
if input > 100 {
return validation.Of(100)
}
return E.Left[int](errs)
}
}
})
validator := handler(failingValidator)
result1 := validator(-10)(nil)
assert.Equal(t, validation.Of(0), result1, "Should recover negative to 0")
result2 := validator(150)(nil)
assert.Equal(t, validation.Of(100), result2, "Should recover large to 100")
})
t.Run("works with different input and output types", func(t *testing.T) {
// Validator that converts string to int
parseValidator := func(s string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](s, "parse failed")(ctx)
}
}
// Handler that provides default based on input string
handler := ChainLeft(func(errs Errors) Validate[string, int] {
return func(input string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
if input == "default" {
return validation.Of(42)
}
return E.Left[int](errs)
}
}
})
validator := handler(parseValidator)
result := validator("default")(nil)
assert.Equal(t, validation.Of(42), result)
})
}
// TestOrElse tests the OrElse function
func TestOrElse(t *testing.T) {
t.Run("provides fallback for failing validation", func(t *testing.T) {
// Primary validator that fails
primaryValidator := func(s string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
return validation.FailureWithMessage[string](s, "not found")(ctx)
}
}
// Use OrElse to provide fallback
withFallback := OrElse(func(errs Errors) Validate[string, string] {
return Of[string]("default value")
})
validator := withFallback(primaryValidator)
result := validator("missing")(nil)
assert.Equal(t, validation.Of("default value"), result)
})
t.Run("preserves success values unchanged", func(t *testing.T) {
successValidator := Of[string]("success")
withFallback := OrElse(func(errs Errors) Validate[string, string] {
return Of[string]("fallback")
})
validator := withFallback(successValidator)
result := validator("input")(nil)
assert.Equal(t, validation.Of("success"), result, "Should not use fallback for success")
})
t.Run("aggregates errors when fallback also fails", func(t *testing.T) {
failingValidator := func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](n, "primary failed")(ctx)
}
}
withFallback := OrElse(func(errs Errors) Validate[int, int] {
return func(input int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](input, "fallback failed")(ctx)
}
}
})
validator := withFallback(failingValidator)
result := validator(42)(nil)
assert.True(t, E.IsLeft(result))
_, errors := E.Unwrap(result)
assert.Len(t, errors, 2, "Should aggregate both errors")
messages := make([]string, len(errors))
for i, err := range errors {
messages[i] = err.Messsage
}
assert.Contains(t, messages, "primary failed")
assert.Contains(t, messages, "fallback failed")
})
t.Run("supports multiple fallback strategies", func(t *testing.T) {
failingValidator := func(s string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
return validation.FailureWithMessage[string](s, "not in database")(ctx)
}
}
// First fallback: try cache
tryCache := OrElse(func(errs Errors) Validate[string, string] {
return func(input string) Reader[validation.Context, validation.Validation[string]] {
return func(ctx validation.Context) validation.Validation[string] {
if input == "cached" {
return validation.Of("from cache")
}
return E.Left[string](errs)
}
}
})
// Second fallback: use default
useDefault := OrElse(func(errs Errors) Validate[string, string] {
return Of[string]("default")
})
// Compose fallbacks
validator := useDefault(tryCache(failingValidator))
// Test with cached value
result1 := validator("cached")(nil)
assert.Equal(t, validation.Of("from cache"), result1)
// Test with non-cached value (should use default)
result2 := validator("other")(nil)
assert.Equal(t, validation.Of("default"), result2)
})
t.Run("provides input-dependent fallback", func(t *testing.T) {
failingValidator := func(s string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](s, "parse failed")(ctx)
}
}
// Fallback with different defaults based on input
smartFallback := OrElse(func(errs Errors) Validate[string, int] {
return func(input string) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
// Provide context-aware defaults
if input == "http" {
return validation.Of(80)
}
if input == "https" {
return validation.Of(443)
}
return validation.Of(8080)
}
}
})
validator := smartFallback(failingValidator)
result1 := validator("http")(nil)
assert.Equal(t, validation.Of(80), result1)
result2 := validator("https")(nil)
assert.Equal(t, validation.Of(443), result2)
result3 := validator("other")(nil)
assert.Equal(t, validation.Of(8080), result3)
})
t.Run("is equivalent to ChainLeft", func(t *testing.T) {
// Create identical handlers
handler := func(errs Errors) Validate[int, int] {
return func(input int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
if input < 0 {
return validation.Of(0)
}
return E.Left[int](errs)
}
}
}
failingValidator := func(n int) Reader[validation.Context, validation.Validation[int]] {
return func(ctx validation.Context) validation.Validation[int] {
return validation.FailureWithMessage[int](n, "failed")(ctx)
}
}
// Apply with ChainLeft
withChainLeft := ChainLeft(handler)(failingValidator)
// Apply with OrElse
withOrElse := OrElse(handler)(failingValidator)
// Test with same inputs
inputs := []int{-10, 0, 10, -5, 100}
for _, input := range inputs {
result1 := withChainLeft(input)(nil)
result2 := withOrElse(input)(nil)
// Results should be identical
assert.Equal(t, E.IsLeft(result1), E.IsLeft(result2))
if E.IsRight(result1) {
val1, _ := E.Unwrap(result1)
val2, _ := E.Unwrap(result2)
assert.Equal(t, val1, val2, "OrElse and ChainLeft should produce identical results")
}
}
})
t.Run("works in complex validation pipeline", func(t *testing.T) {
type Config struct {
Port int
Host string
}
// Validator that tries to parse config
parseConfig := func(s string) Reader[validation.Context, validation.Validation[Config]] {
return func(ctx validation.Context) validation.Validation[Config] {
return validation.FailureWithMessage[Config](s, "invalid config")(ctx)
}
}
// Fallback to environment variables
tryEnv := OrElse(func(errs Errors) Validate[string, Config] {
return func(input string) Reader[validation.Context, validation.Validation[Config]] {
return func(ctx validation.Context) validation.Validation[Config] {
// Simulate env var lookup
if input == "from_env" {
return validation.Of(Config{Port: 8080, Host: "localhost"})
}
return E.Left[Config](errs)
}
}
})
// Final fallback to defaults
useDefaults := OrElse(func(errs Errors) Validate[string, Config] {
return Of[string](Config{Port: 3000, Host: "0.0.0.0"})
})
// Build pipeline
validator := useDefaults(tryEnv(parseConfig))
// Test with env fallback
result1 := validator("from_env")(nil)
assert.True(t, E.IsRight(result1))
if E.IsRight(result1) {
cfg, _ := E.Unwrap(result1)
assert.Equal(t, 8080, cfg.Port)
assert.Equal(t, "localhost", cfg.Host)
}
// Test with default fallback
result2 := validator("other")(nil)
assert.True(t, E.IsRight(result2))
if E.IsRight(result2) {
cfg, _ := E.Unwrap(result2)
assert.Equal(t, 3000, cfg.Port)
assert.Equal(t, "0.0.0.0", cfg.Host)
}
})
}

View File

@@ -0,0 +1,162 @@
# OrElse is Equivalent to ChainLeft
## Overview
In [`optics/codec/validation/monad.go`](monad.go:474-476), the [`OrElse`](monad.go:474) function is defined as a simple alias for [`ChainLeft`](monad.go:304):
```go
//go:inline
func OrElse[A any](f Kleisli[Errors, A]) Operator[A, A] {
return ChainLeft(f)
}
```
This means **`OrElse` and `ChainLeft` are functionally identical** - they produce exactly the same results for all inputs.
## Why Have Both?
While they are technically the same, they serve different **semantic purposes**:
### ChainLeft - Technical Perspective
[`ChainLeft`](monad.go:304-309) emphasizes the **technical operation**: it chains a computation on the Left (failure) channel of the Either/Validation monad. This name comes from category theory and functional programming terminology.
### OrElse - Semantic Perspective
[`OrElse`](monad.go:474-476) emphasizes the **intent**: it provides an alternative or fallback when validation fails. The name reads naturally in code: "try this validation, **or else** try this alternative."
## Key Behavior
Both functions share the same critical behavior that distinguishes them from standard Either operations:
### Error Aggregation
When the transformation function returns a failure, **both the original errors AND the new errors are combined** using the Errors monoid. This ensures no validation errors are lost.
```go
// Example: Error aggregation
result := OrElse(func(errs Errors) Validation[string] {
return Failures[string](Errors{
&ValidationError{Messsage: "additional error"},
})
})(Failures[string](Errors{
&ValidationError{Messsage: "original error"},
}))
// Result contains BOTH errors: ["original error", "additional error"]
```
### Success Pass-Through
Success values pass through unchanged - the function is never called:
```go
result := OrElse(func(errs Errors) Validation[int] {
return Failures[int](Errors{
&ValidationError{Messsage: "never called"},
})
})(Success(42))
// Result: Success(42) - unchanged
```
### Error Recovery
The function can recover from failures by returning a Success:
```go
recoverFromNotFound := OrElse(func(errs Errors) Validation[int] {
for _, err := range errs {
if err.Messsage == "not found" {
return Success(0) // recover with default
}
}
return Failures[int](errs)
})
result := recoverFromNotFound(Failures[int](Errors{
&ValidationError{Messsage: "not found"},
}))
// Result: Success(0) - recovered from failure
```
## Use Cases
### 1. Fallback Validation (OrElse reads better)
```go
validatePositive := func(x int) Validation[int] {
if x > 0 {
return Success(x)
}
return Failures[int](Errors{
&ValidationError{Messsage: "must be positive"},
})
}
// Use OrElse for semantic clarity
withDefault := OrElse(func(errs Errors) Validation[int] {
return Success(1) // default to 1 if validation fails
})
result := F.Pipe1(validatePositive(-5), withDefault)
// Result: Success(1)
```
### 2. Error Context Addition (ChainLeft reads better)
```go
addContext := ChainLeft(func(errs Errors) Validation[string] {
return Failures[string](Errors{
&ValidationError{
Messsage: "validation failed in user.email field",
},
})
})
result := F.Pipe1(
Failures[string](Errors{
&ValidationError{Messsage: "invalid format"},
}),
addContext,
)
// Result contains: ["invalid format", "validation failed in user.email field"]
```
### 3. Pipeline Composition
Both can be used in pipelines, with errors accumulating at each step:
```go
result := F.Pipe2(
Failures[int](Errors{
&ValidationError{Messsage: "database error"},
}),
OrElse(func(errs Errors) Validation[int] {
return Failures[int](Errors{
&ValidationError{Messsage: "context added"},
})
}),
OrElse(func(errs Errors) Validation[int] {
return Failures[int](errs) // propagate
}),
)
// Errors accumulate at each step in the pipeline
```
## Verification
The test suite in [`monad_test.go`](monad_test.go:1698) includes comprehensive tests proving that `OrElse` and `ChainLeft` are equivalent:
- ✅ Identical behavior for Success values
- ✅ Identical behavior for error recovery
- ✅ Identical behavior for error aggregation
- ✅ Identical behavior in pipeline composition
- ✅ Identical behavior for multiple error scenarios
Run the tests:
```bash
go test -v -run TestOrElse ./optics/codec/validation
```
## Conclusion
**`OrElse` is exactly the same as `ChainLeft`** - they are aliases with identical implementations and behavior. The choice between them is purely about **code readability and semantic intent**:
- Use **`OrElse`** when emphasizing fallback/alternative validation logic
- Use **`ChainLeft`** when emphasizing technical error channel transformation
Both maintain the critical validation property of **error aggregation**, ensuring all validation failures are preserved and reported together.

View File

@@ -0,0 +1,318 @@
// Copyright (c) 2025 IBM Corp.
// All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package validation
import (
"github.com/IBM/fp-go/v2/function"
A "github.com/IBM/fp-go/v2/internal/apply"
C "github.com/IBM/fp-go/v2/internal/chain"
F "github.com/IBM/fp-go/v2/internal/functor"
L "github.com/IBM/fp-go/v2/optics/lens"
)
// Do creates an empty context of type S to be used with the Bind operation.
// This is the starting point for building up a context using do-notation style.
//
// Example:
//
// type Result struct {
// x int
// y string
// }
// result := Do(Result{})
func Do[S any](
empty S,
) Validation[S] {
return Of(empty)
}
// Bind attaches the result of a computation to a context S1 to produce a context S2.
// This is used in do-notation style to sequentially build up a context.
//
// Example:
//
// type State struct { x int; y int }
// result := F.Pipe2(
// Do(State{}),
// Bind(func(x int) func(State) State {
// return func(s State) State { s.x = x; return s }
// }, func(s State) Validation[int] { return Success(42) }),
// )
func Bind[S1, S2, A any](
setter func(A) func(S1) S2,
f Kleisli[S1, A],
) Operator[S1, S2] {
return C.Bind(
Chain[S1, S2],
Map[A, S2],
setter,
f,
)
}
// Let attaches the result of a pure computation to a context S1 to produce a context S2.
// Unlike Bind, the computation function returns a plain value, not an Option.
//
// Example:
//
// type State struct { x int; computed int }
// result := F.Pipe2(
// Do(State{x: 5}),
// Let(func(c int) func(State) State {
// return func(s State) State { s.computed = c; return s }
// }, func(s State) int { return s.x * 2 }),
// )
func Let[S1, S2, B any](
key func(B) func(S1) S2,
f func(S1) B,
) Operator[S1, S2] {
return F.Let(
Map[S1, S2],
key,
f,
)
}
// LetTo attaches a constant value to a context S1 to produce a context S2.
//
// Example:
//
// type State struct { x int; name string }
// result := F.Pipe2(
// Do(State{x: 5}),
// LetTo(func(n string) func(State) State {
// return func(s State) State { s.name = n; return s }
// }, "example"),
// )
func LetTo[S1, S2, B any](
key func(B) func(S1) S2,
b B,
) Operator[S1, S2] {
return F.LetTo(
Map[S1, S2],
key,
b,
)
}
// BindTo initializes a new state S1 from a value T.
// This is typically used as the first operation after creating a Validation value.
//
// Example:
//
// type State struct { value int }
// result := F.Pipe1(
// Success(42),
// BindTo(func(x int) State { return State{value: x} }),
// )
func BindTo[S1, T any](
setter func(T) S1,
) Operator[T, S1] {
return C.BindTo(
Map[T, S1],
setter,
)
}
// ApS attaches a value to a context S1 to produce a context S2 by considering the context and the value concurrently.
// This uses the applicative functor pattern, allowing parallel composition.
//
// IMPORTANT: Unlike Bind which fails fast, ApS aggregates ALL validation errors from both the context
// and the value. If both validations fail, all errors are collected and returned together.
// This is useful for validating multiple independent fields and reporting all errors at once.
//
// Example:
//
// type State struct { x int; y int }
// result := F.Pipe2(
// Do(State{}),
// ApS(func(x int) func(State) State {
// return func(s State) State { s.x = x; return s }
// }, Success(42)),
// )
//
// Error aggregation example:
//
// stateFailure := Failures[State](Errors{&ValidationError{Messsage: "state error"}})
// valueFailure := Failures[int](Errors{&ValidationError{Messsage: "value error"}})
// result := ApS(setter, valueFailure)(stateFailure)
// // Result contains BOTH errors: ["state error", "value error"]
func ApS[S1, S2, T any](
setter func(T) func(S1) S2,
fa Validation[T],
) Operator[S1, S2] {
return A.ApS(
Ap[S2, T],
Map[S1, func(T) S2],
setter,
fa,
)
}
// ApSL attaches a value to a context using a lens-based setter.
// This is a convenience function that combines ApS with a lens, allowing you to use
// optics to update nested structures in a more composable way.
//
// IMPORTANT: Like ApS, this function aggregates ALL validation errors. If both the context
// and the value fail validation, all errors are collected and returned together.
// This enables comprehensive error reporting for complex nested structures.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// This eliminates the need to manually write setter functions.
//
// Example:
//
// type Address struct {
// Street string
// City string
// }
//
// type Person struct {
// Name string
// Address Address
// }
//
// // Create a lens for the Address field
// addressLens := lens.MakeLens(
// func(p Person) Address { return p.Address },
// func(p Person, a Address) Person { p.Address = a; return p },
// )
//
// // Use ApSL to update the address
// result := F.Pipe2(
// Success(Person{Name: "Alice"}),
// ApSL(
// addressLens,
// Success(Address{Street: "Main St", City: "NYC"}),
// ),
// )
func ApSL[S, T any](
lens L.Lens[S, T],
fa Validation[T],
) Operator[S, S] {
return ApS(lens.Set, fa)
}
// BindL attaches the result of a computation to a context using a lens-based setter.
// This is a convenience function that combines Bind with a lens, allowing you to use
// optics to update nested structures based on their current values.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The computation function f receives the current value of the focused field and returns
// a Validation that produces the new value.
//
// Unlike ApSL, BindL uses monadic sequencing, meaning the computation f can depend on
// the current value of the focused field.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Increment the counter, but fail if it would exceed 100
// increment := func(v int) Validation[int] {
// if v >= 100 {
// return Failures[int](Errors{&ValidationError{Messsage: "exceeds limit"}})
// }
// return Success(v + 1)
// }
//
// result := F.Pipe1(
// Success(Counter{Value: 42}),
// BindL(valueLens, increment),
// ) // Success(Counter{Value: 43})
func BindL[S, T any](
lens L.Lens[S, T],
f Kleisli[T, T],
) Operator[S, S] {
return Bind(lens.Set, function.Flow2(lens.Get, f))
}
// LetL attaches the result of a pure computation to a context using a lens-based setter.
// This is a convenience function that combines Let with a lens, allowing you to use
// optics to update nested structures with pure transformations.
//
// The lens parameter provides both the getter and setter for a field within the structure S.
// The transformation function f receives the current value of the focused field and returns
// the new value directly (not wrapped in Validation).
//
// This is useful for pure transformations that cannot fail, such as mathematical operations,
// string manipulations, or other deterministic updates.
//
// Example:
//
// type Counter struct {
// Value int
// }
//
// valueLens := lens.MakeLens(
// func(c Counter) int { return c.Value },
// func(c Counter, v int) Counter { c.Value = v; return c },
// )
//
// // Double the counter value
// double := func(v int) int { return v * 2 }
//
// result := F.Pipe1(
// Success(Counter{Value: 21}),
// LetL(valueLens, double),
// ) // Success(Counter{Value: 42})
func LetL[S, T any](
lens L.Lens[S, T],
f Endomorphism[T],
) Operator[S, S] {
return Let(lens.Set, function.Flow2(lens.Get, f))
}
// LetToL attaches a constant value to a context using a lens-based setter.
// This is a convenience function that combines LetTo with a lens, allowing you to use
// optics to set nested fields to specific values.
//
// The lens parameter provides the setter for a field within the structure S.
// Unlike LetL which transforms the current value, LetToL simply replaces it with
// the provided constant value b.
//
// This is useful for resetting fields, initializing values, or setting fields to
// predetermined constants.
//
// Example:
//
// type Config struct {
// Debug bool
// Timeout int
// }
//
// debugLens := lens.MakeLens(
// func(c Config) bool { return c.Debug },
// func(c Config, d bool) Config { c.Debug = d; return c },
// )
//
// result := F.Pipe1(
// Success(Config{Debug: true, Timeout: 30}),
// LetToL(debugLens, false),
// ) // Success(Config{Debug: false, Timeout: 30})
func LetToL[S, T any](
lens L.Lens[S, T],
b T,
) Operator[S, S] {
return LetTo(lens.Set, b)
}

View File

@@ -0,0 +1,540 @@
package validation
import (
"testing"
"github.com/IBM/fp-go/v2/either"
F "github.com/IBM/fp-go/v2/function"
L "github.com/IBM/fp-go/v2/optics/lens"
"github.com/stretchr/testify/assert"
)
func TestDo(t *testing.T) {
t.Run("creates successful validation with empty state", func(t *testing.T) {
type State struct {
x int
y string
}
result := Do(State{})
assert.Equal(t, Of(State{}), result)
})
t.Run("creates successful validation with initialized state", func(t *testing.T) {
type State struct {
x int
y string
}
initial := State{x: 42, y: "hello"}
result := Do(initial)
assert.Equal(t, Of(initial), result)
})
t.Run("works with different types", func(t *testing.T) {
intResult := Do(0)
assert.Equal(t, Of(0), intResult)
strResult := Do("")
assert.Equal(t, Of(""), strResult)
type Custom struct{ Value int }
customResult := Do(Custom{Value: 100})
assert.Equal(t, Of(Custom{Value: 100}), customResult)
})
}
func TestBind(t *testing.T) {
type State struct {
x int
y int
}
t.Run("binds successful validation to state", func(t *testing.T) {
result := F.Pipe2(
Do(State{}),
Bind(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) Validation[int] { return Success(42) }),
Bind(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) Validation[int] { return Success(10) }),
)
assert.Equal(t, Of(State{x: 42, y: 10}), result)
})
t.Run("propagates failure", func(t *testing.T) {
result := F.Pipe2(
Do(State{}),
Bind(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) Validation[int] { return Success(42) }),
Bind(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) Validation[int] {
return Failures[int](Errors{&ValidationError{Messsage: "y failed"}})
}),
)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(State) Errors { return nil },
)
assert.Len(t, errors, 1)
assert.Equal(t, "y failed", errors[0].Messsage)
})
t.Run("can access previous state values", func(t *testing.T) {
result := F.Pipe2(
Do(State{}),
Bind(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) Validation[int] { return Success(10) }),
Bind(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) Validation[int] {
// y depends on x
return Success(s.x * 2)
}),
)
assert.Equal(t, Success(State{x: 10, y: 20}), result)
})
}
func TestLet(t *testing.T) {
type State struct {
x int
computed int
}
t.Run("attaches pure computation result to state", func(t *testing.T) {
result := F.Pipe1(
Do(State{x: 5}),
Let(func(c int) func(State) State {
return func(s State) State { s.computed = c; return s }
}, func(s State) int { return s.x * 2 }),
)
assert.Equal(t, Of(State{x: 5, computed: 10}), result)
})
t.Run("preserves failure", func(t *testing.T) {
failure := Failures[State](Errors{&ValidationError{Messsage: "error"}})
result := Let(func(c int) func(State) State {
return func(s State) State { s.computed = c; return s }
}, func(s State) int { return s.x * 2 })(failure)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(State) Errors { return nil },
)
assert.Len(t, errors, 1)
assert.Equal(t, "error", errors[0].Messsage)
})
t.Run("chains multiple Let operations", func(t *testing.T) {
type State struct {
x int
y int
z int
}
result := F.Pipe3(
Do(State{x: 5}),
Let(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, func(s State) int { return s.x * 2 }),
Let(func(z int) func(State) State {
return func(s State) State { s.z = z; return s }
}, func(s State) int { return s.y + 10 }),
Let(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, func(s State) int { return s.z * 3 }),
)
assert.Equal(t, Of(State{x: 60, y: 10, z: 20}), result)
})
}
func TestLetTo(t *testing.T) {
type State struct {
x int
name string
}
t.Run("attaches constant value to state", func(t *testing.T) {
result := F.Pipe1(
Do(State{x: 5}),
LetTo(func(n string) func(State) State {
return func(s State) State { s.name = n; return s }
}, "example"),
)
assert.Equal(t, Of(State{x: 5, name: "example"}), result)
})
t.Run("preserves failure", func(t *testing.T) {
failure := Failures[State](Errors{&ValidationError{Messsage: "error"}})
result := LetTo(func(n string) func(State) State {
return func(s State) State { s.name = n; return s }
}, "example")(failure)
assert.True(t, either.IsLeft(result))
})
t.Run("sets multiple constant values", func(t *testing.T) {
type State struct {
name string
version int
active bool
}
result := F.Pipe3(
Do(State{}),
LetTo(func(n string) func(State) State {
return func(s State) State { s.name = n; return s }
}, "app"),
LetTo(func(v int) func(State) State {
return func(s State) State { s.version = v; return s }
}, 2),
LetTo(func(a bool) func(State) State {
return func(s State) State { s.active = a; return s }
}, true),
)
assert.Equal(t, Of(State{name: "app", version: 2, active: true}), result)
})
}
func TestBindTo(t *testing.T) {
type State struct {
value int
}
t.Run("initializes state from value", func(t *testing.T) {
result := F.Pipe1(
Success(42),
BindTo(func(x int) State { return State{value: x} }),
)
assert.Equal(t, Of(State{value: 42}), result)
})
t.Run("preserves failure", func(t *testing.T) {
failure := Failures[int](Errors{&ValidationError{Messsage: "error"}})
result := BindTo(func(x int) State { return State{value: x} })(failure)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(State) Errors { return nil },
)
assert.Len(t, errors, 1)
assert.Equal(t, "error", errors[0].Messsage)
})
t.Run("works with different types", func(t *testing.T) {
type StringState struct {
text string
}
result := F.Pipe1(
Success("hello"),
BindTo(func(s string) StringState { return StringState{text: s} }),
)
assert.Equal(t, Of(StringState{text: "hello"}), result)
})
}
func TestApS(t *testing.T) {
type State struct {
x int
y int
}
t.Run("attaches value using applicative pattern", func(t *testing.T) {
result := F.Pipe1(
Do(State{}),
ApS(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, Success(42)),
)
assert.Equal(t, Of(State{x: 42}), result)
})
t.Run("accumulates errors from both validations", func(t *testing.T) {
stateFailure := Failures[State](Errors{&ValidationError{Messsage: "state error"}})
valueFailure := Failures[int](Errors{&ValidationError{Messsage: "value error"}})
result := ApS(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, valueFailure)(stateFailure)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(State) Errors { return nil },
)
assert.Len(t, errors, 2)
messages := []string{errors[0].Messsage, errors[1].Messsage}
assert.Contains(t, messages, "state error")
assert.Contains(t, messages, "value error")
})
t.Run("combines multiple ApS operations", func(t *testing.T) {
result := F.Pipe2(
Do(State{}),
ApS(func(x int) func(State) State {
return func(s State) State { s.x = x; return s }
}, Success(10)),
ApS(func(y int) func(State) State {
return func(s State) State { s.y = y; return s }
}, Success(20)),
)
assert.Equal(t, Of(State{x: 10, y: 20}), result)
})
}
func TestApSL(t *testing.T) {
type Address struct {
Street string
City string
}
type Person struct {
Name string
Address Address
}
t.Run("updates nested structure using lens", func(t *testing.T) {
addressLens := L.MakeLens(
func(p Person) Address { return p.Address },
func(p Person, a Address) Person { p.Address = a; return p },
)
result := F.Pipe1(
Success(Person{Name: "Alice"}),
ApSL(
addressLens,
Success(Address{Street: "Main St", City: "NYC"}),
),
)
expected := Person{
Name: "Alice",
Address: Address{Street: "Main St", City: "NYC"},
}
assert.Equal(t, Of(expected), result)
})
t.Run("accumulates errors", func(t *testing.T) {
addressLens := L.MakeLens(
func(p Person) Address { return p.Address },
func(p Person, a Address) Person { p.Address = a; return p },
)
personFailure := Failures[Person](Errors{&ValidationError{Messsage: "person error"}})
addressFailure := Failures[Address](Errors{&ValidationError{Messsage: "address error"}})
result := ApSL(addressLens, addressFailure)(personFailure)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(Person) Errors { return nil },
)
assert.Len(t, errors, 2)
})
}
func TestBindL(t *testing.T) {
type Counter struct {
Value int
}
valueLens := L.MakeLens(
func(c Counter) int { return c.Value },
func(c Counter, v int) Counter { c.Value = v; return c },
)
t.Run("updates field based on current value", func(t *testing.T) {
increment := func(v int) Validation[int] {
return Success(v + 1)
}
result := F.Pipe1(
Success(Counter{Value: 42}),
BindL(valueLens, increment),
)
assert.Equal(t, Of(Counter{Value: 43}), result)
})
t.Run("fails validation based on current value", func(t *testing.T) {
increment := func(v int) Validation[int] {
if v >= 100 {
return Failures[int](Errors{&ValidationError{Messsage: "exceeds limit"}})
}
return Success(v + 1)
}
result := F.Pipe1(
Success(Counter{Value: 100}),
BindL(valueLens, increment),
)
assert.True(t, either.IsLeft(result))
errors := either.MonadFold(result,
F.Identity[Errors],
func(Counter) Errors { return nil },
)
assert.Len(t, errors, 1)
assert.Equal(t, "exceeds limit", errors[0].Messsage)
})
t.Run("preserves failure", func(t *testing.T) {
increment := func(v int) Validation[int] {
return Success(v + 1)
}
failure := Failures[Counter](Errors{&ValidationError{Messsage: "error"}})
result := BindL(valueLens, increment)(failure)
assert.True(t, either.IsLeft(result))
})
}
func TestLetL(t *testing.T) {
type Counter struct {
Value int
}
valueLens := L.MakeLens(
func(c Counter) int { return c.Value },
func(c Counter, v int) Counter { c.Value = v; return c },
)
t.Run("transforms field with pure function", func(t *testing.T) {
double := func(v int) int { return v * 2 }
result := F.Pipe1(
Success(Counter{Value: 21}),
LetL(valueLens, double),
)
assert.Equal(t, Of(Counter{Value: 42}), result)
})
t.Run("preserves failure", func(t *testing.T) {
double := func(v int) int { return v * 2 }
failure := Failures[Counter](Errors{&ValidationError{Messsage: "error"}})
result := LetL(valueLens, double)(failure)
assert.True(t, either.IsLeft(result))
})
t.Run("chains multiple transformations", func(t *testing.T) {
add10 := func(v int) int { return v + 10 }
double := func(v int) int { return v * 2 }
result := F.Pipe2(
Success(Counter{Value: 5}),
LetL(valueLens, add10),
LetL(valueLens, double),
)
assert.Equal(t, Of(Counter{Value: 30}), result)
})
}
func TestLetToL(t *testing.T) {
type Config struct {
Debug bool
Timeout int
}
debugLens := L.MakeLens(
func(c Config) bool { return c.Debug },
func(c Config, d bool) Config { c.Debug = d; return c },
)
t.Run("sets field to constant value", func(t *testing.T) {
result := F.Pipe1(
Success(Config{Debug: true, Timeout: 30}),
LetToL(debugLens, false),
)
assert.Equal(t, Of(Config{Debug: false, Timeout: 30}), result)
})
t.Run("preserves failure", func(t *testing.T) {
failure := Failures[Config](Errors{&ValidationError{Messsage: "error"}})
result := LetToL(debugLens, false)(failure)
assert.True(t, either.IsLeft(result))
})
t.Run("sets multiple fields", func(t *testing.T) {
timeoutLens := L.MakeLens(
func(c Config) int { return c.Timeout },
func(c Config, t int) Config { c.Timeout = t; return c },
)
result := F.Pipe2(
Success(Config{Debug: true, Timeout: 30}),
LetToL(debugLens, false),
LetToL(timeoutLens, 60),
)
assert.Equal(t, Of(Config{Debug: false, Timeout: 60}), result)
})
}
func TestBindOperationsComposition(t *testing.T) {
type User struct {
Name string
Age int
Email string
}
t.Run("combines Do, Bind, Let, and LetTo", func(t *testing.T) {
result := F.Pipe4(
Do(User{}),
LetTo(func(n string) func(User) User {
return func(u User) User { u.Name = n; return u }
}, "Alice"),
Bind(func(a int) func(User) User {
return func(u User) User { u.Age = a; return u }
}, func(u User) Validation[int] {
// Age validation
if len(u.Name) > 0 {
return Success(25)
}
return Failures[int](Errors{&ValidationError{Messsage: "name required"}})
}),
Let(func(e string) func(User) User {
return func(u User) User { u.Email = e; return u }
}, func(u User) string {
// Derive email from name
return u.Name + "@example.com"
}),
Bind(func(a int) func(User) User {
return func(u User) User { u.Age = a; return u }
}, func(u User) Validation[int] {
// Validate age is positive
if u.Age > 0 {
return Success(u.Age)
}
return Failures[int](Errors{&ValidationError{Messsage: "age must be positive"}})
}),
)
expected := User{Name: "Alice", Age: 25, Email: "Alice@example.com"}
assert.Equal(t, Of(expected), result)
})
}

View File

@@ -1,10 +1,14 @@
package validation
import (
"github.com/IBM/fp-go/v2/array"
"github.com/IBM/fp-go/v2/either"
"github.com/IBM/fp-go/v2/function"
"github.com/IBM/fp-go/v2/internal/applicative"
)
var errorsMonoid = ErrorsMonoid()
// Of creates a successful validation result containing the given value.
// This is the pure/return operation for the Validation monad.
//
@@ -28,37 +32,376 @@ func Of[A any](a A) Validation[A] {
// return func(age int) User { return User{name, age} }
// }))(validateName))(validateAge)
func Ap[B, A any](fa Validation[A]) Operator[func(A) B, B] {
return either.ApV[B, A](ErrorsMonoid())(fa)
return either.ApV[B, A](errorsMonoid)(fa)
}
// MonadAp applies a validation containing a function to a validation containing a value.
// This is the applicative apply operation that **accumulates errors** from both validations.
//
// **Key behavior**: Unlike Either's MonadAp which fails fast (returns first error),
// this validation-specific implementation **accumulates all errors** using the Errors monoid.
// When both the function validation and value validation fail, all errors from both are combined.
//
// This error accumulation is the defining characteristic of the Validation applicative,
// making it ideal for scenarios where you want to collect all validation failures at once
// rather than stopping at the first error.
//
// Behavior:
// - Both succeed: applies the function to the value → Success(result)
// - Function fails, value succeeds: returns function's errors → Failure(func errors)
// - Function succeeds, value fails: returns value's errors → Failure(value errors)
// - Both fail: **combines all errors** → Failure(func errors + value errors)
//
// This is particularly useful for:
// - Form validation: collect all field errors at once
// - Configuration validation: report all invalid settings together
// - Data validation: accumulate all constraint violations
// - Multi-field validation: validate independent fields in parallel
//
// Example - Both succeed:
//
// double := func(x int) int { return x * 2 }
// result := MonadAp(Of(double), Of(21))
// // Result: Success(42)
//
// Example - Error accumulation (key feature):
//
// funcValidation := Failures[func(int) int](Errors{
// &ValidationError{Messsage: "function error"},
// })
// valueValidation := Failures[int](Errors{
// &ValidationError{Messsage: "value error"},
// })
// result := MonadAp(funcValidation, valueValidation)
// // Result: Failure with BOTH errors: ["function error", "value error"]
//
// Example - Validating multiple fields:
//
// type User struct {
// Name string
// Age int
// }
//
// makeUser := func(name string) func(int) User {
// return func(age int) User { return User{name, age} }
// }
//
// nameValidation := validateName("ab") // Fails: too short
// ageValidation := validateAge(16) // Fails: too young
//
// // First apply name
// step1 := MonadAp(Of(makeUser), nameValidation)
// // Then apply age
// result := MonadAp(step1, ageValidation)
// // Result contains ALL validation errors from both fields
func MonadAp[B, A any](fab Validation[func(A) B], fa Validation[A]) Validation[B] {
return either.MonadApV[B, A](ErrorsMonoid())(fab, fa)
return either.MonadApV[B, A](errorsMonoid)(fab, fa)
}
// Map transforms the value inside a successful validation using the provided function.
// If the validation is a failure, the errors are preserved unchanged.
// This is the functor map operation for Validation.
//
// Example:
// Map is used for transforming successful values without changing the validation context.
// It's the most basic operation for working with validated values and forms the foundation
// for more complex validation pipelines.
//
// Behavior:
// - Success: applies function to value → Success(f(value))
// - Failure: preserves errors unchanged → Failure(same errors)
//
// This is useful for:
// - Type transformations: converting validated values to different types
// - Value transformations: normalizing, formatting, or computing derived values
// - Pipeline composition: chaining multiple transformations
// - Preserving validation context: errors pass through unchanged
//
// Example - Transform successful value:
//
// doubled := Map(func(x int) int { return x * 2 })(Of(21))
// // Result: Success(42)
//
// Example - Failure preserved:
//
// result := Map(func(x int) int { return x * 2 })(
// Failures[int](Errors{&ValidationError{Messsage: "invalid"}}),
// )
// // Result: Failure with same error: ["invalid"]
//
// Example - Type transformation:
//
// toString := Map(func(x int) string { return fmt.Sprintf("%d", x) })
// result := toString(Of(42))
// // Result: Success("42")
//
// Example - Chaining transformations:
//
// result := F.Pipe3(
// Of(5),
// Map(func(x int) int { return x + 10 }), // 15
// Map(func(x int) int { return x * 2 }), // 30
// Map(func(x int) string { return fmt.Sprintf("%d", x) }), // "30"
// )
// // Result: Success("30")
func Map[A, B any](f func(A) B) Operator[A, B] {
return either.Map[Errors](f)
}
// MonadMap transforms the value inside a successful validation using the provided function.
// If the validation is a failure, the errors are preserved unchanged.
// This is the non-curried version of [Map].
//
// MonadMap is useful when you have both the validation and the transformation function
// available at the same time, rather than needing to create a reusable operator.
//
// Behavior:
// - Success: applies function to value → Success(f(value))
// - Failure: preserves errors unchanged → Failure(same errors)
//
// Example - Transform successful value:
//
// result := MonadMap(Of(21), func(x int) int { return x * 2 })
// // Result: Success(42)
//
// Example - Failure preserved:
//
// result := MonadMap(
// Failures[int](Errors{&ValidationError{Messsage: "invalid"}}),
// func(x int) int { return x * 2 },
// )
// // Result: Failure with same error: ["invalid"]
//
// Example - Type transformation:
//
// result := MonadMap(Of(42), func(x int) string {
// return fmt.Sprintf("Value: %d", x)
// })
// // Result: Success("Value: 42")
//
// Example - Computing derived values:
//
// type User struct { FirstName, LastName string }
// result := MonadMap(
// Of(User{"John", "Doe"}),
// func(u User) string { return u.FirstName + " " + u.LastName },
// )
// // Result: Success("John Doe")
func MonadMap[A, B any](fa Validation[A], f func(A) B) Validation[B] {
return either.MonadMap(fa, f)
}
// Chain is the curried version of [MonadChain].
// Sequences two validation computations where the second depends on the first.
//
// Example:
//
// validatePositive := func(x int) Validation[int] {
// if x > 0 { return Success(x) }
// return Failure("must be positive")
// }
// result := Chain(validatePositive)(Success(42)) // Success(42)
func Chain[A, B any](f Kleisli[A, B]) Operator[A, B] {
return either.Chain(f)
}
// MonadChain sequences two validation computations where the second depends on the first.
// If the first validation fails, returns the failure without executing the second.
// This is the monadic bind operation for Validation.
//
// Example:
//
// result := MonadChain(
// Success(42),
// func(x int) Validation[string] {
// return Success(fmt.Sprintf("Value: %d", x))
// },
// ) // Success("Value: 42")
func MonadChain[A, B any](fa Validation[A], f Kleisli[A, B]) Validation[B] {
return either.MonadChain(fa, f)
}
// chainErrors is an internal helper that chains error transformations while accumulating errors.
// When the transformation function f returns a failure, it concatenates the original errors (e1)
// with the new errors (e2) using the Errors monoid, ensuring all validation errors are preserved.
func chainErrors[A any](f Kleisli[Errors, A]) func(Errors) Validation[A] {
return func(e1 Errors) Validation[A] {
return either.MonadFold(
f(e1),
function.Flow2(array.Concat(e1), either.Left[A]),
Of[A],
)
}
}
// ChainLeft is the curried version of [MonadChainLeft].
// Returns a function that transforms validation failures while preserving successes.
//
// Unlike the standard Either ChainLeft which replaces errors, this validation-specific
// implementation **aggregates errors** using the Errors monoid. When the transformation
// function returns a failure, both the original errors and the new errors are combined,
// ensuring no validation errors are lost.
//
// This is particularly useful for:
// - Error recovery with fallback validation
// - Adding contextual information to existing errors
// - Transforming error types while preserving all error details
// - Building error handling pipelines that accumulate failures
//
// Key behavior:
// - Success values pass through unchanged
// - When transforming failures, if the transformation also fails, **all errors are aggregated**
// - If the transformation succeeds, it recovers from the original failure
//
// Example - Error recovery with aggregation:
//
// recoverFromNotFound := ChainLeft(func(errs Errors) Validation[int] {
// // Check if this is a "not found" error
// for _, err := range errs {
// if err.Messsage == "not found" {
// return Success(0) // recover with default
// }
// }
// // Add context to existing errors
// return Failures[int](Errors{
// &ValidationError{Messsage: "recovery failed"},
// })
// // Result will contain BOTH original errors AND "recovery failed"
// })
//
// result := recoverFromNotFound(Failures[int](Errors{
// &ValidationError{Messsage: "database error"},
// }))
// // Result contains: ["database error", "recovery failed"]
//
// Example - Adding context to errors:
//
// addContext := ChainLeft(func(errs Errors) Validation[string] {
// // Add contextual information
// return Failures[string](Errors{
// &ValidationError{
// Messsage: "validation failed in user.email field",
// },
// })
// // Original errors are preserved and new context is added
// })
//
// result := F.Pipe1(
// Failures[string](Errors{
// &ValidationError{Messsage: "invalid format"},
// }),
// addContext,
// )
// // Result contains: ["invalid format", "validation failed in user.email field"]
//
// Example - Success values pass through:
//
// handler := ChainLeft(func(errs Errors) Validation[int] {
// return Failures[int](Errors{
// &ValidationError{Messsage: "never called"},
// })
// })
// result := handler(Success(42)) // Success(42) - unchanged
func ChainLeft[A any](f Kleisli[Errors, A]) Operator[A, A] {
return either.Fold(
chainErrors(f),
Of[A],
)
}
// MonadChainLeft sequences a computation on the failure (Left) channel of a Validation.
// If the Validation is a failure, applies the function to transform or recover from the errors.
// If the Validation is a success, returns the success value unchanged.
//
// **Critical difference from Either.MonadChainLeft**: This validation-specific implementation
// **aggregates errors** using the Errors monoid. When the transformation function returns a
// failure, both the original errors and the new errors are combined, ensuring comprehensive
// error reporting.
//
// This is the dual of [MonadChain] - while Chain operates on success values, ChainLeft
// operates on failure values. It's particularly useful for:
// - Error recovery: converting specific errors into successful values
// - Error enrichment: adding context or transforming error messages
// - Fallback logic: providing alternative validations when the first fails
// - Error aggregation: combining multiple validation failures
//
// The function parameter receives the collection of validation errors and must return
// a new Validation[A]. This allows you to:
// - Recover by returning Success(value)
// - Transform errors by returning Failures(newErrors) - **original errors are preserved**
// - Implement conditional error handling based on error content
//
// Example - Error recovery:
//
// result := MonadChainLeft(
// Failures[int](Errors{
// &ValidationError{Messsage: "not found"},
// }),
// func(errs Errors) Validation[int] {
// // Check if we can recover
// for _, err := range errs {
// if err.Messsage == "not found" {
// return Success(0) // recover with default value
// }
// }
// return Failures[int](errs) // propagate errors
// },
// ) // Success(0)
//
// Example - Error aggregation (key feature):
//
// result := MonadChainLeft(
// Failures[string](Errors{
// &ValidationError{Messsage: "error 1"},
// &ValidationError{Messsage: "error 2"},
// }),
// func(errs Errors) Validation[string] {
// // Transformation also fails
// return Failures[string](Errors{
// &ValidationError{Messsage: "error 3"},
// })
// },
// )
// // Result contains ALL errors: ["error 1", "error 2", "error 3"]
// // This is different from Either.MonadChainLeft which would only keep "error 3"
//
// Example - Adding context to errors:
//
// result := MonadChainLeft(
// Failures[int](Errors{
// &ValidationError{Value: "abc", Messsage: "invalid number"},
// }),
// func(errs Errors) Validation[int] {
// // Add contextual information
// contextErrors := Errors{
// &ValidationError{
// Context: []ContextEntry{{Key: "user", Type: "User"}, {Key: "age", Type: "int"}},
// Messsage: "failed to parse user age",
// },
// }
// return Failures[int](contextErrors)
// },
// )
// // Result contains both original error and context:
// // ["invalid number", "failed to parse user age"]
//
// Example - Success values pass through:
//
// result := MonadChainLeft(
// Success(42),
// func(errs Errors) Validation[int] {
// return Failures[int](Errors{
// &ValidationError{Messsage: "never called"},
// })
// },
// ) // Success(42) - unchanged
func MonadChainLeft[A any](fa Validation[A], f Kleisli[Errors, A]) Validation[A] {
return either.MonadFold(
fa,
chainErrors(f),
Of[A],
)
}
// Applicative creates an Applicative instance for Validation with error accumulation.
//
// This returns a lawful Applicative that accumulates validation errors using the Errors monoid.
@@ -123,6 +466,11 @@ func MonadChain[A, B any](fa Validation[A], f Kleisli[A, B]) Validation[B] {
// An Applicative instance with Of, Map, and Ap operations that accumulate errors
func Applicative[A, B any]() applicative.Applicative[A, B, Validation[A], Validation[B], Validation[func(A) B]] {
return either.ApplicativeV[Errors, A, B](
ErrorsMonoid(),
errorsMonoid,
)
}
//go:inline
func OrElse[A any](f Kleisli[Errors, A]) Operator[A, A] {
return ChainLeft(f)
}

File diff suppressed because it is too large Load Diff

View File

@@ -74,12 +74,7 @@ func TestApplicativeMonoid(t *testing.T) {
t.Run("empty returns successful validation with empty string", func(t *testing.T) {
empty := m.Empty()
assert.True(t, either.IsRight(empty))
value := either.MonadFold(empty,
func(Errors) string { return "ERROR" },
F.Identity[string],
)
assert.Equal(t, "", value)
assert.Equal(t, Success(""), empty)
})
t.Run("concat combines successful validations", func(t *testing.T) {
@@ -88,12 +83,7 @@ func TestApplicativeMonoid(t *testing.T) {
result := m.Concat(v1, v2)
assert.True(t, either.IsRight(result))
value := either.MonadFold(result,
func(Errors) string { return "" },
F.Identity[string],
)
assert.Equal(t, "Hello World", value)
assert.Equal(t, Success("Hello World"), result)
})
t.Run("concat with failure returns failure", func(t *testing.T) {

Some files were not shown because too many files have changed in this diff Show More