You've already forked comprehensive-rust
mirror of
https://github.com/google/comprehensive-rust.git
synced 2025-07-06 14:35:36 +02:00
This is the result of running `dprint fmt` after removing `src/` from the list of excluded directories. This also reformats the Rust code: we might want to tweak this a bit in the future since some of the changes removes the hand-formatting. Of course, this formatting can be seen as a mis-feature, so maybe this is good overall. Thanks to mdbook-i18n-helpers 0.2, the POT file is nearly unchanged after this, meaning that all existing translations remain valid! A few messages were changed because of stray whitespace characters: msgid "" "Slices always borrow from another object. In this example, `a` has to remain " -"'alive' (in scope) for at least as long as our slice. " +"'alive' (in scope) for at least as long as our slice." msgstr "" The formatting is enforced in CI and we will have to see how annoying this is in practice for the many contributors. If it becomes annoying, we should look into fixing dprint/check#11 so that `dprint` can annotate the lines that need fixing directly, then I think we can consider more strict formatting checks. I added more customization to `rustfmt.toml`. This is to better emulate the dense style used in the course: - `max_width = 85` allows lines to take up the full width available in our code blocks (when taking margins and the line numbers into account). - `wrap_comments = true` ensures that we don't show very long comments in the code examples. I edited some comments to shorten them and avoid unnecessary line breaks — please trim other unnecessarily long comments when you see them! Remember we're writing code for slides 😄 - `use_small_heuristics = "Max"` allows for things like struct literals and if-statements to take up the full line width configured above. The formatting settings apply to all our Rust code right now — I think we could improve this with https://github.com/dprint/dprint/issues/711 which lets us add per-directory `dprint` configuration files. However, the `inherit: true` setting is not yet implemented (as far as I can tell), so a nested configuration file will have to copy most or all of the top-level file.
3.2 KiB
3.2 KiB
minutes
minutes |
---|
10 |
Methods
Rust allows you to associate functions with your new types. You do this with an
impl
block:
#[derive(Debug)]
struct Race {
name: String,
laps: Vec<i32>,
}
impl Race {
// No receiver, a static method
fn new(name: &str) -> Self {
Self { name: String::from(name), laps: Vec::new() }
}
// Exclusive borrowed read-write access to self
fn add_lap(&mut self, lap: i32) {
self.laps.push(lap);
}
// Shared and read-only borrowed access to self
fn print_laps(&self) {
println!("Recorded {} laps for {}:", self.laps.len(), self.name);
for (idx, lap) in self.laps.iter().enumerate() {
println!("Lap {idx}: {lap} sec");
}
}
// Exclusive ownership of self
fn finish(self) {
let total: i32 = self.laps.iter().sum();
println!("Race {} is finished, total lap time: {}", self.name, total);
}
}
fn main() {
let mut race = Race::new("Monaco Grand Prix");
race.add_lap(70);
race.add_lap(68);
race.print_laps();
race.add_lap(71);
race.print_laps();
race.finish();
// race.add_lap(42);
}
The self
arguments specify the "receiver" - the object the method acts on.
There are several common receivers for a method:
&self
: borrows the object from the caller using a shared and immutable reference. The object can be used again afterwards.&mut self
: borrows the object from the caller using a unique and mutable reference. The object can be used again afterwards.self
: takes ownership of the object and moves it away from the caller. The method becomes the owner of the object. The object will be dropped (deallocated) when the method returns, unless its ownership is explicitly transmitted. Complete ownership does not automatically mean mutability.mut self
: same as above, but the method can mutate the object.- No receiver: this becomes a static method on the struct. Typically used to
create constructors which are called
new
by convention.
Key Points:
- It can be helpful to introduce methods by comparing them to functions.
- Methods are called on an instance of a type (such as a struct or enum), the
first parameter represents the instance as
self
. - Developers may choose to use methods to take advantage of method receiver syntax and to help keep them more organized. By using methods we can keep all the implementation code in one predictable place.
- Methods are called on an instance of a type (such as a struct or enum), the
first parameter represents the instance as
- Point out the use of the keyword
self
, a method receiver.- Show that it is an abbreviated term for
self: Self
and perhaps show how the struct name could also be used. - Explain that
Self
is a type alias for the type theimpl
block is in and can be used elsewhere in the block. - Note how
self
is used like other structs and dot notation can be used to refer to individual fields. - This might be a good time to demonstrate how the
&self
differs fromself
by trying to runfinish
twice. - Beyond variants on
self
, there are also special wrapper types allowed to be receiver types, such asBox<Self>
.
- Show that it is an abbreviated term for