1
0
mirror of https://github.com/go-micro/go-micro.git synced 2024-11-24 08:02:32 +02:00
A Go microservices framework
Go to file
2016-02-14 01:22:37 +00:00
broker Add broker comment 2016-01-30 21:18:57 +00:00
client Add client comment 2016-01-30 21:15:08 +00:00
cmd Allow setting registry address, broker address and transport address without specifying registry flag 2016-01-27 01:13:31 +00:00
codec Nitpick Headers to Header 2016-01-28 18:11:13 +00:00
errors Add error comment 2016-01-30 21:16:45 +00:00
examples Update readme for consul syntax changes 2016-02-07 21:30:18 +00:00
metadata Add metadata comment 2016-01-30 21:17:44 +00:00
registry Add some comments 2016-01-30 21:13:34 +00:00
selector Replace map[string]string with Context for extra options. map[string]string is essentially useless. Context can store anything 2016-01-06 16:25:12 +00:00
server Merge pull request #45 from micro/metadata 2016-01-28 18:30:53 +00:00
transport Add transport comment 2016-01-30 21:19:55 +00:00
.travis.yml Travis integration 2015-12-09 19:59:52 +00:00
go-micro.go FromContext/NewContext methods 2016-01-28 18:23:24 +00:00
LICENSE Add apache license 2015-02-27 09:38:47 +00:00
options.go Prefer RegisterTTL set through Init 2016-01-27 12:23:18 +00:00
README.md strip platform services out of readme 2016-02-14 01:22:37 +00:00
service.go Move context to metadata 2016-01-28 17:55:28 +00:00
wrapper.go Move context to metadata 2016-01-28 17:55:28 +00:00

Go Micro GoDoc Travis CI

Go Micro is a pluggable RPC based microservice library which provides the fundamental building blocks for writing distributed applications. It is part of the Micro toolkit. It supports Proto-RPC and JSON-RPC as the request/response protocol out of the box and defaults to Consul for discovery.

The Micro philosophy is "batteries included" with a pluggable architecture. We provide sane defaults but everything can be swapped out.

An example service can be found in examples/service. The examples directory contains many more examples for using things such as middleware/wrappers, selector filters, pub/sub and code generation.

Join the community to learn more:

Features

Feature Package Built-in Plugin Description
Discovery Registry consul A way of locating services to communicate with
Client Client rpc Used to make RPC requests to a service
Codec Codec proto,json Encoding/Decoding handler for requests
Balancer Selector random Service node filter and pool
Server Server rpc Listens and serves RPC requests
Pub/Sub Broker http Publish and Subscribe to events
Transport Transport http Communication mechanism between services

Example Services

Project Description
greeter A greeter service (includes Go, Ruby, Python examples)
geo-srv Geolocation tracking service using hailocab/go-geoindex
geo-api A HTTP API handler for geo location tracking and search
geocode-srv A geocoding service using the Google Geocoding API
hailo-srv A service for the hailo taxi service developer api
place-srv A microservice to store and retrieve places (includes Google Place Search API)
slack-srv The slack bot API as a go-micro RPC service
twitter-srv A microservice for the twitter API
user-srv A microservice for user management and authentication

Go Plugins

By default go-micro only provides a single implementation of each interface. Plugins can be found at github.com/micro/go-plugins. Contributions welcome!

How does it work?

Go Micro is a framework that addresses the fundamental requirements to write microservices.

Let's dig into the core components.

Registry

The registry provides a service discovery mechanism to resolve names to addresses. It can be backed by consul, etcd, zookeeper, dns, gossip, etc. Services should register using the registry on startup and deregister on shutdown. Services can optionally provide an expiry TTL and reregister on an interval to ensure liveness and that the service is cleaned up if it dies.

Selector

The selector is a load balancing abstraction which builds on the registry. It allows services to be "filtered" using filter functions and "selected" using a choice of algorithms such as random, roundrobin, leastconn, etc. The selector is leveraged by the Client when making requests. The client will use the selector rather than the registry as it provides that built in mechanism of load balancing.

Transport

The transport is the interface for synchronous request/response communication between services. It's akin to the golang net package but provides a higher level abstraction which allows us to switch out communication mechanisms e.g http, rabbitmq, websockets, NATS. The transport also supports bidirectional streaming. This is powerful for client side push to the server.

Broker

The broker provides an interface to a message broker for asynchronous pub/sub communication. This is one of the fundamental requirements of an event driven architecture and microservices. By default we use an inbox style point to point HTTP system to minimise the number of dependencies required to get started. However there are many message broker implementations available in go-plugins e.g RabbitMQ, NATS, NSQ, Google Cloud Pub Sub.

Codec

The codec is used for encoding and decoding messages before transporting them across the wire. This could be json, protobuf, bson, msgpack, etc. Where this differs from most other codecs is that we actually support the RPC format here as well. So we have JSON-RPC, PROTO-RPC, BSON-RPC, etc. It separates encoding from the client/server and provides a powerful method for integrating other systems such as gRPC, Vanadium, etc.

Server

The server is the building block for writing a service. Here you can name your service, register request handlers, add middeware, etc. The service builds on the above packages to provide a unified interface for serving requests. The built in server is an RPC system. In the future there maybe other implementations. The server also allows you to define multiple codecs to serve different encoded messages.

Client

The client provides an interface to make requests to services. Again like the server, it builds on the other packages to provide a unified interface for finding services by name using the registry, load balancing using the selector, making synchronous requests with the transport and asynchronous messaging using the broker.

The above components are combined at the top-level of micro as a Service.

Getting Started

This is a quick getting started guide with the greeter service example.

Prerequisites

There's just one prerequisite. We need a service discovery system to resolve service names to their address. The default discovery mechanism used in go-micro is Consul. Discovery is however pluggable so you can used etcd, kubernetes, zookeeper, etc. Other implementations can be found in go-plugins.

Install Consul

https://www.consul.io/intro/getting-started/install.html

Run Consul

$ consul agent -dev -advertise=127.0.0.1

Run Service

$ go run examples/service/main.go --logtostderr
I0102 00:22:26.413467   12018 rpc_server.go:297] Listening on [::]:62492
I0102 00:22:26.413803   12018 http_broker.go:115] Broker Listening on [::]:62493
I0102 00:22:26.414009   12018 rpc_server.go:212] Registering node: greeter-e6b2fc6f-b0e6-11e5-a42f-68a86d0d36b6

Test Service

$ go run examples/service/main.go --client
Hello John

Writing a service

Create request/response proto

go-micro/examples/service/proto/greeter.proto:

syntax = "proto3";

service Greeter {
	rpc Hello(HelloRequest) returns (HelloResponse) {}
}

message HelloRequest {
	string name = 1;
}

message HelloResponse {
	string greeting = 2;
}

Install protobuf for code generation

We use a protobuf plugin for code generation. This is completely optional. Look at examples/server and examples/client for examples without code generation.

go get github.com/micro/protobuf

Compile proto protoc -I$GOPATH/src --go_out=plugins=micro:$GOPATH/src $GOPATH/src/github.com/micro/go-micro/examples/service/proto/greeter.proto

Define the service

go-micro/examples/service/main.go:

package main

import (
	"fmt"

	micro "github.com/micro/go-micro"
	proto "github.com/micro/go-micro/examples/service/proto"
	"golang.org/x/net/context"
)

type Greeter struct{}

func (g *Greeter) Hello(ctx context.Context, req *proto.HelloRequest, rsp *proto.HelloResponse) error {
	rsp.Greeting = "Hello " + req.Name
	return nil
}

func main() {
	// Create a new service. Optionally include some options here.
	service := micro.NewService(
		micro.Name("greeter"),
		micro.Version("latest"),
		micro.Metadata(map[string]string{
			"type": "helloworld",
		}),
	)

	// Init will parse the command line flags. Any flags set will
	// override the above settings. Options defined here will
	// override anything set on the command line.
	service.Init()

	// Register handler
	proto.RegisterGreeterHandler(service.Server(), new(Greeter))

	// Run the server
	if err := service.Run(); err != nil {
		fmt.Println(err)
	}
}

Run service

go run examples/service/main.go --logtostderr
I0102 00:22:26.413467   12018 rpc_server.go:297] Listening on [::]:62492
I0102 00:22:26.413803   12018 http_broker.go:115] Broker Listening on [::]:62493
I0102 00:22:26.414009   12018 rpc_server.go:212] Registering node: greeter-e6b2fc6f-b0e6-11e5-a42f-68a86d0d36b6

Define a client

client.go

package main

import (
	"fmt"

	micro "github.com/micro/go-micro"
	proto "github.com/micro/go-micro/examples/service/proto"
	"golang.org/x/net/context"
)


func main() {
	// Create a new service. Optionally include some options here.
	service := micro.NewService(micro.Name("greeter.client"))

	// Create new greeter client
	greeter := proto.NewGreeterClient("greeter", service.Client())

	// Call the greeter
	rsp, err := greeter.Hello(context.TODO(), &proto.HelloRequest{Name: "John"})
	if err != nil {
		fmt.Println(err)
	}

	// Print response
	fmt.Println(rsp.Greeting)
}

Run the client

go run client.go
Hello John