mirror of
https://github.com/IBM/fp-go.git
synced 2026-01-17 00:53:55 +02:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
cdc2041d8e | ||
|
|
777fff9a5a | ||
|
|
8acea9043f | ||
|
|
c6445ac021 |
14
v2/DESIGN.md
14
v2/DESIGN.md
@@ -14,6 +14,8 @@ This document explains the key design decisions and principles behind fp-go's AP
|
||||
|
||||
fp-go follows the **"data last"** principle, where the data being operated on is always the last parameter in a function. This design choice enables powerful function composition and partial application patterns.
|
||||
|
||||
This principle is deeply rooted in functional programming tradition, particularly in **Haskell's design philosophy**. Haskell functions are automatically curried and follow the data-last convention, making function composition natural and elegant. For example, Haskell's `map` function has the signature `(a -> b) -> [a] -> [b]`, where the transformation function comes before the list.
|
||||
|
||||
### What is "Data Last"?
|
||||
|
||||
In the "data last" style, functions are structured so that:
|
||||
@@ -31,6 +33,8 @@ The "data last" principle enables:
|
||||
3. **Point-Free Style**: Write transformations without explicitly mentioning the data
|
||||
4. **Reusability**: Create reusable transformation pipelines
|
||||
|
||||
This design aligns with Haskell's approach where all functions are curried by default, enabling elegant composition patterns that have proven effective over decades of functional programming practice.
|
||||
|
||||
### Examples
|
||||
|
||||
#### Basic Transformation
|
||||
@@ -181,8 +185,18 @@ result := O.MonadMap(O.Some("hello"), strings.ToUpper)
|
||||
|
||||
The data-last currying pattern is well-documented in the functional programming community:
|
||||
|
||||
#### Haskell Design Philosophy
|
||||
- [Haskell Wiki - Currying](https://wiki.haskell.org/Currying) - Comprehensive explanation of currying in Haskell
|
||||
- [Learn You a Haskell - Higher Order Functions](http://learnyouahaskell.com/higher-order-functions) - Introduction to currying and partial application
|
||||
- [Haskell's Prelude](https://hackage.haskell.org/package/base/docs/Prelude.html) - Standard library showing data-last convention throughout
|
||||
|
||||
#### General Functional Programming
|
||||
- [Mostly Adequate Guide - Ch. 4: Currying](https://mostly-adequate.gitbook.io/mostly-adequate-guide/ch04) - Excellent introduction with clear examples
|
||||
- [Curry and Function Composition](https://medium.com/javascript-scene/curry-and-function-composition-2c208d774983) by Eric Elliott
|
||||
- [Why Curry Helps](https://hughfdjackson.com/javascript/why-curry-helps/) - Practical benefits of currying
|
||||
|
||||
#### Related Libraries
|
||||
- [fp-ts Documentation](https://gcanti.github.io/fp-ts/) - TypeScript library that inspired fp-go's design
|
||||
- [fp-ts Issue #1238](https://github.com/gcanti/fp-ts/issues/1238) - Real-world examples of data-last refactoring
|
||||
|
||||
## Kleisli and Operator Types
|
||||
|
||||
@@ -446,6 +446,7 @@ func process() IOResult[string] {
|
||||
|
||||
## 📚 Documentation
|
||||
|
||||
- **[Design Decisions](./DESIGN.md)** - Key design principles and patterns explained
|
||||
- **[API Documentation](https://pkg.go.dev/github.com/IBM/fp-go/v2)** - Complete API reference
|
||||
- **[Code Samples](./samples/)** - Practical examples and use cases
|
||||
- **[Go 1.24 Release Notes](https://tip.golang.org/doc/go1.24)** - Information about generic type aliases
|
||||
|
||||
@@ -4,7 +4,6 @@ import (
|
||||
"time"
|
||||
|
||||
"github.com/IBM/fp-go/v2/either"
|
||||
"github.com/IBM/fp-go/v2/function"
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/identity"
|
||||
"github.com/IBM/fp-go/v2/io"
|
||||
@@ -14,6 +13,7 @@ import (
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
"github.com/IBM/fp-go/v2/pair"
|
||||
"github.com/IBM/fp-go/v2/reader"
|
||||
"github.com/IBM/fp-go/v2/readerio"
|
||||
"github.com/IBM/fp-go/v2/retry"
|
||||
)
|
||||
|
||||
@@ -241,125 +241,155 @@ func isResetTimeExceeded(ct time.Time) option.Kleisli[openState, openState] {
|
||||
})
|
||||
}
|
||||
|
||||
// handleSuccessOnClosed handles a successful request when the circuit breaker is in closed state.
|
||||
// It updates the closed state by recording the success and returns an IO operation that
|
||||
// modifies the breaker state.
|
||||
// handleSuccessOnClosed creates a Reader that handles successful requests when the circuit is closed.
|
||||
// This function is used to update the circuit breaker state after a successful operation completes
|
||||
// while the circuit is in the closed state.
|
||||
//
|
||||
// This function is part of the circuit breaker's state management for the closed state.
|
||||
// When a request succeeds in closed state:
|
||||
// 1. The current time is obtained
|
||||
// 2. The addSuccess function is called with the current time to update the ClosedState
|
||||
// 3. The updated ClosedState is wrapped in a Right (closed) BreakerState
|
||||
// 4. The breaker state is modified with the new state
|
||||
// The function takes a Reader that adds a success record to the ClosedState and lifts it to work
|
||||
// with BreakerState by mapping over the Right (closed) side of the Either type. This ensures that
|
||||
// success tracking only affects the closed state and leaves any open state unchanged.
|
||||
//
|
||||
// Parameters:
|
||||
// - currentTime: An IO operation that provides the current time
|
||||
// - addSuccess: A Reader that takes a time and returns an endomorphism for ClosedState,
|
||||
// typically resetting failure counters or history
|
||||
// - addSuccess: A Reader that takes the current time and returns an Endomorphism that updates
|
||||
// the ClosedState by recording a successful operation. This typically increments a success
|
||||
// counter or updates a success history.
|
||||
//
|
||||
// Returns:
|
||||
// - An io.Kleisli that takes another io.Kleisli and chains them together.
|
||||
// The outer Kleisli takes an Endomorphism[BreakerState] and returns BreakerState.
|
||||
// This allows composing the success handling with other state modifications.
|
||||
// - A Reader[time.Time, Endomorphism[BreakerState]] that, when given the current time, produces
|
||||
// an endomorphism that updates the BreakerState by applying the success update to the closed
|
||||
// state (if closed) or leaving the state unchanged (if open).
|
||||
//
|
||||
// Thread Safety: This function creates IO operations that will atomically modify the
|
||||
// IORef[BreakerState] when executed. The state modifications are thread-safe.
|
||||
//
|
||||
// Type signature:
|
||||
//
|
||||
// io.Kleisli[io.Kleisli[Endomorphism[BreakerState], BreakerState], BreakerState]
|
||||
// Thread Safety: This is a pure function that creates new state instances. The returned
|
||||
// endomorphism is safe for concurrent use as it does not mutate its input.
|
||||
//
|
||||
// Usage Context:
|
||||
// - Called when a request succeeds while the circuit is closed
|
||||
// - Resets failure tracking (counter or history) in the ClosedState
|
||||
// - Keeps the circuit in closed state
|
||||
// - Called after a successful request completes while the circuit is closed
|
||||
// - Updates success metrics/counters in the ClosedState
|
||||
// - Does not affect the circuit state if it's already open
|
||||
// - Part of the normal operation flow when the circuit breaker is functioning properly
|
||||
func handleSuccessOnClosed(
|
||||
currentTime IO[time.Time],
|
||||
addSuccess Reader[time.Time, Endomorphism[ClosedState]],
|
||||
) io.Kleisli[io.Kleisli[Endomorphism[BreakerState], BreakerState], BreakerState] {
|
||||
) Reader[time.Time, Endomorphism[BreakerState]] {
|
||||
return F.Flow2(
|
||||
io.Chain,
|
||||
identity.Flap[IO[BreakerState]](F.Pipe1(
|
||||
currentTime,
|
||||
io.Map(F.Flow2(
|
||||
addSuccess,
|
||||
either.Map[openState],
|
||||
)))),
|
||||
addSuccess,
|
||||
either.Map[openState],
|
||||
)
|
||||
}
|
||||
|
||||
// handleFailureOnClosed handles a failed request when the circuit breaker is in closed state.
|
||||
// It updates the closed state by recording the failure and checks if the circuit should open.
|
||||
// handleFailureOnClosed creates a Reader that handles failed requests when the circuit is closed.
|
||||
// This function manages the critical logic for determining whether a failure should cause the
|
||||
// circuit breaker to open (transition from closed to open state).
|
||||
//
|
||||
// This function is part of the circuit breaker's state management for the closed state.
|
||||
// When a request fails in closed state:
|
||||
// 1. The current time is obtained
|
||||
// 2. The addError function is called to record the failure in the ClosedState
|
||||
// 3. The checkClosedState function is called to determine if the failure threshold is exceeded
|
||||
// 4. If the threshold is exceeded (Check returns None):
|
||||
// - The circuit transitions to open state using openCircuit
|
||||
// - A new openState is created with resetAt time calculated from the retry policy
|
||||
// 5. If the threshold is not exceeded (Check returns Some):
|
||||
// - The circuit remains closed with the updated failure tracking
|
||||
// The function orchestrates three key operations:
|
||||
// 1. Records the failure in the ClosedState using addError
|
||||
// 2. Checks if the failure threshold has been exceeded using checkClosedState
|
||||
// 3. If threshold exceeded, opens the circuit; otherwise, keeps it closed with updated error count
|
||||
//
|
||||
// The decision flow is:
|
||||
// - Add the error to the closed state's error tracking
|
||||
// - Check if the updated closed state exceeds the failure threshold
|
||||
// - If threshold exceeded (checkClosedState returns None):
|
||||
// - Create a new openState with calculated reset time based on retry policy
|
||||
// - Transition the circuit to open state (Left side of Either)
|
||||
// - If threshold not exceeded (checkClosedState returns Some):
|
||||
// - Keep the circuit closed with the updated error count
|
||||
// - Continue allowing requests through
|
||||
//
|
||||
// Parameters:
|
||||
// - currentTime: An IO operation that provides the current time
|
||||
// - addError: A Reader that takes a time and returns an endomorphism for ClosedState,
|
||||
// recording a failure (incrementing counter or adding to history)
|
||||
// - checkClosedState: A Reader that takes a time and returns an option.Kleisli that checks
|
||||
// if the ClosedState should remain closed. Returns Some if circuit stays closed, None if it should open.
|
||||
// - openCircuit: A Reader that takes a time and returns an openState with calculated resetAt time
|
||||
// - addError: A Reader that takes the current time and returns an Endomorphism that updates
|
||||
// the ClosedState by recording a failed operation. This typically increments an error
|
||||
// counter or adds to an error history.
|
||||
// - checkClosedState: A Reader that takes the current time and returns an option.Kleisli that
|
||||
// validates whether the ClosedState is still within acceptable failure thresholds.
|
||||
// Returns Some(ClosedState) if threshold not exceeded, None if threshold exceeded.
|
||||
// - openCircuit: A Reader that takes the current time and creates a new openState with
|
||||
// appropriate reset time calculated from the retry policy. Used when transitioning to open.
|
||||
//
|
||||
// Returns:
|
||||
// - An io.Kleisli that takes another io.Kleisli and chains them together.
|
||||
// The outer Kleisli takes an Endomorphism[BreakerState] and returns BreakerState.
|
||||
// This allows composing the failure handling with other state modifications.
|
||||
// - A Reader[time.Time, Endomorphism[BreakerState]] that, when given the current time, produces
|
||||
// an endomorphism that either:
|
||||
// - Keeps the circuit closed with updated error tracking (if threshold not exceeded)
|
||||
// - Opens the circuit with calculated reset time (if threshold exceeded)
|
||||
//
|
||||
// Thread Safety: This function creates IO operations that will atomically modify the
|
||||
// IORef[BreakerState] when executed. The state modifications are thread-safe.
|
||||
//
|
||||
// Type signature:
|
||||
//
|
||||
// io.Kleisli[io.Kleisli[Endomorphism[BreakerState], BreakerState], BreakerState]
|
||||
//
|
||||
// State Transitions:
|
||||
// - Closed -> Closed: When failure threshold is not exceeded (Some from checkClosedState)
|
||||
// - Closed -> Open: When failure threshold is exceeded (None from checkClosedState)
|
||||
// Thread Safety: This is a pure function that creates new state instances. The returned
|
||||
// endomorphism is safe for concurrent use as it does not mutate its input.
|
||||
//
|
||||
// Usage Context:
|
||||
// - Called when a request fails while the circuit is closed
|
||||
// - Records the failure in the ClosedState (counter or history)
|
||||
// - May trigger transition to open state if threshold is exceeded
|
||||
// - Called after a failed request completes while the circuit is closed
|
||||
// - Implements the core circuit breaker logic for opening the circuit
|
||||
// - Determines when to stop allowing requests through to protect the failing service
|
||||
// - Critical for preventing cascading failures in distributed systems
|
||||
//
|
||||
// State Transition:
|
||||
// - Closed (under threshold) -> Closed (with incremented error count)
|
||||
// - Closed (at/over threshold) -> Open (with reset time for recovery attempt)
|
||||
func handleFailureOnClosed(
|
||||
currentTime IO[time.Time],
|
||||
addError Reader[time.Time, Endomorphism[ClosedState]],
|
||||
checkClosedState Reader[time.Time, option.Kleisli[ClosedState, ClosedState]],
|
||||
openCircuit Reader[time.Time, openState],
|
||||
) io.Kleisli[io.Kleisli[Endomorphism[BreakerState], BreakerState], BreakerState] {
|
||||
|
||||
return F.Flow2(
|
||||
io.Chain,
|
||||
identity.Flap[IO[BreakerState]](F.Pipe1(
|
||||
currentTime,
|
||||
io.Map(func(ct time.Time) either.Operator[openState, ClosedState, ClosedState] {
|
||||
return either.Chain(F.Flow3(
|
||||
addError(ct),
|
||||
checkClosedState(ct),
|
||||
option.Fold(
|
||||
F.Pipe2(
|
||||
ct,
|
||||
lazy.Of,
|
||||
lazy.Map(F.Flow2(
|
||||
openCircuit,
|
||||
createOpenCircuit,
|
||||
)),
|
||||
),
|
||||
createClosedCircuit,
|
||||
),
|
||||
))
|
||||
}))),
|
||||
) Reader[time.Time, Endomorphism[BreakerState]] {
|
||||
return F.Pipe2(
|
||||
F.Pipe1(
|
||||
addError,
|
||||
reader.ApS(reader.Map[ClosedState], checkClosedState),
|
||||
),
|
||||
reader.Chain(F.Flow2(
|
||||
reader.Map[ClosedState](option.Fold(
|
||||
F.Pipe2(
|
||||
openCircuit,
|
||||
reader.Map[time.Time](createOpenCircuit),
|
||||
lazy.Of,
|
||||
),
|
||||
F.Flow2(
|
||||
createClosedCircuit,
|
||||
reader.Of[time.Time],
|
||||
),
|
||||
)),
|
||||
reader.Sequence,
|
||||
)),
|
||||
reader.Map[time.Time](either.Chain[openState, ClosedState, ClosedState]),
|
||||
)
|
||||
}
|
||||
|
||||
func handleErrorOnClosed2[E any](
|
||||
checkError option.Kleisli[E, E],
|
||||
onSuccess Reader[time.Time, Endomorphism[BreakerState]],
|
||||
onFailure Reader[time.Time, Endomorphism[BreakerState]],
|
||||
) reader.Kleisli[time.Time, E, Endomorphism[BreakerState]] {
|
||||
return F.Flow3(
|
||||
checkError,
|
||||
option.MapTo[E](onFailure),
|
||||
option.GetOrElse(lazy.Of(onSuccess)),
|
||||
)
|
||||
}
|
||||
|
||||
func stateModifier(
|
||||
modify io.Kleisli[Endomorphism[BreakerState], BreakerState],
|
||||
) reader.Operator[time.Time, Endomorphism[BreakerState], IO[BreakerState]] {
|
||||
return reader.Map[time.Time](modify)
|
||||
}
|
||||
|
||||
func reportOnClose2(
|
||||
onClosed ReaderIO[time.Time, Void],
|
||||
onOpened ReaderIO[time.Time, Void],
|
||||
) readerio.Operator[time.Time, BreakerState, Void] {
|
||||
return readerio.Chain(either.Fold(
|
||||
reader.Of[openState](onOpened),
|
||||
reader.Of[ClosedState](onClosed),
|
||||
))
|
||||
}
|
||||
|
||||
func applyAndReportClose2(
|
||||
currentTime IO[time.Time],
|
||||
metrics readerio.Operator[time.Time, BreakerState, Void],
|
||||
) func(io.Kleisli[Endomorphism[BreakerState], BreakerState]) func(Reader[time.Time, Endomorphism[BreakerState]]) IO[Void] {
|
||||
return func(modify io.Kleisli[Endomorphism[BreakerState], BreakerState]) func(Reader[time.Time, Endomorphism[BreakerState]]) IO[Void] {
|
||||
return F.Flow3(
|
||||
reader.Map[time.Time](modify),
|
||||
metrics,
|
||||
readerio.ReadIO[Void](currentTime),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// MakeCircuitBreaker creates a circuit breaker implementation for a higher-kinded type.
|
||||
@@ -402,6 +432,8 @@ func MakeCircuitBreaker[E, T, HKTT, HKTOP, HKTHKTT any](
|
||||
chainFirstIOK func(io.Kleisli[T, BreakerState]) func(HKTT) HKTT,
|
||||
chainFirstLeftIOK func(io.Kleisli[E, BreakerState]) func(HKTT) HKTT,
|
||||
|
||||
chainFirstIOK2 func(io.Kleisli[Either[E, T], Void]) func(HKTT) HKTT,
|
||||
|
||||
fromIO func(IO[func(HKTT) HKTT]) HKTOP,
|
||||
flap func(HKTT) func(HKTOP) HKTHKTT,
|
||||
flatten func(HKTHKTT) HKTT,
|
||||
@@ -437,47 +469,22 @@ func MakeCircuitBreaker[E, T, HKTT, HKTOP, HKTHKTT any](
|
||||
reader.Of[HKTT],
|
||||
)
|
||||
|
||||
handleSuccess := handleSuccessOnClosed(currentTime, addSuccess)
|
||||
handleFailure := handleFailureOnClosed(currentTime, addError, checkClosedState, openCircuit)
|
||||
handleSuccess2 := handleSuccessOnClosed(addSuccess)
|
||||
handleFailure2 := handleFailureOnClosed(addError, checkClosedState, openCircuit)
|
||||
|
||||
handleError2 := handleErrorOnClosed2(checkError, handleSuccess2, handleFailure2)
|
||||
|
||||
metricsClose2 := reportOnClose2(metrics.Accept, metrics.Open)
|
||||
apply2 := applyAndReportClose2(currentTime, metricsClose2)
|
||||
|
||||
onClosed := func(modify io.Kleisli[Endomorphism[BreakerState], BreakerState]) Operator {
|
||||
|
||||
return F.Flow2(
|
||||
// error case
|
||||
chainFirstLeftIOK(F.Flow3(
|
||||
checkError,
|
||||
option.Fold(
|
||||
// the error is not applicable, handle as success
|
||||
F.Pipe2(
|
||||
modify,
|
||||
handleSuccess,
|
||||
lazy.Of,
|
||||
),
|
||||
// the error is relevant, record it
|
||||
F.Pipe2(
|
||||
modify,
|
||||
handleFailure,
|
||||
reader.Of[E],
|
||||
),
|
||||
),
|
||||
// metering
|
||||
io.ChainFirst(either.Fold(
|
||||
F.Flow2(
|
||||
openedAtLens.Get,
|
||||
metrics.Open,
|
||||
),
|
||||
func(c ClosedState) IO[Void] {
|
||||
return io.Of(function.VOID)
|
||||
},
|
||||
)),
|
||||
)),
|
||||
// good case
|
||||
chainFirstIOK(F.Pipe2(
|
||||
modify,
|
||||
handleSuccess,
|
||||
reader.Of[T],
|
||||
)),
|
||||
)
|
||||
return chainFirstIOK2(F.Flow2(
|
||||
either.Fold(
|
||||
handleError2,
|
||||
reader.Of[T](handleSuccess2),
|
||||
),
|
||||
apply2(modify),
|
||||
))
|
||||
}
|
||||
|
||||
onCanary := func(modify io.Kleisli[Endomorphism[BreakerState], BreakerState]) Operator {
|
||||
|
||||
@@ -5,12 +5,12 @@ import (
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/IBM/fp-go/v2/either"
|
||||
"github.com/IBM/fp-go/v2/function"
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/io"
|
||||
"github.com/IBM/fp-go/v2/ioref"
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
"github.com/IBM/fp-go/v2/reader"
|
||||
"github.com/IBM/fp-go/v2/retry"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
@@ -452,43 +452,128 @@ func TestIsResetTimeExceeded(t *testing.T) {
|
||||
|
||||
// TestHandleSuccessOnClosed tests the handleSuccessOnClosed function
|
||||
func TestHandleSuccessOnClosed(t *testing.T) {
|
||||
t.Run("resets failure count on success", func(t *testing.T) {
|
||||
t.Run("updates closed state with success when circuit is closed", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
currentTime := vt.Now
|
||||
addSuccess := reader.From1(ClosedState.AddSuccess)
|
||||
currentTime := vt.Now()
|
||||
|
||||
// Create initial state with some failures
|
||||
now := vt.Now()
|
||||
// Create a simple addSuccess reader that increments a counter
|
||||
addSuccess := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
return func(cs ClosedState) ClosedState {
|
||||
return cs.AddSuccess(ct)
|
||||
}
|
||||
}
|
||||
|
||||
// Create initial closed state
|
||||
initialClosed := MakeClosedStateCounter(3)
|
||||
initialClosed = initialClosed.AddError(now)
|
||||
initialClosed = initialClosed.AddError(now)
|
||||
initialState := createClosedCircuit(initialClosed)
|
||||
|
||||
ref := io.Run(ioref.MakeIORef(initialState))
|
||||
modify := modifyV(ref)
|
||||
// Apply handleSuccessOnClosed
|
||||
handler := handleSuccessOnClosed(addSuccess)
|
||||
endomorphism := handler(currentTime)
|
||||
result := endomorphism(initialState)
|
||||
|
||||
handler := handleSuccessOnClosed(currentTime, addSuccess)
|
||||
// Verify the state is still closed
|
||||
assert.True(t, IsClosed(result), "state should remain closed after success")
|
||||
|
||||
// Apply the handler
|
||||
result := io.Run(handler(modify))
|
||||
|
||||
// Verify state is still closed and failures are reset
|
||||
assert.True(t, IsClosed(result), "circuit should remain closed after success")
|
||||
// Verify the closed state was updated
|
||||
closedState := either.Fold(
|
||||
func(openState) ClosedState { return initialClosed },
|
||||
F.Identity[ClosedState],
|
||||
)(result)
|
||||
// The success should have been recorded (implementation-specific verification)
|
||||
assert.NotNil(t, closedState, "closed state should be present")
|
||||
})
|
||||
|
||||
t.Run("keeps circuit closed", func(t *testing.T) {
|
||||
t.Run("does not affect open state", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
currentTime := vt.Now
|
||||
addSuccess := reader.From1(ClosedState.AddSuccess)
|
||||
currentTime := vt.Now()
|
||||
|
||||
initialState := createClosedCircuit(MakeClosedStateCounter(3))
|
||||
ref := io.Run(ioref.MakeIORef(initialState))
|
||||
modify := modifyV(ref)
|
||||
addSuccess := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
return func(cs ClosedState) ClosedState {
|
||||
return cs.AddSuccess(ct)
|
||||
}
|
||||
}
|
||||
|
||||
handler := handleSuccessOnClosed(currentTime, addSuccess)
|
||||
result := io.Run(handler(modify))
|
||||
// Create initial open state
|
||||
initialOpen := openState{
|
||||
openedAt: currentTime.Add(-1 * time.Minute),
|
||||
resetAt: currentTime.Add(1 * time.Minute),
|
||||
retryStatus: retry.DefaultRetryStatus,
|
||||
canaryRequest: false,
|
||||
}
|
||||
initialState := createOpenCircuit(initialOpen)
|
||||
|
||||
assert.True(t, IsClosed(result), "circuit should remain closed")
|
||||
// Apply handleSuccessOnClosed
|
||||
handler := handleSuccessOnClosed(addSuccess)
|
||||
endomorphism := handler(currentTime)
|
||||
result := endomorphism(initialState)
|
||||
|
||||
// Verify the state remains open and unchanged
|
||||
assert.True(t, IsOpen(result), "state should remain open")
|
||||
|
||||
// Extract and verify the open state is unchanged
|
||||
openResult := either.Fold(
|
||||
func(os openState) openState { return os },
|
||||
func(ClosedState) openState { return initialOpen },
|
||||
)(result)
|
||||
assert.Equal(t, initialOpen.openedAt, openResult.openedAt, "openedAt should be unchanged")
|
||||
assert.Equal(t, initialOpen.resetAt, openResult.resetAt, "resetAt should be unchanged")
|
||||
assert.Equal(t, initialOpen.canaryRequest, openResult.canaryRequest, "canaryRequest should be unchanged")
|
||||
})
|
||||
|
||||
t.Run("preserves time parameter through reader", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
time1 := vt.Now()
|
||||
vt.Advance(1 * time.Hour)
|
||||
time2 := vt.Now()
|
||||
|
||||
var capturedTime time.Time
|
||||
addSuccess := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
capturedTime = ct
|
||||
return F.Identity[ClosedState]
|
||||
}
|
||||
|
||||
initialClosed := MakeClosedStateCounter(3)
|
||||
initialState := createClosedCircuit(initialClosed)
|
||||
|
||||
handler := handleSuccessOnClosed(addSuccess)
|
||||
|
||||
// Apply with time1
|
||||
endomorphism1 := handler(time1)
|
||||
endomorphism1(initialState)
|
||||
assert.Equal(t, time1, capturedTime, "should pass time1 to addSuccess")
|
||||
|
||||
// Apply with time2
|
||||
endomorphism2 := handler(time2)
|
||||
endomorphism2(initialState)
|
||||
assert.Equal(t, time2, capturedTime, "should pass time2 to addSuccess")
|
||||
})
|
||||
|
||||
t.Run("composes correctly with multiple successes", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
currentTime := vt.Now()
|
||||
|
||||
addSuccess := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
return func(cs ClosedState) ClosedState {
|
||||
return cs.AddSuccess(ct)
|
||||
}
|
||||
}
|
||||
|
||||
initialClosed := MakeClosedStateCounter(3)
|
||||
initialState := createClosedCircuit(initialClosed)
|
||||
|
||||
handler := handleSuccessOnClosed(addSuccess)
|
||||
endomorphism := handler(currentTime)
|
||||
|
||||
// Apply multiple times
|
||||
result1 := endomorphism(initialState)
|
||||
result2 := endomorphism(result1)
|
||||
result3 := endomorphism(result2)
|
||||
|
||||
// All should remain closed
|
||||
assert.True(t, IsClosed(result1), "state should remain closed after first success")
|
||||
assert.True(t, IsClosed(result2), "state should remain closed after second success")
|
||||
assert.True(t, IsClosed(result3), "state should remain closed after third success")
|
||||
})
|
||||
}
|
||||
|
||||
@@ -496,9 +581,26 @@ func TestHandleSuccessOnClosed(t *testing.T) {
|
||||
func TestHandleFailureOnClosed(t *testing.T) {
|
||||
t.Run("keeps circuit closed when threshold not exceeded", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
currentTime := vt.Now
|
||||
addError := reader.From1(ClosedState.AddError)
|
||||
checkClosedState := reader.From1(ClosedState.Check)
|
||||
currentTime := vt.Now()
|
||||
|
||||
// Create a closed state that allows 3 errors
|
||||
initialClosed := MakeClosedStateCounter(3)
|
||||
|
||||
// addError increments error count
|
||||
addError := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
return func(cs ClosedState) ClosedState {
|
||||
return cs.AddError(ct)
|
||||
}
|
||||
}
|
||||
|
||||
// checkClosedState returns Some if under threshold
|
||||
checkClosedState := func(ct time.Time) option.Kleisli[ClosedState, ClosedState] {
|
||||
return func(cs ClosedState) Option[ClosedState] {
|
||||
return cs.Check(ct)
|
||||
}
|
||||
}
|
||||
|
||||
// openCircuit creates an open state (shouldn't be called in this test)
|
||||
openCircuit := func(ct time.Time) openState {
|
||||
return openState{
|
||||
openedAt: ct,
|
||||
@@ -508,26 +610,39 @@ func TestHandleFailureOnClosed(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
// Create initial state with room for more failures
|
||||
now := vt.Now()
|
||||
initialClosed := MakeClosedStateCounter(5) // threshold is 5
|
||||
initialClosed = initialClosed.AddError(now)
|
||||
initialState := createClosedCircuit(initialClosed)
|
||||
|
||||
ref := io.Run(ioref.MakeIORef(initialState))
|
||||
modify := modifyV(ref)
|
||||
handler := handleFailureOnClosed(addError, checkClosedState, openCircuit)
|
||||
endomorphism := handler(currentTime)
|
||||
|
||||
handler := handleFailureOnClosed(currentTime, addError, checkClosedState, openCircuit)
|
||||
result := io.Run(handler(modify))
|
||||
// First error - should stay closed
|
||||
result1 := endomorphism(initialState)
|
||||
assert.True(t, IsClosed(result1), "circuit should remain closed after first error")
|
||||
|
||||
assert.True(t, IsClosed(result), "circuit should remain closed when threshold not exceeded")
|
||||
// Second error - should stay closed
|
||||
result2 := endomorphism(result1)
|
||||
assert.True(t, IsClosed(result2), "circuit should remain closed after second error")
|
||||
})
|
||||
|
||||
t.Run("opens circuit when threshold exceeded", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
currentTime := vt.Now
|
||||
addError := reader.From1(ClosedState.AddError)
|
||||
checkClosedState := reader.From1(ClosedState.Check)
|
||||
currentTime := vt.Now()
|
||||
|
||||
// Create a closed state that allows only 2 errors (opens at 2nd error)
|
||||
initialClosed := MakeClosedStateCounter(2)
|
||||
|
||||
addError := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
return func(cs ClosedState) ClosedState {
|
||||
return cs.AddError(ct)
|
||||
}
|
||||
}
|
||||
|
||||
checkClosedState := func(ct time.Time) option.Kleisli[ClosedState, ClosedState] {
|
||||
return func(cs ClosedState) Option[ClosedState] {
|
||||
return cs.Check(ct)
|
||||
}
|
||||
}
|
||||
|
||||
openCircuit := func(ct time.Time) openState {
|
||||
return openState{
|
||||
openedAt: ct,
|
||||
@@ -537,26 +652,85 @@ func TestHandleFailureOnClosed(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
// Create initial state at threshold
|
||||
now := vt.Now()
|
||||
initialClosed := MakeClosedStateCounter(2) // threshold is 2
|
||||
initialClosed = initialClosed.AddError(now)
|
||||
initialState := createClosedCircuit(initialClosed)
|
||||
|
||||
ref := io.Run(ioref.MakeIORef(initialState))
|
||||
modify := modifyV(ref)
|
||||
handler := handleFailureOnClosed(addError, checkClosedState, openCircuit)
|
||||
endomorphism := handler(currentTime)
|
||||
|
||||
handler := handleFailureOnClosed(currentTime, addError, checkClosedState, openCircuit)
|
||||
result := io.Run(handler(modify))
|
||||
// First error - should stay closed (count=1, threshold=2)
|
||||
result1 := endomorphism(initialState)
|
||||
assert.True(t, IsClosed(result1), "circuit should remain closed after first error")
|
||||
|
||||
assert.True(t, IsOpen(result), "circuit should open when threshold exceeded")
|
||||
// Second error - should open (count=2, threshold=2)
|
||||
result2 := endomorphism(result1)
|
||||
assert.True(t, IsOpen(result2), "circuit should open when threshold reached")
|
||||
})
|
||||
|
||||
t.Run("records failure in closed state", func(t *testing.T) {
|
||||
t.Run("creates open state with correct reset time", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
currentTime := vt.Now
|
||||
addError := reader.From1(ClosedState.AddError)
|
||||
checkClosedState := reader.From1(ClosedState.Check)
|
||||
currentTime := vt.Now()
|
||||
expectedResetTime := currentTime.Add(5 * time.Minute)
|
||||
|
||||
initialClosed := MakeClosedStateCounter(1) // Opens at 1st error
|
||||
|
||||
addError := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
return func(cs ClosedState) ClosedState {
|
||||
return cs.AddError(ct)
|
||||
}
|
||||
}
|
||||
|
||||
checkClosedState := func(ct time.Time) option.Kleisli[ClosedState, ClosedState] {
|
||||
return func(cs ClosedState) Option[ClosedState] {
|
||||
return cs.Check(ct)
|
||||
}
|
||||
}
|
||||
|
||||
openCircuit := func(ct time.Time) openState {
|
||||
return openState{
|
||||
openedAt: ct,
|
||||
resetAt: expectedResetTime,
|
||||
retryStatus: retry.DefaultRetryStatus,
|
||||
canaryRequest: false,
|
||||
}
|
||||
}
|
||||
|
||||
initialState := createClosedCircuit(initialClosed)
|
||||
|
||||
handler := handleFailureOnClosed(addError, checkClosedState, openCircuit)
|
||||
endomorphism := handler(currentTime)
|
||||
|
||||
// First error - should open immediately (threshold=1)
|
||||
result1 := endomorphism(initialState)
|
||||
assert.True(t, IsOpen(result1), "circuit should open after first error")
|
||||
|
||||
// Verify the open state has correct reset time
|
||||
resultOpen := either.Fold(
|
||||
func(os openState) openState { return os },
|
||||
func(ClosedState) openState { return openState{} },
|
||||
)(result1)
|
||||
assert.Equal(t, expectedResetTime, resultOpen.resetAt, "reset time should match expected")
|
||||
assert.Equal(t, currentTime, resultOpen.openedAt, "opened time should be current time")
|
||||
})
|
||||
|
||||
t.Run("edge case: zero error threshold", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
currentTime := vt.Now()
|
||||
|
||||
// Create a closed state that allows 0 errors (opens immediately)
|
||||
initialClosed := MakeClosedStateCounter(0)
|
||||
|
||||
addError := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
return func(cs ClosedState) ClosedState {
|
||||
return cs.AddError(ct)
|
||||
}
|
||||
}
|
||||
|
||||
checkClosedState := func(ct time.Time) option.Kleisli[ClosedState, ClosedState] {
|
||||
return func(cs ClosedState) Option[ClosedState] {
|
||||
return cs.Check(ct)
|
||||
}
|
||||
}
|
||||
|
||||
openCircuit := func(ct time.Time) openState {
|
||||
return openState{
|
||||
openedAt: ct,
|
||||
@@ -566,14 +740,212 @@ func TestHandleFailureOnClosed(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
initialState := createClosedCircuit(MakeClosedStateCounter(10))
|
||||
ref := io.Run(ioref.MakeIORef(initialState))
|
||||
modify := modifyV(ref)
|
||||
initialState := createClosedCircuit(initialClosed)
|
||||
|
||||
handler := handleFailureOnClosed(currentTime, addError, checkClosedState, openCircuit)
|
||||
result := io.Run(handler(modify))
|
||||
handler := handleFailureOnClosed(addError, checkClosedState, openCircuit)
|
||||
endomorphism := handler(currentTime)
|
||||
|
||||
// Should still be closed but with failure recorded
|
||||
assert.True(t, IsClosed(result), "circuit should remain closed")
|
||||
// First error should immediately open the circuit
|
||||
result := endomorphism(initialState)
|
||||
assert.True(t, IsOpen(result), "circuit should open immediately with zero threshold")
|
||||
})
|
||||
|
||||
t.Run("edge case: very high error threshold", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
currentTime := vt.Now()
|
||||
|
||||
// Create a closed state that allows 1000 errors
|
||||
initialClosed := MakeClosedStateCounter(1000)
|
||||
|
||||
addError := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
return func(cs ClosedState) ClosedState {
|
||||
return cs.AddError(ct)
|
||||
}
|
||||
}
|
||||
|
||||
checkClosedState := func(ct time.Time) option.Kleisli[ClosedState, ClosedState] {
|
||||
return func(cs ClosedState) Option[ClosedState] {
|
||||
return cs.Check(ct)
|
||||
}
|
||||
}
|
||||
|
||||
openCircuit := func(ct time.Time) openState {
|
||||
return openState{
|
||||
openedAt: ct,
|
||||
resetAt: ct.Add(1 * time.Minute),
|
||||
retryStatus: retry.DefaultRetryStatus,
|
||||
canaryRequest: false,
|
||||
}
|
||||
}
|
||||
|
||||
initialState := createClosedCircuit(initialClosed)
|
||||
|
||||
handler := handleFailureOnClosed(addError, checkClosedState, openCircuit)
|
||||
endomorphism := handler(currentTime)
|
||||
|
||||
// Apply many errors
|
||||
result := initialState
|
||||
for i := 0; i < 100; i++ {
|
||||
result = endomorphism(result)
|
||||
}
|
||||
|
||||
// Should still be closed after 100 errors
|
||||
assert.True(t, IsClosed(result), "circuit should remain closed with high threshold")
|
||||
})
|
||||
|
||||
t.Run("preserves time parameter through reader chain", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
time1 := vt.Now()
|
||||
vt.Advance(2 * time.Hour)
|
||||
time2 := vt.Now()
|
||||
|
||||
var capturedAddErrorTime, capturedCheckTime, capturedOpenTime time.Time
|
||||
|
||||
initialClosed := MakeClosedStateCounter(2) // Need 2 errors to open
|
||||
|
||||
addError := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
capturedAddErrorTime = ct
|
||||
return func(cs ClosedState) ClosedState {
|
||||
return cs.AddError(ct)
|
||||
}
|
||||
}
|
||||
|
||||
checkClosedState := func(ct time.Time) option.Kleisli[ClosedState, ClosedState] {
|
||||
capturedCheckTime = ct
|
||||
return func(cs ClosedState) Option[ClosedState] {
|
||||
return cs.Check(ct)
|
||||
}
|
||||
}
|
||||
|
||||
openCircuit := func(ct time.Time) openState {
|
||||
capturedOpenTime = ct
|
||||
return openState{
|
||||
openedAt: ct,
|
||||
resetAt: ct.Add(1 * time.Minute),
|
||||
retryStatus: retry.DefaultRetryStatus,
|
||||
canaryRequest: false,
|
||||
}
|
||||
}
|
||||
|
||||
initialState := createClosedCircuit(initialClosed)
|
||||
|
||||
handler := handleFailureOnClosed(addError, checkClosedState, openCircuit)
|
||||
|
||||
// Apply with time1 - first error, stays closed
|
||||
endomorphism1 := handler(time1)
|
||||
result1 := endomorphism1(initialState)
|
||||
assert.Equal(t, time1, capturedAddErrorTime, "addError should receive time1")
|
||||
assert.Equal(t, time1, capturedCheckTime, "checkClosedState should receive time1")
|
||||
|
||||
// Apply with time2 - second error, should trigger open
|
||||
endomorphism2 := handler(time2)
|
||||
endomorphism2(result1)
|
||||
assert.Equal(t, time2, capturedAddErrorTime, "addError should receive time2")
|
||||
assert.Equal(t, time2, capturedCheckTime, "checkClosedState should receive time2")
|
||||
assert.Equal(t, time2, capturedOpenTime, "openCircuit should receive time2")
|
||||
})
|
||||
|
||||
t.Run("handles transition from closed to open correctly", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
currentTime := vt.Now()
|
||||
|
||||
initialClosed := MakeClosedStateCounter(2) // Opens at 2nd error
|
||||
|
||||
addError := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
return func(cs ClosedState) ClosedState {
|
||||
return cs.AddError(ct)
|
||||
}
|
||||
}
|
||||
|
||||
checkClosedState := func(ct time.Time) option.Kleisli[ClosedState, ClosedState] {
|
||||
return func(cs ClosedState) Option[ClosedState] {
|
||||
return cs.Check(ct)
|
||||
}
|
||||
}
|
||||
|
||||
openCircuit := func(ct time.Time) openState {
|
||||
return openState{
|
||||
openedAt: ct,
|
||||
resetAt: ct.Add(1 * time.Minute),
|
||||
retryStatus: retry.DefaultRetryStatus,
|
||||
canaryRequest: false,
|
||||
}
|
||||
}
|
||||
|
||||
handler := handleFailureOnClosed(addError, checkClosedState, openCircuit)
|
||||
endomorphism := handler(currentTime)
|
||||
|
||||
// Start with closed state
|
||||
state := createClosedCircuit(initialClosed)
|
||||
assert.True(t, IsClosed(state), "initial state should be closed")
|
||||
|
||||
// First error - should stay closed (count=1, threshold=2)
|
||||
state = endomorphism(state)
|
||||
assert.True(t, IsClosed(state), "should remain closed after first error")
|
||||
|
||||
// Second error - should open (count=2, threshold=2)
|
||||
state = endomorphism(state)
|
||||
assert.True(t, IsOpen(state), "should open after second error")
|
||||
|
||||
// Verify it's truly open with correct properties
|
||||
resultOpen := either.Fold(
|
||||
func(os openState) openState { return os },
|
||||
func(ClosedState) openState { return openState{} },
|
||||
)(state)
|
||||
assert.False(t, resultOpen.canaryRequest, "canaryRequest should be false initially")
|
||||
assert.Equal(t, currentTime, resultOpen.openedAt, "openedAt should be current time")
|
||||
})
|
||||
|
||||
t.Run("does not affect already open state", func(t *testing.T) {
|
||||
vt := NewVirtualTimer(time.Date(2024, 1, 1, 12, 0, 0, 0, time.UTC))
|
||||
currentTime := vt.Now()
|
||||
|
||||
addError := func(ct time.Time) Endomorphism[ClosedState] {
|
||||
return func(cs ClosedState) ClosedState {
|
||||
return cs.AddError(ct)
|
||||
}
|
||||
}
|
||||
|
||||
checkClosedState := func(ct time.Time) option.Kleisli[ClosedState, ClosedState] {
|
||||
return func(cs ClosedState) Option[ClosedState] {
|
||||
return cs.Check(ct)
|
||||
}
|
||||
}
|
||||
|
||||
openCircuit := func(ct time.Time) openState {
|
||||
return openState{
|
||||
openedAt: ct,
|
||||
resetAt: ct.Add(1 * time.Minute),
|
||||
retryStatus: retry.DefaultRetryStatus,
|
||||
canaryRequest: false,
|
||||
}
|
||||
}
|
||||
|
||||
// Start with an already open state
|
||||
existingOpen := openState{
|
||||
openedAt: currentTime.Add(-5 * time.Minute),
|
||||
resetAt: currentTime.Add(5 * time.Minute),
|
||||
retryStatus: retry.DefaultRetryStatus,
|
||||
canaryRequest: true,
|
||||
}
|
||||
initialState := createOpenCircuit(existingOpen)
|
||||
|
||||
handler := handleFailureOnClosed(addError, checkClosedState, openCircuit)
|
||||
endomorphism := handler(currentTime)
|
||||
|
||||
// Apply to open state - should not change it
|
||||
result := endomorphism(initialState)
|
||||
|
||||
assert.True(t, IsOpen(result), "state should remain open")
|
||||
|
||||
// The open state should be unchanged since handleFailureOnClosed
|
||||
// only operates on the Right (closed) side of the Either
|
||||
openResult := either.Fold(
|
||||
func(os openState) openState { return os },
|
||||
func(ClosedState) openState { return openState{} },
|
||||
)(result)
|
||||
assert.Equal(t, existingOpen.openedAt, openResult.openedAt, "openedAt should be unchanged")
|
||||
assert.Equal(t, existingOpen.resetAt, openResult.resetAt, "resetAt should be unchanged")
|
||||
assert.Equal(t, existingOpen.canaryRequest, openResult.canaryRequest, "canaryRequest should be unchanged")
|
||||
})
|
||||
}
|
||||
|
||||
@@ -28,7 +28,10 @@ import (
|
||||
//
|
||||
// Thread Safety: This type is immutable and safe for concurrent use.
|
||||
type CircuitBreakerError struct {
|
||||
Name string
|
||||
// Name: The name identifying this circuit breaker instance
|
||||
Name string
|
||||
|
||||
// ResetAt: The time at which the circuit breaker will transition from open to half-open state
|
||||
ResetAt time.Time
|
||||
}
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@ import (
|
||||
"time"
|
||||
|
||||
"github.com/IBM/fp-go/v2/function"
|
||||
"github.com/IBM/fp-go/v2/io"
|
||||
)
|
||||
|
||||
type (
|
||||
@@ -110,6 +111,25 @@ type (
|
||||
name string
|
||||
logger *log.Logger
|
||||
}
|
||||
|
||||
// voidMetrics is a no-op implementation of the Metrics interface that does nothing.
|
||||
// All methods return the same pre-allocated IO[Void] operation that immediately returns
|
||||
// without performing any action.
|
||||
//
|
||||
// This implementation is useful for:
|
||||
// - Testing scenarios where metrics collection is not needed
|
||||
// - Production environments where metrics overhead should be eliminated
|
||||
// - Benchmarking circuit breaker logic without metrics interference
|
||||
// - Default initialization when no metrics implementation is provided
|
||||
//
|
||||
// Thread Safety: This implementation is safe for concurrent use. The noop IO operation
|
||||
// is immutable and can be safely shared across goroutines.
|
||||
//
|
||||
// Performance: This is the most efficient Metrics implementation as it performs no
|
||||
// operations and has minimal memory overhead (single shared IO[Void] instance).
|
||||
voidMetrics struct {
|
||||
noop IO[Void]
|
||||
}
|
||||
)
|
||||
|
||||
// doLog is a helper method that creates an IO operation for logging a circuit breaker event.
|
||||
@@ -206,3 +226,79 @@ func (m *loggingMetrics) Canary(ct time.Time) IO[Void] {
|
||||
func MakeMetricsFromLogger(name string, logger *log.Logger) Metrics {
|
||||
return &loggingMetrics{name: name, logger: logger}
|
||||
}
|
||||
|
||||
// Open implements the Metrics interface for voidMetrics.
|
||||
// Returns a no-op IO operation that does nothing.
|
||||
//
|
||||
// Thread Safety: Safe for concurrent use.
|
||||
func (m *voidMetrics) Open(_ time.Time) IO[Void] {
|
||||
return m.noop
|
||||
}
|
||||
|
||||
// Accept implements the Metrics interface for voidMetrics.
|
||||
// Returns a no-op IO operation that does nothing.
|
||||
//
|
||||
// Thread Safety: Safe for concurrent use.
|
||||
func (m *voidMetrics) Accept(_ time.Time) IO[Void] {
|
||||
return m.noop
|
||||
}
|
||||
|
||||
// Canary implements the Metrics interface for voidMetrics.
|
||||
// Returns a no-op IO operation that does nothing.
|
||||
//
|
||||
// Thread Safety: Safe for concurrent use.
|
||||
func (m *voidMetrics) Canary(_ time.Time) IO[Void] {
|
||||
return m.noop
|
||||
}
|
||||
|
||||
// Close implements the Metrics interface for voidMetrics.
|
||||
// Returns a no-op IO operation that does nothing.
|
||||
//
|
||||
// Thread Safety: Safe for concurrent use.
|
||||
func (m *voidMetrics) Close(_ time.Time) IO[Void] {
|
||||
return m.noop
|
||||
}
|
||||
|
||||
// Reject implements the Metrics interface for voidMetrics.
|
||||
// Returns a no-op IO operation that does nothing.
|
||||
//
|
||||
// Thread Safety: Safe for concurrent use.
|
||||
func (m *voidMetrics) Reject(_ time.Time) IO[Void] {
|
||||
return m.noop
|
||||
}
|
||||
|
||||
// MakeVoidMetrics creates a no-op Metrics implementation that performs no operations.
|
||||
// All methods return the same pre-allocated IO[Void] operation that does nothing when executed.
|
||||
//
|
||||
// This is useful for:
|
||||
// - Testing scenarios where metrics collection is not needed
|
||||
// - Production environments where metrics overhead should be eliminated
|
||||
// - Benchmarking circuit breaker logic without metrics interference
|
||||
// - Default initialization when no metrics implementation is provided
|
||||
//
|
||||
// Returns:
|
||||
// - Metrics: A thread-safe no-op Metrics implementation
|
||||
//
|
||||
// Thread Safety: The returned Metrics implementation is safe for concurrent use.
|
||||
// All methods return the same immutable IO[Void] operation.
|
||||
//
|
||||
// Performance: This is the most efficient Metrics implementation with minimal overhead.
|
||||
// The IO[Void] operation is pre-allocated once and reused for all method calls.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// metrics := MakeVoidMetrics()
|
||||
//
|
||||
// // All operations do nothing
|
||||
// io.Run(metrics.Open(time.Now())) // No-op
|
||||
// io.Run(metrics.Accept(time.Now())) // No-op
|
||||
// io.Run(metrics.Reject(time.Now())) // No-op
|
||||
//
|
||||
// // Useful for testing
|
||||
// breaker := MakeCircuitBreaker(
|
||||
// // ... other parameters ...
|
||||
// MakeVoidMetrics(), // No metrics overhead
|
||||
// )
|
||||
func MakeVoidMetrics() Metrics {
|
||||
return &voidMetrics{io.Of(function.VOID)}
|
||||
}
|
||||
|
||||
@@ -504,3 +504,443 @@ func TestMetricsIOOperations(t *testing.T) {
|
||||
assert.Len(t, lines, 3, "should execute multiple times")
|
||||
})
|
||||
}
|
||||
|
||||
// TestMakeVoidMetrics tests the MakeVoidMetrics constructor
|
||||
func TestMakeVoidMetrics(t *testing.T) {
|
||||
t.Run("creates valid Metrics implementation", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
|
||||
assert.NotNil(t, metrics, "MakeVoidMetrics should return non-nil Metrics")
|
||||
})
|
||||
|
||||
t.Run("returns voidMetrics type", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
|
||||
_, ok := metrics.(*voidMetrics)
|
||||
assert.True(t, ok, "should return *voidMetrics type")
|
||||
})
|
||||
|
||||
t.Run("initializes noop IO operation", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics().(*voidMetrics)
|
||||
|
||||
assert.NotNil(t, metrics.noop, "noop IO operation should be initialized")
|
||||
})
|
||||
}
|
||||
|
||||
// TestVoidMetricsAccept tests the Accept method of voidMetrics
|
||||
func TestVoidMetricsAccept(t *testing.T) {
|
||||
t.Run("returns non-nil IO operation", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Accept(timestamp)
|
||||
|
||||
assert.NotNil(t, ioOp, "should return non-nil IO operation")
|
||||
})
|
||||
|
||||
t.Run("IO operation executes without side effects", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Accept(timestamp)
|
||||
result := io.Run(ioOp)
|
||||
|
||||
assert.NotNil(t, result, "IO operation should execute successfully")
|
||||
})
|
||||
|
||||
t.Run("returns same IO operation instance", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics().(*voidMetrics)
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp1 := metrics.Accept(timestamp)
|
||||
ioOp2 := metrics.Accept(timestamp)
|
||||
|
||||
// Both should be non-nil (we can't compare functions directly in Go)
|
||||
assert.NotNil(t, ioOp1, "should return non-nil IO operation")
|
||||
assert.NotNil(t, ioOp2, "should return non-nil IO operation")
|
||||
|
||||
// Verify they execute without error
|
||||
io.Run(ioOp1)
|
||||
io.Run(ioOp2)
|
||||
})
|
||||
|
||||
t.Run("ignores timestamp parameter", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
time1 := time.Date(2026, 1, 9, 15, 30, 0, 0, time.UTC)
|
||||
time2 := time.Date(2026, 1, 9, 16, 30, 0, 0, time.UTC)
|
||||
|
||||
ioOp1 := metrics.Accept(time1)
|
||||
ioOp2 := metrics.Accept(time2)
|
||||
|
||||
// Should return same operation regardless of timestamp
|
||||
io.Run(ioOp1)
|
||||
io.Run(ioOp2)
|
||||
// No assertions needed - just verify it doesn't panic
|
||||
})
|
||||
}
|
||||
|
||||
// TestVoidMetricsReject tests the Reject method of voidMetrics
|
||||
func TestVoidMetricsReject(t *testing.T) {
|
||||
t.Run("returns non-nil IO operation", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Reject(timestamp)
|
||||
|
||||
assert.NotNil(t, ioOp, "should return non-nil IO operation")
|
||||
})
|
||||
|
||||
t.Run("IO operation executes without side effects", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Reject(timestamp)
|
||||
result := io.Run(ioOp)
|
||||
|
||||
assert.NotNil(t, result, "IO operation should execute successfully")
|
||||
})
|
||||
|
||||
t.Run("returns same IO operation instance", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Reject(timestamp)
|
||||
|
||||
assert.NotNil(t, ioOp, "should return non-nil IO operation")
|
||||
io.Run(ioOp) // Verify it executes without error
|
||||
})
|
||||
}
|
||||
|
||||
// TestVoidMetricsOpen tests the Open method of voidMetrics
|
||||
func TestVoidMetricsOpen(t *testing.T) {
|
||||
t.Run("returns non-nil IO operation", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Open(timestamp)
|
||||
|
||||
assert.NotNil(t, ioOp, "should return non-nil IO operation")
|
||||
})
|
||||
|
||||
t.Run("IO operation executes without side effects", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Open(timestamp)
|
||||
result := io.Run(ioOp)
|
||||
|
||||
assert.NotNil(t, result, "IO operation should execute successfully")
|
||||
})
|
||||
|
||||
t.Run("returns same IO operation instance", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Open(timestamp)
|
||||
|
||||
assert.NotNil(t, ioOp, "should return non-nil IO operation")
|
||||
io.Run(ioOp) // Verify it executes without error
|
||||
})
|
||||
}
|
||||
|
||||
// TestVoidMetricsClose tests the Close method of voidMetrics
|
||||
func TestVoidMetricsClose(t *testing.T) {
|
||||
t.Run("returns non-nil IO operation", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Close(timestamp)
|
||||
|
||||
assert.NotNil(t, ioOp, "should return non-nil IO operation")
|
||||
})
|
||||
|
||||
t.Run("IO operation executes without side effects", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Close(timestamp)
|
||||
result := io.Run(ioOp)
|
||||
|
||||
assert.NotNil(t, result, "IO operation should execute successfully")
|
||||
})
|
||||
|
||||
t.Run("returns same IO operation instance", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Close(timestamp)
|
||||
|
||||
assert.NotNil(t, ioOp, "should return non-nil IO operation")
|
||||
io.Run(ioOp) // Verify it executes without error
|
||||
})
|
||||
}
|
||||
|
||||
// TestVoidMetricsCanary tests the Canary method of voidMetrics
|
||||
func TestVoidMetricsCanary(t *testing.T) {
|
||||
t.Run("returns non-nil IO operation", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Canary(timestamp)
|
||||
|
||||
assert.NotNil(t, ioOp, "should return non-nil IO operation")
|
||||
})
|
||||
|
||||
t.Run("IO operation executes without side effects", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Canary(timestamp)
|
||||
result := io.Run(ioOp)
|
||||
|
||||
assert.NotNil(t, result, "IO operation should execute successfully")
|
||||
})
|
||||
|
||||
t.Run("returns same IO operation instance", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Canary(timestamp)
|
||||
|
||||
assert.NotNil(t, ioOp, "should return non-nil IO operation")
|
||||
io.Run(ioOp) // Verify it executes without error
|
||||
})
|
||||
}
|
||||
|
||||
// TestVoidMetricsThreadSafety tests concurrent access to voidMetrics
|
||||
func TestVoidMetricsThreadSafety(t *testing.T) {
|
||||
t.Run("handles concurrent metric calls", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
|
||||
var wg sync.WaitGroup
|
||||
numGoroutines := 100
|
||||
wg.Add(numGoroutines * 5) // 5 methods
|
||||
|
||||
timestamp := time.Now()
|
||||
|
||||
// Launch multiple goroutines calling all methods concurrently
|
||||
for i := 0; i < numGoroutines; i++ {
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
io.Run(metrics.Accept(timestamp))
|
||||
}()
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
io.Run(metrics.Reject(timestamp))
|
||||
}()
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
io.Run(metrics.Open(timestamp))
|
||||
}()
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
io.Run(metrics.Close(timestamp))
|
||||
}()
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
io.Run(metrics.Canary(timestamp))
|
||||
}()
|
||||
}
|
||||
|
||||
wg.Wait()
|
||||
// Test passes if no panic occurs
|
||||
})
|
||||
|
||||
t.Run("all methods return valid IO operations concurrently", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
|
||||
var wg sync.WaitGroup
|
||||
numGoroutines := 50
|
||||
wg.Add(numGoroutines)
|
||||
|
||||
timestamp := time.Now()
|
||||
results := make([]IO[Void], numGoroutines)
|
||||
|
||||
for i := 0; i < numGoroutines; i++ {
|
||||
go func(idx int) {
|
||||
defer wg.Done()
|
||||
// Each goroutine calls a different method
|
||||
switch idx % 5 {
|
||||
case 0:
|
||||
results[idx] = metrics.Accept(timestamp)
|
||||
case 1:
|
||||
results[idx] = metrics.Reject(timestamp)
|
||||
case 2:
|
||||
results[idx] = metrics.Open(timestamp)
|
||||
case 3:
|
||||
results[idx] = metrics.Close(timestamp)
|
||||
case 4:
|
||||
results[idx] = metrics.Canary(timestamp)
|
||||
}
|
||||
}(i)
|
||||
}
|
||||
|
||||
wg.Wait()
|
||||
|
||||
// All results should be non-nil and executable
|
||||
for i, result := range results {
|
||||
assert.NotNil(t, result, "result %d should be non-nil", i)
|
||||
io.Run(result) // Verify it executes without error
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// TestVoidMetricsPerformance tests performance characteristics
|
||||
func TestVoidMetricsPerformance(t *testing.T) {
|
||||
t.Run("has minimal overhead", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
// Execute many operations quickly
|
||||
iterations := 10000
|
||||
for i := 0; i < iterations; i++ {
|
||||
io.Run(metrics.Accept(timestamp))
|
||||
io.Run(metrics.Reject(timestamp))
|
||||
io.Run(metrics.Open(timestamp))
|
||||
io.Run(metrics.Close(timestamp))
|
||||
io.Run(metrics.Canary(timestamp))
|
||||
}
|
||||
// Test passes if it completes quickly without issues
|
||||
})
|
||||
|
||||
t.Run("all methods return valid IO operations", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
// All methods should return non-nil IO operations
|
||||
accept := metrics.Accept(timestamp)
|
||||
reject := metrics.Reject(timestamp)
|
||||
open := metrics.Open(timestamp)
|
||||
close := metrics.Close(timestamp)
|
||||
canary := metrics.Canary(timestamp)
|
||||
|
||||
assert.NotNil(t, accept, "Accept should return non-nil")
|
||||
assert.NotNil(t, reject, "Reject should return non-nil")
|
||||
assert.NotNil(t, open, "Open should return non-nil")
|
||||
assert.NotNil(t, close, "Close should return non-nil")
|
||||
assert.NotNil(t, canary, "Canary should return non-nil")
|
||||
|
||||
// All should execute without error
|
||||
io.Run(accept)
|
||||
io.Run(reject)
|
||||
io.Run(open)
|
||||
io.Run(close)
|
||||
io.Run(canary)
|
||||
})
|
||||
}
|
||||
|
||||
// TestVoidMetricsIntegration tests integration scenarios
|
||||
func TestVoidMetricsIntegration(t *testing.T) {
|
||||
t.Run("can be used as drop-in replacement for loggingMetrics", func(t *testing.T) {
|
||||
// Create both types of metrics
|
||||
var buf bytes.Buffer
|
||||
logger := log.New(&buf, "", 0)
|
||||
loggingMetrics := MakeMetricsFromLogger("TestCircuit", logger)
|
||||
voidMetrics := MakeVoidMetrics()
|
||||
|
||||
timestamp := time.Now()
|
||||
|
||||
// Both should implement the same interface
|
||||
var m1 Metrics = loggingMetrics
|
||||
var m2 Metrics = voidMetrics
|
||||
|
||||
// Both should be callable
|
||||
io.Run(m1.Accept(timestamp))
|
||||
io.Run(m2.Accept(timestamp))
|
||||
|
||||
// Logging metrics should have output
|
||||
assert.NotEmpty(t, buf.String(), "logging metrics should produce output")
|
||||
|
||||
// Void metrics should have no observable side effects
|
||||
// (we can't directly test this, but the test passes if no panic occurs)
|
||||
})
|
||||
|
||||
t.Run("simulates complete circuit breaker lifecycle without side effects", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
baseTime := time.Date(2026, 1, 9, 15, 30, 0, 0, time.UTC)
|
||||
|
||||
// Simulate circuit breaker lifecycle - all should be no-ops
|
||||
io.Run(metrics.Accept(baseTime))
|
||||
io.Run(metrics.Accept(baseTime.Add(1 * time.Second)))
|
||||
io.Run(metrics.Open(baseTime.Add(2 * time.Second)))
|
||||
io.Run(metrics.Reject(baseTime.Add(3 * time.Second)))
|
||||
io.Run(metrics.Canary(baseTime.Add(30 * time.Second)))
|
||||
io.Run(metrics.Close(baseTime.Add(31 * time.Second)))
|
||||
|
||||
// Test passes if no panic occurs and completes quickly
|
||||
})
|
||||
}
|
||||
|
||||
// TestVoidMetricsEdgeCases tests edge cases
|
||||
func TestVoidMetricsEdgeCases(t *testing.T) {
|
||||
t.Run("handles zero time", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
zeroTime := time.Time{}
|
||||
|
||||
io.Run(metrics.Accept(zeroTime))
|
||||
io.Run(metrics.Reject(zeroTime))
|
||||
io.Run(metrics.Open(zeroTime))
|
||||
io.Run(metrics.Close(zeroTime))
|
||||
io.Run(metrics.Canary(zeroTime))
|
||||
|
||||
// Test passes if no panic occurs
|
||||
})
|
||||
|
||||
t.Run("handles far future time", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
futureTime := time.Date(9999, 12, 31, 23, 59, 59, 0, time.UTC)
|
||||
|
||||
io.Run(metrics.Accept(futureTime))
|
||||
io.Run(metrics.Reject(futureTime))
|
||||
io.Run(metrics.Open(futureTime))
|
||||
io.Run(metrics.Close(futureTime))
|
||||
io.Run(metrics.Canary(futureTime))
|
||||
|
||||
// Test passes if no panic occurs
|
||||
})
|
||||
|
||||
t.Run("IO operations are idempotent", func(t *testing.T) {
|
||||
metrics := MakeVoidMetrics()
|
||||
timestamp := time.Now()
|
||||
|
||||
ioOp := metrics.Accept(timestamp)
|
||||
|
||||
// Execute same operation multiple times
|
||||
io.Run(ioOp)
|
||||
io.Run(ioOp)
|
||||
io.Run(ioOp)
|
||||
|
||||
// Test passes if no panic occurs
|
||||
})
|
||||
}
|
||||
|
||||
// TestMetricsComparison compares loggingMetrics and voidMetrics
|
||||
func TestMetricsComparison(t *testing.T) {
|
||||
t.Run("both implement Metrics interface", func(t *testing.T) {
|
||||
var buf bytes.Buffer
|
||||
logger := log.New(&buf, "", 0)
|
||||
|
||||
var m1 Metrics = MakeMetricsFromLogger("Test", logger)
|
||||
var m2 Metrics = MakeVoidMetrics()
|
||||
|
||||
assert.NotNil(t, m1)
|
||||
assert.NotNil(t, m2)
|
||||
})
|
||||
|
||||
t.Run("voidMetrics has no observable side effects unlike loggingMetrics", func(t *testing.T) {
|
||||
var buf bytes.Buffer
|
||||
logger := log.New(&buf, "", 0)
|
||||
loggingMetrics := MakeMetricsFromLogger("Test", logger)
|
||||
voidMetrics := MakeVoidMetrics()
|
||||
|
||||
timestamp := time.Now()
|
||||
|
||||
// Logging metrics produces output
|
||||
io.Run(loggingMetrics.Accept(timestamp))
|
||||
assert.NotEmpty(t, buf.String(), "logging metrics should produce output")
|
||||
|
||||
// Void metrics has no observable output
|
||||
// (we can only verify it doesn't panic)
|
||||
io.Run(voidMetrics.Accept(timestamp))
|
||||
})
|
||||
}
|
||||
|
||||
@@ -34,6 +34,7 @@ import (
|
||||
"github.com/IBM/fp-go/v2/pair"
|
||||
"github.com/IBM/fp-go/v2/predicate"
|
||||
"github.com/IBM/fp-go/v2/reader"
|
||||
"github.com/IBM/fp-go/v2/readerio"
|
||||
"github.com/IBM/fp-go/v2/retry"
|
||||
"github.com/IBM/fp-go/v2/state"
|
||||
)
|
||||
@@ -79,10 +80,13 @@ type (
|
||||
// and produces a value of type A. Used for dependency injection and configuration.
|
||||
Reader[R, A any] = reader.Reader[R, A]
|
||||
|
||||
ReaderIO[R, A any] = readerio.ReaderIO[R, A]
|
||||
|
||||
// openState represents the internal state when the circuit breaker is open.
|
||||
// In the open state, requests are blocked to give the failing service time to recover.
|
||||
// The circuit breaker will transition to a half-open state (canary request) after resetAt.
|
||||
openState struct {
|
||||
// openedAt is the time when the circuit breaker opened the circuit
|
||||
openedAt time.Time
|
||||
|
||||
// resetAt is the time when the circuit breaker should attempt a canary request
|
||||
|
||||
@@ -560,6 +560,63 @@ func Read[A any](r context.Context) func(ReaderIO[A]) IO[A] {
|
||||
return RIO.Read[A](r)
|
||||
}
|
||||
|
||||
// ReadIO executes a ReaderIO computation by providing a context wrapped in an IO effect.
|
||||
// This is useful when the context itself needs to be computed or retrieved through side effects.
|
||||
//
|
||||
// The function takes an IO[context.Context] (an effectful computation that produces a context) and returns
|
||||
// a function that can execute a ReaderIO[A] to produce an IO[A].
|
||||
//
|
||||
// This is particularly useful in scenarios where:
|
||||
// - The context needs to be created with side effects (e.g., loading configuration)
|
||||
// - The context requires initialization or setup
|
||||
// - You want to compose context creation with the computation that uses it
|
||||
//
|
||||
// The execution flow is:
|
||||
// 1. Execute the IO[context.Context] to get the context
|
||||
// 2. Pass the context to the ReaderIO[A] to get an IO[A]
|
||||
// 3. Execute the resulting IO[A] to get the final result A
|
||||
//
|
||||
// Type Parameters:
|
||||
// - A: The result type of the ReaderIO computation
|
||||
//
|
||||
// Parameters:
|
||||
// - r: An IO effect that produces a context.Context
|
||||
//
|
||||
// Returns:
|
||||
// - A function that takes a ReaderIO[A] and returns an IO[A]
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import (
|
||||
// "context"
|
||||
// G "github.com/IBM/fp-go/v2/io"
|
||||
// F "github.com/IBM/fp-go/v2/function"
|
||||
// )
|
||||
//
|
||||
// // Create context with side effects (e.g., loading config)
|
||||
// createContext := G.Of(context.WithValue(context.Background(), "key", "value"))
|
||||
//
|
||||
// // A computation that uses the context
|
||||
// getValue := readerio.FromReader(func(ctx context.Context) string {
|
||||
// if val := ctx.Value("key"); val != nil {
|
||||
// return val.(string)
|
||||
// }
|
||||
// return "default"
|
||||
// })
|
||||
//
|
||||
// // Compose them together
|
||||
// result := readerio.ReadIO[string](createContext)(getValue)
|
||||
// value := result() // Executes both effects and returns "value"
|
||||
//
|
||||
// Comparison with Read:
|
||||
// - [Read]: Takes a pure context.Context value and executes the ReaderIO immediately
|
||||
// - [ReadIO]: Takes an IO[context.Context] and chains the effects together
|
||||
//
|
||||
//go:inline
|
||||
func ReadIO[A any](r IO[context.Context]) func(ReaderIO[A]) IO[A] {
|
||||
return RIO.ReadIO[A](r)
|
||||
}
|
||||
|
||||
// Local transforms the context.Context environment before passing it to a ReaderIO computation.
|
||||
//
|
||||
// This is the Reader's local operation, which allows you to modify the environment
|
||||
|
||||
@@ -500,3 +500,188 @@ func TestTapWithLogging(t *testing.T) {
|
||||
assert.Equal(t, 84, value)
|
||||
assert.Equal(t, []int{42, 84}, logged)
|
||||
}
|
||||
|
||||
func TestReadIO(t *testing.T) {
|
||||
// Test basic ReadIO functionality
|
||||
contextIO := G.Of(context.WithValue(context.Background(), "testKey", "testValue"))
|
||||
rio := FromReader(func(ctx context.Context) string {
|
||||
if val := ctx.Value("testKey"); val != nil {
|
||||
return val.(string)
|
||||
}
|
||||
return "default"
|
||||
})
|
||||
|
||||
ioAction := ReadIO[string](contextIO)(rio)
|
||||
result := ioAction()
|
||||
|
||||
assert.Equal(t, "testValue", result)
|
||||
}
|
||||
|
||||
func TestReadIOWithBackground(t *testing.T) {
|
||||
// Test ReadIO with plain background context
|
||||
contextIO := G.Of(context.Background())
|
||||
rio := Of(42)
|
||||
|
||||
ioAction := ReadIO[int](contextIO)(rio)
|
||||
result := ioAction()
|
||||
|
||||
assert.Equal(t, 42, result)
|
||||
}
|
||||
|
||||
func TestReadIOWithChain(t *testing.T) {
|
||||
// Test ReadIO with chained operations
|
||||
contextIO := G.Of(context.WithValue(context.Background(), "multiplier", 3))
|
||||
|
||||
result := F.Pipe1(
|
||||
FromReader(func(ctx context.Context) int {
|
||||
if val := ctx.Value("multiplier"); val != nil {
|
||||
return val.(int)
|
||||
}
|
||||
return 1
|
||||
}),
|
||||
Chain(func(n int) ReaderIO[int] {
|
||||
return Of(n * 10)
|
||||
}),
|
||||
)
|
||||
|
||||
ioAction := ReadIO[int](contextIO)(result)
|
||||
value := ioAction()
|
||||
|
||||
assert.Equal(t, 30, value) // 3 * 10
|
||||
}
|
||||
|
||||
func TestReadIOWithMap(t *testing.T) {
|
||||
// Test ReadIO with Map operations
|
||||
contextIO := G.Of(context.Background())
|
||||
|
||||
result := F.Pipe2(
|
||||
Of(5),
|
||||
Map(N.Mul(2)),
|
||||
Map(N.Add(10)),
|
||||
)
|
||||
|
||||
ioAction := ReadIO[int](contextIO)(result)
|
||||
value := ioAction()
|
||||
|
||||
assert.Equal(t, 20, value) // (5 * 2) + 10
|
||||
}
|
||||
|
||||
func TestReadIOWithSideEffects(t *testing.T) {
|
||||
// Test ReadIO with side effects in context creation
|
||||
counter := 0
|
||||
contextIO := func() context.Context {
|
||||
counter++
|
||||
return context.WithValue(context.Background(), "counter", counter)
|
||||
}
|
||||
|
||||
rio := FromReader(func(ctx context.Context) int {
|
||||
if val := ctx.Value("counter"); val != nil {
|
||||
return val.(int)
|
||||
}
|
||||
return 0
|
||||
})
|
||||
|
||||
ioAction := ReadIO[int](contextIO)(rio)
|
||||
result := ioAction()
|
||||
|
||||
assert.Equal(t, 1, result)
|
||||
assert.Equal(t, 1, counter)
|
||||
}
|
||||
|
||||
func TestReadIOMultipleExecutions(t *testing.T) {
|
||||
// Test that ReadIO creates fresh effects on each execution
|
||||
counter := 0
|
||||
contextIO := func() context.Context {
|
||||
counter++
|
||||
return context.Background()
|
||||
}
|
||||
|
||||
rio := Of(42)
|
||||
ioAction := ReadIO[int](contextIO)(rio)
|
||||
|
||||
result1 := ioAction()
|
||||
result2 := ioAction()
|
||||
|
||||
assert.Equal(t, 42, result1)
|
||||
assert.Equal(t, 42, result2)
|
||||
assert.Equal(t, 2, counter) // Context IO executed twice
|
||||
}
|
||||
|
||||
func TestReadIOComparisonWithRead(t *testing.T) {
|
||||
// Compare ReadIO with Read to show the difference
|
||||
ctx := context.WithValue(context.Background(), "key", "value")
|
||||
|
||||
rio := FromReader(func(ctx context.Context) string {
|
||||
if val := ctx.Value("key"); val != nil {
|
||||
return val.(string)
|
||||
}
|
||||
return "default"
|
||||
})
|
||||
|
||||
// Using Read (direct context)
|
||||
ioAction1 := Read[string](ctx)(rio)
|
||||
result1 := ioAction1()
|
||||
|
||||
// Using ReadIO (context wrapped in IO)
|
||||
contextIO := G.Of(ctx)
|
||||
ioAction2 := ReadIO[string](contextIO)(rio)
|
||||
result2 := ioAction2()
|
||||
|
||||
assert.Equal(t, result1, result2)
|
||||
assert.Equal(t, "value", result1)
|
||||
assert.Equal(t, "value", result2)
|
||||
}
|
||||
|
||||
func TestReadIOWithComplexContext(t *testing.T) {
|
||||
// Test ReadIO with complex context manipulation
|
||||
type contextKey string
|
||||
const (
|
||||
userKey contextKey = "user"
|
||||
tokenKey contextKey = "token"
|
||||
)
|
||||
|
||||
contextIO := G.Of(
|
||||
context.WithValue(
|
||||
context.WithValue(context.Background(), userKey, "Alice"),
|
||||
tokenKey,
|
||||
"secret123",
|
||||
),
|
||||
)
|
||||
|
||||
rio := FromReader(func(ctx context.Context) map[string]string {
|
||||
result := make(map[string]string)
|
||||
if user := ctx.Value(userKey); user != nil {
|
||||
result["user"] = user.(string)
|
||||
}
|
||||
if token := ctx.Value(tokenKey); token != nil {
|
||||
result["token"] = token.(string)
|
||||
}
|
||||
return result
|
||||
})
|
||||
|
||||
ioAction := ReadIO[map[string]string](contextIO)(rio)
|
||||
result := ioAction()
|
||||
|
||||
assert.Equal(t, "Alice", result["user"])
|
||||
assert.Equal(t, "secret123", result["token"])
|
||||
}
|
||||
|
||||
func TestReadIOWithAsk(t *testing.T) {
|
||||
// Test ReadIO combined with Ask
|
||||
contextIO := G.Of(context.WithValue(context.Background(), "data", 100))
|
||||
|
||||
result := F.Pipe1(
|
||||
Ask(),
|
||||
Map(func(ctx context.Context) int {
|
||||
if val := ctx.Value("data"); val != nil {
|
||||
return val.(int)
|
||||
}
|
||||
return 0
|
||||
}),
|
||||
)
|
||||
|
||||
ioAction := ReadIO[int](contextIO)(result)
|
||||
value := ioAction()
|
||||
|
||||
assert.Equal(t, 100, value)
|
||||
}
|
||||
|
||||
@@ -4,6 +4,7 @@ import (
|
||||
"time"
|
||||
|
||||
"github.com/IBM/fp-go/v2/circuitbreaker"
|
||||
"github.com/IBM/fp-go/v2/context/readerio"
|
||||
"github.com/IBM/fp-go/v2/option"
|
||||
"github.com/IBM/fp-go/v2/retry"
|
||||
)
|
||||
@@ -27,6 +28,9 @@ func MakeCircuitBreaker[T any](
|
||||
Left,
|
||||
ChainFirstIOK,
|
||||
ChainFirstLeftIOK,
|
||||
|
||||
readerio.ChainFirstIOK,
|
||||
|
||||
FromIO,
|
||||
Flap,
|
||||
Flatten,
|
||||
|
||||
@@ -914,6 +914,21 @@ func Read[A any](r context.Context) func(ReaderIOResult[A]) IOResult[A] {
|
||||
return RIOR.Read[A](r)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func ReadIO[A any](r IO[context.Context]) func(ReaderIOResult[A]) IOResult[A] {
|
||||
return RIOR.ReadIO[A](r)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func ReadIOEither[A any](r IOResult[context.Context]) func(ReaderIOResult[A]) IOResult[A] {
|
||||
return RIOR.ReadIOEither[A](r)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func ReadIOResult[A any](r IOResult[context.Context]) func(ReaderIOResult[A]) IOResult[A] {
|
||||
return RIOR.ReadIOResult[A](r)
|
||||
}
|
||||
|
||||
// MonadChainLeft chains a computation on the left (error) side of a [ReaderIOResult].
|
||||
// If the input is a Left value, it applies the function f to transform the error and potentially
|
||||
// change the error type. If the input is a Right value, it passes through unchanged.
|
||||
|
||||
@@ -148,6 +148,16 @@ func Read[A any](r context.Context) func(ReaderResult[A]) Result[A] {
|
||||
return readereither.Read[error, A](r)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func ReadEither[A any](r Result[context.Context]) func(ReaderResult[A]) Result[A] {
|
||||
return readereither.ReadEither[error, A](r)
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func ReadResult[A any](r Result[context.Context]) func(ReaderResult[A]) Result[A] {
|
||||
return readereither.ReadEither[error, A](r)
|
||||
}
|
||||
|
||||
// MonadMapTo executes a ReaderResult computation, discards its success value, and returns a constant value.
|
||||
// This is the monadic version that takes both the ReaderResult and the constant value as parameters.
|
||||
//
|
||||
|
||||
91
v2/either/profunctor.go
Normal file
91
v2/either/profunctor.go
Normal file
@@ -0,0 +1,91 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package either
|
||||
|
||||
import F "github.com/IBM/fp-go/v2/function"
|
||||
|
||||
// MonadExtend applies a function to an Either value, where the function receives the entire Either as input.
|
||||
// This is the Extend (or Comonad) operation that allows computations to depend on the context.
|
||||
//
|
||||
// If the Either is Left, it returns Left unchanged without applying the function.
|
||||
// If the Either is Right, it applies the function to the entire Either and wraps the result in a Right.
|
||||
//
|
||||
// This operation is useful when you need to perform computations that depend on whether
|
||||
// a value is present (Right) or absent (Left), not just on the value itself.
|
||||
//
|
||||
// Type Parameters:
|
||||
// - E: The error type (Left channel)
|
||||
// - A: The input value type (Right channel)
|
||||
// - B: The output value type
|
||||
//
|
||||
// Parameters:
|
||||
// - fa: The Either value to extend
|
||||
// - f: Function that takes the entire Either[E, A] and produces a value of type B
|
||||
//
|
||||
// Returns:
|
||||
// - Either[E, B]: Left if input was Left, otherwise Right containing the result of f(fa)
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Count how many times we've seen a Right value
|
||||
// counter := func(e either.Either[error, int]) int {
|
||||
// return either.Fold(
|
||||
// func(err error) int { return 0 },
|
||||
// func(n int) int { return 1 },
|
||||
// )(e)
|
||||
// }
|
||||
// result := either.MonadExtend(either.Right[error](42), counter) // Right(1)
|
||||
// result := either.MonadExtend(either.Left[int](errors.New("err")), counter) // Left(error)
|
||||
//
|
||||
//go:inline
|
||||
func MonadExtend[E, A, B any](fa Either[E, A], f func(Either[E, A]) B) Either[E, B] {
|
||||
if fa.isLeft {
|
||||
return Left[B](fa.l)
|
||||
}
|
||||
return Of[E](f(fa))
|
||||
}
|
||||
|
||||
// Extend is the curried version of [MonadExtend].
|
||||
// It returns a function that applies the given function to an Either value.
|
||||
//
|
||||
// This is useful for creating reusable transformations that depend on the Either context.
|
||||
//
|
||||
// Type Parameters:
|
||||
// - E: The error type (Left channel)
|
||||
// - A: The input value type (Right channel)
|
||||
// - B: The output value type
|
||||
//
|
||||
// Parameters:
|
||||
// - f: Function that takes the entire Either[E, A] and produces a value of type B
|
||||
//
|
||||
// Returns:
|
||||
// - Operator[E, A, B]: A function that transforms Either[E, A] to Either[E, B]
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Create a reusable extender that extracts metadata
|
||||
// getMetadata := either.Extend(func(e either.Either[error, string]) string {
|
||||
// return either.Fold(
|
||||
// func(err error) string { return "error: " + err.Error() },
|
||||
// func(s string) string { return "value: " + s },
|
||||
// )(e)
|
||||
// })
|
||||
// result := getMetadata(either.Right[error]("hello")) // Right("value: hello")
|
||||
//
|
||||
//go:inline
|
||||
func Extend[E, A, B any](f func(Either[E, A]) B) Operator[E, A, B] {
|
||||
return F.Bind2nd(MonadExtend[E, A, B], f)
|
||||
}
|
||||
375
v2/either/profunctor_test.go
Normal file
375
v2/either/profunctor_test.go
Normal file
@@ -0,0 +1,375 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package either
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"strconv"
|
||||
"testing"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
S "github.com/IBM/fp-go/v2/string"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// TestMonadExtendWithRight tests MonadExtend with Right values
|
||||
func TestMonadExtendWithRight(t *testing.T) {
|
||||
t.Run("applies function to Right value", func(t *testing.T) {
|
||||
input := Right[error](42)
|
||||
|
||||
// Function that extracts and doubles the value if Right
|
||||
f := func(e Either[error, int]) int {
|
||||
return Fold(
|
||||
F.Constant1[error](0),
|
||||
N.Mul(2),
|
||||
)(e)
|
||||
}
|
||||
|
||||
result := MonadExtend(input, f)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, 84, GetOrElse(F.Constant1[error](0))(result))
|
||||
})
|
||||
|
||||
t.Run("function receives entire Either context", func(t *testing.T) {
|
||||
input := Right[error]("hello")
|
||||
|
||||
// Function that creates metadata about the Either
|
||||
f := func(e Either[error, string]) string {
|
||||
return Fold(
|
||||
func(err error) string { return "error: " + err.Error() },
|
||||
S.Prepend("value: "),
|
||||
)(e)
|
||||
}
|
||||
|
||||
result := MonadExtend(input, f)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, "value: hello", GetOrElse(func(error) string { return "" })(result))
|
||||
})
|
||||
|
||||
t.Run("can count Right occurrences", func(t *testing.T) {
|
||||
input := Right[error](100)
|
||||
|
||||
counter := func(e Either[error, int]) int {
|
||||
return Fold(
|
||||
F.Constant1[error](0),
|
||||
F.Constant1[int](1),
|
||||
)(e)
|
||||
}
|
||||
|
||||
result := MonadExtend(input, counter)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, 1, GetOrElse(func(error) int { return -1 })(result))
|
||||
})
|
||||
}
|
||||
|
||||
// TestMonadExtendWithLeft tests MonadExtend with Left values
|
||||
func TestMonadExtendWithLeft(t *testing.T) {
|
||||
t.Run("returns Left without applying function", func(t *testing.T) {
|
||||
testErr := errors.New("test error")
|
||||
input := Left[int](testErr)
|
||||
|
||||
// Function should not be called
|
||||
called := false
|
||||
f := func(e Either[error, int]) int {
|
||||
called = true
|
||||
return 42
|
||||
}
|
||||
|
||||
result := MonadExtend(input, f)
|
||||
|
||||
assert.False(t, called, "function should not be called for Left")
|
||||
assert.True(t, IsLeft(result))
|
||||
_, leftVal := Unwrap(result)
|
||||
assert.Equal(t, testErr, leftVal)
|
||||
})
|
||||
|
||||
t.Run("preserves Left error type", func(t *testing.T) {
|
||||
input := Left[string](errors.New("original error"))
|
||||
|
||||
f := func(e Either[error, string]) string {
|
||||
return "should not be called"
|
||||
}
|
||||
|
||||
result := MonadExtend(input, f)
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
_, leftVal := Unwrap(result)
|
||||
assert.Equal(t, "original error", leftVal.Error())
|
||||
})
|
||||
}
|
||||
|
||||
// TestMonadExtendEdgeCases tests edge cases for MonadExtend
|
||||
func TestMonadExtendEdgeCases(t *testing.T) {
|
||||
t.Run("function returns zero value", func(t *testing.T) {
|
||||
input := Right[error](42)
|
||||
|
||||
f := func(e Either[error, int]) int {
|
||||
return 0
|
||||
}
|
||||
|
||||
result := MonadExtend(input, f)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, 0, GetOrElse(func(error) int { return -1 })(result))
|
||||
})
|
||||
|
||||
t.Run("function changes type", func(t *testing.T) {
|
||||
input := Right[error](42)
|
||||
|
||||
f := func(e Either[error, int]) string {
|
||||
return Fold(
|
||||
F.Constant1[error]("error"),
|
||||
S.Format[int]("number: %d"),
|
||||
)(e)
|
||||
}
|
||||
|
||||
result := MonadExtend(input, f)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, "number: 42", GetOrElse(func(error) string { return "" })(result))
|
||||
})
|
||||
|
||||
t.Run("nested Either handling", func(t *testing.T) {
|
||||
inner := Right[error](10)
|
||||
outer := Right[error](inner)
|
||||
|
||||
// Extract the inner value
|
||||
f := func(e Either[error, Either[error, int]]) int {
|
||||
return Fold(
|
||||
F.Constant1[error](-1),
|
||||
func(innerEither Either[error, int]) int {
|
||||
return GetOrElse(F.Constant1[error](-2))(innerEither)
|
||||
},
|
||||
)(e)
|
||||
}
|
||||
|
||||
result := MonadExtend(outer, f)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, 10, GetOrElse(F.Constant1[error](-3))(result))
|
||||
})
|
||||
}
|
||||
|
||||
// TestExtendWithRight tests Extend (curried version) with Right values
|
||||
func TestExtendWithRight(t *testing.T) {
|
||||
t.Run("creates reusable extender", func(t *testing.T) {
|
||||
// Create a reusable extender
|
||||
doubler := Extend(func(e Either[error, int]) int {
|
||||
return Fold(
|
||||
F.Constant1[error](0),
|
||||
N.Mul(2),
|
||||
)(e)
|
||||
})
|
||||
|
||||
result1 := doubler(Right[error](21))
|
||||
result2 := doubler(Right[error](50))
|
||||
|
||||
assert.True(t, IsRight(result1))
|
||||
assert.Equal(t, 42, GetOrElse(F.Constant1[error](0))(result1))
|
||||
|
||||
assert.True(t, IsRight(result2))
|
||||
assert.Equal(t, 100, GetOrElse(F.Constant1[error](0))(result2))
|
||||
})
|
||||
|
||||
t.Run("metadata extractor", func(t *testing.T) {
|
||||
getMetadata := Extend(func(e Either[error, string]) string {
|
||||
return Fold(
|
||||
func(err error) string { return "error: " + err.Error() },
|
||||
S.Prepend("value: "),
|
||||
)(e)
|
||||
})
|
||||
|
||||
result := getMetadata(Right[error]("test"))
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, "value: test", GetOrElse(func(error) string { return "" })(result))
|
||||
})
|
||||
|
||||
t.Run("composition with other operations", func(t *testing.T) {
|
||||
// Create an extender that counts characters
|
||||
charCounter := Extend(func(e Either[error, string]) int {
|
||||
return Fold(
|
||||
F.Constant1[error](0),
|
||||
S.Size,
|
||||
)(e)
|
||||
})
|
||||
|
||||
// Apply to a Right value
|
||||
input := Right[error]("hello")
|
||||
result := charCounter(input)
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, 5, GetOrElse(func(error) int { return -1 })(result))
|
||||
})
|
||||
}
|
||||
|
||||
// TestExtendWithLeft tests Extend with Left values
|
||||
func TestExtendWithLeft(t *testing.T) {
|
||||
t.Run("returns Left without calling function", func(t *testing.T) {
|
||||
testErr := errors.New("test error")
|
||||
|
||||
called := false
|
||||
extender := Extend(func(e Either[error, int]) int {
|
||||
called = true
|
||||
return 42
|
||||
})
|
||||
|
||||
result := extender(Left[int](testErr))
|
||||
|
||||
assert.False(t, called, "function should not be called for Left")
|
||||
assert.True(t, IsLeft(result))
|
||||
_, leftVal := Unwrap(result)
|
||||
assert.Equal(t, testErr, leftVal)
|
||||
})
|
||||
|
||||
t.Run("preserves error through multiple applications", func(t *testing.T) {
|
||||
originalErr := errors.New("original")
|
||||
|
||||
extender := Extend(func(e Either[error, string]) string {
|
||||
return "transformed"
|
||||
})
|
||||
|
||||
result := extender(Left[string](originalErr))
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
_, leftVal := Unwrap(result)
|
||||
assert.Equal(t, originalErr, leftVal)
|
||||
})
|
||||
}
|
||||
|
||||
// TestExtendChaining tests chaining multiple Extend operations
|
||||
func TestExtendChaining(t *testing.T) {
|
||||
t.Run("chain multiple extenders", func(t *testing.T) {
|
||||
// First extender: double the value
|
||||
doubler := Extend(func(e Either[error, int]) int {
|
||||
return Fold(
|
||||
F.Constant1[error](0),
|
||||
N.Mul(2),
|
||||
)(e)
|
||||
})
|
||||
|
||||
// Second extender: add 10
|
||||
adder := Extend(func(e Either[error, int]) int {
|
||||
return Fold(
|
||||
F.Constant1[error](0),
|
||||
N.Add(10),
|
||||
)(e)
|
||||
})
|
||||
|
||||
input := Right[error](5)
|
||||
result := adder(doubler(input))
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, 20, GetOrElse(F.Constant1[error](0))(result))
|
||||
})
|
||||
|
||||
t.Run("short-circuits on Left", func(t *testing.T) {
|
||||
testErr := errors.New("error")
|
||||
|
||||
extender1 := Extend(func(e Either[error, int]) int { return 1 })
|
||||
extender2 := Extend(func(e Either[error, int]) int { return 2 })
|
||||
|
||||
input := Left[int](testErr)
|
||||
result := extender2(extender1(input))
|
||||
|
||||
assert.True(t, IsLeft(result))
|
||||
_, leftVal := Unwrap(result)
|
||||
assert.Equal(t, testErr, leftVal)
|
||||
})
|
||||
}
|
||||
|
||||
// TestExtendTypeTransformations tests type transformations with Extend
|
||||
func TestExtendTypeTransformations(t *testing.T) {
|
||||
t.Run("int to string transformation", func(t *testing.T) {
|
||||
toString := Extend(func(e Either[error, int]) string {
|
||||
return Fold(
|
||||
F.Constant1[error]("error"),
|
||||
strconv.Itoa,
|
||||
)(e)
|
||||
})
|
||||
|
||||
result := toString(Right[error](42))
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, "42", GetOrElse(func(error) string { return "" })(result))
|
||||
})
|
||||
|
||||
t.Run("string to bool transformation", func(t *testing.T) {
|
||||
isEmpty := Extend(func(e Either[error, string]) bool {
|
||||
return Fold(
|
||||
F.Constant1[error](true),
|
||||
S.IsEmpty,
|
||||
)(e)
|
||||
})
|
||||
|
||||
result1 := isEmpty(Right[error](""))
|
||||
result2 := isEmpty(Right[error]("hello"))
|
||||
|
||||
assert.True(t, IsRight(result1))
|
||||
assert.True(t, GetOrElse(F.Constant1[error](false))(result1))
|
||||
|
||||
assert.True(t, IsRight(result2))
|
||||
assert.False(t, GetOrElse(F.Constant1[error](true))(result2))
|
||||
})
|
||||
}
|
||||
|
||||
// TestExtendWithComplexTypes tests Extend with complex types
|
||||
func TestExtendWithComplexTypes(t *testing.T) {
|
||||
type User struct {
|
||||
Name string
|
||||
Age int
|
||||
}
|
||||
|
||||
t.Run("extract field from struct", func(t *testing.T) {
|
||||
getName := Extend(func(e Either[error, User]) string {
|
||||
return Fold(
|
||||
func(err error) string { return "unknown" },
|
||||
func(u User) string { return u.Name },
|
||||
)(e)
|
||||
})
|
||||
|
||||
user := User{Name: "Alice", Age: 30}
|
||||
result := getName(Right[error](user))
|
||||
|
||||
assert.True(t, IsRight(result))
|
||||
assert.Equal(t, "Alice", GetOrElse(func(error) string { return "" })(result))
|
||||
})
|
||||
|
||||
t.Run("compute derived value", func(t *testing.T) {
|
||||
isAdult := Extend(func(e Either[error, User]) bool {
|
||||
return Fold(
|
||||
func(err error) bool { return false },
|
||||
func(u User) bool { return u.Age >= 18 },
|
||||
)(e)
|
||||
})
|
||||
|
||||
user1 := User{Name: "Bob", Age: 25}
|
||||
user2 := User{Name: "Charlie", Age: 15}
|
||||
|
||||
result1 := isAdult(Right[error](user1))
|
||||
result2 := isAdult(Right[error](user2))
|
||||
|
||||
assert.True(t, IsRight(result1))
|
||||
assert.True(t, GetOrElse(F.Constant1[error](false))(result1))
|
||||
|
||||
assert.True(t, IsRight(result2))
|
||||
assert.False(t, GetOrElse(F.Constant1[error](true))(result2))
|
||||
})
|
||||
}
|
||||
89
v2/file/doc.go
Normal file
89
v2/file/doc.go
Normal file
@@ -0,0 +1,89 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Package file provides functional programming utilities for working with file paths
|
||||
// and I/O interfaces in Go.
|
||||
//
|
||||
// # Overview
|
||||
//
|
||||
// This package offers a collection of utility functions designed to work seamlessly
|
||||
// with functional programming patterns, particularly with the fp-go library's pipe
|
||||
// and composition utilities.
|
||||
//
|
||||
// # Path Manipulation
|
||||
//
|
||||
// The Join function provides a curried approach to path joining, making it easy to
|
||||
// create reusable path builders:
|
||||
//
|
||||
// import (
|
||||
// F "github.com/IBM/fp-go/v2/function"
|
||||
// "github.com/IBM/fp-go/v2/file"
|
||||
// )
|
||||
//
|
||||
// // Create a reusable path builder
|
||||
// addConfig := file.Join("config.json")
|
||||
// configPath := addConfig("/etc/myapp")
|
||||
// // Result: "/etc/myapp/config.json"
|
||||
//
|
||||
// // Use in a functional pipeline
|
||||
// logPath := F.Pipe1("/var/log", file.Join("app.log"))
|
||||
// // Result: "/var/log/app.log"
|
||||
//
|
||||
// // Chain multiple joins
|
||||
// deepPath := F.Pipe2(
|
||||
// "/root",
|
||||
// file.Join("subdir"),
|
||||
// file.Join("file.txt"),
|
||||
// )
|
||||
// // Result: "/root/subdir/file.txt"
|
||||
//
|
||||
// # I/O Interface Conversions
|
||||
//
|
||||
// The package provides generic type conversion functions for common I/O interfaces.
|
||||
// These are useful for type erasure when you need to work with interface types
|
||||
// rather than concrete implementations:
|
||||
//
|
||||
// import (
|
||||
// "bytes"
|
||||
// "io"
|
||||
// "github.com/IBM/fp-go/v2/file"
|
||||
// )
|
||||
//
|
||||
// // Convert concrete types to interfaces
|
||||
// buf := bytes.NewBuffer([]byte("hello"))
|
||||
// var reader io.Reader = file.ToReader(buf)
|
||||
//
|
||||
// writer := &bytes.Buffer{}
|
||||
// var w io.Writer = file.ToWriter(writer)
|
||||
//
|
||||
// f, _ := os.Open("file.txt")
|
||||
// var closer io.Closer = file.ToCloser(f)
|
||||
// defer closer.Close()
|
||||
//
|
||||
// # Design Philosophy
|
||||
//
|
||||
// The functions in this package follow functional programming principles:
|
||||
//
|
||||
// - Currying: Functions like Join return functions, enabling partial application
|
||||
// - Type Safety: Generic functions maintain type safety while providing flexibility
|
||||
// - Composability: All functions work well with fp-go's pipe and composition utilities
|
||||
// - Immutability: Functions don't modify their inputs
|
||||
//
|
||||
// # Performance
|
||||
//
|
||||
// The type conversion functions (ToReader, ToWriter, ToCloser) have zero overhead
|
||||
// as they simply return their input cast to the interface type. The Join function
|
||||
// uses Go's standard filepath.Join internally, ensuring cross-platform compatibility.
|
||||
package file
|
||||
@@ -13,6 +13,9 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Package file provides utility functions for working with file paths and I/O interfaces.
|
||||
// It offers functional programming utilities for path manipulation and type conversions
|
||||
// for common I/O interfaces.
|
||||
package file
|
||||
|
||||
import (
|
||||
@@ -20,24 +23,93 @@ import (
|
||||
"path/filepath"
|
||||
)
|
||||
|
||||
// Join appends a filename to a root path
|
||||
func Join(name string) func(root string) string {
|
||||
// Join appends a filename to a root path using the operating system's path separator.
|
||||
// Returns a curried function that takes a root path and joins it with the provided name.
|
||||
//
|
||||
// This function follows the "data last" principle, where the data (root path) is provided
|
||||
// last, making it ideal for use in functional pipelines and partial application. The name
|
||||
// parameter is fixed first, creating a reusable path builder function.
|
||||
//
|
||||
// This is useful for creating reusable path builders in functional pipelines.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import F "github.com/IBM/fp-go/v2/function"
|
||||
//
|
||||
// // Data last: fix the filename first, apply root path later
|
||||
// addConfig := file.Join("config.json")
|
||||
// path := addConfig("/etc/myapp")
|
||||
// // path is "/etc/myapp/config.json" on Unix
|
||||
// // path is "\etc\myapp\config.json" on Windows
|
||||
//
|
||||
// // Using with Pipe (data flows through the pipeline)
|
||||
// result := F.Pipe1("/var/log", file.Join("app.log"))
|
||||
// // result is "/var/log/app.log" on Unix
|
||||
//
|
||||
// // Chain multiple joins
|
||||
// result := F.Pipe2(
|
||||
// "/root",
|
||||
// file.Join("subdir"),
|
||||
// file.Join("file.txt"),
|
||||
// )
|
||||
// // result is "/root/subdir/file.txt"
|
||||
func Join(name string) Endomorphism[string] {
|
||||
return func(root string) string {
|
||||
return filepath.Join(root, name)
|
||||
}
|
||||
}
|
||||
|
||||
// ToReader converts a [io.Reader]
|
||||
// ToReader converts any type that implements io.Reader to the io.Reader interface.
|
||||
// This is useful for type erasure when you need to work with the interface type
|
||||
// rather than a concrete implementation.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import (
|
||||
// "bytes"
|
||||
// "io"
|
||||
// )
|
||||
//
|
||||
// buf := bytes.NewBuffer([]byte("hello"))
|
||||
// var reader io.Reader = file.ToReader(buf)
|
||||
// // reader is now of type io.Reader
|
||||
func ToReader[R io.Reader](r R) io.Reader {
|
||||
return r
|
||||
}
|
||||
|
||||
// ToWriter converts a [io.Writer]
|
||||
// ToWriter converts any type that implements io.Writer to the io.Writer interface.
|
||||
// This is useful for type erasure when you need to work with the interface type
|
||||
// rather than a concrete implementation.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import (
|
||||
// "bytes"
|
||||
// "io"
|
||||
// )
|
||||
//
|
||||
// buf := &bytes.Buffer{}
|
||||
// var writer io.Writer = file.ToWriter(buf)
|
||||
// // writer is now of type io.Writer
|
||||
func ToWriter[W io.Writer](w W) io.Writer {
|
||||
return w
|
||||
}
|
||||
|
||||
// ToCloser converts a [io.Closer]
|
||||
// ToCloser converts any type that implements io.Closer to the io.Closer interface.
|
||||
// This is useful for type erasure when you need to work with the interface type
|
||||
// rather than a concrete implementation.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import (
|
||||
// "os"
|
||||
// "io"
|
||||
// )
|
||||
//
|
||||
// f, _ := os.Open("file.txt")
|
||||
// var closer io.Closer = file.ToCloser(f)
|
||||
// defer closer.Close()
|
||||
// // closer is now of type io.Closer
|
||||
func ToCloser[C io.Closer](c C) io.Closer {
|
||||
return c
|
||||
}
|
||||
|
||||
367
v2/file/getters_test.go
Normal file
367
v2/file/getters_test.go
Normal file
@@ -0,0 +1,367 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package file
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"io"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
F "github.com/IBM/fp-go/v2/function"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func TestJoin(t *testing.T) {
|
||||
t.Run("joins simple paths", func(t *testing.T) {
|
||||
result := Join("config.json")("/etc/myapp")
|
||||
expected := filepath.Join("/etc/myapp", "config.json")
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
|
||||
t.Run("joins with subdirectories", func(t *testing.T) {
|
||||
result := Join("logs/app.log")("/var")
|
||||
expected := filepath.Join("/var", "logs/app.log")
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
|
||||
t.Run("handles empty root", func(t *testing.T) {
|
||||
result := Join("file.txt")("")
|
||||
assert.Equal(t, "file.txt", result)
|
||||
})
|
||||
|
||||
t.Run("handles empty name", func(t *testing.T) {
|
||||
result := Join("")("/root")
|
||||
expected := filepath.Join("/root", "")
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
|
||||
t.Run("handles relative paths", func(t *testing.T) {
|
||||
result := Join("config.json")("./app")
|
||||
expected := filepath.Join("./app", "config.json")
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
|
||||
t.Run("normalizes path separators", func(t *testing.T) {
|
||||
result := Join("file.txt")("/root/path")
|
||||
// Should use OS-specific separator
|
||||
assert.Contains(t, result, "file.txt")
|
||||
assert.Contains(t, result, "root")
|
||||
assert.Contains(t, result, "path")
|
||||
})
|
||||
|
||||
t.Run("works with Pipe", func(t *testing.T) {
|
||||
result := F.Pipe1("/var/log", Join("app.log"))
|
||||
expected := filepath.Join("/var/log", "app.log")
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
|
||||
t.Run("chains multiple joins", func(t *testing.T) {
|
||||
result := F.Pipe2(
|
||||
"/root",
|
||||
Join("subdir"),
|
||||
Join("file.txt"),
|
||||
)
|
||||
expected := filepath.Join("/root", "subdir", "file.txt")
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
|
||||
t.Run("handles special characters", func(t *testing.T) {
|
||||
result := Join("my file.txt")("/path with spaces")
|
||||
expected := filepath.Join("/path with spaces", "my file.txt")
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
|
||||
t.Run("handles dots in path", func(t *testing.T) {
|
||||
result := Join("../config.json")("/app/current")
|
||||
expected := filepath.Join("/app/current", "../config.json")
|
||||
assert.Equal(t, expected, result)
|
||||
})
|
||||
}
|
||||
|
||||
func TestToReader(t *testing.T) {
|
||||
t.Run("converts bytes.Buffer to io.Reader", func(t *testing.T) {
|
||||
buf := bytes.NewBuffer([]byte("hello world"))
|
||||
reader := ToReader(buf)
|
||||
|
||||
// Verify it's an io.Reader
|
||||
var _ io.Reader = reader
|
||||
|
||||
// Verify it works
|
||||
data, err := io.ReadAll(reader)
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, "hello world", string(data))
|
||||
})
|
||||
|
||||
t.Run("converts bytes.Reader to io.Reader", func(t *testing.T) {
|
||||
bytesReader := bytes.NewReader([]byte("test data"))
|
||||
reader := ToReader(bytesReader)
|
||||
|
||||
var _ io.Reader = reader
|
||||
|
||||
data, err := io.ReadAll(reader)
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, "test data", string(data))
|
||||
})
|
||||
|
||||
t.Run("converts strings.Reader to io.Reader", func(t *testing.T) {
|
||||
strReader := strings.NewReader("string content")
|
||||
reader := ToReader(strReader)
|
||||
|
||||
var _ io.Reader = reader
|
||||
|
||||
data, err := io.ReadAll(reader)
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, "string content", string(data))
|
||||
})
|
||||
|
||||
t.Run("preserves reader functionality", func(t *testing.T) {
|
||||
original := bytes.NewBuffer([]byte("test"))
|
||||
reader := ToReader(original)
|
||||
|
||||
// Read once
|
||||
buf1 := make([]byte, 2)
|
||||
n, err := reader.Read(buf1)
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, 2, n)
|
||||
assert.Equal(t, "te", string(buf1))
|
||||
|
||||
// Read again
|
||||
buf2 := make([]byte, 2)
|
||||
n, err = reader.Read(buf2)
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, 2, n)
|
||||
assert.Equal(t, "st", string(buf2))
|
||||
})
|
||||
|
||||
t.Run("handles empty reader", func(t *testing.T) {
|
||||
buf := bytes.NewBuffer([]byte{})
|
||||
reader := ToReader(buf)
|
||||
|
||||
data, err := io.ReadAll(reader)
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, "", string(data))
|
||||
})
|
||||
}
|
||||
|
||||
func TestToWriter(t *testing.T) {
|
||||
t.Run("converts bytes.Buffer to io.Writer", func(t *testing.T) {
|
||||
buf := &bytes.Buffer{}
|
||||
writer := ToWriter(buf)
|
||||
|
||||
// Verify it's an io.Writer
|
||||
var _ io.Writer = writer
|
||||
|
||||
// Verify it works
|
||||
n, err := writer.Write([]byte("hello"))
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, 5, n)
|
||||
assert.Equal(t, "hello", buf.String())
|
||||
})
|
||||
|
||||
t.Run("preserves writer functionality", func(t *testing.T) {
|
||||
buf := &bytes.Buffer{}
|
||||
writer := ToWriter(buf)
|
||||
|
||||
// Write multiple times
|
||||
writer.Write([]byte("hello "))
|
||||
writer.Write([]byte("world"))
|
||||
|
||||
assert.Equal(t, "hello world", buf.String())
|
||||
})
|
||||
|
||||
t.Run("handles empty writes", func(t *testing.T) {
|
||||
buf := &bytes.Buffer{}
|
||||
writer := ToWriter(buf)
|
||||
|
||||
n, err := writer.Write([]byte{})
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, 0, n)
|
||||
assert.Equal(t, "", buf.String())
|
||||
})
|
||||
|
||||
t.Run("handles large writes", func(t *testing.T) {
|
||||
buf := &bytes.Buffer{}
|
||||
writer := ToWriter(buf)
|
||||
|
||||
data := make([]byte, 10000)
|
||||
for i := range data {
|
||||
data[i] = byte('A' + (i % 26))
|
||||
}
|
||||
|
||||
n, err := writer.Write(data)
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, 10000, n)
|
||||
assert.Equal(t, 10000, buf.Len())
|
||||
})
|
||||
}
|
||||
|
||||
func TestToCloser(t *testing.T) {
|
||||
t.Run("converts file to io.Closer", func(t *testing.T) {
|
||||
// Create a temporary file
|
||||
tmpfile, err := os.CreateTemp("", "test")
|
||||
assert.NoError(t, err)
|
||||
defer os.Remove(tmpfile.Name())
|
||||
|
||||
closer := ToCloser(tmpfile)
|
||||
|
||||
// Verify it's an io.Closer
|
||||
var _ io.Closer = closer
|
||||
|
||||
// Verify it works
|
||||
err = closer.Close()
|
||||
assert.NoError(t, err)
|
||||
})
|
||||
|
||||
t.Run("converts nopCloser to io.Closer", func(t *testing.T) {
|
||||
// Use io.NopCloser which is a standard implementation
|
||||
reader := strings.NewReader("test")
|
||||
nopCloser := io.NopCloser(reader)
|
||||
|
||||
closer := ToCloser(nopCloser)
|
||||
var _ io.Closer = closer
|
||||
|
||||
err := closer.Close()
|
||||
assert.NoError(t, err)
|
||||
})
|
||||
|
||||
t.Run("preserves close functionality", func(t *testing.T) {
|
||||
tmpfile, err := os.CreateTemp("", "test")
|
||||
assert.NoError(t, err)
|
||||
defer os.Remove(tmpfile.Name())
|
||||
|
||||
closer := ToCloser(tmpfile)
|
||||
|
||||
// Close should work
|
||||
err = closer.Close()
|
||||
assert.NoError(t, err)
|
||||
|
||||
// Subsequent operations should fail
|
||||
_, err = tmpfile.Write([]byte("test"))
|
||||
assert.Error(t, err)
|
||||
})
|
||||
}
|
||||
|
||||
// Test type conversions work together
|
||||
func TestIntegration(t *testing.T) {
|
||||
t.Run("reader and closer together", func(t *testing.T) {
|
||||
tmpfile, err := os.CreateTemp("", "test")
|
||||
assert.NoError(t, err)
|
||||
defer os.Remove(tmpfile.Name())
|
||||
|
||||
// Write some data
|
||||
tmpfile.Write([]byte("test content"))
|
||||
tmpfile.Seek(0, 0)
|
||||
|
||||
// Convert to interfaces
|
||||
reader := ToReader(tmpfile)
|
||||
closer := ToCloser(tmpfile)
|
||||
|
||||
// Use as reader
|
||||
data, err := io.ReadAll(reader)
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, "test content", string(data))
|
||||
|
||||
// Close
|
||||
err = closer.Close()
|
||||
assert.NoError(t, err)
|
||||
})
|
||||
|
||||
t.Run("writer and closer together", func(t *testing.T) {
|
||||
tmpfile, err := os.CreateTemp("", "test")
|
||||
assert.NoError(t, err)
|
||||
defer os.Remove(tmpfile.Name())
|
||||
|
||||
// Convert to interfaces
|
||||
writer := ToWriter(tmpfile)
|
||||
closer := ToCloser(tmpfile)
|
||||
|
||||
// Use as writer
|
||||
n, err := writer.Write([]byte("test data"))
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, 9, n)
|
||||
|
||||
// Close
|
||||
err = closer.Close()
|
||||
assert.NoError(t, err)
|
||||
|
||||
// Verify data was written
|
||||
data, err := os.ReadFile(tmpfile.Name())
|
||||
assert.NoError(t, err)
|
||||
assert.Equal(t, "test data", string(data))
|
||||
})
|
||||
|
||||
t.Run("all conversions with file", func(t *testing.T) {
|
||||
tmpfile, err := os.CreateTemp("", "test")
|
||||
assert.NoError(t, err)
|
||||
defer os.Remove(tmpfile.Name())
|
||||
|
||||
// File implements Reader, Writer, and Closer
|
||||
var reader io.Reader = ToReader(tmpfile)
|
||||
var writer io.Writer = ToWriter(tmpfile)
|
||||
var closer io.Closer = ToCloser(tmpfile)
|
||||
|
||||
// All should be non-nil
|
||||
assert.NotNil(t, reader)
|
||||
assert.NotNil(t, writer)
|
||||
assert.NotNil(t, closer)
|
||||
|
||||
// Write, read, close
|
||||
writer.Write([]byte("hello"))
|
||||
tmpfile.Seek(0, 0)
|
||||
data, _ := io.ReadAll(reader)
|
||||
assert.Equal(t, "hello", string(data))
|
||||
closer.Close()
|
||||
})
|
||||
}
|
||||
|
||||
// Benchmark tests
|
||||
func BenchmarkJoin(b *testing.B) {
|
||||
joiner := Join("config.json")
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
_ = joiner("/etc/myapp")
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkToReader(b *testing.B) {
|
||||
buf := bytes.NewBuffer([]byte("test data"))
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
_ = ToReader(buf)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkToWriter(b *testing.B) {
|
||||
buf := &bytes.Buffer{}
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
_ = ToWriter(buf)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkToCloser(b *testing.B) {
|
||||
tmpfile, _ := os.CreateTemp("", "bench")
|
||||
defer os.Remove(tmpfile.Name())
|
||||
defer tmpfile.Close()
|
||||
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
_ = ToCloser(tmpfile)
|
||||
}
|
||||
}
|
||||
45
v2/file/types.go
Normal file
45
v2/file/types.go
Normal file
@@ -0,0 +1,45 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package file
|
||||
|
||||
import "github.com/IBM/fp-go/v2/endomorphism"
|
||||
|
||||
type (
|
||||
// Endomorphism represents a function from a type to itself: A -> A.
|
||||
// This is a type alias for endomorphism.Endomorphism[A].
|
||||
//
|
||||
// In the context of the file package, this is used for functions that
|
||||
// transform strings (paths) into strings (paths), such as the Join function.
|
||||
//
|
||||
// An endomorphism has useful algebraic properties:
|
||||
// - Identity: There exists an identity endomorphism (the identity function)
|
||||
// - Composition: Endomorphisms can be composed to form new endomorphisms
|
||||
// - Associativity: Composition is associative
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import F "github.com/IBM/fp-go/v2/function"
|
||||
//
|
||||
// // Join returns an Endomorphism[string]
|
||||
// addConfig := file.Join("config.json") // Endomorphism[string]
|
||||
// addLogs := file.Join("logs") // Endomorphism[string]
|
||||
//
|
||||
// // Compose endomorphisms
|
||||
// addConfigLogs := F.Flow2(addLogs, addConfig)
|
||||
// result := addConfigLogs("/var")
|
||||
// // result is "/var/logs/config.json"
|
||||
Endomorphism[A any] = endomorphism.Endomorphism[A]
|
||||
)
|
||||
320
v2/ord/monoid_test.go
Normal file
320
v2/ord/monoid_test.go
Normal file
@@ -0,0 +1,320 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package ord
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// Test Semigroup laws
|
||||
func TestSemigroup_Associativity(t *testing.T) {
|
||||
type Person struct {
|
||||
LastName string
|
||||
FirstName string
|
||||
MiddleName string
|
||||
}
|
||||
|
||||
stringOrd := FromStrictCompare[string]()
|
||||
|
||||
byLastName := Contramap(func(p Person) string { return p.LastName })(stringOrd)
|
||||
byFirstName := Contramap(func(p Person) string { return p.FirstName })(stringOrd)
|
||||
byMiddleName := Contramap(func(p Person) string { return p.MiddleName })(stringOrd)
|
||||
|
||||
sg := Semigroup[Person]()
|
||||
|
||||
// Test associativity: (a <> b) <> c == a <> (b <> c)
|
||||
left := sg.Concat(sg.Concat(byLastName, byFirstName), byMiddleName)
|
||||
right := sg.Concat(byLastName, sg.Concat(byFirstName, byMiddleName))
|
||||
|
||||
p1 := Person{LastName: "Smith", FirstName: "John", MiddleName: "A"}
|
||||
p2 := Person{LastName: "Smith", FirstName: "John", MiddleName: "B"}
|
||||
|
||||
assert.Equal(t, left.Compare(p1, p2), right.Compare(p1, p2), "Associativity should hold")
|
||||
}
|
||||
|
||||
// Test Semigroup with three levels
|
||||
func TestSemigroup_ThreeLevels(t *testing.T) {
|
||||
type Employee struct {
|
||||
Department string
|
||||
Level int
|
||||
Name string
|
||||
}
|
||||
|
||||
stringOrd := FromStrictCompare[string]()
|
||||
intOrd := FromStrictCompare[int]()
|
||||
|
||||
byDept := Contramap(func(e Employee) string { return e.Department })(stringOrd)
|
||||
byLevel := Contramap(func(e Employee) int { return e.Level })(intOrd)
|
||||
byName := Contramap(func(e Employee) string { return e.Name })(stringOrd)
|
||||
|
||||
sg := Semigroup[Employee]()
|
||||
employeeOrd := sg.Concat(sg.Concat(byDept, byLevel), byName)
|
||||
|
||||
e1 := Employee{Department: "IT", Level: 3, Name: "Alice"}
|
||||
e2 := Employee{Department: "IT", Level: 3, Name: "Bob"}
|
||||
e3 := Employee{Department: "IT", Level: 2, Name: "Charlie"}
|
||||
e4 := Employee{Department: "HR", Level: 3, Name: "David"}
|
||||
|
||||
// Same dept, same level, different name
|
||||
assert.Equal(t, -1, employeeOrd.Compare(e1, e2), "Alice < Bob")
|
||||
|
||||
// Same dept, different level
|
||||
assert.Equal(t, 1, employeeOrd.Compare(e1, e3), "Level 3 > Level 2")
|
||||
|
||||
// Different dept
|
||||
assert.Equal(t, -1, employeeOrd.Compare(e4, e1), "HR < IT")
|
||||
}
|
||||
|
||||
// Test Monoid identity laws
|
||||
func TestMonoid_IdentityLaws(t *testing.T) {
|
||||
m := Monoid[int]()
|
||||
intOrd := FromStrictCompare[int]()
|
||||
emptyOrd := m.Empty()
|
||||
|
||||
// Left identity: empty <> x == x
|
||||
leftIdentity := m.Concat(emptyOrd, intOrd)
|
||||
assert.Equal(t, -1, leftIdentity.Compare(3, 5), "Left identity: 3 < 5")
|
||||
assert.Equal(t, 1, leftIdentity.Compare(5, 3), "Left identity: 5 > 3")
|
||||
|
||||
// Right identity: x <> empty == x
|
||||
rightIdentity := m.Concat(intOrd, emptyOrd)
|
||||
assert.Equal(t, -1, rightIdentity.Compare(3, 5), "Right identity: 3 < 5")
|
||||
assert.Equal(t, 1, rightIdentity.Compare(5, 3), "Right identity: 5 > 3")
|
||||
}
|
||||
|
||||
// Test Monoid with multiple empty concatenations
|
||||
func TestMonoid_MultipleEmpty(t *testing.T) {
|
||||
m := Monoid[int]()
|
||||
emptyOrd := m.Empty()
|
||||
|
||||
// Concatenating multiple empty orderings should still be empty
|
||||
combined := m.Concat(m.Concat(emptyOrd, emptyOrd), emptyOrd)
|
||||
|
||||
assert.Equal(t, 0, combined.Compare(5, 3), "Multiple empties: always equal")
|
||||
assert.Equal(t, 0, combined.Compare(3, 5), "Multiple empties: always equal")
|
||||
assert.True(t, combined.Equals(5, 3), "Multiple empties: always equal")
|
||||
}
|
||||
|
||||
// Test MaxSemigroup with edge cases
|
||||
func TestMaxSemigroup_EdgeCases(t *testing.T) {
|
||||
intOrd := FromStrictCompare[int]()
|
||||
maxSg := MaxSemigroup(intOrd)
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
a int
|
||||
b int
|
||||
expected int
|
||||
}{
|
||||
{"both positive", 5, 3, 5},
|
||||
{"both negative", -5, -3, -3},
|
||||
{"mixed signs", -5, 3, 3},
|
||||
{"zero and positive", 0, 5, 5},
|
||||
{"zero and negative", 0, -5, 0},
|
||||
{"both zero", 0, 0, 0},
|
||||
{"equal positive", 5, 5, 5},
|
||||
{"equal negative", -5, -5, -5},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
result := maxSg.Concat(tt.a, tt.b)
|
||||
assert.Equal(t, tt.expected, result)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Test MinSemigroup with edge cases
|
||||
func TestMinSemigroup_EdgeCases(t *testing.T) {
|
||||
intOrd := FromStrictCompare[int]()
|
||||
minSg := MinSemigroup(intOrd)
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
a int
|
||||
b int
|
||||
expected int
|
||||
}{
|
||||
{"both positive", 5, 3, 3},
|
||||
{"both negative", -5, -3, -5},
|
||||
{"mixed signs", -5, 3, -5},
|
||||
{"zero and positive", 0, 5, 0},
|
||||
{"zero and negative", 0, -5, -5},
|
||||
{"both zero", 0, 0, 0},
|
||||
{"equal positive", 5, 5, 5},
|
||||
{"equal negative", -5, -5, -5},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
result := minSg.Concat(tt.a, tt.b)
|
||||
assert.Equal(t, tt.expected, result)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Test MaxSemigroup with strings
|
||||
func TestMaxSemigroup_Strings(t *testing.T) {
|
||||
stringOrd := FromStrictCompare[string]()
|
||||
maxSg := MaxSemigroup(stringOrd)
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
a string
|
||||
b string
|
||||
expected string
|
||||
}{
|
||||
{"alphabetical", "apple", "banana", "banana"},
|
||||
{"same string", "apple", "apple", "apple"},
|
||||
{"empty and non-empty", "", "apple", "apple"},
|
||||
{"both empty", "", "", ""},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
result := maxSg.Concat(tt.a, tt.b)
|
||||
assert.Equal(t, tt.expected, result)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Test MinSemigroup with strings
|
||||
func TestMinSemigroup_Strings(t *testing.T) {
|
||||
stringOrd := FromStrictCompare[string]()
|
||||
minSg := MinSemigroup(stringOrd)
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
a string
|
||||
b string
|
||||
expected string
|
||||
}{
|
||||
{"alphabetical", "apple", "banana", "apple"},
|
||||
{"same string", "apple", "apple", "apple"},
|
||||
{"empty and non-empty", "", "apple", ""},
|
||||
{"both empty", "", "", ""},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
result := minSg.Concat(tt.a, tt.b)
|
||||
assert.Equal(t, tt.expected, result)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Test MaxSemigroup associativity
|
||||
func TestMaxSemigroup_Associativity(t *testing.T) {
|
||||
intOrd := FromStrictCompare[int]()
|
||||
maxSg := MaxSemigroup(intOrd)
|
||||
|
||||
// (a <> b) <> c == a <> (b <> c)
|
||||
a, b, c := 5, 3, 7
|
||||
|
||||
left := maxSg.Concat(maxSg.Concat(a, b), c)
|
||||
right := maxSg.Concat(a, maxSg.Concat(b, c))
|
||||
|
||||
assert.Equal(t, left, right, "MaxSemigroup should be associative")
|
||||
assert.Equal(t, 7, left, "Should return maximum value")
|
||||
}
|
||||
|
||||
// Test MinSemigroup associativity
|
||||
func TestMinSemigroup_Associativity(t *testing.T) {
|
||||
intOrd := FromStrictCompare[int]()
|
||||
minSg := MinSemigroup(intOrd)
|
||||
|
||||
// (a <> b) <> c == a <> (b <> c)
|
||||
a, b, c := 5, 3, 7
|
||||
|
||||
left := minSg.Concat(minSg.Concat(a, b), c)
|
||||
right := minSg.Concat(a, minSg.Concat(b, c))
|
||||
|
||||
assert.Equal(t, left, right, "MinSemigroup should be associative")
|
||||
assert.Equal(t, 3, left, "Should return minimum value")
|
||||
}
|
||||
|
||||
// Test Semigroup with reversed ordering
|
||||
func TestSemigroup_WithReverse(t *testing.T) {
|
||||
type Person struct {
|
||||
Age int
|
||||
Name string
|
||||
}
|
||||
|
||||
intOrd := FromStrictCompare[int]()
|
||||
stringOrd := FromStrictCompare[string]()
|
||||
|
||||
// Order by age descending, then by name ascending
|
||||
byAge := Contramap(func(p Person) int { return p.Age })(Reverse(intOrd))
|
||||
byName := Contramap(func(p Person) string { return p.Name })(stringOrd)
|
||||
|
||||
sg := Semigroup[Person]()
|
||||
personOrd := sg.Concat(byAge, byName)
|
||||
|
||||
p1 := Person{Age: 30, Name: "Alice"}
|
||||
p2 := Person{Age: 30, Name: "Bob"}
|
||||
p3 := Person{Age: 25, Name: "Charlie"}
|
||||
|
||||
// Same age, different name
|
||||
assert.Equal(t, -1, personOrd.Compare(p1, p2), "Alice < Bob (same age)")
|
||||
|
||||
// Different age (descending)
|
||||
assert.Equal(t, -1, personOrd.Compare(p1, p3), "30 > 25 (descending)")
|
||||
}
|
||||
|
||||
// Benchmark MaxSemigroup
|
||||
func BenchmarkMaxSemigroup(b *testing.B) {
|
||||
intOrd := FromStrictCompare[int]()
|
||||
maxSg := MaxSemigroup(intOrd)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
_ = maxSg.Concat(i, i+1)
|
||||
}
|
||||
}
|
||||
|
||||
// Benchmark MinSemigroup
|
||||
func BenchmarkMinSemigroup(b *testing.B) {
|
||||
intOrd := FromStrictCompare[int]()
|
||||
minSg := MinSemigroup(intOrd)
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
_ = minSg.Concat(i, i+1)
|
||||
}
|
||||
}
|
||||
|
||||
// Benchmark Semigroup concatenation
|
||||
func BenchmarkSemigroup_Concat(b *testing.B) {
|
||||
type Person struct {
|
||||
LastName string
|
||||
FirstName string
|
||||
}
|
||||
|
||||
stringOrd := FromStrictCompare[string]()
|
||||
byLastName := Contramap(func(p Person) string { return p.LastName })(stringOrd)
|
||||
byFirstName := Contramap(func(p Person) string { return p.FirstName })(stringOrd)
|
||||
|
||||
sg := Semigroup[Person]()
|
||||
personOrd := sg.Concat(byLastName, byFirstName)
|
||||
|
||||
p1 := Person{LastName: "Smith", FirstName: "Alice"}
|
||||
p2 := Person{LastName: "Smith", FirstName: "Bob"}
|
||||
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
_ = personOrd.Compare(p1, p2)
|
||||
}
|
||||
}
|
||||
@@ -171,7 +171,7 @@ func Reverse[T any](o Ord[T]) Ord[T] {
|
||||
// return p.Age
|
||||
// })(intOrd)
|
||||
// // Now persons are ordered by age
|
||||
func Contramap[A, B any](f func(B) A) func(Ord[A]) Ord[B] {
|
||||
func Contramap[A, B any](f func(B) A) Operator[A, B] {
|
||||
return func(o Ord[A]) Ord[B] {
|
||||
return MakeOrd(func(x, y B) int {
|
||||
return o.Compare(f(x), f(y))
|
||||
@@ -373,6 +373,8 @@ func Between[A any](o Ord[A]) func(A, A) func(A) bool {
|
||||
}
|
||||
}
|
||||
|
||||
// compareTime is a helper function that compares two time.Time values.
|
||||
// Returns -1 if a is before b, 1 if a is after b, and 0 if they are equal.
|
||||
func compareTime(a, b time.Time) int {
|
||||
if a.Before(b) {
|
||||
return -1
|
||||
|
||||
59
v2/ord/types.go
Normal file
59
v2/ord/types.go
Normal file
@@ -0,0 +1,59 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package ord
|
||||
|
||||
type (
|
||||
// Kleisli represents a function that takes a value of type A and returns an Ord[B].
|
||||
// This is useful for creating orderings that depend on input values.
|
||||
//
|
||||
// Type Parameters:
|
||||
// - A: The input type
|
||||
// - B: The type for which ordering is produced
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Create a Kleisli that produces different orderings based on input
|
||||
// var orderingFactory Kleisli[string, int] = func(mode string) Ord[int] {
|
||||
// if mode == "ascending" {
|
||||
// return ord.FromStrictCompare[int]()
|
||||
// }
|
||||
// return ord.Reverse(ord.FromStrictCompare[int]())
|
||||
// }
|
||||
// ascOrd := orderingFactory("ascending")
|
||||
// descOrd := orderingFactory("descending")
|
||||
Kleisli[A, B any] = func(A) Ord[B]
|
||||
|
||||
// Operator represents a function that transforms an Ord[A] into a value of type B.
|
||||
// This is commonly used for operations that modify or combine orderings.
|
||||
//
|
||||
// Type Parameters:
|
||||
// - A: The type for which ordering is defined
|
||||
// - B: The result type of the operation
|
||||
//
|
||||
// This is equivalent to Kleisli[Ord[A], B] and is used for operations like
|
||||
// Contramap, which takes an Ord[A] and produces an Ord[B].
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Contramap is an Operator that transforms Ord[A] to Ord[B]
|
||||
// type Person struct { Age int }
|
||||
// var ageOperator Operator[int, Person] = ord.Contramap(func(p Person) int {
|
||||
// return p.Age
|
||||
// })
|
||||
// intOrd := ord.FromStrictCompare[int]()
|
||||
// personOrd := ageOperator(intOrd)
|
||||
Operator[A, B any] = Kleisli[Ord[A], B]
|
||||
)
|
||||
203
v2/ord/types_test.go
Normal file
203
v2/ord/types_test.go
Normal file
@@ -0,0 +1,203 @@
|
||||
// Copyright (c) 2023 - 2025 IBM Corp.
|
||||
// All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package ord
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// Test Kleisli type
|
||||
func TestKleisli(t *testing.T) {
|
||||
// Create a Kleisli that produces different orderings based on input
|
||||
var orderingFactory Kleisli[string, int] = func(mode string) Ord[int] {
|
||||
if mode == "ascending" {
|
||||
return FromStrictCompare[int]()
|
||||
}
|
||||
return Reverse(FromStrictCompare[int]())
|
||||
}
|
||||
|
||||
// Test ascending order
|
||||
ascOrd := orderingFactory("ascending")
|
||||
assert.Equal(t, -1, ascOrd.Compare(3, 5), "ascending: 3 < 5")
|
||||
assert.Equal(t, 1, ascOrd.Compare(5, 3), "ascending: 5 > 3")
|
||||
assert.Equal(t, 0, ascOrd.Compare(5, 5), "ascending: 5 == 5")
|
||||
|
||||
// Test descending order
|
||||
descOrd := orderingFactory("descending")
|
||||
assert.Equal(t, 1, descOrd.Compare(3, 5), "descending: 3 > 5")
|
||||
assert.Equal(t, -1, descOrd.Compare(5, 3), "descending: 5 < 3")
|
||||
assert.Equal(t, 0, descOrd.Compare(5, 5), "descending: 5 == 5")
|
||||
}
|
||||
|
||||
// Test Kleisli with complex types
|
||||
func TestKleisli_ComplexType(t *testing.T) {
|
||||
type Person struct {
|
||||
Name string
|
||||
Age int
|
||||
}
|
||||
|
||||
// Kleisli that creates orderings based on a field selector
|
||||
var personOrderingFactory Kleisli[string, Person] = func(field string) Ord[Person] {
|
||||
stringOrd := FromStrictCompare[string]()
|
||||
intOrd := FromStrictCompare[int]()
|
||||
|
||||
switch field {
|
||||
case "name":
|
||||
return Contramap(func(p Person) string { return p.Name })(stringOrd)
|
||||
case "age":
|
||||
return Contramap(func(p Person) int { return p.Age })(intOrd)
|
||||
default:
|
||||
// Default to name ordering
|
||||
return Contramap(func(p Person) string { return p.Name })(stringOrd)
|
||||
}
|
||||
}
|
||||
|
||||
p1 := Person{Name: "Alice", Age: 30}
|
||||
p2 := Person{Name: "Bob", Age: 25}
|
||||
|
||||
// Order by name
|
||||
nameOrd := personOrderingFactory("name")
|
||||
assert.Equal(t, -1, nameOrd.Compare(p1, p2), "Alice < Bob by name")
|
||||
|
||||
// Order by age
|
||||
ageOrd := personOrderingFactory("age")
|
||||
assert.Equal(t, 1, ageOrd.Compare(p1, p2), "30 > 25 by age")
|
||||
}
|
||||
|
||||
// Test Operator type
|
||||
func TestOperator(t *testing.T) {
|
||||
type Person struct {
|
||||
Name string
|
||||
Age int
|
||||
}
|
||||
|
||||
// Operator that transforms Ord[int] to Ord[Person] by age
|
||||
var ageOperator Operator[int, Person] = Contramap(func(p Person) int {
|
||||
return p.Age
|
||||
})
|
||||
|
||||
intOrd := FromStrictCompare[int]()
|
||||
personOrd := ageOperator(intOrd)
|
||||
|
||||
p1 := Person{Name: "Alice", Age: 30}
|
||||
p2 := Person{Name: "Bob", Age: 25}
|
||||
p3 := Person{Name: "Charlie", Age: 30}
|
||||
|
||||
assert.Equal(t, 1, personOrd.Compare(p1, p2), "30 > 25")
|
||||
assert.Equal(t, -1, personOrd.Compare(p2, p1), "25 < 30")
|
||||
assert.Equal(t, 0, personOrd.Compare(p1, p3), "30 == 30")
|
||||
assert.True(t, personOrd.Equals(p1, p3), "same age")
|
||||
assert.False(t, personOrd.Equals(p1, p2), "different age")
|
||||
}
|
||||
|
||||
// Test Operator composition
|
||||
func TestOperator_Composition(t *testing.T) {
|
||||
type Address struct {
|
||||
Street string
|
||||
City string
|
||||
}
|
||||
|
||||
type Person struct {
|
||||
Name string
|
||||
Address Address
|
||||
}
|
||||
|
||||
// Create operators for different transformations
|
||||
stringOrd := FromStrictCompare[string]()
|
||||
|
||||
// Operator to order Person by city
|
||||
var cityOperator Operator[string, Person] = Contramap(func(p Person) string {
|
||||
return p.Address.City
|
||||
})
|
||||
|
||||
personOrd := cityOperator(stringOrd)
|
||||
|
||||
p1 := Person{Name: "Alice", Address: Address{Street: "Main St", City: "Boston"}}
|
||||
p2 := Person{Name: "Bob", Address: Address{Street: "Oak Ave", City: "Austin"}}
|
||||
|
||||
assert.Equal(t, 1, personOrd.Compare(p1, p2), "Boston > Austin")
|
||||
assert.Equal(t, -1, personOrd.Compare(p2, p1), "Austin < Boston")
|
||||
}
|
||||
|
||||
// Test Operator with multiple transformations
|
||||
func TestOperator_MultipleTransformations(t *testing.T) {
|
||||
type Product struct {
|
||||
Name string
|
||||
Price float64
|
||||
}
|
||||
|
||||
floatOrd := FromStrictCompare[float64]()
|
||||
|
||||
// Operator to order by price
|
||||
var priceOperator Operator[float64, Product] = Contramap(func(p Product) float64 {
|
||||
return p.Price
|
||||
})
|
||||
|
||||
// Operator to reverse the ordering
|
||||
var reverseOperator Operator[float64, Product] = func(o Ord[float64]) Ord[Product] {
|
||||
return priceOperator(Reverse(o))
|
||||
}
|
||||
|
||||
// Order by price descending
|
||||
productOrd := reverseOperator(floatOrd)
|
||||
|
||||
prod1 := Product{Name: "Widget", Price: 19.99}
|
||||
prod2 := Product{Name: "Gadget", Price: 29.99}
|
||||
|
||||
assert.Equal(t, 1, productOrd.Compare(prod1, prod2), "19.99 > 29.99 (reversed)")
|
||||
assert.Equal(t, -1, productOrd.Compare(prod2, prod1), "29.99 < 19.99 (reversed)")
|
||||
}
|
||||
|
||||
// Example test for Kleisli
|
||||
func ExampleKleisli() {
|
||||
// Create a Kleisli that produces different orderings based on input
|
||||
var orderingFactory Kleisli[string, int] = func(mode string) Ord[int] {
|
||||
if mode == "ascending" {
|
||||
return FromStrictCompare[int]()
|
||||
}
|
||||
return Reverse(FromStrictCompare[int]())
|
||||
}
|
||||
|
||||
ascOrd := orderingFactory("ascending")
|
||||
descOrd := orderingFactory("descending")
|
||||
|
||||
println(ascOrd.Compare(5, 3)) // 1
|
||||
println(descOrd.Compare(5, 3)) // -1
|
||||
}
|
||||
|
||||
// Example test for Operator
|
||||
func ExampleOperator() {
|
||||
type Person struct {
|
||||
Name string
|
||||
Age int
|
||||
}
|
||||
|
||||
// Operator that transforms Ord[int] to Ord[Person] by age
|
||||
var ageOperator Operator[int, Person] = Contramap(func(p Person) int {
|
||||
return p.Age
|
||||
})
|
||||
|
||||
intOrd := FromStrictCompare[int]()
|
||||
personOrd := ageOperator(intOrd)
|
||||
|
||||
p1 := Person{Name: "Alice", Age: 30}
|
||||
p2 := Person{Name: "Bob", Age: 25}
|
||||
|
||||
result := personOrd.Compare(p1, p2)
|
||||
println(result) // 1 (30 > 25)
|
||||
}
|
||||
@@ -60,6 +60,8 @@ import (
|
||||
// - You need to partially apply environments in a different order
|
||||
// - You're composing functions that expect parameters in reverse order
|
||||
// - You want to curry multi-parameter functions differently
|
||||
//
|
||||
//go:inline
|
||||
func Sequence[R1, R2, A any](ma Reader[R2, Reader[R1, A]]) Kleisli[R2, R1, A] {
|
||||
return function.Flip(ma)
|
||||
}
|
||||
|
||||
@@ -249,6 +249,34 @@ func MonadChain[R, A, B any](ma Reader[R, A], f Kleisli[R, A, B]) Reader[R, B] {
|
||||
// Chain sequences two Reader computations where the second depends on the result of the first.
|
||||
// This is the Monad operation that enables dependent computations.
|
||||
//
|
||||
// Relationship with Compose:
|
||||
//
|
||||
// Chain and Compose serve different purposes in Reader composition:
|
||||
//
|
||||
// - Chain: Monadic composition - sequences Readers that share the SAME environment type.
|
||||
// The second Reader depends on the VALUE produced by the first Reader, but both
|
||||
// Readers receive the same environment R. This is the monadic bind (>>=) operation.
|
||||
// Signature: Chain[R, A, B](f: A -> Reader[R, B]) -> Reader[R, A] -> Reader[R, B]
|
||||
//
|
||||
// - Compose: Function composition - chains Readers where the OUTPUT of the first
|
||||
// becomes the INPUT environment of the second. The environment types can differ.
|
||||
// This is standard function composition (.) for Readers as functions.
|
||||
// Signature: Compose[C, R, B](ab: Reader[R, B]) -> Reader[B, C] -> Reader[R, C]
|
||||
//
|
||||
// Key Differences:
|
||||
//
|
||||
// 1. Environment handling:
|
||||
// - Chain: Both Readers use the same environment R
|
||||
// - Compose: First Reader's output B becomes second Reader's input environment
|
||||
//
|
||||
// 2. Data flow:
|
||||
// - Chain: R -> A, then A -> Reader[R, B], both using same R
|
||||
// - Compose: R -> B, then B -> C (B is both output and environment)
|
||||
//
|
||||
// 3. Use cases:
|
||||
// - Chain: Dependent computations in the same context (e.g., fetch user, then fetch user's posts)
|
||||
// - Compose: Transforming nested environments (e.g., extract config from app state, then read from config)
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Config struct { UserId int }
|
||||
@@ -360,6 +388,53 @@ func Flatten[R, A any](mma Reader[R, Reader[R, A]]) Reader[R, A] {
|
||||
// Compose composes two Readers sequentially, where the output environment of the first
|
||||
// becomes the input environment of the second.
|
||||
//
|
||||
// Relationship with Chain:
|
||||
//
|
||||
// Compose and Chain serve different purposes in Reader composition:
|
||||
//
|
||||
// - Compose: Function composition - chains Readers where the OUTPUT of the first
|
||||
// becomes the INPUT environment of the second. The environment types can differ.
|
||||
// This is standard function composition (.) for Readers as functions.
|
||||
// Signature: Compose[C, R, B](ab: Reader[R, B]) -> Reader[B, C] -> Reader[R, C]
|
||||
//
|
||||
// - Chain: Monadic composition - sequences Readers that share the SAME environment type.
|
||||
// The second Reader depends on the VALUE produced by the first Reader, but both
|
||||
// Readers receive the same environment R. This is the monadic bind (>>=) operation.
|
||||
// Signature: Chain[R, A, B](f: A -> Reader[R, B]) -> Reader[R, A] -> Reader[R, B]
|
||||
//
|
||||
// Key Differences:
|
||||
//
|
||||
// 1. Environment handling:
|
||||
// - Compose: First Reader's output B becomes second Reader's input environment
|
||||
// - Chain: Both Readers use the same environment R
|
||||
//
|
||||
// 2. Data flow:
|
||||
// - Compose: R -> B, then B -> C (B is both output and environment)
|
||||
// - Chain: R -> A, then A -> Reader[R, B], both using same R
|
||||
//
|
||||
// 3. Use cases:
|
||||
// - Compose: Transforming nested environments (e.g., extract config from app state, then read from config)
|
||||
// - Chain: Dependent computations in the same context (e.g., fetch user, then fetch user's posts)
|
||||
//
|
||||
// Visual Comparison:
|
||||
//
|
||||
// // Compose: Environment transformation
|
||||
// type AppState struct { Config Config }
|
||||
// type Config struct { Port int }
|
||||
// getConfig := func(s AppState) Config { return s.Config }
|
||||
// getPort := func(c Config) int { return c.Port }
|
||||
// getPortFromState := reader.Compose(getConfig)(getPort)
|
||||
// // Flow: AppState -> Config -> int (Config is both output and next input)
|
||||
//
|
||||
// // Chain: Same environment, dependent values
|
||||
// type Env struct { UserId int; Users map[int]string }
|
||||
// getUserId := func(e Env) int { return e.UserId }
|
||||
// getUser := func(id int) reader.Reader[Env, string] {
|
||||
// return func(e Env) string { return e.Users[id] }
|
||||
// }
|
||||
// getUserName := reader.Chain(getUser)(getUserId)
|
||||
// // Flow: Env -> int, then int -> Reader[Env, string] (Env used twice)
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Config struct { Port int }
|
||||
|
||||
@@ -160,6 +160,66 @@ func Read[E1, A, E any](e E) func(ReaderEither[E, E1, A]) Either[E1, A] {
|
||||
return reader.Read[Either[E1, A]](e)
|
||||
}
|
||||
|
||||
// ReadEither applies a context wrapped in an Either to a ReaderEither to obtain its result.
|
||||
// This function is useful when the context itself may be absent or invalid (represented as Left),
|
||||
// allowing you to conditionally execute a ReaderEither computation based on the availability
|
||||
// of the required context.
|
||||
//
|
||||
// If the context Either is Left, it short-circuits and returns Left without executing the ReaderEither.
|
||||
// If the context Either is Right, it extracts the context value and applies it to the ReaderEither,
|
||||
// returning the resulting Either.
|
||||
//
|
||||
// This is particularly useful in scenarios where:
|
||||
// - Configuration or dependencies may be missing or invalid
|
||||
// - You want to chain context validation with computation execution
|
||||
// - You need to propagate context errors through your computation pipeline
|
||||
//
|
||||
// Type Parameters:
|
||||
// - E1: The error type (Left value) of both the input Either and the ReaderEither result
|
||||
// - A: The success type (Right value) of the ReaderEither result
|
||||
// - E: The context/environment type that the ReaderEither depends on
|
||||
//
|
||||
// Parameters:
|
||||
// - e: An Either[E1, E] representing the context that may or may not be available
|
||||
//
|
||||
// Returns:
|
||||
// - A function that takes a ReaderEither[E, E1, A] and returns Either[E1, A]
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Config struct{ apiKey string }
|
||||
// type ConfigError struct{ msg string }
|
||||
//
|
||||
// // A computation that needs config
|
||||
// fetchData := func(cfg Config) either.Either[ConfigError, string] {
|
||||
// if cfg.apiKey == "" {
|
||||
// return either.Left[string](ConfigError{"missing API key"})
|
||||
// }
|
||||
// return either.Right[ConfigError]("data from API")
|
||||
// }
|
||||
//
|
||||
// // Context may be invalid
|
||||
// validConfig := either.Right[ConfigError](Config{apiKey: "secret"})
|
||||
// invalidConfig := either.Left[Config](ConfigError{"config not found"})
|
||||
//
|
||||
// computation := readereither.FromReader[ConfigError](fetchData)
|
||||
//
|
||||
// // With valid config - executes computation
|
||||
// result1 := readereither.ReadEither(validConfig)(computation)
|
||||
// // result1 = Right("data from API")
|
||||
//
|
||||
// // With invalid config - short-circuits without executing
|
||||
// result2 := readereither.ReadEither(invalidConfig)(computation)
|
||||
// // result2 = Left(ConfigError{"config not found"})
|
||||
//
|
||||
//go:inline
|
||||
func ReadEither[E1, A, E any](e Either[E1, E]) func(ReaderEither[E, E1, A]) Either[E1, A] {
|
||||
return function.Flow2(
|
||||
ET.Chain[E1, E],
|
||||
Read[E1, A](e),
|
||||
)
|
||||
}
|
||||
|
||||
func MonadFlap[L, E, A, B any](fab ReaderEither[L, E, func(A) B], a A) ReaderEither[L, E, B] {
|
||||
return functor.MonadFlap(MonadMap[L, E, func(A) B, B], fab, a)
|
||||
}
|
||||
|
||||
@@ -223,3 +223,164 @@ func TestOrElse(t *testing.T) {
|
||||
appResult := wideningRecover(validationErr)(Config{})
|
||||
assert.Equal(t, ET.Right[AppError](100), appResult)
|
||||
}
|
||||
|
||||
func TestReadEither(t *testing.T) {
|
||||
type Config struct {
|
||||
apiKey string
|
||||
host string
|
||||
}
|
||||
|
||||
// Test with Right context - should execute the ReaderEither
|
||||
t.Run("Right context executes computation", func(t *testing.T) {
|
||||
validConfig := ET.Right[string](Config{apiKey: "secret", host: "localhost"})
|
||||
|
||||
computation := func(cfg Config) Either[string, int] {
|
||||
if cfg.apiKey == "secret" {
|
||||
return ET.Right[string](42)
|
||||
}
|
||||
return ET.Left[int]("invalid key")
|
||||
}
|
||||
|
||||
result := ReadEither[string, int](validConfig)(computation)
|
||||
assert.Equal(t, ET.Right[string](42), result)
|
||||
})
|
||||
|
||||
// Test with Right context but computation fails
|
||||
t.Run("Right context with failing computation", func(t *testing.T) {
|
||||
validConfig := ET.Right[string](Config{apiKey: "wrong", host: "localhost"})
|
||||
|
||||
computation := func(cfg Config) Either[string, int] {
|
||||
if cfg.apiKey == "secret" {
|
||||
return ET.Right[string](42)
|
||||
}
|
||||
return ET.Left[int]("invalid key")
|
||||
}
|
||||
|
||||
result := ReadEither[string, int](validConfig)(computation)
|
||||
assert.Equal(t, ET.Left[int]("invalid key"), result)
|
||||
})
|
||||
|
||||
// Test with Left context - should short-circuit without executing
|
||||
t.Run("Left context short-circuits", func(t *testing.T) {
|
||||
invalidConfig := ET.Left[Config]("config not found")
|
||||
|
||||
executed := false
|
||||
computation := func(cfg Config) Either[string, int] {
|
||||
executed = true
|
||||
return ET.Right[string](42)
|
||||
}
|
||||
|
||||
result := ReadEither[string, int](invalidConfig)(computation)
|
||||
assert.Equal(t, ET.Left[int]("config not found"), result)
|
||||
assert.False(t, executed, "computation should not be executed with Left context")
|
||||
})
|
||||
|
||||
// Test with complex ReaderEither computation
|
||||
t.Run("Complex ReaderEither computation", func(t *testing.T) {
|
||||
validConfig := ET.Right[string](Config{apiKey: "secret", host: "api.example.com"})
|
||||
|
||||
// A more complex computation using the config
|
||||
computation := F.Pipe2(
|
||||
Ask[Config, string](),
|
||||
Map[Config, string](func(cfg Config) string {
|
||||
return cfg.host + "/data"
|
||||
}),
|
||||
Chain[Config, string, string, int](func(url string) ReaderEither[Config, string, int] {
|
||||
return func(cfg Config) Either[string, int] {
|
||||
if cfg.apiKey != "" {
|
||||
return ET.Right[string](len(url))
|
||||
}
|
||||
return ET.Left[int]("no API key")
|
||||
}
|
||||
}),
|
||||
)
|
||||
|
||||
result := ReadEither[string, int](validConfig)(computation)
|
||||
assert.Equal(t, ET.Right[string](20), result) // len("api.example.com/data") = 20
|
||||
})
|
||||
|
||||
// Test error type consistency
|
||||
t.Run("Error type consistency", func(t *testing.T) {
|
||||
type AppError struct {
|
||||
code int
|
||||
message string
|
||||
}
|
||||
|
||||
configError := AppError{code: 404, message: "config not found"}
|
||||
invalidConfig := ET.Left[Config](configError)
|
||||
|
||||
computation := func(cfg Config) Either[AppError, string] {
|
||||
return ET.Right[AppError]("success")
|
||||
}
|
||||
|
||||
result := ReadEither[AppError, string](invalidConfig)(computation)
|
||||
assert.Equal(t, ET.Left[string](configError), result)
|
||||
})
|
||||
|
||||
// Test with chained operations
|
||||
t.Run("Chained operations with ReadEither", func(t *testing.T) {
|
||||
config1 := ET.Right[string](Config{apiKey: "key1", host: "host1"})
|
||||
config2 := ET.Right[string](Config{apiKey: "key2", host: "host2"})
|
||||
|
||||
computation := func(cfg Config) Either[string, string] {
|
||||
return ET.Right[string](cfg.host)
|
||||
}
|
||||
|
||||
// Apply first config
|
||||
result1 := ReadEither[string, string](config1)(computation)
|
||||
assert.Equal(t, ET.Right[string]("host1"), result1)
|
||||
|
||||
// Apply second config
|
||||
result2 := ReadEither[string, string](config2)(computation)
|
||||
assert.Equal(t, ET.Right[string]("host2"), result2)
|
||||
})
|
||||
|
||||
// Test with FromReader
|
||||
t.Run("ReadEither with FromReader", func(t *testing.T) {
|
||||
validConfig := ET.Right[string](Config{apiKey: "secret", host: "localhost"})
|
||||
|
||||
// Create a ReaderEither from a Reader
|
||||
readerComputation := func(cfg Config) int {
|
||||
return len(cfg.apiKey)
|
||||
}
|
||||
|
||||
computation := FromReader[string](readerComputation)
|
||||
|
||||
result := ReadEither[string, int](validConfig)(computation)
|
||||
assert.Equal(t, ET.Right[string](6), result) // len("secret") = 6
|
||||
})
|
||||
|
||||
// Test with Of (pure value)
|
||||
t.Run("ReadEither with pure value", func(t *testing.T) {
|
||||
validConfig := ET.Right[string](Config{apiKey: "secret", host: "localhost"})
|
||||
computation := Of[Config, string](100)
|
||||
|
||||
result := ReadEither[string, int](validConfig)(computation)
|
||||
assert.Equal(t, ET.Right[string](100), result)
|
||||
})
|
||||
|
||||
// Test with Left computation
|
||||
t.Run("ReadEither with Left computation", func(t *testing.T) {
|
||||
validConfig := ET.Right[string](Config{apiKey: "secret", host: "localhost"})
|
||||
computation := Left[Config, int]("computation error")
|
||||
|
||||
result := ReadEither[string, int](validConfig)(computation)
|
||||
assert.Equal(t, ET.Left[int]("computation error"), result)
|
||||
})
|
||||
|
||||
// Test composition with Read
|
||||
t.Run("ReadEither vs Read comparison", func(t *testing.T) {
|
||||
config := Config{apiKey: "secret", host: "localhost"}
|
||||
computation := func(cfg Config) Either[string, int] {
|
||||
return ET.Right[string](len(cfg.apiKey))
|
||||
}
|
||||
|
||||
// Using Read directly
|
||||
resultRead := Read[string, int](config)(computation)
|
||||
|
||||
// Using ReadEither with Right
|
||||
resultReadEither := ReadEither[string, int](ET.Right[string](config))(computation)
|
||||
|
||||
assert.Equal(t, resultRead, resultReadEither)
|
||||
})
|
||||
}
|
||||
|
||||
@@ -1112,6 +1112,63 @@ func Read[A, R any](r R) func(ReaderIO[R, A]) IO[A] {
|
||||
return reader.Read[IO[A]](r)
|
||||
}
|
||||
|
||||
// ReadIO executes a ReaderIO computation by providing an environment wrapped in an IO effect.
|
||||
// This is useful when the environment itself needs to be computed or retrieved through side effects.
|
||||
//
|
||||
// The function takes an IO[R] (an effectful computation that produces an environment) and returns
|
||||
// a function that can execute a ReaderIO[R, A] to produce an IO[A].
|
||||
//
|
||||
// This is particularly useful in scenarios where:
|
||||
// - The environment needs to be loaded from a file, database, or network
|
||||
// - The environment requires initialization with side effects
|
||||
// - You want to compose environment retrieval with the computation that uses it
|
||||
//
|
||||
// The execution flow is:
|
||||
// 1. Execute the IO[R] to get the environment R
|
||||
// 2. Pass the environment to the ReaderIO[R, A] to get an IO[A]
|
||||
// 3. Execute the resulting IO[A] to get the final result A
|
||||
//
|
||||
// Type Parameters:
|
||||
// - A: The result type of the ReaderIO computation
|
||||
// - R: The environment type required by the ReaderIO
|
||||
//
|
||||
// Parameters:
|
||||
// - r: An IO effect that produces the environment of type R
|
||||
//
|
||||
// Returns:
|
||||
// - A function that takes a ReaderIO[R, A] and returns an IO[A]
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Config struct {
|
||||
// DatabaseURL string
|
||||
// Port int
|
||||
// }
|
||||
//
|
||||
// // Load config from file (side effect)
|
||||
// loadConfig := io.Of(Config{DatabaseURL: "localhost:5432", Port: 8080})
|
||||
//
|
||||
// // A computation that uses the config
|
||||
// getConnectionString := readerio.Asks(func(c Config) io.IO[string] {
|
||||
// return io.Of(c.DatabaseURL)
|
||||
// })
|
||||
//
|
||||
// // Compose them together
|
||||
// result := readerio.ReadIO[string](loadConfig)(getConnectionString)
|
||||
// connectionString := result() // Executes both effects and returns "localhost:5432"
|
||||
//
|
||||
// Comparison with Read:
|
||||
// - [Read]: Takes a pure value R and executes the ReaderIO immediately
|
||||
// - [ReadIO]: Takes an IO[R] and chains the effects together
|
||||
//
|
||||
//go:inline
|
||||
func ReadIO[A, R any](r IO[R]) func(ReaderIO[R, A]) IO[A] {
|
||||
return function.Flow2(
|
||||
io.Chain[R, A],
|
||||
Read[A](r),
|
||||
)
|
||||
}
|
||||
|
||||
// Delay creates an operation that passes in the value after some delay
|
||||
//
|
||||
//go:inline
|
||||
|
||||
@@ -23,6 +23,7 @@ import (
|
||||
"github.com/IBM/fp-go/v2/internal/utils"
|
||||
G "github.com/IBM/fp-go/v2/io"
|
||||
N "github.com/IBM/fp-go/v2/number"
|
||||
S "github.com/IBM/fp-go/v2/string"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
@@ -697,6 +698,150 @@ func TestRead(t *testing.T) {
|
||||
assert.Equal(t, 42, result)
|
||||
}
|
||||
|
||||
func TestReadIO(t *testing.T) {
|
||||
t.Run("basic usage with IO environment", func(t *testing.T) {
|
||||
// Create a ReaderIO that uses the config
|
||||
rio := Of[ReaderTestConfig](42)
|
||||
|
||||
// Create an IO that produces the config
|
||||
configIO := G.Of(ReaderTestConfig{Value: 21, Name: "test"})
|
||||
|
||||
// Use ReadIO to execute the ReaderIO with the IO environment
|
||||
result := ReadIO[int](configIO)(rio)()
|
||||
|
||||
assert.Equal(t, 42, result)
|
||||
})
|
||||
|
||||
t.Run("chains IO effects correctly", func(t *testing.T) {
|
||||
// Track execution order
|
||||
executionOrder := []string{}
|
||||
|
||||
// Create an IO that produces the config with a side effect
|
||||
configIO := func() ReaderTestConfig {
|
||||
executionOrder = append(executionOrder, "load config")
|
||||
return ReaderTestConfig{Value: 10, Name: "test"}
|
||||
}
|
||||
|
||||
// Create a ReaderIO that uses the config with a side effect
|
||||
rio := func(c ReaderTestConfig) G.IO[int] {
|
||||
return func() int {
|
||||
executionOrder = append(executionOrder, "use config")
|
||||
return c.Value * 3
|
||||
}
|
||||
}
|
||||
|
||||
// Execute the composed computation
|
||||
result := ReadIO[int](configIO)(rio)()
|
||||
|
||||
assert.Equal(t, 30, result)
|
||||
assert.Equal(t, []string{"load config", "use config"}, executionOrder)
|
||||
})
|
||||
|
||||
t.Run("works with complex environment loading", func(t *testing.T) {
|
||||
// Simulate loading config from a file or database
|
||||
loadConfigFromDB := func() ReaderTestConfig {
|
||||
// Simulate side effect
|
||||
return ReaderTestConfig{Value: 100, Name: "production"}
|
||||
}
|
||||
|
||||
// A computation that depends on the loaded config
|
||||
getConnectionString := func(c ReaderTestConfig) G.IO[string] {
|
||||
return G.Of(c.Name + ":" + S.Format[int]("%d")(c.Value))
|
||||
}
|
||||
|
||||
result := ReadIO[string](loadConfigFromDB)(getConnectionString)()
|
||||
|
||||
assert.Equal(t, "production:100", result)
|
||||
})
|
||||
|
||||
t.Run("composes with other ReaderIO operations", func(t *testing.T) {
|
||||
configIO := G.Of(ReaderTestConfig{Value: 5, Name: "test"})
|
||||
|
||||
// Build a pipeline using ReaderIO operations
|
||||
pipeline := F.Pipe2(
|
||||
Ask[ReaderTestConfig](),
|
||||
Map[ReaderTestConfig](func(c ReaderTestConfig) int { return c.Value }),
|
||||
Chain(func(n int) ReaderIO[ReaderTestConfig, int] {
|
||||
return Of[ReaderTestConfig](n * 4)
|
||||
}),
|
||||
)
|
||||
|
||||
result := ReadIO[int](configIO)(pipeline)()
|
||||
|
||||
assert.Equal(t, 20, result)
|
||||
})
|
||||
|
||||
t.Run("handles environment with multiple fields", func(t *testing.T) {
|
||||
configIO := G.Of(ReaderTestConfig{Value: 42, Name: "answer"})
|
||||
|
||||
// Access both fields from the environment
|
||||
rio := func(c ReaderTestConfig) G.IO[string] {
|
||||
return G.Of(c.Name + "=" + S.Format[int]("%d")(c.Value))
|
||||
}
|
||||
|
||||
result := ReadIO[string](configIO)(rio)()
|
||||
|
||||
assert.Equal(t, "answer=42", result)
|
||||
})
|
||||
|
||||
t.Run("lazy evaluation - IO not executed until called", func(t *testing.T) {
|
||||
executed := false
|
||||
|
||||
configIO := func() ReaderTestConfig {
|
||||
executed = true
|
||||
return ReaderTestConfig{Value: 1, Name: "test"}
|
||||
}
|
||||
|
||||
rio := Of[ReaderTestConfig](42)
|
||||
|
||||
// Create the composed IO but don't execute it yet
|
||||
composedIO := ReadIO[int](configIO)(rio)
|
||||
|
||||
// Config IO should not be executed yet
|
||||
assert.False(t, executed)
|
||||
|
||||
// Now execute it
|
||||
result := composedIO()
|
||||
|
||||
// Now it should be executed
|
||||
assert.True(t, executed)
|
||||
assert.Equal(t, 42, result)
|
||||
})
|
||||
|
||||
t.Run("works with ChainIOK", func(t *testing.T) {
|
||||
configIO := G.Of(ReaderTestConfig{Value: 10, Name: "test"})
|
||||
|
||||
pipeline := F.Pipe1(
|
||||
Of[ReaderTestConfig](5),
|
||||
ChainIOK[ReaderTestConfig](func(n int) G.IO[int] {
|
||||
return G.Of(n * 2)
|
||||
}),
|
||||
)
|
||||
|
||||
result := ReadIO[int](configIO)(pipeline)()
|
||||
|
||||
assert.Equal(t, 10, result)
|
||||
})
|
||||
|
||||
t.Run("comparison with Read - different input types", func(t *testing.T) {
|
||||
rio := func(c ReaderTestConfig) G.IO[int] {
|
||||
return G.Of(c.Value + 10)
|
||||
}
|
||||
|
||||
config := ReaderTestConfig{Value: 5, Name: "test"}
|
||||
|
||||
// Using Read with a pure value
|
||||
resultRead := Read[int](config)(rio)()
|
||||
|
||||
// Using ReadIO with an IO value
|
||||
resultReadIO := ReadIO[int](G.Of(config))(rio)()
|
||||
|
||||
// Both should produce the same result
|
||||
assert.Equal(t, 15, resultRead)
|
||||
assert.Equal(t, 15, resultReadIO)
|
||||
})
|
||||
}
|
||||
|
||||
func TestTapWithLogging(t *testing.T) {
|
||||
// Simulate logging scenario
|
||||
logged := []int{}
|
||||
|
||||
@@ -16,6 +16,82 @@
|
||||
// Package readerioeither provides a functional programming abstraction that combines
|
||||
// three powerful concepts: Reader, IO, and Either monads.
|
||||
//
|
||||
// # Type Parameter Ordering Convention
|
||||
//
|
||||
// This package follows a consistent convention for ordering type parameters in function signatures.
|
||||
// The general rule is: R -> E -> T (context, error, type), where:
|
||||
// - R: The Reader context/environment type
|
||||
// - E: The Either error type
|
||||
// - T: The value type(s) (A, B, etc.)
|
||||
//
|
||||
// However, when some type parameters can be automatically inferred by the Go compiler from
|
||||
// function arguments, the convention is modified to minimize explicit type annotations:
|
||||
//
|
||||
// Rule: Undetectable types come first, followed by detectable types, while preserving
|
||||
// the relative order within each group (R -> E -> T).
|
||||
//
|
||||
// Examples:
|
||||
//
|
||||
// 1. All types detectable from first argument:
|
||||
// MonadMap[R, E, A, B](fa ReaderIOEither[R, E, A], f func(A) B)
|
||||
// - R, E, A are detectable from fa
|
||||
// - B is detectable from f
|
||||
// - Order: R, E, A, B (standard order, all detectable)
|
||||
//
|
||||
// 2. Some types undetectable:
|
||||
// FromReader[E, R, A](ma Reader[R, A]) ReaderIOEither[R, E, A]
|
||||
// - R, A are detectable from ma
|
||||
// - E is undetectable (not in any argument)
|
||||
// - Order: E, R, A (E first as undetectable, then R, A in standard order)
|
||||
//
|
||||
// 3. Multiple undetectable types:
|
||||
// Local[E, A, R1, R2](f func(R2) R1) func(ReaderIOEither[R1, E, A]) ReaderIOEither[R2, E, A]
|
||||
// - E, A are undetectable
|
||||
// - R1, R2 are detectable from f
|
||||
//
|
||||
// 4. Functions returning Kleisli arrows:
|
||||
// ChainReaderOptionK[R, A, B, E](onNone func() E) func(readeroption.Kleisli[R, A, B]) Operator[R, E, A, B]
|
||||
// - Canonical order would be R, E, A, B
|
||||
// - E is detectable from onNone parameter
|
||||
// - R, A, B are not detectable (they're in the Kleisli argument type)
|
||||
// - Order: R, A, B, E (undetectable R, A, B first, then detectable E)
|
||||
//
|
||||
// This convention allows for more ergonomic function calls:
|
||||
//
|
||||
// // Without convention - need to specify all types:
|
||||
// result := FromReader[context.Context, error, User](readerFunc)
|
||||
//
|
||||
// // With convention - only specify undetectable type:
|
||||
// result := FromReader[error](readerFunc) // R and A inferred from readerFunc
|
||||
//
|
||||
// The reasoning behind this approach is to reduce the number of explicit type parameters
|
||||
// that developers need to specify when calling functions, improving code readability and
|
||||
// reducing verbosity while maintaining type safety.
|
||||
//
|
||||
// Additional examples demonstrating the convention:
|
||||
//
|
||||
// 5. FromReaderOption[R, A, E](onNone func() E) Kleisli[R, E, ReaderOption[R, A], A]
|
||||
// - Canonical order would be R, E, A
|
||||
// - E is detectable from onNone parameter
|
||||
// - R, A are not detectable (they're in the return type's Kleisli)
|
||||
// - Order: R, A, E (undetectable R, A first, then detectable E)
|
||||
//
|
||||
// 6. MapLeft[R, A, E1, E2](f func(E1) E2) func(ReaderIOEither[R, E1, A]) ReaderIOEither[R, E2, A]
|
||||
// - Canonical order would be R, E1, E2, A
|
||||
// - E1, E2 are detectable from f parameter
|
||||
// - R, A are not detectable (they're in the return type)
|
||||
// - Order: R, A, E1, E2 (undetectable R, A first, then detectable E1, E2)
|
||||
//
|
||||
// Additional special cases:
|
||||
//
|
||||
// - Ap[B, R, E, A]: B is undetectable (in function return type), so B comes first
|
||||
// - OrLeft[A, E1, R, E2]: A is undetectable, comes first before detectable E1, R, E2
|
||||
// - ReadIO[E, A, R]: E and A are undetectable, R is detectable from IO[R]
|
||||
// - ChainFirstLeft[A, R, EA, EB, B]: A is undetectable, comes first before detectable R, EA, EB, B
|
||||
// - TapLeft[A, R, EB, EA, B]: Similar to ChainFirstLeft, A is undetectable and comes first
|
||||
//
|
||||
// All functions in this package follow this convention consistently.
|
||||
//
|
||||
// # Fantasy Land Specification
|
||||
//
|
||||
// This is a monad transformer combining:
|
||||
|
||||
@@ -38,7 +38,7 @@ import (
|
||||
)
|
||||
|
||||
//go:inline
|
||||
func FromReaderOption[R, A, E any](onNone func() E) Kleisli[R, E, ReaderOption[R, A], A] {
|
||||
func FromReaderOption[R, A, E any](onNone Lazy[E]) Kleisli[R, E, ReaderOption[R, A], A] {
|
||||
return function.Bind2nd(function.Flow2[ReaderOption[R, A], IOE.Kleisli[E, Option[A], A]], IOE.FromOption[A](onNone))
|
||||
}
|
||||
|
||||
@@ -348,7 +348,7 @@ func TapReaderEitherK[E, R, A, B any](f RE.Kleisli[R, E, A, B]) Operator[R, E, A
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func ChainReaderOptionK[R, A, B, E any](onNone func() E) func(readeroption.Kleisli[R, A, B]) Operator[R, E, A, B] {
|
||||
func ChainReaderOptionK[R, A, B, E any](onNone Lazy[E]) func(readeroption.Kleisli[R, A, B]) Operator[R, E, A, B] {
|
||||
fro := FromReaderOption[R, B](onNone)
|
||||
return func(f readeroption.Kleisli[R, A, B]) Operator[R, E, A, B] {
|
||||
return fromreader.ChainReaderK(
|
||||
@@ -360,7 +360,7 @@ func ChainReaderOptionK[R, A, B, E any](onNone func() E) func(readeroption.Kleis
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func ChainFirstReaderOptionK[R, A, B, E any](onNone func() E) func(readeroption.Kleisli[R, A, B]) Operator[R, E, A, A] {
|
||||
func ChainFirstReaderOptionK[R, A, B, E any](onNone Lazy[E]) func(readeroption.Kleisli[R, A, B]) Operator[R, E, A, A] {
|
||||
fro := FromReaderOption[R, B](onNone)
|
||||
return func(f readeroption.Kleisli[R, A, B]) Operator[R, E, A, A] {
|
||||
return fromreader.ChainFirstReaderK(
|
||||
@@ -372,7 +372,7 @@ func ChainFirstReaderOptionK[R, A, B, E any](onNone func() E) func(readeroption.
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func TapReaderOptionK[R, A, B, E any](onNone func() E) func(readeroption.Kleisli[R, A, B]) Operator[R, E, A, A] {
|
||||
func TapReaderOptionK[R, A, B, E any](onNone Lazy[E]) func(readeroption.Kleisli[R, A, B]) Operator[R, E, A, A] {
|
||||
return ChainFirstReaderOptionK[R, A, B](onNone)
|
||||
}
|
||||
|
||||
@@ -467,7 +467,7 @@ func TapIOK[R, E, A, B any](f io.Kleisli[A, B]) Operator[R, E, A, A] {
|
||||
// If the Option is None, the provided error function is called to produce the error value.
|
||||
//
|
||||
//go:inline
|
||||
func ChainOptionK[R, A, B, E any](onNone func() E) func(func(A) Option[B]) Operator[R, E, A, B] {
|
||||
func ChainOptionK[R, A, B, E any](onNone Lazy[E]) func(func(A) Option[B]) Operator[R, E, A, B] {
|
||||
return fromeither.ChainOptionK(
|
||||
MonadChain[R, E, A, B],
|
||||
FromEither[R, E, B],
|
||||
@@ -651,7 +651,7 @@ func Asks[E, R, A any](r Reader[R, A]) ReaderIOEither[R, E, A] {
|
||||
// If the Option is None, the provided function is called to produce the error.
|
||||
//
|
||||
//go:inline
|
||||
func FromOption[R, A, E any](onNone func() E) func(Option[A]) ReaderIOEither[R, E, A] {
|
||||
func FromOption[R, A, E any](onNone Lazy[E]) func(Option[A]) ReaderIOEither[R, E, A] {
|
||||
return fromeither.FromOption(FromEither[R, E, A], onNone)
|
||||
}
|
||||
|
||||
@@ -821,6 +821,108 @@ func Read[E, A, R any](r R) func(ReaderIOEither[R, E, A]) IOEither[E, A] {
|
||||
return reader.Read[IOEither[E, A]](r)
|
||||
}
|
||||
|
||||
// ReadIOEither executes a ReaderIOEither computation by providing it with an environment
|
||||
// obtained from an IOEither computation. This is useful when the environment itself needs
|
||||
// to be computed with side effects and error handling.
|
||||
//
|
||||
// The function first executes the IOEither[E, R] to get the environment R (or fail with error E),
|
||||
// then uses that environment to run the ReaderIOEither[R, E, A] computation.
|
||||
//
|
||||
// Type parameters:
|
||||
// - A: The success value type of the ReaderIOEither computation
|
||||
// - R: The environment/context type required by the ReaderIOEither
|
||||
// - E: The error type
|
||||
//
|
||||
// Parameters:
|
||||
// - r: An IOEither[E, R] that produces the environment (or an error)
|
||||
//
|
||||
// Returns:
|
||||
// - A function that takes a ReaderIOEither[R, E, A] and returns IOEither[E, A]
|
||||
//
|
||||
// Behavior:
|
||||
// - If the IOEither[E, R] fails (Left), the error is propagated without running the ReaderIOEither
|
||||
// - If the IOEither[E, R] succeeds (Right), the resulting environment is used to execute the ReaderIOEither
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Load configuration from a file (may fail)
|
||||
// loadConfig := func() IOEither[error, Config] {
|
||||
// return Lazy[E]ither[error, Config] {
|
||||
// // Read config file with error handling
|
||||
// return either.Right(Config{BaseURL: "https://api.example.com"})
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // A computation that needs the config
|
||||
// fetchUser := func(id int) ReaderIOEither[Config, error, User] {
|
||||
// return func(cfg Config) IOEither[error, User] {
|
||||
// // Use cfg.BaseURL to fetch user
|
||||
// return ioeither.Right[error](User{ID: id})
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // Execute the computation with dynamically loaded config
|
||||
// result := ReadIOEither[User](loadConfig())(fetchUser(123))()
|
||||
//
|
||||
//go:inline
|
||||
func ReadIOEither[A, R, E any](r IOEither[E, R]) func(ReaderIOEither[R, E, A]) IOEither[E, A] {
|
||||
return function.Flow2(
|
||||
IOE.Chain[E, R, A],
|
||||
Read[E, A](r),
|
||||
)
|
||||
}
|
||||
|
||||
// ReadIO executes a ReaderIOEither computation by providing it with an environment
|
||||
// obtained from an IO computation. This is useful when the environment needs to be
|
||||
// computed with side effects but cannot fail.
|
||||
//
|
||||
// The function first executes the IO[R] to get the environment R,
|
||||
// then uses that environment to run the ReaderIOEither[R, E, A] computation.
|
||||
//
|
||||
// Type parameters:
|
||||
// - E: The error type of the ReaderIOEither computation
|
||||
// - A: The success value type of the ReaderIOEither computation
|
||||
// - R: The environment/context type required by the ReaderIOEither
|
||||
//
|
||||
// Parameters:
|
||||
// - r: An IO[R] that produces the environment
|
||||
//
|
||||
// Returns:
|
||||
// - A function that takes a ReaderIOEither[R, E, A] and returns IOEither[E, A]
|
||||
//
|
||||
// Behavior:
|
||||
// - The IO[R] is always executed successfully to obtain the environment
|
||||
// - The resulting environment is then used to execute the ReaderIOEither
|
||||
// - Only the ReaderIOEither computation can fail with error type E
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// // Get current timestamp (cannot fail)
|
||||
// getCurrentTime := func() IO[time.Time] {
|
||||
// return func() time.Time {
|
||||
// return time.Now()
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // A computation that needs the timestamp
|
||||
// logWithTimestamp := func(msg string) ReaderIOEither[time.Time, error, string] {
|
||||
// return func(t time.Time) IOEither[error, string] {
|
||||
// logged := fmt.Sprintf("[%s] %s", t.Format(time.RFC3339), msg)
|
||||
// return ioeither.Right[error](logged)
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // Execute the computation with current time
|
||||
// result := ReadIO[error, string](getCurrentTime())(logWithTimestamp("Hello"))()
|
||||
//
|
||||
//go:inline
|
||||
func ReadIO[E, A, R any](r IO[R]) func(ReaderIOEither[R, E, A]) IOEither[E, A] {
|
||||
return function.Flow2(
|
||||
io.Chain[R, Either[E, A]],
|
||||
Read[E, A](r),
|
||||
)
|
||||
}
|
||||
|
||||
// MonadChainLeft chains a computation on the left (error) side of a ReaderIOEither.
|
||||
// If the input is a Left value, it applies the function f to transform the error and potentially
|
||||
// change the error type from EA to EB. If the input is a Right value, it passes through unchanged.
|
||||
@@ -957,7 +1059,7 @@ func MonadTapLeft[A, R, EA, EB, B any](ma ReaderIOEither[R, EA, A], f Kleisli[R,
|
||||
// - An Operator that performs the side effect but always returns the original error if input was Left
|
||||
//
|
||||
//go:inline
|
||||
func ChainFirstLeft[A, R, EB, EA, B any](f Kleisli[R, EB, EA, B]) Operator[R, EA, A, A] {
|
||||
func ChainFirstLeft[A, R, EA, EB, B any](f Kleisli[R, EB, EA, B]) Operator[R, EA, A, A] {
|
||||
return eithert.ChainFirstLeft(
|
||||
readerio.Chain[R, Either[EA, A], Either[EA, A]],
|
||||
readerio.Map[R, Either[EB, B], Either[EA, A]],
|
||||
@@ -974,7 +1076,7 @@ func ChainFirstLeftIOK[A, R, EA, B any](f io.Kleisli[EA, B]) Operator[R, EA, A,
|
||||
}
|
||||
|
||||
//go:inline
|
||||
func TapLeft[A, R, EB, EA, B any](f Kleisli[R, EB, EA, B]) Operator[R, EA, A, A] {
|
||||
func TapLeft[A, R, EA, EB, B any](f Kleisli[R, EB, EA, B]) Operator[R, EA, A, A] {
|
||||
return ChainFirstLeft[A](f)
|
||||
}
|
||||
|
||||
|
||||
@@ -308,3 +308,226 @@ func TestTapLeft(t *testing.T) {
|
||||
assert.Equal(t, E.Left[int]("error"), result)
|
||||
assert.True(t, sideEffectRan)
|
||||
}
|
||||
|
||||
func TestReadIOEither(t *testing.T) {
|
||||
type Config struct {
|
||||
baseURL string
|
||||
timeout int
|
||||
}
|
||||
|
||||
// Test with Right IOEither - should execute ReaderIOEither with the environment
|
||||
t.Run("Right IOEither provides environment", func(t *testing.T) {
|
||||
// IOEither that successfully produces a config
|
||||
configIO := IOE.Right[error](Config{baseURL: "https://api.example.com", timeout: 30})
|
||||
|
||||
// ReaderIOEither that uses the config
|
||||
computation := func(cfg Config) IOEither[error, string] {
|
||||
return IOE.Right[error](cfg.baseURL + "/users")
|
||||
}
|
||||
|
||||
// Execute using ReadIOEither
|
||||
result := ReadIOEither[string](configIO)(computation)()
|
||||
assert.Equal(t, E.Right[error]("https://api.example.com/users"), result)
|
||||
})
|
||||
|
||||
// Test with Left IOEither - should propagate error without executing ReaderIOEither
|
||||
t.Run("Left IOEither propagates error", func(t *testing.T) {
|
||||
configError := errors.New("failed to load config")
|
||||
configIO := IOE.Left[Config](configError)
|
||||
|
||||
executed := false
|
||||
computation := func(cfg Config) IOEither[error, string] {
|
||||
executed = true
|
||||
return IOE.Right[error]("should not execute")
|
||||
}
|
||||
|
||||
result := ReadIOEither[string](configIO)(computation)()
|
||||
assert.Equal(t, E.Left[string](configError), result)
|
||||
assert.False(t, executed, "ReaderIOEither should not execute when IOEither is Left")
|
||||
})
|
||||
|
||||
// Test with Right IOEither but ReaderIOEither fails
|
||||
t.Run("Right IOEither but ReaderIOEither fails", func(t *testing.T) {
|
||||
configIO := IOE.Right[error](Config{baseURL: "https://api.example.com", timeout: 30})
|
||||
|
||||
computationError := errors.New("computation failed")
|
||||
computation := func(cfg Config) IOEither[error, string] {
|
||||
// Use the config but fail
|
||||
if cfg.timeout < 60 {
|
||||
return IOE.Left[string](computationError)
|
||||
}
|
||||
return IOE.Right[error]("success")
|
||||
}
|
||||
|
||||
result := ReadIOEither[string](configIO)(computation)()
|
||||
assert.Equal(t, E.Left[string](computationError), result)
|
||||
})
|
||||
|
||||
// Test chaining with ReadIOEither
|
||||
t.Run("Chaining with ReadIOEither", func(t *testing.T) {
|
||||
// First get the config
|
||||
configIO := IOE.Right[error](Config{baseURL: "https://api.example.com", timeout: 30})
|
||||
|
||||
// Chain multiple operations
|
||||
result := F.Pipe2(
|
||||
Of[Config, error](10),
|
||||
Map[Config, error](func(x int) int { return x * 2 }),
|
||||
ReadIOEither[int](configIO),
|
||||
)()
|
||||
|
||||
assert.Equal(t, E.Right[error](20), result)
|
||||
})
|
||||
|
||||
// Test with complex error type
|
||||
t.Run("Complex error type", func(t *testing.T) {
|
||||
type AppError struct {
|
||||
Code int
|
||||
Message string
|
||||
}
|
||||
|
||||
configIO := IOE.Left[Config](AppError{Code: 500, Message: "Internal error"})
|
||||
|
||||
computation := func(cfg Config) IOEither[AppError, string] {
|
||||
return IOE.Right[AppError]("success")
|
||||
}
|
||||
|
||||
result := ReadIOEither[string](configIO)(computation)()
|
||||
assert.Equal(t, E.Left[string](AppError{Code: 500, Message: "Internal error"}), result)
|
||||
})
|
||||
}
|
||||
|
||||
func TestReadIO(t *testing.T) {
|
||||
type Config struct {
|
||||
baseURL string
|
||||
version string
|
||||
}
|
||||
|
||||
// Test basic execution - IO provides environment
|
||||
t.Run("IO provides environment successfully", func(t *testing.T) {
|
||||
// IO that produces a config (cannot fail)
|
||||
configIO := func() Config {
|
||||
return Config{baseURL: "https://api.example.com", version: "v1"}
|
||||
}
|
||||
|
||||
// ReaderIOEither that uses the config
|
||||
computation := func(cfg Config) IOEither[error, string] {
|
||||
return IOE.Right[error](cfg.baseURL + "/" + cfg.version)
|
||||
}
|
||||
|
||||
result := ReadIO[error, string](configIO)(computation)()
|
||||
assert.Equal(t, E.Right[error]("https://api.example.com/v1"), result)
|
||||
})
|
||||
|
||||
// Test when ReaderIOEither fails
|
||||
t.Run("ReaderIOEither fails after IO succeeds", func(t *testing.T) {
|
||||
configIO := func() Config {
|
||||
return Config{baseURL: "https://api.example.com", version: "v1"}
|
||||
}
|
||||
|
||||
computationError := errors.New("validation failed")
|
||||
computation := func(cfg Config) IOEither[error, string] {
|
||||
// Validate config
|
||||
if cfg.version != "v2" {
|
||||
return IOE.Left[string](computationError)
|
||||
}
|
||||
return IOE.Right[error]("success")
|
||||
}
|
||||
|
||||
result := ReadIO[error, string](configIO)(computation)()
|
||||
assert.Equal(t, E.Left[string](computationError), result)
|
||||
})
|
||||
|
||||
// Test with side effects in IO
|
||||
t.Run("IO with side effects", func(t *testing.T) {
|
||||
counter := 0
|
||||
configIO := func() Config {
|
||||
counter++
|
||||
return Config{baseURL: fmt.Sprintf("https://api%d.example.com", counter), version: "v1"}
|
||||
}
|
||||
|
||||
computation := func(cfg Config) IOEither[error, string] {
|
||||
return IOE.Right[error](cfg.baseURL)
|
||||
}
|
||||
|
||||
result := ReadIO[error, string](configIO)(computation)()
|
||||
assert.Equal(t, E.Right[error]("https://api1.example.com"), result)
|
||||
assert.Equal(t, 1, counter, "IO should execute exactly once")
|
||||
})
|
||||
|
||||
// Test chaining with ReadIO
|
||||
t.Run("Chaining with ReadIO", func(t *testing.T) {
|
||||
configIO := func() Config {
|
||||
return Config{baseURL: "https://api.example.com", version: "v1"}
|
||||
}
|
||||
|
||||
result := F.Pipe2(
|
||||
Of[Config, error](42),
|
||||
Map[Config, error](func(x int) string { return fmt.Sprintf("value-%d", x) }),
|
||||
ReadIO[error, string](configIO),
|
||||
)()
|
||||
|
||||
assert.Equal(t, E.Right[error]("value-42"), result)
|
||||
})
|
||||
|
||||
// Test with different error types
|
||||
t.Run("Different error types", func(t *testing.T) {
|
||||
configIO := func() int {
|
||||
return 100
|
||||
}
|
||||
|
||||
computation := func(cfg int) IOEither[string, int] {
|
||||
if cfg < 200 {
|
||||
return IOE.Left[int]("value too low")
|
||||
}
|
||||
return IOE.Right[string](cfg)
|
||||
}
|
||||
|
||||
result := ReadIO[string, int](configIO)(computation)()
|
||||
assert.Equal(t, E.Left[int]("value too low"), result)
|
||||
})
|
||||
|
||||
// Test ReadIO vs ReadIOEither - ReadIO cannot fail during environment loading
|
||||
t.Run("ReadIO always provides environment", func(t *testing.T) {
|
||||
// This demonstrates that ReadIO's IO always succeeds
|
||||
configIO := func() Config {
|
||||
// Even if we wanted to fail here, we can't - IO cannot fail
|
||||
return Config{baseURL: "fallback", version: "v0"}
|
||||
}
|
||||
|
||||
executed := false
|
||||
computation := func(cfg Config) IOEither[error, string] {
|
||||
executed = true
|
||||
return IOE.Right[error](cfg.baseURL)
|
||||
}
|
||||
|
||||
result := ReadIO[error, string](configIO)(computation)()
|
||||
assert.Equal(t, E.Right[error]("fallback"), result)
|
||||
assert.True(t, executed, "ReaderIOEither should always execute with ReadIO")
|
||||
})
|
||||
|
||||
// Test with complex computation
|
||||
t.Run("Complex computation with environment", func(t *testing.T) {
|
||||
type Env struct {
|
||||
multiplier int
|
||||
offset int
|
||||
}
|
||||
|
||||
envIO := func() Env {
|
||||
return Env{multiplier: 3, offset: 10}
|
||||
}
|
||||
|
||||
computation := func(env Env) IOEither[error, int] {
|
||||
return func() Either[error, int] {
|
||||
// Simulate some computation using the environment
|
||||
result := env.multiplier*5 + env.offset
|
||||
if result > 20 {
|
||||
return E.Right[error](result)
|
||||
}
|
||||
return E.Left[int](errors.New("result too small"))
|
||||
}
|
||||
}
|
||||
|
||||
result := ReadIO[error, int](envIO)(computation)()
|
||||
assert.Equal(t, E.Right[error](25), result)
|
||||
})
|
||||
}
|
||||
|
||||
@@ -20,6 +20,7 @@ import (
|
||||
"github.com/IBM/fp-go/v2/either"
|
||||
"github.com/IBM/fp-go/v2/io"
|
||||
"github.com/IBM/fp-go/v2/ioeither"
|
||||
"github.com/IBM/fp-go/v2/lazy"
|
||||
"github.com/IBM/fp-go/v2/optics/lens/option"
|
||||
"github.com/IBM/fp-go/v2/predicate"
|
||||
"github.com/IBM/fp-go/v2/reader"
|
||||
@@ -109,4 +110,6 @@ type (
|
||||
|
||||
// Predicate represents a function that tests a value of type A and returns a boolean.
|
||||
Predicate[A any] = predicate.Predicate[A]
|
||||
|
||||
Lazy[A any] = lazy.Lazy[A]
|
||||
)
|
||||
|
||||
@@ -824,3 +824,141 @@ func Delay[R, A any](delay time.Duration) Operator[R, A, A] {
|
||||
func After[R, A any](timestamp time.Time) Operator[R, A, A] {
|
||||
return function.Bind2nd(function.Flow2[ReaderIOResult[R, A]], io.After[Result[A]](timestamp))
|
||||
}
|
||||
|
||||
// ReadIOEither executes a ReaderIOResult computation by providing an environment
|
||||
// obtained from an IOResult. This function bridges the gap between IOResult-based
|
||||
// environment acquisition and ReaderIOResult-based computations.
|
||||
//
|
||||
// The function first executes the IOResult[R] to obtain the environment (or an error),
|
||||
// then uses that environment to run the ReaderIOResult[R, A] computation.
|
||||
//
|
||||
// Type parameters:
|
||||
// - A: The success value type of the ReaderIOResult computation
|
||||
// - R: The environment/context type required by the ReaderIOResult
|
||||
//
|
||||
// Parameters:
|
||||
// - r: An IOResult[R] that produces the environment (or an error)
|
||||
//
|
||||
// Returns:
|
||||
// - A function that takes a ReaderIOResult[R, A] and returns IOResult[A]
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Config struct { BaseURL string }
|
||||
//
|
||||
// // Get config from environment with potential error
|
||||
// getConfig := func() IOResult[Config] {
|
||||
// return func() Result[Config] {
|
||||
// // Load config, may fail
|
||||
// return result.Of(Config{BaseURL: "https://api.example.com"})
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // A computation that needs config
|
||||
// fetchUser := func(id int) ReaderIOResult[Config, User] {
|
||||
// return func(cfg Config) IOResult[User] {
|
||||
// return func() Result[User] {
|
||||
// // Use cfg.BaseURL to fetch user
|
||||
// return result.Of(User{ID: id})
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // Execute the computation with the config
|
||||
// result := ReadIOEither[User](getConfig())(fetchUser(123))()
|
||||
//
|
||||
//go:inline
|
||||
func ReadIOEither[A, R any](r IOResult[R]) func(ReaderIOResult[R, A]) IOResult[A] {
|
||||
return RIOE.ReadIOEither[A](r)
|
||||
}
|
||||
|
||||
// ReadIOResult executes a ReaderIOResult computation by providing an environment
|
||||
// obtained from an IOResult. This is an alias for ReadIOEither with more explicit naming.
|
||||
//
|
||||
// The function first executes the IOResult[R] to obtain the environment (or an error),
|
||||
// then uses that environment to run the ReaderIOResult[R, A] computation.
|
||||
//
|
||||
// Type parameters:
|
||||
// - A: The success value type of the ReaderIOResult computation
|
||||
// - R: The environment/context type required by the ReaderIOResult
|
||||
//
|
||||
// Parameters:
|
||||
// - r: An IOResult[R] that produces the environment (or an error)
|
||||
//
|
||||
// Returns:
|
||||
// - A function that takes a ReaderIOResult[R, A] and returns IOResult[A]
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Database struct { ConnectionString string }
|
||||
//
|
||||
// // Get database connection with potential error
|
||||
// getDB := func() IOResult[Database] {
|
||||
// return func() Result[Database] {
|
||||
// return result.Of(Database{ConnectionString: "localhost:5432"})
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // Query that needs database
|
||||
// queryUsers := ReaderIOResult[Database, []User] {
|
||||
// return func(db Database) IOResult[[]User] {
|
||||
// return func() Result[[]User] {
|
||||
// // Execute query using db
|
||||
// return result.Of([]User{})
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // Execute query with database
|
||||
// users := ReadIOResult[[]User](getDB())(queryUsers)()
|
||||
//
|
||||
//go:inline
|
||||
func ReadIOResult[A, R any](r IOResult[R]) func(ReaderIOResult[R, A]) IOResult[A] {
|
||||
return RIOE.ReadIOEither[A](r)
|
||||
}
|
||||
|
||||
// ReadIO executes a ReaderIOResult computation by providing an environment
|
||||
// obtained from an IO computation. Unlike ReadIOEither/ReadIOResult, the environment
|
||||
// acquisition cannot fail (it's a pure IO, not IOResult).
|
||||
//
|
||||
// The function first executes the IO[R] to obtain the environment,
|
||||
// then uses that environment to run the ReaderIOResult[R, A] computation.
|
||||
//
|
||||
// Type parameters:
|
||||
// - A: The success value type of the ReaderIOResult computation
|
||||
// - R: The environment/context type required by the ReaderIOResult
|
||||
//
|
||||
// Parameters:
|
||||
// - r: An IO[R] that produces the environment (cannot fail)
|
||||
//
|
||||
// Returns:
|
||||
// - A function that takes a ReaderIOResult[R, A] and returns IOResult[A]
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// type Logger struct { Level string }
|
||||
//
|
||||
// // Get logger (always succeeds)
|
||||
// getLogger := func() IO[Logger] {
|
||||
// return func() Logger {
|
||||
// return Logger{Level: "INFO"}
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // Log operation that may fail
|
||||
// logMessage := func(msg string) ReaderIOResult[Logger, string] {
|
||||
// return func(logger Logger) IOResult[string] {
|
||||
// return func() Result[string] {
|
||||
// // Log with logger, may fail
|
||||
// return result.Of(fmt.Sprintf("[%s] %s", logger.Level, msg))
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // Execute logging with logger
|
||||
// logged := ReadIO[string](getLogger())(logMessage("Hello"))()
|
||||
//
|
||||
//go:inline
|
||||
func ReadIO[A, R any](r IO[R]) func(ReaderIOResult[R, A]) IOResult[A] {
|
||||
return RIOE.ReadIO[error, A](r)
|
||||
}
|
||||
|
||||
@@ -77,3 +77,249 @@ func TestTapReaderIOK(t *testing.T) {
|
||||
|
||||
x(10)()
|
||||
}
|
||||
|
||||
func TestReadIOEither(t *testing.T) {
|
||||
type Config struct {
|
||||
BaseURL string
|
||||
}
|
||||
|
||||
t.Run("success case - environment and computation both succeed", func(t *testing.T) {
|
||||
// Create an IOResult that successfully produces a config
|
||||
getConfig := func() IOResult[Config] {
|
||||
return func() Result[Config] {
|
||||
return result.Of(Config{BaseURL: "https://api.example.com"})
|
||||
}
|
||||
}
|
||||
|
||||
// Create a ReaderIOResult that uses the config
|
||||
computation := func(cfg Config) IOResult[string] {
|
||||
return func() Result[string] {
|
||||
return result.Of(cfg.BaseURL + "/users")
|
||||
}
|
||||
}
|
||||
|
||||
// Execute using ReadIOEither
|
||||
ioResult := ReadIOEither[string](getConfig())(computation)
|
||||
res := ioResult()
|
||||
|
||||
assert.True(t, result.IsRight(res))
|
||||
assert.Equal(t, "https://api.example.com/users", result.GetOrElse(func(error) string { return "" })(res))
|
||||
})
|
||||
|
||||
t.Run("failure case - environment acquisition fails", func(t *testing.T) {
|
||||
expectedErr := fmt.Errorf("config load failed")
|
||||
|
||||
// Create an IOResult that fails to produce a config
|
||||
getConfig := func() IOResult[Config] {
|
||||
return func() Result[Config] {
|
||||
return result.Left[Config](expectedErr)
|
||||
}
|
||||
}
|
||||
|
||||
// Create a ReaderIOResult (won't be executed)
|
||||
computation := func(cfg Config) IOResult[string] {
|
||||
return func() Result[string] {
|
||||
return result.Of("should not be called")
|
||||
}
|
||||
}
|
||||
|
||||
// Execute using ReadIOEither
|
||||
ioResult := ReadIOEither[string](getConfig())(computation)
|
||||
res := ioResult()
|
||||
|
||||
assert.True(t, result.IsLeft(res))
|
||||
leftVal := result.Fold(F.Identity[error], func(string) error { return nil })(res)
|
||||
assert.Equal(t, expectedErr, leftVal)
|
||||
})
|
||||
|
||||
t.Run("failure case - computation fails", func(t *testing.T) {
|
||||
expectedErr := fmt.Errorf("computation failed")
|
||||
|
||||
// Create an IOResult that successfully produces a config
|
||||
getConfig := func() IOResult[Config] {
|
||||
return func() Result[Config] {
|
||||
return result.Of(Config{BaseURL: "https://api.example.com"})
|
||||
}
|
||||
}
|
||||
|
||||
// Create a ReaderIOResult that fails
|
||||
computation := func(cfg Config) IOResult[string] {
|
||||
return func() Result[string] {
|
||||
return result.Left[string](expectedErr)
|
||||
}
|
||||
}
|
||||
|
||||
// Execute using ReadIOEither
|
||||
ioResult := ReadIOEither[string](getConfig())(computation)
|
||||
res := ioResult()
|
||||
|
||||
assert.True(t, result.IsLeft(res))
|
||||
leftVal := result.Fold(F.Identity[error], func(string) error { return nil })(res)
|
||||
assert.Equal(t, expectedErr, leftVal)
|
||||
})
|
||||
}
|
||||
|
||||
func TestReadIOResult(t *testing.T) {
|
||||
type Database struct {
|
||||
ConnectionString string
|
||||
}
|
||||
|
||||
t.Run("success case - database and query both succeed", func(t *testing.T) {
|
||||
// Create an IOResult that successfully produces a database
|
||||
getDB := func() IOResult[Database] {
|
||||
return func() Result[Database] {
|
||||
return result.Of(Database{ConnectionString: "localhost:5432"})
|
||||
}
|
||||
}
|
||||
|
||||
// Create a ReaderIOResult that uses the database
|
||||
queryUsers := func(db Database) IOResult[int] {
|
||||
return func() Result[int] {
|
||||
// Simulate query returning user count
|
||||
return result.Of(42)
|
||||
}
|
||||
}
|
||||
|
||||
// Execute using ReadIOResult
|
||||
ioResult := ReadIOResult[int](getDB())(queryUsers)
|
||||
res := ioResult()
|
||||
|
||||
assert.True(t, result.IsRight(res))
|
||||
assert.Equal(t, 42, result.GetOrElse(func(error) int { return 0 })(res))
|
||||
})
|
||||
|
||||
t.Run("failure case - database connection fails", func(t *testing.T) {
|
||||
expectedErr := fmt.Errorf("connection failed")
|
||||
|
||||
// Create an IOResult that fails to produce a database
|
||||
getDB := func() IOResult[Database] {
|
||||
return func() Result[Database] {
|
||||
return result.Left[Database](expectedErr)
|
||||
}
|
||||
}
|
||||
|
||||
// Create a ReaderIOResult (won't be executed)
|
||||
queryUsers := func(db Database) IOResult[int] {
|
||||
return func() Result[int] {
|
||||
return result.Of(0)
|
||||
}
|
||||
}
|
||||
|
||||
// Execute using ReadIOResult
|
||||
ioResult := ReadIOResult[int](getDB())(queryUsers)
|
||||
res := ioResult()
|
||||
|
||||
assert.True(t, result.IsLeft(res))
|
||||
leftVal := result.Fold(F.Identity[error], func(int) error { return nil })(res)
|
||||
assert.Equal(t, expectedErr, leftVal)
|
||||
})
|
||||
|
||||
t.Run("failure case - query fails", func(t *testing.T) {
|
||||
expectedErr := fmt.Errorf("query failed")
|
||||
|
||||
// Create an IOResult that successfully produces a database
|
||||
getDB := func() IOResult[Database] {
|
||||
return func() Result[Database] {
|
||||
return result.Of(Database{ConnectionString: "localhost:5432"})
|
||||
}
|
||||
}
|
||||
|
||||
// Create a ReaderIOResult that fails
|
||||
queryUsers := func(db Database) IOResult[int] {
|
||||
return func() Result[int] {
|
||||
return result.Left[int](expectedErr)
|
||||
}
|
||||
}
|
||||
|
||||
// Execute using ReadIOResult
|
||||
ioResult := ReadIOResult[int](getDB())(queryUsers)
|
||||
res := ioResult()
|
||||
|
||||
assert.True(t, result.IsLeft(res))
|
||||
leftVal := result.Fold(F.Identity[error], func(int) error { return nil })(res)
|
||||
assert.Equal(t, expectedErr, leftVal)
|
||||
})
|
||||
}
|
||||
|
||||
func TestReadIO(t *testing.T) {
|
||||
type Logger struct {
|
||||
Level string
|
||||
}
|
||||
|
||||
t.Run("success case - logger and operation both succeed", func(t *testing.T) {
|
||||
// Create an IO that produces a logger (always succeeds)
|
||||
getLogger := func() IO[Logger] {
|
||||
return func() Logger {
|
||||
return Logger{Level: "INFO"}
|
||||
}
|
||||
}
|
||||
|
||||
// Create a ReaderIOResult that uses the logger
|
||||
logMessage := func(logger Logger) IOResult[string] {
|
||||
return func() Result[string] {
|
||||
return result.Of(fmt.Sprintf("[%s] Message logged", logger.Level))
|
||||
}
|
||||
}
|
||||
|
||||
// Execute using ReadIO
|
||||
ioResult := ReadIO[string](getLogger())(logMessage)
|
||||
res := ioResult()
|
||||
|
||||
assert.True(t, result.IsRight(res))
|
||||
assert.Equal(t, "[INFO] Message logged", result.GetOrElse(func(error) string { return "" })(res))
|
||||
})
|
||||
|
||||
t.Run("failure case - operation fails", func(t *testing.T) {
|
||||
expectedErr := fmt.Errorf("logging failed")
|
||||
|
||||
// Create an IO that produces a logger (always succeeds)
|
||||
getLogger := func() IO[Logger] {
|
||||
return func() Logger {
|
||||
return Logger{Level: "ERROR"}
|
||||
}
|
||||
}
|
||||
|
||||
// Create a ReaderIOResult that fails
|
||||
logMessage := func(logger Logger) IOResult[string] {
|
||||
return func() Result[string] {
|
||||
return result.Left[string](expectedErr)
|
||||
}
|
||||
}
|
||||
|
||||
// Execute using ReadIO
|
||||
ioResult := ReadIO[string](getLogger())(logMessage)
|
||||
res := ioResult()
|
||||
|
||||
assert.True(t, result.IsLeft(res))
|
||||
leftVal := result.Fold(F.Identity[error], func(string) error { return nil })(res)
|
||||
assert.Equal(t, expectedErr, leftVal)
|
||||
})
|
||||
|
||||
t.Run("success case - complex computation with context", func(t *testing.T) {
|
||||
type AppContext struct {
|
||||
UserID int
|
||||
Username string
|
||||
}
|
||||
|
||||
// Create an IO that produces an app context
|
||||
getContext := func() IO[AppContext] {
|
||||
return func() AppContext {
|
||||
return AppContext{UserID: 123, Username: "alice"}
|
||||
}
|
||||
}
|
||||
|
||||
// Create a ReaderIOResult that uses the context
|
||||
processUser := func(ctx AppContext) IOResult[string] {
|
||||
return func() Result[string] {
|
||||
return result.Of(fmt.Sprintf("Processing user %s (ID: %d)", ctx.Username, ctx.UserID))
|
||||
}
|
||||
}
|
||||
|
||||
// Execute using ReadIO
|
||||
ioResult := ReadIO[string](getContext())(processUser)
|
||||
res := ioResult()
|
||||
|
||||
assert.True(t, result.IsRight(res))
|
||||
assert.Equal(t, "Processing user alice (ID: 123)", result.GetOrElse(func(error) string { return "" })(res))
|
||||
})
|
||||
}
|
||||
|
||||
@@ -337,6 +337,26 @@ func Read[A, E any](e E) func(ReaderOption[E, A]) Option[A] {
|
||||
return reader.Read[Option[A]](e)
|
||||
}
|
||||
|
||||
// ReadOption executes a ReaderOption with an optional environment.
|
||||
// If the environment is None, the result is None.
|
||||
// If the environment is Some(e), the ReaderOption is executed with e.
|
||||
//
|
||||
// This is useful when the environment itself might not be available.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// ro := readeroption.Of[Config](42)
|
||||
// result1 := readeroption.ReadOption[int](option.Some(myConfig))(ro) // Returns option.Some(42)
|
||||
// result2 := readeroption.ReadOption[int](option.None[Config]())(ro) // Returns option.None[int]()
|
||||
//
|
||||
//go:inline
|
||||
func ReadOption[A, E any](e Option[E]) func(ReaderOption[E, A]) Option[A] {
|
||||
return function.Flow2(
|
||||
O.Chain[E],
|
||||
Read[A](e),
|
||||
)
|
||||
}
|
||||
|
||||
// MonadFlap applies a value to a function wrapped in a ReaderOption.
|
||||
// This is the reverse of MonadAp.
|
||||
//
|
||||
|
||||
@@ -26,214 +26,534 @@ import (
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
type MyContext string
|
||||
|
||||
const defaultContext MyContext = "default"
|
||||
|
||||
func TestMap(t *testing.T) {
|
||||
|
||||
g := F.Pipe1(
|
||||
Of[MyContext](1),
|
||||
Map[MyContext](utils.Double),
|
||||
)
|
||||
|
||||
assert.Equal(t, O.Of(2), g(defaultContext))
|
||||
|
||||
// Test context type
|
||||
type Config struct {
|
||||
Host string
|
||||
Port int
|
||||
Timeout int
|
||||
}
|
||||
|
||||
func TestAp(t *testing.T) {
|
||||
g := F.Pipe1(
|
||||
Of[MyContext](utils.Double),
|
||||
Ap[int](Of[MyContext](1)),
|
||||
)
|
||||
assert.Equal(t, O.Of(2), g(defaultContext))
|
||||
|
||||
}
|
||||
|
||||
func TestFlatten(t *testing.T) {
|
||||
|
||||
g := F.Pipe1(
|
||||
Of[MyContext](Of[MyContext]("a")),
|
||||
Flatten[MyContext, string],
|
||||
)
|
||||
|
||||
assert.Equal(t, O.Of("a"), g(defaultContext))
|
||||
}
|
||||
|
||||
func TestFromOption(t *testing.T) {
|
||||
// Test with Some
|
||||
opt1 := O.Of(42)
|
||||
ro1 := FromOption[MyContext](opt1)
|
||||
assert.Equal(t, O.Of(42), ro1(defaultContext))
|
||||
|
||||
// Test with None
|
||||
opt2 := O.None[int]()
|
||||
ro2 := FromOption[MyContext](opt2)
|
||||
assert.Equal(t, O.None[int](), ro2(defaultContext))
|
||||
}
|
||||
|
||||
func TestSome(t *testing.T) {
|
||||
ro := Some[MyContext](42)
|
||||
assert.Equal(t, O.Of(42), ro(defaultContext))
|
||||
}
|
||||
|
||||
func TestFromReader(t *testing.T) {
|
||||
reader := func(ctx MyContext) int {
|
||||
return 42
|
||||
}
|
||||
ro := FromReader(reader)
|
||||
assert.Equal(t, O.Of(42), ro(defaultContext))
|
||||
var defaultConfig = Config{
|
||||
Host: "localhost",
|
||||
Port: 8080,
|
||||
Timeout: 30,
|
||||
}
|
||||
|
||||
// TestOf tests the Of function which wraps a value in a ReaderOption
|
||||
func TestOf(t *testing.T) {
|
||||
ro := Of[MyContext](42)
|
||||
assert.Equal(t, O.Of(42), ro(defaultContext))
|
||||
ro := Of[Config](42)
|
||||
result := ro(defaultConfig)
|
||||
assert.Equal(t, O.Some(42), result)
|
||||
}
|
||||
|
||||
// TestSome tests the Some function which is an alias for Of
|
||||
func TestSome(t *testing.T) {
|
||||
ro := Some[Config](42)
|
||||
result := ro(defaultConfig)
|
||||
assert.Equal(t, O.Some(42), result)
|
||||
}
|
||||
|
||||
// TestNone tests the None function which creates a ReaderOption representing no value
|
||||
func TestNone(t *testing.T) {
|
||||
ro := None[MyContext, int]()
|
||||
assert.Equal(t, O.None[int](), ro(defaultContext))
|
||||
ro := None[Config, int]()
|
||||
result := ro(defaultConfig)
|
||||
assert.Equal(t, O.None[int](), result)
|
||||
}
|
||||
|
||||
func TestChain(t *testing.T) {
|
||||
double := func(x int) ReaderOption[MyContext, int] {
|
||||
return Of[MyContext](x * 2)
|
||||
}
|
||||
|
||||
g := F.Pipe1(
|
||||
Of[MyContext](21),
|
||||
Chain(double),
|
||||
)
|
||||
|
||||
assert.Equal(t, O.Of(42), g(defaultContext))
|
||||
|
||||
// Test with None
|
||||
g2 := F.Pipe1(
|
||||
None[MyContext, int](),
|
||||
Chain(double),
|
||||
)
|
||||
assert.Equal(t, O.None[int](), g2(defaultContext))
|
||||
}
|
||||
|
||||
func TestFromPredicate(t *testing.T) {
|
||||
isPositive := FromPredicate[MyContext](func(x int) bool {
|
||||
return x > 0
|
||||
// TestFromOption tests lifting an Option into a ReaderOption
|
||||
func TestFromOption(t *testing.T) {
|
||||
t.Run("Some value", func(t *testing.T) {
|
||||
opt := O.Some(42)
|
||||
ro := FromOption[Config](opt)
|
||||
result := ro(defaultConfig)
|
||||
assert.Equal(t, O.Some(42), result)
|
||||
})
|
||||
|
||||
// Test with positive number
|
||||
g1 := F.Pipe1(
|
||||
Of[MyContext](42),
|
||||
Chain(isPositive),
|
||||
)
|
||||
assert.Equal(t, O.Of(42), g1(defaultContext))
|
||||
|
||||
// Test with negative number
|
||||
g2 := F.Pipe1(
|
||||
Of[MyContext](-5),
|
||||
Chain(isPositive),
|
||||
)
|
||||
assert.Equal(t, O.None[int](), g2(defaultContext))
|
||||
t.Run("None value", func(t *testing.T) {
|
||||
opt := O.None[int]()
|
||||
ro := FromOption[Config](opt)
|
||||
result := ro(defaultConfig)
|
||||
assert.Equal(t, O.None[int](), result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestFromReader tests lifting a Reader into a ReaderOption
|
||||
func TestFromReader(t *testing.T) {
|
||||
r := reader.Of[Config](42)
|
||||
ro := FromReader(r)
|
||||
result := ro(defaultConfig)
|
||||
assert.Equal(t, O.Some(42), result)
|
||||
}
|
||||
|
||||
// TestSomeReader tests lifting a Reader into a ReaderOption (alias for FromReader)
|
||||
func TestSomeReader(t *testing.T) {
|
||||
r := reader.Of[Config](42)
|
||||
ro := SomeReader(r)
|
||||
result := ro(defaultConfig)
|
||||
assert.Equal(t, O.Some(42), result)
|
||||
}
|
||||
|
||||
// TestMonadMap tests applying a function to the value inside a ReaderOption
|
||||
func TestMonadMap(t *testing.T) {
|
||||
t.Run("Map over Some", func(t *testing.T) {
|
||||
ro := Of[Config](21)
|
||||
mapped := MonadMap(ro, utils.Double)
|
||||
result := mapped(defaultConfig)
|
||||
assert.Equal(t, O.Some(42), result)
|
||||
})
|
||||
|
||||
t.Run("Map over None", func(t *testing.T) {
|
||||
ro := None[Config, int]()
|
||||
mapped := MonadMap(ro, utils.Double)
|
||||
result := mapped(defaultConfig)
|
||||
assert.Equal(t, O.None[int](), result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestMap tests the curried version of MonadMap
|
||||
func TestMap(t *testing.T) {
|
||||
t.Run("Map over Some", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
Of[Config](21),
|
||||
Map[Config](utils.Double),
|
||||
)
|
||||
assert.Equal(t, O.Some(42), result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("Map over None", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
None[Config, int](),
|
||||
Map[Config](utils.Double),
|
||||
)
|
||||
assert.Equal(t, O.None[int](), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestMonadChain tests sequencing two ReaderOption computations
|
||||
func TestMonadChain(t *testing.T) {
|
||||
t.Run("Chain with Some", func(t *testing.T) {
|
||||
ro := Of[Config](21)
|
||||
chained := MonadChain(ro, func(x int) ReaderOption[Config, int] {
|
||||
return Of[Config](x * 2)
|
||||
})
|
||||
result := chained(defaultConfig)
|
||||
assert.Equal(t, O.Some(42), result)
|
||||
})
|
||||
|
||||
t.Run("Chain with None", func(t *testing.T) {
|
||||
ro := None[Config, int]()
|
||||
chained := MonadChain(ro, func(x int) ReaderOption[Config, int] {
|
||||
return Of[Config](x * 2)
|
||||
})
|
||||
result := chained(defaultConfig)
|
||||
assert.Equal(t, O.None[int](), result)
|
||||
})
|
||||
|
||||
t.Run("Chain returning None", func(t *testing.T) {
|
||||
ro := Of[Config](21)
|
||||
chained := MonadChain(ro, func(x int) ReaderOption[Config, int] {
|
||||
return None[Config, int]()
|
||||
})
|
||||
result := chained(defaultConfig)
|
||||
assert.Equal(t, O.None[int](), result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestChain tests the curried version of MonadChain
|
||||
func TestChain(t *testing.T) {
|
||||
t.Run("Chain with Some", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
Of[Config](21),
|
||||
Chain(func(x int) ReaderOption[Config, int] {
|
||||
return Of[Config](x * 2)
|
||||
}),
|
||||
)
|
||||
assert.Equal(t, O.Some(42), result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("Chain with None", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
None[Config, int](),
|
||||
Chain(func(x int) ReaderOption[Config, int] {
|
||||
return Of[Config](x * 2)
|
||||
}),
|
||||
)
|
||||
assert.Equal(t, O.None[int](), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestMonadAp tests applying a function wrapped in a ReaderOption
|
||||
func TestMonadAp(t *testing.T) {
|
||||
t.Run("Ap with both Some", func(t *testing.T) {
|
||||
fab := Of[Config](utils.Double)
|
||||
fa := Of[Config](21)
|
||||
result := MonadAp(fab, fa)
|
||||
assert.Equal(t, O.Some(42), result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("Ap with None function", func(t *testing.T) {
|
||||
fab := None[Config, func(int) int]()
|
||||
fa := Of[Config](21)
|
||||
result := MonadAp(fab, fa)
|
||||
assert.Equal(t, O.None[int](), result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("Ap with None value", func(t *testing.T) {
|
||||
fab := Of[Config](utils.Double)
|
||||
fa := None[Config, int]()
|
||||
result := MonadAp(fab, fa)
|
||||
assert.Equal(t, O.None[int](), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestAp tests the curried version of MonadAp
|
||||
func TestAp(t *testing.T) {
|
||||
t.Run("Ap with both Some", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
Of[Config](utils.Double),
|
||||
Ap[int](Of[Config](21)),
|
||||
)
|
||||
assert.Equal(t, O.Some(42), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestFromPredicate tests creating a Kleisli arrow that filters based on a predicate
|
||||
func TestFromPredicate(t *testing.T) {
|
||||
isPositive := FromPredicate[Config](func(x int) bool { return x > 0 })
|
||||
|
||||
t.Run("Predicate satisfied", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
Of[Config](42),
|
||||
Chain(isPositive),
|
||||
)
|
||||
assert.Equal(t, O.Some(42), result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("Predicate not satisfied", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
Of[Config](-5),
|
||||
Chain(isPositive),
|
||||
)
|
||||
assert.Equal(t, O.None[int](), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestFold tests extracting the value from a ReaderOption with handlers
|
||||
func TestFold(t *testing.T) {
|
||||
onNone := reader.Of[MyContext]("none")
|
||||
onSome := func(x int) Reader[MyContext, string] {
|
||||
return reader.Of[MyContext](fmt.Sprintf("%d", x))
|
||||
}
|
||||
t.Run("Fold with Some", func(t *testing.T) {
|
||||
ro := Of[Config](42)
|
||||
result := Fold(
|
||||
reader.Of[Config]("none"),
|
||||
func(x int) reader.Reader[Config, string] {
|
||||
return reader.Of[Config](fmt.Sprintf("%d", x))
|
||||
},
|
||||
)(ro)
|
||||
assert.Equal(t, "42", result(defaultConfig))
|
||||
})
|
||||
|
||||
// Test with Some
|
||||
g1 := Fold(onNone, onSome)(Of[MyContext](42))
|
||||
assert.Equal(t, "42", g1(defaultContext))
|
||||
|
||||
// Test with None
|
||||
g2 := Fold(onNone, onSome)(None[MyContext, int]())
|
||||
assert.Equal(t, "none", g2(defaultContext))
|
||||
t.Run("Fold with None", func(t *testing.T) {
|
||||
ro := None[Config, int]()
|
||||
result := Fold(
|
||||
reader.Of[Config]("none"),
|
||||
func(x int) reader.Reader[Config, string] {
|
||||
return reader.Of[Config](fmt.Sprintf("%d", x))
|
||||
},
|
||||
)(ro)
|
||||
assert.Equal(t, "none", result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestMonadFold tests the non-curried version of Fold
|
||||
func TestMonadFold(t *testing.T) {
|
||||
t.Run("MonadFold with Some", func(t *testing.T) {
|
||||
ro := Of[Config](42)
|
||||
result := MonadFold(
|
||||
ro,
|
||||
reader.Of[Config]("none"),
|
||||
func(x int) reader.Reader[Config, string] {
|
||||
return reader.Of[Config](fmt.Sprintf("%d", x))
|
||||
},
|
||||
)
|
||||
assert.Equal(t, "42", result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("MonadFold with None", func(t *testing.T) {
|
||||
ro := None[Config, int]()
|
||||
result := MonadFold(
|
||||
ro,
|
||||
reader.Of[Config]("none"),
|
||||
func(x int) reader.Reader[Config, string] {
|
||||
return reader.Of[Config](fmt.Sprintf("%d", x))
|
||||
},
|
||||
)
|
||||
assert.Equal(t, "none", result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestGetOrElse tests getting the value or a default
|
||||
func TestGetOrElse(t *testing.T) {
|
||||
defaultValue := reader.Of[MyContext](0)
|
||||
t.Run("GetOrElse with Some", func(t *testing.T) {
|
||||
ro := Of[Config](42)
|
||||
result := GetOrElse(reader.Of[Config](0))(ro)
|
||||
assert.Equal(t, 42, result(defaultConfig))
|
||||
})
|
||||
|
||||
// Test with Some
|
||||
g1 := GetOrElse(defaultValue)(Of[MyContext](42))
|
||||
assert.Equal(t, 42, g1(defaultContext))
|
||||
|
||||
// Test with None
|
||||
g2 := GetOrElse(defaultValue)(None[MyContext, int]())
|
||||
assert.Equal(t, 0, g2(defaultContext))
|
||||
t.Run("GetOrElse with None", func(t *testing.T) {
|
||||
ro := None[Config, int]()
|
||||
result := GetOrElse(reader.Of[Config](99))(ro)
|
||||
assert.Equal(t, 99, result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestAsk tests retrieving the current environment
|
||||
func TestAsk(t *testing.T) {
|
||||
ro := Ask[MyContext]()
|
||||
result := ro(defaultContext)
|
||||
assert.Equal(t, O.Of(defaultContext), result)
|
||||
ro := Ask[Config]()
|
||||
result := ro(defaultConfig)
|
||||
assert.Equal(t, O.Some(defaultConfig), result)
|
||||
}
|
||||
|
||||
// TestAsks tests applying a function to the environment
|
||||
func TestAsks(t *testing.T) {
|
||||
reader := func(ctx MyContext) string {
|
||||
return string(ctx)
|
||||
}
|
||||
ro := Asks(reader)
|
||||
result := ro(defaultContext)
|
||||
assert.Equal(t, O.Of("default"), result)
|
||||
getPort := Asks(func(cfg Config) int {
|
||||
return cfg.Port
|
||||
})
|
||||
result := getPort(defaultConfig)
|
||||
assert.Equal(t, O.Some(8080), result)
|
||||
}
|
||||
|
||||
func TestChainOptionK(t *testing.T) {
|
||||
// TestMonadChainOptionK tests chaining with a function that returns an Option
|
||||
func TestMonadChainOptionK(t *testing.T) {
|
||||
parsePositive := func(x int) O.Option[int] {
|
||||
if x > 0 {
|
||||
return O.Of(x)
|
||||
return O.Some(x)
|
||||
}
|
||||
return O.None[int]()
|
||||
}
|
||||
|
||||
// Test with positive number
|
||||
g1 := F.Pipe1(
|
||||
Of[MyContext](42),
|
||||
ChainOptionK[MyContext](parsePositive),
|
||||
)
|
||||
assert.Equal(t, O.Of(42), g1(defaultContext))
|
||||
|
||||
// Test with negative number
|
||||
g2 := F.Pipe1(
|
||||
Of[MyContext](-5),
|
||||
ChainOptionK[MyContext](parsePositive),
|
||||
)
|
||||
assert.Equal(t, O.None[int](), g2(defaultContext))
|
||||
}
|
||||
|
||||
func TestLocal(t *testing.T) {
|
||||
type GlobalContext struct {
|
||||
Value string
|
||||
}
|
||||
|
||||
// A computation that needs a string context
|
||||
ro := Asks(func(s string) string {
|
||||
return "Hello, " + s
|
||||
t.Run("ChainOptionK with valid value", func(t *testing.T) {
|
||||
ro := Of[Config](42)
|
||||
result := MonadChainOptionK(ro, parsePositive)
|
||||
assert.Equal(t, O.Some(42), result(defaultConfig))
|
||||
})
|
||||
|
||||
// Transform GlobalContext to string
|
||||
transformed := Local[string](func(g GlobalContext) string {
|
||||
return g.Value
|
||||
})(ro)
|
||||
t.Run("ChainOptionK with invalid value", func(t *testing.T) {
|
||||
ro := Of[Config](-5)
|
||||
result := MonadChainOptionK(ro, parsePositive)
|
||||
assert.Equal(t, O.None[int](), result(defaultConfig))
|
||||
})
|
||||
|
||||
result := transformed(GlobalContext{Value: "World"})
|
||||
assert.Equal(t, O.Of("Hello, World"), result)
|
||||
t.Run("ChainOptionK with None", func(t *testing.T) {
|
||||
ro := None[Config, int]()
|
||||
result := MonadChainOptionK(ro, parsePositive)
|
||||
assert.Equal(t, O.None[int](), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
func TestRead(t *testing.T) {
|
||||
ro := Of[MyContext](42)
|
||||
result := Read[int](defaultContext)(ro)
|
||||
assert.Equal(t, O.Of(42), result)
|
||||
}
|
||||
|
||||
func TestFlap(t *testing.T) {
|
||||
addFunc := func(x int) int {
|
||||
return x + 10
|
||||
// TestChainOptionK tests the curried version of MonadChainOptionK
|
||||
func TestChainOptionK(t *testing.T) {
|
||||
parsePositive := func(x int) O.Option[int] {
|
||||
if x > 0 {
|
||||
return O.Some(x)
|
||||
}
|
||||
return O.None[int]()
|
||||
}
|
||||
|
||||
g := F.Pipe1(
|
||||
Of[MyContext](addFunc),
|
||||
Flap[MyContext, int](32),
|
||||
t.Run("ChainOptionK with valid value", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
Of[Config](42),
|
||||
ChainOptionK[Config](parsePositive),
|
||||
)
|
||||
assert.Equal(t, O.Some(42), result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("ChainOptionK with invalid value", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
Of[Config](-5),
|
||||
ChainOptionK[Config](parsePositive),
|
||||
)
|
||||
assert.Equal(t, O.None[int](), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestFlatten tests removing one level of nesting
|
||||
func TestFlatten(t *testing.T) {
|
||||
t.Run("Flatten nested Some", func(t *testing.T) {
|
||||
nested := Of[Config](Of[Config](42))
|
||||
flattened := Flatten(nested)
|
||||
result := flattened(defaultConfig)
|
||||
assert.Equal(t, O.Some(42), result)
|
||||
})
|
||||
|
||||
t.Run("Flatten outer None", func(t *testing.T) {
|
||||
nested := None[Config, ReaderOption[Config, int]]()
|
||||
flattened := Flatten(nested)
|
||||
result := flattened(defaultConfig)
|
||||
assert.Equal(t, O.None[int](), result)
|
||||
})
|
||||
|
||||
t.Run("Flatten inner None", func(t *testing.T) {
|
||||
nested := Of[Config](None[Config, int]())
|
||||
flattened := Flatten(nested)
|
||||
result := flattened(defaultConfig)
|
||||
assert.Equal(t, O.None[int](), result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestLocal tests transforming the environment before passing it to a computation
|
||||
func TestLocal(t *testing.T) {
|
||||
type GlobalConfig struct {
|
||||
DB Config
|
||||
}
|
||||
|
||||
getPort := Asks(func(cfg Config) int {
|
||||
return cfg.Port
|
||||
})
|
||||
|
||||
globalConfig := GlobalConfig{
|
||||
DB: defaultConfig,
|
||||
}
|
||||
|
||||
result := Local[int](func(g GlobalConfig) Config {
|
||||
return g.DB
|
||||
})(getPort)
|
||||
|
||||
assert.Equal(t, O.Some(8080), result(globalConfig))
|
||||
}
|
||||
|
||||
// TestRead tests executing a ReaderOption with an environment
|
||||
func TestRead(t *testing.T) {
|
||||
ro := Of[Config](42)
|
||||
result := Read[int](defaultConfig)(ro)
|
||||
assert.Equal(t, O.Some(42), result)
|
||||
}
|
||||
|
||||
// TestReadOption tests executing a ReaderOption with an optional environment
|
||||
func TestReadOption(t *testing.T) {
|
||||
ro := Of[Config](42)
|
||||
|
||||
t.Run("ReadOption with Some environment", func(t *testing.T) {
|
||||
result := ReadOption[int](O.Some(defaultConfig))(ro)
|
||||
assert.Equal(t, O.Some(42), result)
|
||||
})
|
||||
|
||||
t.Run("ReadOption with None environment", func(t *testing.T) {
|
||||
result := ReadOption[int](O.None[Config]())(ro)
|
||||
assert.Equal(t, O.None[int](), result)
|
||||
})
|
||||
}
|
||||
|
||||
// TestMonadFlap tests applying a value to a function wrapped in a ReaderOption
|
||||
func TestMonadFlap(t *testing.T) {
|
||||
t.Run("Flap with Some function", func(t *testing.T) {
|
||||
fab := Of[Config](utils.Double)
|
||||
result := MonadFlap(fab, 21)
|
||||
assert.Equal(t, O.Some(42), result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("Flap with None function", func(t *testing.T) {
|
||||
fab := None[Config, func(int) int]()
|
||||
result := MonadFlap(fab, 21)
|
||||
assert.Equal(t, O.None[int](), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestFlap tests the curried version of MonadFlap
|
||||
func TestFlap(t *testing.T) {
|
||||
t.Run("Flap with Some function", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
Of[Config](utils.Double),
|
||||
Flap[Config, int](21),
|
||||
)
|
||||
assert.Equal(t, O.Some(42), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestMonadAlt tests providing an alternative ReaderOption
|
||||
func TestMonadAlt(t *testing.T) {
|
||||
t.Run("Alt with first Some", func(t *testing.T) {
|
||||
primary := Of[Config](42)
|
||||
fallback := Of[Config](99)
|
||||
result := MonadAlt(primary, fallback)
|
||||
assert.Equal(t, O.Some(42), result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("Alt with first None", func(t *testing.T) {
|
||||
primary := None[Config, int]()
|
||||
fallback := Of[Config](99)
|
||||
result := MonadAlt(primary, fallback)
|
||||
assert.Equal(t, O.Some(99), result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("Alt with both None", func(t *testing.T) {
|
||||
primary := None[Config, int]()
|
||||
fallback := None[Config, int]()
|
||||
result := MonadAlt(primary, fallback)
|
||||
assert.Equal(t, O.None[int](), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestAlt tests the curried version of MonadAlt
|
||||
func TestAlt(t *testing.T) {
|
||||
t.Run("Alt with first Some", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
Of[Config](42),
|
||||
Alt(Of[Config](99)),
|
||||
)
|
||||
assert.Equal(t, O.Some(42), result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("Alt with first None", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
None[Config, int](),
|
||||
Alt(Of[Config](99)),
|
||||
)
|
||||
assert.Equal(t, O.Some(99), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
// TestComplexChaining tests a complex chain of operations
|
||||
func TestComplexChaining(t *testing.T) {
|
||||
// Simulate a complex workflow with environment access
|
||||
result := F.Pipe3(
|
||||
Ask[Config](),
|
||||
Map[Config](func(cfg Config) int { return cfg.Port }),
|
||||
Chain(func(port int) ReaderOption[Config, int] {
|
||||
if port > 0 {
|
||||
return Of[Config](port * 2)
|
||||
}
|
||||
return None[Config, int]()
|
||||
}),
|
||||
Map[Config](func(x int) string { return fmt.Sprintf("%d", x) }),
|
||||
)
|
||||
|
||||
assert.Equal(t, O.Of(42), g(defaultContext))
|
||||
assert.Equal(t, O.Some("16160"), result(defaultConfig))
|
||||
}
|
||||
|
||||
// TestEnvironmentDependentComputation tests computations that depend on environment
|
||||
func TestEnvironmentDependentComputation(t *testing.T) {
|
||||
// A computation that uses the environment to make decisions
|
||||
validateTimeout := func(value int) ReaderOption[Config, int] {
|
||||
return func(cfg Config) O.Option[int] {
|
||||
if value <= cfg.Timeout {
|
||||
return O.Some(value)
|
||||
}
|
||||
return O.None[int]()
|
||||
}
|
||||
}
|
||||
|
||||
t.Run("Value within timeout", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
Of[Config](20),
|
||||
Chain(validateTimeout),
|
||||
)
|
||||
assert.Equal(t, O.Some(20), result(defaultConfig))
|
||||
})
|
||||
|
||||
t.Run("Value exceeds timeout", func(t *testing.T) {
|
||||
result := F.Pipe1(
|
||||
Of[Config](50),
|
||||
Chain(validateTimeout),
|
||||
)
|
||||
assert.Equal(t, O.None[int](), result(defaultConfig))
|
||||
})
|
||||
}
|
||||
|
||||
@@ -23,6 +23,10 @@ import (
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
type MyContext string
|
||||
|
||||
const defaultContext MyContext = "default"
|
||||
|
||||
func TestSequenceT1(t *testing.T) {
|
||||
|
||||
t1 := Of[MyContext]("s1")
|
||||
|
||||
Reference in New Issue
Block a user