1
0
mirror of https://github.com/securego/gosec.git synced 2025-01-14 02:23:09 +02:00

Feature: G602 Slice Bound Checking (#973)

* Added slice bounds testing for slice expressions.

* Added checking slice index.

* Added test for reassigning slice.

* Store capacities on reslicing.

* Scope change clears map. Func name used to track slices.

* Map CallExpr to check bounds when passing to functions.

* Fixed linter errors.

* Updated rulelist with CWE mapping.

* Added comment for NewSliceBoundCheck.

* Addressed nil cap runtime error.

* Replaced usage of nil in call arg map with dummy callexprs.

* Updated comments, wrapped error return, addressed other review concerns.
This commit is contained in:
Morgen Malinoski 2023-06-21 02:56:36 -05:00 committed by GitHub
parent 82364a710c
commit a018cf0fbb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 589 additions and 0 deletions

View File

@ -87,6 +87,7 @@ var ruleToCWE = map[string]string{
"G504": "327",
"G505": "327",
"G601": "118",
"G602": "118",
}
// Issue is returned by a gosec rule if it discovers an issue with the scanned code.

View File

@ -107,6 +107,7 @@ func Generate(trackSuppressions bool, filters ...RuleFilter) RuleList {
// memory safety
{"G601", "Implicit memory aliasing in RangeStmt", NewImplicitAliasing},
{"G602", "Slice access out of bounds", NewSliceBoundCheck},
}
ruleMap := make(map[string]RuleDefinition)

View File

@ -194,5 +194,9 @@ var _ = Describe("gosec rules", func() {
It("should detect implicit aliasing in ForRange", func() {
runner("G601", testutils.SampleCodeG601)
})
It("should detect out of bounds slice access", func() {
runner("G602", testutils.SampleCodeG602)
})
})
})

405
rules/slice_bounds.go Normal file
View File

@ -0,0 +1,405 @@
package rules
import (
"fmt"
"go/ast"
"go/types"
"github.com/securego/gosec/v2"
"github.com/securego/gosec/v2/issue"
)
// sliceOutOfBounds is a rule which checks for slices which are accessed outside their capacity,
// either through indexing it out of bounds or through slice expressions whose low or high index
// are out of bounds.
type sliceOutOfBounds struct {
sliceCaps map[*ast.CallExpr]map[string]*int64 // Capacities of slices. Maps function call -> var name -> value.
currentScope *types.Scope // Current scope. Map is cleared when scope changes.
currentFuncName string // Current function.
funcCallArgs map[string][]*int64 // Caps to load once a func declaration is scanned.
issue.MetaData // Metadata for this rule.
}
// ID returns the rule ID for sliceOutOfBounds: G602.
func (s *sliceOutOfBounds) ID() string {
return s.MetaData.ID
}
func (s *sliceOutOfBounds) Match(node ast.Node, ctx *gosec.Context) (*issue.Issue, error) {
if s.currentScope == nil {
s.currentScope = ctx.Pkg.Scope()
} else if s.currentScope != ctx.Pkg.Scope() {
s.currentScope = ctx.Pkg.Scope()
// Clear slice map, since we are in a new scope
sliceMapNil := make(map[string]*int64)
sliceCaps := make(map[*ast.CallExpr]map[string]*int64)
sliceCaps[nil] = sliceMapNil
s.sliceCaps = sliceCaps
}
switch node := node.(type) {
case *ast.AssignStmt:
return s.matchAssign(node, ctx)
case *ast.SliceExpr:
return s.matchSliceExpr(node, ctx)
case *ast.IndexExpr:
return s.matchIndexExpr(node, ctx)
case *ast.FuncDecl:
s.currentFuncName = node.Name.Name
s.loadArgCaps(node)
case *ast.CallExpr:
if _, ok := node.Fun.(*ast.FuncLit); ok {
// Do nothing with func literals for now.
break
}
sliceMap := make(map[string]*int64)
s.sliceCaps[node] = sliceMap
s.setupCallArgCaps(node, ctx)
}
return nil, nil
}
// updateSliceCaps takes in a variable name and a map of calls we are updating the variables for to the updated values
// and will add it to the sliceCaps map.
func (s *sliceOutOfBounds) updateSliceCaps(varName string, caps map[*ast.CallExpr]*int64) {
for callExpr, cap := range caps {
s.sliceCaps[callExpr][varName] = cap
}
}
// getAllCalls returns all CallExprs that are calls to the given function.
func (s *sliceOutOfBounds) getAllCalls(funcName string, ctx *gosec.Context) []*ast.CallExpr {
calls := []*ast.CallExpr{}
for callExpr := range s.sliceCaps {
if callExpr != nil {
// Compare the names of the function the code is scanning with the current call we are iterating over
_, callFuncName, err := gosec.GetCallInfo(callExpr, ctx)
if err != nil {
continue
}
if callFuncName == funcName {
calls = append(calls, callExpr)
}
}
}
return calls
}
// getSliceCapsForFunc gets all the capacities for slice with given name that are stored for each call to the passed function.
func (s *sliceOutOfBounds) getSliceCapsForFunc(funcName string, varName string, ctx *gosec.Context) map[*ast.CallExpr]*int64 {
caps := make(map[*ast.CallExpr]*int64)
calls := s.getAllCalls(funcName, ctx)
for _, call := range calls {
if callCaps, ok := s.sliceCaps[call]; ok {
caps[call] = callCaps[varName]
}
}
return caps
}
// setupCallArgCaps evaluates and saves the caps for any slices in the args so they can be validated when the function is scanned.
func (s *sliceOutOfBounds) setupCallArgCaps(callExpr *ast.CallExpr, ctx *gosec.Context) {
// Array of caps to be loaded once the function declaration is scanned
funcCallArgs := []*int64{}
// Get function name
_, funcName, err := gosec.GetCallInfo(callExpr, ctx)
if err != nil {
return
}
for _, arg := range callExpr.Args {
switch node := arg.(type) {
case *ast.SliceExpr:
caps := s.evaluateSliceExpr(node, ctx)
// Simplifying assumption: use the lowest capacity. Storing all possible capacities for slices passed
// to a function call would catch the most issues, but would require a data structure like a stack and a
// reworking of the code for scanning itself. Use the lowest capacity, as this would be more likely to
// raise an issue for being out of bounds.
var lowestCap *int64
for _, cap := range caps {
if cap == nil {
continue
}
if lowestCap == nil {
lowestCap = cap
} else if *lowestCap > *cap {
lowestCap = cap
}
}
if lowestCap == nil {
funcCallArgs = append(funcCallArgs, nil)
continue
}
// Now create a map of just this value to add it to the sliceCaps
funcCallArgs = append(funcCallArgs, lowestCap)
case *ast.Ident:
ident := arg.(*ast.Ident)
caps := s.getSliceCapsForFunc(s.currentFuncName, ident.Name, ctx)
var lowestCap *int64
for _, cap := range caps {
if cap == nil {
continue
}
if lowestCap == nil {
lowestCap = cap
} else if *lowestCap > *cap {
lowestCap = cap
}
}
if lowestCap == nil {
funcCallArgs = append(funcCallArgs, nil)
continue
}
// Now create a map of just this value to add it to the sliceCaps
funcCallArgs = append(funcCallArgs, lowestCap)
default:
funcCallArgs = append(funcCallArgs, nil)
}
}
s.funcCallArgs[funcName] = funcCallArgs
}
// loadArgCaps loads caps that were saved for a call to this function.
func (s *sliceOutOfBounds) loadArgCaps(funcDecl *ast.FuncDecl) {
sliceMap := make(map[string]*int64)
funcName := funcDecl.Name.Name
// Create a dummmy call expr for the new function. This is so we can still store args for
// functions which are not explicitly called in the code by other functions (specifically, main).
ident := ast.NewIdent(funcName)
dummyCallExpr := ast.CallExpr{
Fun: ident,
}
argCaps, ok := s.funcCallArgs[funcName]
if !ok || len(argCaps) == 0 {
s.sliceCaps[&dummyCallExpr] = sliceMap
return
}
params := funcDecl.Type.Params.List
if len(params) > len(argCaps) {
return // Length of params and args doesn't match, so don't do anything with this.
}
for it := range params {
capacity := argCaps[it]
if capacity == nil {
continue
}
if len(params[it].Names) == 0 {
continue
}
if paramName := params[it].Names[0]; paramName != nil {
sliceMap[paramName.Name] = capacity
}
}
s.sliceCaps[&dummyCallExpr] = sliceMap
}
// matchSliceMake matches calls to make() and stores the capacity of the new slice in the map to compare against future slice usage.
func (s *sliceOutOfBounds) matchSliceMake(funcCall *ast.CallExpr, sliceName string, ctx *gosec.Context) (*issue.Issue, error) {
_, funcName, err := gosec.GetCallInfo(funcCall, ctx)
if err != nil || funcName != "make" {
return nil, nil
}
var capacityArg int
if len(funcCall.Args) < 2 {
return nil, nil // No size passed
} else if len(funcCall.Args) == 2 {
capacityArg = 1
} else if len(funcCall.Args) == 3 {
capacityArg = 2
} else {
return nil, nil // Unexpected, args should always be 2 or 3
}
// Check and get the capacity of the slice passed to make. It must be a literal value, since we aren't evaluating the expression.
sliceCapLit, ok := funcCall.Args[capacityArg].(*ast.BasicLit)
if !ok {
return nil, nil
}
capacity, err := gosec.GetInt(sliceCapLit)
if err != nil {
return nil, nil
}
caps := s.getSliceCapsForFunc(s.currentFuncName, sliceName, ctx)
for callExpr := range caps {
caps[callExpr] = &capacity
}
s.updateSliceCaps(sliceName, caps)
return nil, nil
}
// evaluateSliceExpr takes a slice expression and evaluates what the capacity of said slice is for each of the
// calls to the current function. Returns map of the call expressions of each call to the current function to
// the evaluated capacities.
func (s *sliceOutOfBounds) evaluateSliceExpr(node *ast.SliceExpr, ctx *gosec.Context) map[*ast.CallExpr]*int64 {
// Get ident to get name
ident, ok := node.X.(*ast.Ident)
if !ok {
return nil
}
// Get cap of old slice to calculate this new slice's cap
caps := s.getSliceCapsForFunc(s.currentFuncName, ident.Name, ctx)
for callExpr, oldCap := range caps {
if oldCap == nil {
continue
}
// Get and check low value
lowIdent, ok := node.Low.(*ast.BasicLit)
if ok && lowIdent != nil {
low, _ := gosec.GetInt(lowIdent)
newCap := *oldCap - low
caps[callExpr] = &newCap
} else if lowIdent == nil { // If no lower bound, capacity will be same
continue
}
}
return caps
}
// matchSliceAssignment matches slice assignments, calculates capacity of slice if possible to store it in map.
func (s *sliceOutOfBounds) matchSliceAssignment(node *ast.SliceExpr, sliceName string, ctx *gosec.Context) (*issue.Issue, error) {
// First do the normal match that verifies the slice expr is not out of bounds
if i, err := s.matchSliceExpr(node, ctx); err != nil {
return i, fmt.Errorf("There was an error while matching a slice expression to check slice bounds for %s: %w", sliceName, err)
}
// Now that the assignment is (presumably) successfully, we can calculate the capacity and add this new slice to the map
caps := s.evaluateSliceExpr(node, ctx)
s.updateSliceCaps(sliceName, caps)
return nil, nil
}
// matchAssign matches checks if an assignment statement is making a slice, or if it is assigning a slice.
func (s *sliceOutOfBounds) matchAssign(node *ast.AssignStmt, ctx *gosec.Context) (*issue.Issue, error) {
// Check RHS for calls to make() so we can get the actual size of the slice
for it, i := range node.Rhs {
// Get the slice name so we can associate the cap with the slice in the map
sliceIdent, ok := node.Lhs[it].(*ast.Ident)
if !ok {
return nil, nil
}
sliceName := sliceIdent.Name
switch expr := i.(type) {
case *ast.CallExpr: // Check for and handle call to make()
return s.matchSliceMake(expr, sliceName, ctx)
case *ast.SliceExpr: // Handle assignments to a slice
return s.matchSliceAssignment(expr, sliceName, ctx)
}
}
return nil, nil
}
// matchSliceExpr validates that a given slice expression (eg, slice[10:30]) is not out of bounds.
func (s *sliceOutOfBounds) matchSliceExpr(node *ast.SliceExpr, ctx *gosec.Context) (*issue.Issue, error) {
// First get the slice name so we can check the size in our map
ident, ok := node.X.(*ast.Ident)
if !ok {
return nil, nil
}
// Get slice cap from the map to compare it against high and low
caps := s.getSliceCapsForFunc(s.currentFuncName, ident.Name, ctx)
for _, cap := range caps {
if cap == nil {
continue
}
// Get and check high value
highIdent, ok := node.High.(*ast.BasicLit)
if ok && highIdent != nil {
high, _ := gosec.GetInt(highIdent)
if high > *cap {
return ctx.NewIssue(node, s.ID(), s.What, s.Severity, s.Confidence), nil
}
}
// Get and check low value
lowIdent, ok := node.Low.(*ast.BasicLit)
if ok && lowIdent != nil {
low, _ := gosec.GetInt(lowIdent)
if low > *cap {
return ctx.NewIssue(node, s.ID(), s.What, s.Severity, s.Confidence), nil
}
}
}
return nil, nil
}
// matchIndexExpr validates that an index into a slice is not out of bounds.
func (s *sliceOutOfBounds) matchIndexExpr(node *ast.IndexExpr, ctx *gosec.Context) (*issue.Issue, error) {
// First get the slice name so we can check the size in our map
ident, ok := node.X.(*ast.Ident)
if !ok {
return nil, nil
}
// Get slice cap from the map to compare it against high and low
caps := s.getSliceCapsForFunc(s.currentFuncName, ident.Name, ctx)
for _, cap := range caps {
if cap == nil {
continue
}
// Get the index literal
indexIdent, ok := node.Index.(*ast.BasicLit)
if ok && indexIdent != nil {
index, _ := gosec.GetInt(indexIdent)
if index >= *cap {
return ctx.NewIssue(node, s.ID(), s.What, s.Severity, s.Confidence), nil
}
}
}
return nil, nil
}
// NewSliceBoundCheck attempts to find any slices being accessed out of bounds
// by reslicing or by being indexed.
func NewSliceBoundCheck(id string, _ gosec.Config) (gosec.Rule, []ast.Node) {
sliceMap := make(map[*ast.CallExpr]map[string]*int64)
return &sliceOutOfBounds{
sliceCaps: sliceMap,
currentFuncName: "",
funcCallArgs: make(map[string][]*int64),
MetaData: issue.MetaData{
ID: id,
Severity: issue.Medium,
Confidence: issue.Medium,
What: "Potentially accessing slice out of bounds",
},
}, []ast.Node{(*ast.CallExpr)(nil), (*ast.FuncDecl)(nil), (*ast.AssignStmt)(nil), (*ast.SliceExpr)(nil), (*ast.IndexExpr)(nil)}
}

View File

@ -3679,4 +3679,182 @@ func main() {
C.printData(cData)
}
`}, 0, gosec.NewConfig()}}
// SampleCodeG602 - Slice access out of bounds
SampleCodeG602 = []CodeSample{
{[]string{`
package main
import "fmt"
func main() {
s := make([]byte, 0)
fmt.Println(s[:3])
}`}, 1, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]byte, 0)
fmt.Println(s[3:])
}`}, 1, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]byte, 16)
fmt.Println(s[:17])
}`}, 1, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]byte, 16)
fmt.Println(s[:16])
}`}, 0, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]byte, 16)
fmt.Println(s[5:17])
}`}, 1, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]byte, 4)
fmt.Println(s[3])
}`}, 0, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]byte, 4)
fmt.Println(s[5])
}`}, 1, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]byte, 0)
s = make([]byte, 3)
fmt.Println(s[:3])
}`}, 0, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]byte, 0, 4)
fmt.Println(s[:3])
fmt.Println(s[3])
}`}, 0, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]byte, 0, 4)
fmt.Println(s[:5])
fmt.Println(s[7])
}`}, 2, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]byte, 0, 4)
x := s[:2]
y := x[:10]
fmt.Println(y)
}`}, 1, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]int, 0, 4)
doStuff(s)
}
func doStuff(x []int) {
newSlice := x[:10]
fmt.Println(newSlice)
}`}, 1, gosec.NewConfig()},
{[]string{`
package main
import "fmt"
func main() {
s := make([]int, 0, 30)
doStuff(s)
x := make([]int, 20)
y := x[10:]
doStuff(y)
z := y[5:]
doStuff(z)
}
func doStuff(x []int) {
newSlice := x[:10]
fmt.Println(newSlice)
newSlice2 := x[:6]
fmt.Println(newSlice2)
}`}, 2, gosec.NewConfig()},
}
)