1
0
mirror of https://github.com/google/comprehensive-rust.git synced 2025-03-30 09:22:38 +02:00
Dustin J. Mitchell 6d19292f16
Comprehensive Rust v2 (#1073)
I've taken some work by @fw-immunant and others on the new organization
of the course and condensed it into a form amenable to a text editor and
some computational analysis. You can see the inputs in `course.py` but
the interesting bits are the output: `outline.md` and `slides.md`.

The idea is to break the course into more, smaller segments with
exercises at the ends and breaks in between. So `outline.md` lists the
segments, their duration, and sums those durations up per-day. It shows
we're about an hour too long right now! There are more details of the
segments in `slides.md`, or you can see mostly the same stuff in
`course.py`.

This now contains all of the content from the v1 course, ensuring both
that we've covered everything and that we'll have somewhere to redirect
every page.

Fixes #1082.
Fixes #1465.

---------

Co-authored-by: Nicole LeGare <dlegare.1001@gmail.com>
Co-authored-by: Martin Geisler <mgeisler@google.com>
2023-11-29 16:39:24 +01:00

1.5 KiB

minutes
5

impl Trait

Similar to trait bounds, an impl Trait syntax can be used in function arguments and return values:

// Syntactic sugar for:
//   fn add_42_millions<T: Into<i32>>(x: T) -> i32 {
fn add_42_millions(x: impl Into<i32>) -> i32 {
    x.into() + 42_000_000
}

fn pair_of(x: u32) -> impl std::fmt::Debug {
    (x + 1, x - 1)
}

fn main() {
    let many = add_42_millions(42_i8);
    println!("{many}");
    let many_more = add_42_millions(10_000_000);
    println!("{many_more}");
    let debuggable = pair_of(27);
    println!("debuggable: {debuggable:?}");
}

impl Trait allows you to work with types which you cannot name. The meaning of impl Trait is a bit different in the different positions.

  • For a parameter, impl Trait is like an anonymous generic parameter with a trait bound.

  • For a return type, it means that the return type is some concrete type that implements the trait, without naming the type. This can be useful when you don't want to expose the concrete type in a public API.

    Inference is hard in return position. A function returning impl Foo picks the concrete type it returns, without writing it out in the source. A function returning a generic type like collect<B>() -> B can return any type satisfying B, and the caller may need to choose one, such as with let x: Vec<_> = foo.collect() or with the turbofish, foo.collect::<Vec<_>>().

What is the type of debuggable? Try let debuggable: () = .. to see what the error message shows.