1
0
mirror of https://github.com/google/comprehensive-rust.git synced 2024-12-14 14:10:05 +02:00
comprehensive-rust/po/zh-CN.po
Martin Geisler d5822d2f70
zh-CN: translate std (#962)
Part of #324.

---------

Co-authored-by: wnghl <wnghilin@gmail.com>
Co-authored-by: Qinglin <prosixe@gmail.com>
2023-08-17 10:35:13 -07:00

21245 lines
646 KiB
Plaintext

msgid ""
msgstr ""
"Project-Id-Version: Comprehensive Rust 🦀\n"
"POT-Creation-Date: \n"
"PO-Revision-Date: 2023-06-12 21:28-0700\n"
"Last-Translator: Zhengping Jiang <zpin.jiang@gmail.com>\n"
"Language-Team: Language zh-Hans\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Language: zh-Hans\n"
"Plural-Forms: nplurals=1; plural=0;\n"
#: src/SUMMARY.md:3
msgid "Welcome to Comprehensive Rust 🦀"
msgstr ""
#: src/SUMMARY.md:4
msgid "Running the Course"
msgstr ""
#: src/SUMMARY.md:5
msgid "Course Structure"
msgstr ""
#: src/SUMMARY.md:6
msgid "Keyboard Shortcuts"
msgstr ""
#: src/SUMMARY.md:7
msgid "Translations"
msgstr ""
#: src/SUMMARY.md:8
msgid "Using Cargo"
msgstr ""
#: src/SUMMARY.md:9
msgid "Rust Ecosystem"
msgstr ""
#: src/SUMMARY.md:10
msgid "Code Samples"
msgstr ""
#: src/SUMMARY.md:11
msgid "Running Cargo Locally"
msgstr ""
#: src/SUMMARY.md:14
msgid "Day 1: Morning"
msgstr "第一天:早上"
#: src/SUMMARY.md:18 src/SUMMARY.md:75 src/SUMMARY.md:128 src/SUMMARY.md:185
#: src/SUMMARY.md:211 src/SUMMARY.md:259
msgid "Welcome"
msgstr "欢迎"
#: src/SUMMARY.md:19
msgid "What is Rust?"
msgstr "什么是 Rust?"
#: src/SUMMARY.md:20
msgid "Hello World!"
msgstr ""
#: src/SUMMARY.md:21
msgid "Small Example"
msgstr "简短示例"
#: src/SUMMARY.md:22
msgid "Why Rust?"
msgstr "为什么选择 Rust?"
#: src/SUMMARY.md:23
msgid "Compile Time Guarantees"
msgstr "编译期保障"
#: src/SUMMARY.md:24
msgid "Runtime Guarantees"
msgstr "运行时保障"
#: src/SUMMARY.md:25
msgid "Modern Features"
msgstr "现代特性"
#: src/SUMMARY.md:26
msgid "Basic Syntax"
msgstr "基本语法"
#: src/SUMMARY.md:27
msgid "Scalar Types"
msgstr "标量类型"
#: src/SUMMARY.md:28
msgid "Compound Types"
msgstr "复合类型"
#: src/SUMMARY.md:29
msgid "References"
msgstr "引用"
#: src/SUMMARY.md:30
msgid "Dangling References"
msgstr "悬垂引用"
#: src/SUMMARY.md:31
msgid "Slices"
msgstr "切片"
#: src/SUMMARY.md:32
msgid "String vs str"
msgstr ""
#: src/SUMMARY.md:33
msgid "Functions"
msgstr "函数"
#: src/SUMMARY.md:34
msgid "Rustdoc"
msgstr ""
#: src/SUMMARY.md:35 src/SUMMARY.md:82
msgid "Methods"
msgstr "方法"
#: src/SUMMARY.md:36
msgid "Overloading"
msgstr "重载"
#: src/SUMMARY.md:37 src/SUMMARY.md:66 src/SUMMARY.md:90 src/SUMMARY.md:119
#: src/SUMMARY.md:148 src/SUMMARY.md:177 src/SUMMARY.md:204 src/SUMMARY.md:225
#: src/SUMMARY.md:251 src/SUMMARY.md:273 src/SUMMARY.md:293
msgid "Exercises"
msgstr "习题"
#: src/SUMMARY.md:38
msgid "Implicit Conversions"
msgstr "隐式类型转换"
#: src/SUMMARY.md:39
msgid "Arrays and for Loops"
msgstr "数组与 for 循环"
#: src/SUMMARY.md:41
msgid "Day 1: Afternoon"
msgstr "第 1 天:下午"
#: src/SUMMARY.md:43
msgid "Variables"
msgstr "变量"
#: src/SUMMARY.md:44
msgid "Type Inference"
msgstr "类型推导"
#: src/SUMMARY.md:45
msgid "static & const"
msgstr ""
#: src/SUMMARY.md:46
msgid "Scopes and Shadowing"
msgstr ""
#: src/SUMMARY.md:47
msgid "Memory Management"
msgstr ""
#: src/SUMMARY.md:48
msgid "Stack vs Heap"
msgstr ""
#: src/SUMMARY.md:49
msgid "Stack Memory"
msgstr ""
#: src/SUMMARY.md:50
msgid "Manual Memory Management"
msgstr ""
#: src/SUMMARY.md:51
msgid "Scope-Based Memory Management"
msgstr ""
#: src/SUMMARY.md:52
msgid "Garbage Collection"
msgstr ""
#: src/SUMMARY.md:53
msgid "Rust Memory Management"
msgstr ""
#: src/SUMMARY.md:54
msgid "Comparison"
msgstr ""
#: src/SUMMARY.md:55
msgid "Ownership"
msgstr ""
#: src/SUMMARY.md:56
msgid "Move Semantics"
msgstr ""
#: src/SUMMARY.md:57
msgid "Moved Strings in Rust"
msgstr ""
#: src/SUMMARY.md:58
msgid "Double Frees in Modern C++"
msgstr ""
#: src/SUMMARY.md:59
msgid "Moves in Function Calls"
msgstr ""
#: src/SUMMARY.md:60
msgid "Copying and Cloning"
msgstr ""
#: src/SUMMARY.md:61
msgid "Borrowing"
msgstr ""
#: src/SUMMARY.md:62
msgid "Shared and Unique Borrows"
msgstr ""
#: src/SUMMARY.md:63
msgid "Lifetimes"
msgstr ""
#: src/SUMMARY.md:64
msgid "Lifetimes in Function Calls"
msgstr ""
#: src/SUMMARY.md:65
msgid "Lifetimes in Data Structures"
msgstr ""
#: src/SUMMARY.md:67
msgid "Designing a Library"
msgstr ""
#: src/SUMMARY.md:68
msgid "Iterators and Ownership"
msgstr ""
#: src/SUMMARY.md:71
msgid "Day 2: Morning"
msgstr ""
#: src/SUMMARY.md:76
msgid "Structs"
msgstr ""
#: src/SUMMARY.md:77
msgid "Tuple Structs"
msgstr ""
#: src/SUMMARY.md:78
msgid "Field Shorthand Syntax"
msgstr ""
#: src/SUMMARY.md:79
msgid "Enums"
msgstr ""
#: src/SUMMARY.md:80
msgid "Variant Payloads"
msgstr ""
#: src/SUMMARY.md:81
msgid "Enum Sizes"
msgstr ""
#: src/SUMMARY.md:83
msgid "Method Receiver"
msgstr ""
#: src/SUMMARY.md:84 src/SUMMARY.md:159 src/SUMMARY.md:272
msgid "Example"
msgstr ""
#: src/SUMMARY.md:85
msgid "Pattern Matching"
msgstr "模式匹配"
#: src/SUMMARY.md:86
msgid "Destructuring Enums"
msgstr ""
#: src/SUMMARY.md:87
msgid "Destructuring Structs"
msgstr ""
#: src/SUMMARY.md:88
msgid "Destructuring Arrays"
msgstr "解构数组"
#: src/SUMMARY.md:89
msgid "Match Guards"
msgstr ""
#: src/SUMMARY.md:91
msgid "Health Statistics"
msgstr "健康统计"
#: src/SUMMARY.md:92
msgid "Points and Polygons"
msgstr ""
#: src/SUMMARY.md:94
msgid "Day 2: Afternoon"
msgstr ""
#: src/SUMMARY.md:96 src/SUMMARY.md:286
msgid "Control Flow"
msgstr ""
#: src/SUMMARY.md:97
msgid "Blocks"
msgstr ""
#: src/SUMMARY.md:98
msgid "if expressions"
msgstr ""
#: src/SUMMARY.md:99
msgid "if let expressions"
msgstr ""
#: src/SUMMARY.md:100
msgid "while expressions"
msgstr ""
#: src/SUMMARY.md:101
msgid "while let expressions"
msgstr ""
#: src/SUMMARY.md:102
msgid "for expressions"
msgstr ""
#: src/SUMMARY.md:103
msgid "loop expressions"
msgstr ""
#: src/SUMMARY.md:104
msgid "match expressions"
msgstr ""
#: src/SUMMARY.md:105
msgid "break & continue"
msgstr ""
#: src/SUMMARY.md:106
msgid "Standard Library"
msgstr ""
#: src/SUMMARY.md:107
msgid "Option and Result"
msgstr ""
#: src/SUMMARY.md:108
msgid "String"
msgstr ""
#: src/SUMMARY.md:109
msgid "Vec"
msgstr ""
#: src/SUMMARY.md:110
msgid "HashMap"
msgstr ""
#: src/SUMMARY.md:111
msgid "Box"
msgstr ""
#: src/SUMMARY.md:112
msgid "Recursive Data Types"
msgstr ""
#: src/SUMMARY.md:113
msgid "Niche Optimization"
msgstr ""
#: src/SUMMARY.md:114
msgid "Rc"
msgstr ""
#: src/SUMMARY.md:115
msgid "Modules"
msgstr ""
#: src/SUMMARY.md:116
msgid "Visibility"
msgstr ""
#: src/SUMMARY.md:117
msgid "Paths"
msgstr ""
#: src/SUMMARY.md:118
msgid "Filesystem Hierarchy"
msgstr ""
#: src/SUMMARY.md:120
msgid "Luhn Algorithm"
msgstr ""
#: src/SUMMARY.md:121
msgid "Strings and Iterators"
msgstr ""
#: src/SUMMARY.md:124
msgid "Day 3: Morning"
msgstr ""
#: src/SUMMARY.md:129
msgid "Generics"
msgstr ""
#: src/SUMMARY.md:130
msgid "Generic Data Types"
msgstr ""
#: src/SUMMARY.md:131
msgid "Generic Methods"
msgstr ""
#: src/SUMMARY.md:132
msgid "Monomorphization"
msgstr ""
#: src/SUMMARY.md:133
msgid "Traits"
msgstr ""
#: src/SUMMARY.md:134
msgid "Trait Objects"
msgstr ""
#: src/SUMMARY.md:135
msgid "Deriving Traits"
msgstr ""
#: src/SUMMARY.md:136
msgid "Default Methods"
msgstr ""
#: src/SUMMARY.md:137
msgid "Trait Bounds"
msgstr ""
#: src/SUMMARY.md:138
msgid "impl Trait"
msgstr ""
#: src/SUMMARY.md:139
msgid "Important Traits"
msgstr ""
#: src/SUMMARY.md:140
msgid "Iterator"
msgstr ""
#: src/SUMMARY.md:141
msgid "FromIterator"
msgstr ""
#: src/SUMMARY.md:142
msgid "From and Into"
msgstr ""
#: src/SUMMARY.md:143
msgid "Read and Write"
msgstr ""
#: src/SUMMARY.md:144
msgid "Drop"
msgstr ""
#: src/SUMMARY.md:145
msgid "Default"
msgstr ""
#: src/SUMMARY.md:146
msgid "Operators: Add, Mul, ..."
msgstr ""
#: src/SUMMARY.md:147
msgid "Closures: Fn, FnMut, FnOnce"
msgstr ""
#: src/SUMMARY.md:149
msgid "A Simple GUI Library"
msgstr ""
#: src/SUMMARY.md:151
msgid "Day 3: Afternoon"
msgstr ""
#: src/SUMMARY.md:153
msgid "Error Handling"
msgstr ""
#: src/SUMMARY.md:154
msgid "Panics"
msgstr ""
#: src/SUMMARY.md:155
msgid "Catching Stack Unwinding"
msgstr ""
#: src/SUMMARY.md:156
msgid "Structured Error Handling"
msgstr ""
#: src/SUMMARY.md:157
msgid "Propagating Errors with ?"
msgstr ""
#: src/SUMMARY.md:158
msgid "Converting Error Types"
msgstr ""
#: src/SUMMARY.md:160
msgid "Deriving Error Enums"
msgstr ""
#: src/SUMMARY.md:161
msgid "Dynamic Error Types"
msgstr ""
#: src/SUMMARY.md:162
msgid "Adding Context to Errors"
msgstr ""
#: src/SUMMARY.md:163
msgid "Testing"
msgstr ""
#: src/SUMMARY.md:164
msgid "Unit Tests"
msgstr ""
#: src/SUMMARY.md:165
msgid "Test Modules"
msgstr ""
#: src/SUMMARY.md:166
msgid "Documentation Tests"
msgstr ""
#: src/SUMMARY.md:167
msgid "Integration Tests"
msgstr ""
#: src/SUMMARY.md:168
msgid "Useful crates"
msgstr ""
#: src/SUMMARY.md:169
msgid "Unsafe Rust"
msgstr ""
#: src/SUMMARY.md:170
msgid "Dereferencing Raw Pointers"
msgstr ""
#: src/SUMMARY.md:171
msgid "Mutable Static Variables"
msgstr ""
#: src/SUMMARY.md:172
msgid "Unions"
msgstr ""
#: src/SUMMARY.md:173
msgid "Calling Unsafe Functions"
msgstr ""
#: src/SUMMARY.md:174
msgid "Writing Unsafe Functions"
msgstr ""
#: src/SUMMARY.md:175
msgid "Extern Functions"
msgstr ""
#: src/SUMMARY.md:176
msgid "Implementing Unsafe Traits"
msgstr ""
#: src/SUMMARY.md:178
msgid "Safe FFI Wrapper"
msgstr ""
#: src/SUMMARY.md:181 src/SUMMARY.md:249
msgid "Android"
msgstr ""
#: src/SUMMARY.md:186
msgid "Setup"
msgstr ""
#: src/SUMMARY.md:187
msgid "Build Rules"
msgstr ""
#: src/SUMMARY.md:188
msgid "Binary"
msgstr ""
#: src/SUMMARY.md:189
msgid "Library"
msgstr ""
#: src/SUMMARY.md:190
msgid "AIDL"
msgstr ""
#: src/SUMMARY.md:191
msgid "Interface"
msgstr ""
#: src/SUMMARY.md:192
msgid "Implementation"
msgstr ""
#: src/SUMMARY.md:193
msgid "Server"
msgstr ""
#: src/SUMMARY.md:194
msgid "Deploy"
msgstr ""
#: src/SUMMARY.md:195
msgid "Client"
msgstr ""
#: src/SUMMARY.md:196
msgid "Changing API"
msgstr ""
#: src/SUMMARY.md:197 src/SUMMARY.md:240
msgid "Logging"
msgstr ""
#: src/SUMMARY.md:198
msgid "Interoperability"
msgstr ""
#: src/SUMMARY.md:199
msgid "With C"
msgstr ""
#: src/SUMMARY.md:200
msgid "Calling C with Bindgen"
msgstr ""
#: src/SUMMARY.md:201
msgid "Calling Rust from C"
msgstr ""
#: src/SUMMARY.md:202
msgid "With C++"
msgstr ""
#: src/SUMMARY.md:203
msgid "With Java"
msgstr ""
#: src/SUMMARY.md:207
msgid "Bare Metal: Morning"
msgstr ""
#: src/SUMMARY.md:212
msgid "no_std"
msgstr ""
#: src/SUMMARY.md:213
msgid "A Minimal Example"
msgstr ""
#: src/SUMMARY.md:214
msgid "alloc"
msgstr ""
#: src/SUMMARY.md:215
msgid "Microcontrollers"
msgstr ""
#: src/SUMMARY.md:216
msgid "Raw MMIO"
msgstr ""
#: src/SUMMARY.md:217
msgid "PACs"
msgstr ""
#: src/SUMMARY.md:218
msgid "HAL Crates"
msgstr ""
#: src/SUMMARY.md:219
msgid "Board Support Crates"
msgstr ""
#: src/SUMMARY.md:220
msgid "The Type State Pattern"
msgstr ""
#: src/SUMMARY.md:221
msgid "embedded-hal"
msgstr ""
#: src/SUMMARY.md:222
msgid "probe-rs, cargo-embed"
msgstr ""
#: src/SUMMARY.md:223
msgid "Debugging"
msgstr ""
#: src/SUMMARY.md:224 src/SUMMARY.md:242
msgid "Other Projects"
msgstr ""
#: src/SUMMARY.md:226
msgid "Compass"
msgstr ""
#: src/SUMMARY.md:228
msgid "Bare Metal: Afternoon"
msgstr ""
#: src/SUMMARY.md:230
msgid "Application Processors"
msgstr ""
#: src/SUMMARY.md:231
msgid "Inline Assembly"
msgstr ""
#: src/SUMMARY.md:232
msgid "MMIO"
msgstr ""
#: src/SUMMARY.md:233
msgid "Let's Write a UART Driver"
msgstr ""
#: src/SUMMARY.md:234
msgid "More Traits"
msgstr ""
#: src/SUMMARY.md:235
msgid "A Better UART Driver"
msgstr ""
#: src/SUMMARY.md:236
msgid "Bitflags"
msgstr ""
#: src/SUMMARY.md:237
msgid "Multiple Registers"
msgstr ""
#: src/SUMMARY.md:238
msgid "Driver"
msgstr ""
#: src/SUMMARY.md:239 src/SUMMARY.md:241
msgid "Using It"
msgstr ""
#: src/SUMMARY.md:243
msgid "Useful Crates"
msgstr ""
#: src/SUMMARY.md:244
msgid "zerocopy"
msgstr ""
#: src/SUMMARY.md:245
msgid "aarch64-paging"
msgstr ""
#: src/SUMMARY.md:246
msgid "buddy_system_allocator"
msgstr ""
#: src/SUMMARY.md:247
msgid "tinyvec"
msgstr ""
#: src/SUMMARY.md:248
msgid "spin"
msgstr ""
#: src/SUMMARY.md:250
msgid "vmbase"
msgstr ""
#: src/SUMMARY.md:252
msgid "RTC Driver"
msgstr ""
#: src/SUMMARY.md:255
msgid "Concurrency: Morning"
msgstr ""
#: src/SUMMARY.md:260
msgid "Threads"
msgstr ""
#: src/SUMMARY.md:261
msgid "Scoped Threads"
msgstr ""
#: src/SUMMARY.md:262
msgid "Channels"
msgstr ""
#: src/SUMMARY.md:263
msgid "Unbounded Channels"
msgstr ""
#: src/SUMMARY.md:264
msgid "Bounded Channels"
msgstr ""
#: src/SUMMARY.md:265
msgid "Send and Sync"
msgstr ""
#: src/SUMMARY.md:265
msgid "Send"
msgstr ""
#: src/SUMMARY.md:265
msgid "Sync"
msgstr ""
#: src/SUMMARY.md:268
msgid "Examples"
msgstr ""
#: src/SUMMARY.md:269
msgid "Shared State"
msgstr ""
#: src/SUMMARY.md:270
msgid "Arc"
msgstr ""
#: src/SUMMARY.md:271
msgid "Mutex"
msgstr ""
#: src/SUMMARY.md:274 src/SUMMARY.md:294
msgid "Dining Philosophers"
msgstr ""
#: src/SUMMARY.md:275
msgid "Multi-threaded Link Checker"
msgstr ""
#: src/SUMMARY.md:277
msgid "Concurrency: Afternoon"
msgstr ""
#: src/SUMMARY.md:279
msgid "Async Basics"
msgstr ""
#: src/SUMMARY.md:280
msgid "async/await"
msgstr ""
#: src/SUMMARY.md:281
msgid "Futures"
msgstr ""
#: src/SUMMARY.md:282
msgid "Runtimes"
msgstr ""
#: src/SUMMARY.md:283
msgid "Tokio"
msgstr ""
#: src/SUMMARY.md:284
msgid "Tasks"
msgstr ""
#: src/SUMMARY.md:285
msgid "Async Channels"
msgstr ""
#: src/SUMMARY.md:287
msgid "Join"
msgstr ""
#: src/SUMMARY.md:288
msgid "Select"
msgstr ""
#: src/SUMMARY.md:289
msgid "Pitfalls"
msgstr ""
#: src/SUMMARY.md:290
msgid "Blocking the Executor"
msgstr ""
#: src/SUMMARY.md:291
msgid "Pin"
msgstr ""
#: src/SUMMARY.md:292
msgid "Async Traits"
msgstr ""
#: src/SUMMARY.md:295
msgid "Broadcast Chat Application"
msgstr ""
#: src/SUMMARY.md:298
msgid "Final Words"
msgstr ""
#: src/SUMMARY.md:302
msgid "Thanks!"
msgstr ""
#: src/SUMMARY.md:303
msgid "Other Resources"
msgstr ""
#: src/SUMMARY.md:304
msgid "Credits"
msgstr ""
#: src/SUMMARY.md:307
msgid "Solutions"
msgstr ""
#: src/SUMMARY.md:312
msgid "Day 1 Morning"
msgstr ""
#: src/SUMMARY.md:313
msgid "Day 1 Afternoon"
msgstr ""
#: src/SUMMARY.md:314
msgid "Day 2 Morning"
msgstr ""
#: src/SUMMARY.md:315
msgid "Day 2 Afternoon"
msgstr ""
#: src/SUMMARY.md:316
msgid "Day 3 Morning"
msgstr ""
#: src/SUMMARY.md:317
msgid "Day 3 Afternoon"
msgstr ""
#: src/SUMMARY.md:318
msgid "Bare Metal Rust Morning"
msgstr ""
#: src/SUMMARY.md:319
msgid "Bare Metal Rust Afternoon"
msgstr ""
#: src/SUMMARY.md:320
msgid "Concurrency Morning"
msgstr ""
#: src/SUMMARY.md:321
msgid "Concurrency Afternoon"
msgstr ""
#: src/welcome.md:1
msgid "# Welcome to Comprehensive Rust 🦀"
msgstr ""
#: src/welcome.md:3
msgid ""
"[![Build workflow](https://img.shields.io/github/actions/workflow/status/"
"google/comprehensive-rust/build.yml?style=flat-square)](https://github.com/"
"google/comprehensive-rust/actions/workflows/build.yml?query=branch%3Amain)"
msgstr ""
#: src/welcome.md:3
msgid "Build workflow"
msgstr ""
#: src/welcome.md:3
msgid ""
"[![Build workflow](https://img.shields.io/github/actions/workflow/status/"
"google/comprehensive-rust/build.yml?style=flat-square)](https://github.com/"
"google/comprehensive-rust/actions/workflows/build.yml?query=branch%3Amain)\n"
"[![GitHub contributors](https://img.shields.io/github/contributors/google/"
"comprehensive-rust?style=flat-square)](https://github.com/google/"
"comprehensive-rust/graphs/contributors)"
msgstr ""
#: src/welcome.md:4
msgid "GitHub contributors"
msgstr ""
#: src/welcome.md:4
msgid ""
"[![GitHub contributors](https://img.shields.io/github/contributors/google/"
"comprehensive-rust?style=flat-square)](https://github.com/google/"
"comprehensive-rust/graphs/contributors)\n"
"[![GitHub stars](https://img.shields.io/github/stars/google/comprehensive-"
"rust?style=flat-square)](https://github.com/google/comprehensive-rust/"
"stargazers)"
msgstr ""
#: src/welcome.md:5
msgid "GitHub stars"
msgstr ""
#: src/welcome.md:5
msgid ""
"[![GitHub stars](https://img.shields.io/github/stars/google/comprehensive-"
"rust?style=flat-square)](https://github.com/google/comprehensive-rust/"
"stargazers)"
msgstr ""
#: src/welcome.md:7
msgid ""
"This is a three day Rust course developed by the Android team. The course "
"covers\n"
"the full spectrum of Rust, from basic syntax to advanced topics like "
"generics\n"
"and error handling. It also includes Android-specific content on the last "
"day."
msgstr ""
#: src/welcome.md:11
msgid ""
"The goal of the course is to teach you Rust. We assume you don't know "
"anything\n"
"about Rust and hope to:"
msgstr ""
#: src/welcome.md:14
msgid ""
"* Give you a comprehensive understanding of the Rust syntax and language.\n"
"* Enable you to modify existing programs and write new programs in Rust.\n"
"* Show you common Rust idioms."
msgstr ""
#: src/welcome.md:18
msgid ""
"The first three days show you the fundamentals of Rust. Following this, "
"you're\n"
"invited to dive into one or more specialized topics:"
msgstr ""
#: src/welcome.md:21
msgid ""
"* [Android](android.md): a half-day course on using Rust for Android "
"platform\n"
" development (AOSP). This includes interoperability with C, C++, and Java.\n"
"* [Bare-metal](bare-metal.md): a full day class on using Rust for bare-"
"metal\n"
" (embedded) development. Both microcontrollers and application processors "
"are\n"
" covered.\n"
"* [Concurrency](concurrency.md): a full day class on concurrency in Rust. "
"We\n"
" cover both classical concurrency (preemptively scheduling using threads "
"and\n"
" mutexes) and async/await concurrency (cooperative multitasking using\n"
" futures)."
msgstr ""
#: src/welcome.md:32
msgid "## Non-Goals"
msgstr ""
#: src/welcome.md:34
msgid ""
"Rust is a large language and we won't be able to cover all of it in a few "
"days.\n"
"Some non-goals of this course are:"
msgstr ""
#: src/welcome.md:37
msgid ""
"* Learn how to develop macros, please see [Chapter 19.5 in the Rust\n"
" Book](https://doc.rust-lang.org/book/ch19-06-macros.html) and [Rust by\n"
" Example](https://doc.rust-lang.org/rust-by-example/macros.html) instead."
msgstr ""
#: src/welcome.md:41
msgid "## Assumptions"
msgstr ""
#: src/welcome.md:43
msgid ""
"The course assumes that you already know how to program. Rust is a "
"statically\n"
"typed language and we will sometimes make comparisons with C and C++ to "
"better\n"
"explain or contrast the Rust approach."
msgstr ""
#: src/welcome.md:47
msgid ""
"If you know how to program in a dynamically typed language such as Python "
"or\n"
"JavaScript, then you will be able to follow along just fine too."
msgstr ""
#: src/welcome.md:50 src/cargo/rust-ecosystem.md:19
#: src/cargo/code-samples.md:22 src/cargo/running-locally.md:68
#: src/welcome-day-1.md:14 src/welcome-day-1/what-is-rust.md:19
#: src/hello-world.md:20 src/hello-world/small-example.md:21 src/why-rust.md:9
#: src/why-rust/compile-time.md:14 src/why-rust/runtime.md:8
#: src/why-rust/modern.md:19 src/basic-syntax/scalar-types.md:19
#: src/basic-syntax/compound-types.md:28 src/basic-syntax/references.md:21
#: src/basic-syntax/slices.md:18 src/basic-syntax/string-slices.md:25
#: src/basic-syntax/functions.md:33 src/basic-syntax/rustdoc.md:22
#: src/basic-syntax/methods.md:32 src/basic-syntax/functions-interlude.md:25
#: src/exercises/day-1/morning.md:9 src/exercises/day-1/for-loops.md:90
#: src/basic-syntax/variables.md:15 src/basic-syntax/type-inference.md:24
#: src/basic-syntax/static-and-const.md:46
#: src/basic-syntax/scopes-shadowing.md:23 src/memory-management/stack.md:26
#: src/memory-management/rust.md:12 src/ownership/move-semantics.md:20
#: src/ownership/moves-function-calls.md:18 src/ownership/copy-clone.md:33
#: src/ownership/borrowing.md:25 src/ownership/shared-unique-borrows.md:23
#: src/ownership/lifetimes-function-calls.md:27
#: src/ownership/lifetimes-data-structures.md:23
#: src/exercises/day-1/afternoon.md:9 src/exercises/day-1/book-library.md:100
#: src/structs.md:29 src/structs/tuple-structs.md:35
#: src/structs/field-shorthand.md:25 src/enums.md:31
#: src/enums/variant-payloads.md:33 src/enums/sizes.md:27 src/methods.md:28
#: src/methods/receiver.md:22 src/methods/example.md:44
#: src/pattern-matching.md:23 src/pattern-matching/destructuring-enums.md:33
#: src/pattern-matching/destructuring-structs.md:21
#: src/pattern-matching/destructuring-arrays.md:19
#: src/pattern-matching/match-guards.md:20 src/exercises/day-2/morning.md:9
#: src/exercises/day-2/points-polygons.md:115 src/control-flow/blocks.md:40
#: src/control-flow/if-expressions.md:33
#: src/control-flow/if-let-expressions.md:21
#: src/control-flow/while-let-expressions.md:24
#: src/control-flow/for-expressions.md:23
#: src/control-flow/loop-expressions.md:25
#: src/control-flow/match-expressions.md:26 src/std.md:23
#: src/std/option-result.md:16 src/std/string.md:28 src/std/vec.md:35
#: src/std/hashmap.md:36 src/std/box.md:32 src/std/box-recursive.md:31
#: src/std/rc.md:29 src/modules.md:26 src/modules/visibility.md:37
#: src/modules/filesystem.md:42 src/exercises/day-2/afternoon.md:5
#: src/generics/data-types.md:19 src/generics/methods.md:23
#: src/traits/trait-objects.md:70 src/traits/default-methods.md:30
#: src/traits/trait-bounds.md:33 src/traits/impl-trait.md:21
#: src/traits/iterator.md:30 src/traits/from-iterator.md:15
#: src/traits/from-into.md:27 src/traits/drop.md:32 src/traits/default.md:38
#: src/traits/operators.md:24 src/traits/closures.md:23
#: src/exercises/day-3/morning.md:5 src/error-handling/result.md:25
#: src/error-handling/try-operator.md:46
#: src/error-handling/converting-error-types-example.md:48
#: src/error-handling/deriving-error-enums.md:37
#: src/error-handling/dynamic-errors.md:34
#: src/error-handling/error-contexts.md:33 src/unsafe.md:26
#: src/unsafe/raw-pointers.md:25 src/unsafe/mutable-static-variables.md:30
#: src/unsafe/unions.md:19 src/unsafe/writing-unsafe-functions.md:31
#: src/unsafe/extern-functions.md:19 src/unsafe/unsafe-traits.md:28
#: src/exercises/day-3/afternoon.md:5
#: src/android/interoperability/with-c/rust.md:81
#: src/exercises/android/morning.md:10 src/bare-metal/minimal.md:15
#: src/bare-metal/alloc.md:37 src/bare-metal/microcontrollers.md:23
#: src/bare-metal/microcontrollers/mmio.md:62
#: src/bare-metal/microcontrollers/pacs.md:47
#: src/bare-metal/microcontrollers/hals.md:37
#: src/bare-metal/microcontrollers/board-support.md:26
#: src/bare-metal/microcontrollers/type-state.md:30
#: src/bare-metal/microcontrollers/embedded-hal.md:17
#: src/bare-metal/microcontrollers/probe-rs.md:14
#: src/bare-metal/microcontrollers/debugging.md:25
#: src/bare-metal/microcontrollers/other-projects.md:16
#: src/exercises/bare-metal/morning.md:5 src/bare-metal/aps.md:7
#: src/bare-metal/aps/inline-assembly.md:41 src/bare-metal/aps/mmio.md:7
#: src/bare-metal/aps/uart.md:53 src/bare-metal/aps/uart/traits.md:22
#: src/bare-metal/aps/better-uart.md:24
#: src/bare-metal/aps/better-uart/bitflags.md:35
#: src/bare-metal/aps/better-uart/registers.md:39
#: src/bare-metal/aps/better-uart/driver.md:62
#: src/bare-metal/aps/better-uart/using.md:49 src/bare-metal/aps/logging.md:48
#: src/bare-metal/aps/logging/using.md:44
#: src/bare-metal/useful-crates/zerocopy.md:43
#: src/bare-metal/useful-crates/aarch64-paging.md:26
#: src/bare-metal/useful-crates/buddy_system_allocator.md:24
#: src/bare-metal/useful-crates/tinyvec.md:21
#: src/bare-metal/useful-crates/spin.md:21 src/bare-metal/android/vmbase.md:19
#: src/exercises/bare-metal/afternoon.md:5 src/concurrency/threads.md:28
#: src/concurrency/scoped-threads.md:35 src/concurrency/channels.md:25
#: src/concurrency/send-sync.md:18 src/concurrency/send-sync/send.md:11
#: src/concurrency/send-sync/sync.md:12 src/concurrency/shared_state/arc.md:27
#: src/concurrency/shared_state/mutex.md:29
#: src/concurrency/shared_state/example.md:21
#: src/exercises/concurrency/morning.md:10 src/async/async-await.md:23
#: src/async/futures.md:30 src/async/runtimes.md:18
#: src/async/runtimes/tokio.md:31 src/async/tasks.md:51
#: src/async/channels.md:33 src/async/control-flow/join.md:34
#: src/async/control-flow/select.md:59
#: src/async/pitfalls/blocking-executor.md:27 src/async/pitfalls/pin.md:66
#: src/exercises/concurrency/afternoon.md:11
#: src/exercises/concurrency/dining-philosophers-async.md:75
msgid "<details>"
msgstr "<details>"
#: src/welcome.md:52
msgid ""
"This is an example of a _speaker note_. We will use these to add additional\n"
"information to the slides. This could be key points which the instructor "
"should\n"
"cover as well as answers to typical questions which come up in class."
msgstr ""
#: src/welcome.md:56 src/cargo/rust-ecosystem.md:67
#: src/cargo/code-samples.md:35 src/cargo/running-locally.md:74
#: src/welcome-day-1.md:42 src/welcome-day-1/what-is-rust.md:29
#: src/hello-world.md:40 src/hello-world/small-example.md:44 src/why-rust.md:24
#: src/why-rust/compile-time.md:35 src/why-rust/runtime.md:22
#: src/why-rust/modern.md:66 src/basic-syntax/scalar-types.md:43
#: src/basic-syntax/compound-types.md:62 src/basic-syntax/references.md:29
#: src/basic-syntax/slices.md:36 src/basic-syntax/string-slices.md:44
#: src/basic-syntax/functions.md:41 src/basic-syntax/rustdoc.md:33
#: src/basic-syntax/methods.md:45 src/basic-syntax/functions-interlude.md:30
#: src/exercises/day-1/morning.md:28 src/exercises/day-1/for-loops.md:95
#: src/basic-syntax/variables.md:20 src/basic-syntax/type-inference.md:48
#: src/basic-syntax/static-and-const.md:52
#: src/basic-syntax/scopes-shadowing.md:39 src/memory-management/stack.md:49
#: src/memory-management/rust.md:18 src/ownership/move-semantics.md:26
#: src/ownership/moves-function-calls.md:26 src/ownership/copy-clone.md:51
#: src/ownership/borrowing.md:51 src/ownership/shared-unique-borrows.md:29
#: src/ownership/lifetimes-function-calls.md:60
#: src/ownership/lifetimes-data-structures.md:30
#: src/exercises/day-1/afternoon.md:15 src/exercises/day-1/book-library.md:104
#: src/structs.md:42 src/structs/tuple-structs.md:43
#: src/structs/field-shorthand.md:72 src/enums.md:41
#: src/enums/variant-payloads.md:45 src/enums/sizes.md:155 src/methods.md:41
#: src/methods/receiver.md:28 src/methods/example.md:53
#: src/pattern-matching.md:35 src/pattern-matching/destructuring-enums.md:39
#: src/pattern-matching/destructuring-structs.md:29
#: src/pattern-matching/destructuring-arrays.md:46
#: src/pattern-matching/match-guards.md:28 src/exercises/day-2/morning.md:15
#: src/exercises/day-2/points-polygons.md:125 src/control-flow/blocks.md:46
#: src/control-flow/if-expressions.md:37
#: src/control-flow/if-let-expressions.md:41
#: src/control-flow/while-let-expressions.md:29
#: src/control-flow/for-expressions.md:30
#: src/control-flow/loop-expressions.md:32
#: src/control-flow/match-expressions.md:33 src/std.md:31
#: src/std/option-result.md:25 src/std/string.md:42 src/std/vec.md:49
#: src/std/hashmap.md:66 src/std/box.md:39 src/std/box-recursive.md:41
#: src/std/rc.md:69 src/modules.md:32 src/modules/visibility.md:48
#: src/modules/filesystem.md:71 src/exercises/day-2/afternoon.md:11
#: src/generics/data-types.md:25 src/generics/methods.md:31
#: src/traits/trait-objects.md:83 src/traits/default-methods.md:60
#: src/traits/trait-bounds.md:50 src/traits/impl-trait.md:44
#: src/traits/iterator.md:42 src/traits/from-iterator.md:26
#: src/traits/from-into.md:33 src/traits/drop.md:42 src/traits/default.md:47
#: src/traits/operators.md:38 src/traits/closures.md:38
#: src/exercises/day-3/morning.md:11 src/error-handling/result.md:33
#: src/error-handling/try-operator.md:53
#: src/error-handling/converting-error-types-example.md:60
#: src/error-handling/deriving-error-enums.md:45
#: src/error-handling/dynamic-errors.md:41
#: src/error-handling/error-contexts.md:42 src/unsafe.md:32
#: src/unsafe/raw-pointers.md:43 src/unsafe/mutable-static-variables.md:35
#: src/unsafe/unions.md:28 src/unsafe/writing-unsafe-functions.md:38
#: src/unsafe/extern-functions.md:28 src/unsafe/unsafe-traits.md:37
#: src/exercises/day-3/afternoon.md:11
#: src/android/interoperability/with-c/rust.md:86
#: src/exercises/android/morning.md:15 src/bare-metal/no_std.md:65
#: src/bare-metal/minimal.md:26 src/bare-metal/alloc.md:49
#: src/bare-metal/microcontrollers.md:29
#: src/bare-metal/microcontrollers/mmio.md:72
#: src/bare-metal/microcontrollers/pacs.md:65
#: src/bare-metal/microcontrollers/hals.md:49
#: src/bare-metal/microcontrollers/board-support.md:40
#: src/bare-metal/microcontrollers/type-state.md:43
#: src/bare-metal/microcontrollers/embedded-hal.md:23
#: src/bare-metal/microcontrollers/probe-rs.md:29
#: src/bare-metal/microcontrollers/debugging.md:38
#: src/bare-metal/microcontrollers/other-projects.md:26
#: src/exercises/bare-metal/morning.md:11 src/bare-metal/aps.md:15
#: src/bare-metal/aps/inline-assembly.md:58 src/bare-metal/aps/mmio.md:17
#: src/bare-metal/aps/uart/traits.md:27 src/bare-metal/aps/better-uart.md:28
#: src/bare-metal/aps/better-uart/bitflags.md:40
#: src/bare-metal/aps/better-uart/registers.md:46
#: src/bare-metal/aps/better-uart/driver.md:67
#: src/bare-metal/aps/better-uart/using.md:55 src/bare-metal/aps/logging.md:52
#: src/bare-metal/aps/logging/using.md:49
#: src/bare-metal/useful-crates/zerocopy.md:53
#: src/bare-metal/useful-crates/aarch64-paging.md:33
#: src/bare-metal/useful-crates/buddy_system_allocator.md:30
#: src/bare-metal/useful-crates/tinyvec.md:26
#: src/bare-metal/useful-crates/spin.md:30 src/bare-metal/android/vmbase.md:25
#: src/exercises/bare-metal/afternoon.md:11 src/concurrency/threads.md:45
#: src/concurrency/scoped-threads.md:40 src/concurrency/channels.md:32
#: src/concurrency/send-sync.md:23 src/concurrency/send-sync/send.md:16
#: src/concurrency/send-sync/sync.md:18 src/concurrency/shared_state/arc.md:38
#: src/concurrency/shared_state/mutex.md:45
#: src/concurrency/shared_state/example.md:56
#: src/exercises/concurrency/morning.md:16 src/async/async-await.md:48
#: src/async/futures.md:45 src/async/runtimes.md:29
#: src/async/runtimes/tokio.md:49 src/async/tasks.md:64
#: src/async/channels.md:49 src/async/control-flow/join.md:50
#: src/async/control-flow/select.md:77
#: src/async/pitfalls/blocking-executor.md:50 src/async/pitfalls/pin.md:112
#: src/async/pitfalls/async-traits.md:63
#: src/exercises/concurrency/afternoon.md:17
#: src/exercises/concurrency/dining-philosophers-async.md:79
msgid "</details>"
msgstr "</details>"
#: src/running-the-course.md:1
msgid "# Running the Course"
msgstr "# 授课"
#: src/running-the-course.md:3 src/running-the-course/course-structure.md:3
msgid "> This page is for the course instructor."
msgstr "> 本页面适用于课程教师。"
#: src/running-the-course.md:5
msgid ""
"Here is a bit of background information about how we've been running the "
"course\n"
"internally at Google."
msgstr ""
"以下是有关 Google 内部授课方式的一些背景信息。"
#: src/running-the-course.md:8
msgid "Before you run the course, you will want to:"
msgstr "在授课之前,你需要完成以下事项:"
#: src/running-the-course.md:10
msgid ""
"1. Make yourself familiar with the course material. We've included speaker "
"notes\n"
" to help highlight the key points (please help us by contributing more "
"speaker\n"
" notes!). When presenting, you should make sure to open the speaker notes "
"in a\n"
" popup (click the link with a little arrow next to \"Speaker Notes\"). "
"This way\n"
" you have a clean screen to present to the class.\n"
"\n"
"1. Decide on the dates. Since the course takes at least three full days, we "
"recommend that you\n"
" schedule the days over two weeks. Course participants have said that\n"
" they find it helpful to have a gap in the course since it helps them "
"process\n"
" all the information we give them.\n"
"\n"
"1. Find a room large enough for your in-person participants. We recommend a\n"
" class size of 15-25 people. That's small enough that people are "
"comfortable\n"
" asking questions --- it's also small enough that one instructor will "
"have\n"
" time to answer the questions. Make sure the room has _desks_ for yourself "
"and for the\n"
" students: you will all need to be able to sit and work with your "
"laptops.\n"
" In particular, you will be doing a lot of live-coding as an instructor, "
"so a lectern won't\n"
" be very helpful for you.\n"
"\n"
"1. On the day of your course, show up to the room a little early to set "
"things\n"
" up. We recommend presenting directly using `mdbook serve` running on "
"your\n"
" laptop (see the [installation instructions][3]). This ensures optimal "
"performance with no lag as you change pages.\n"
" Using your laptop will also allow you to fix typos as you or the course\n"
" participants spot them.\n"
"\n"
"1. Let people solve the exercises by themselves or in small groups.\n"
" We typically spend 30-45 minutes on exercises in the morning and in the "
"afternoon (including time to review the solutions).\n"
" Make sure to\n"
" ask people if they're stuck or if there is anything you can help with. "
"When\n"
" you see that several people have the same problem, call it out to the "
"class\n"
" and offer a solution, e.g., by showing people where to find the relevant\n"
" information in the standard library."
msgstr ""
"1. 熟悉课程资料。我们添加了演讲者备注,"
"借此强调要点(请帮个忙,多多贡献演讲者备注!)。"
"演示幻灯片时,你应确保在弹出式窗口中"
"打开演讲者备注(点击对应的链接,在“演讲者备注”旁边有一个小箭头)。这样,"
"你就可以确保屏幕整洁有序,更好地向全班学员展示课程内容。\n"
"\n"
"1. 确定培训日期。由于本课程至少需要三天的时间,因此我们建议你"
"安排两周以上的时间。课程学员曾表示,"
"在每堂课之间留一段间隔会很有帮助,因为这有利于他们"
"吸收我们所提供的所有信息。\n"
"\n"
"1. 找一间足以容纳全体线下学员的大教室。我们建议你"
"将课程人数控制在 15-25 人之间。这样,人数足够少,"
"不仅便于学员提问问题,配备的一位教师也有"
"时间答疑解惑。确保教室备有供你和"
"学生使用的“课桌”:你们都需要能够坐下来并操作各自的笔记本电脑。"
"特别是身为教师,你现场要进行大量编码,所以讲台对你"
"来说用处不大。\n"
"\n"
"1. 在开课当天,请提前一点到教室,设置好教学设备"
"。我们建议你直接在"
"笔记本电脑上运行 `mdbook serve` 来演示课程内容(请参阅[安装说明][3])。这样可"
"以确保你在切换页面时没有延迟,演示效果更好。"
"当你或课程学员发现拼写错误时,"
"你也可以使用笔记本电脑及时更正。"
"\n"
"1. 让学员采取小组形式或独立解题。"
"通常,我们会在上午和下午各安排 30-45 分钟的练习时间"
"(包括查看解决方案的时间)。请务必"
"询问学员是否遇到困难,或是否需要任何帮助。如果你看到"
"多位学员遇到同样的问题,请在班级集体进行讲解,"
"并提供相应的解决方案,例如告诉大家在标准库的什么位置"
"可以找到相关信息。"
#: src/running-the-course.md:43
msgid ""
"That is all, good luck running the course! We hope it will be as much fun "
"for\n"
"you as it has been for us!"
msgstr ""
"今天的分享就是这些,祝你授课顺利!希望你和我们一样,"
"乐在其中!"
#: src/running-the-course.md:46
msgid ""
"Please [provide feedback][1] afterwards so that we can keep improving the\n"
"course. We would love to hear what worked well for you and what can be made\n"
"better. Your students are also very welcome to [send us feedback][2]!"
msgstr ""
"欢迎你课后[提供反馈][1],帮助我们不断改进"
"课程。我们非常期待了解哪些方面做得不错,哪些方面还需要"
"改进。同时非常欢迎学生们[向我们发送反馈][2]!"
#: src/running-the-course/course-structure.md:1
msgid "# Course Structure"
msgstr "# 课程结构"
#: src/running-the-course/course-structure.md:5
msgid "The course is fast paced and covers a lot of ground:"
msgstr "本课程节奏紧凑,涵盖内容广泛:"
#: src/running-the-course/course-structure.md:7
msgid ""
"* Day 1: Basic Rust, ownership and the borrow checker.\n"
"* Day 2: Compound data types, pattern matching, the standard library.\n"
"* Day 3: Traits and generics, error handling, testing, unsafe Rust."
msgstr ""
"* 第 1 天:Rust 的基础知识、所有权和借用检查器。\n"
"* 第 2 天:复合数据类型、模式匹配和标准库。\n"
"* 第 3 天:trait 和泛型、错误处理、测试和不安全 Rust。"
#: src/running-the-course/course-structure.md:11
msgid "## Deep Dives"
msgstr "## 深入探究"
#: src/running-the-course/course-structure.md:13
msgid ""
"In addition to the 3-day class on Rust Fundamentals, we cover some more\n"
"specialized topics:"
msgstr ""
"除了为期 3 天的“Rust 基础知识”课程外,我们还推出了一些"
"专题课程:"
#: src/running-the-course/course-structure.md:16
msgid "### Android"
msgstr "### Android"
#: src/running-the-course/course-structure.md:18
msgid ""
"The [Android Deep Dive](../android.md) is a half-day course on using Rust "
"for\n"
"Android platform development. This includes interoperability with C, C++, "
"and\n"
"Java."
msgstr ""
"“[深入探究 Android](../android.md)”课程为期半天,旨在介绍如何使用 Rust 进行\n"
"Android 平台开发。其中包括与 C、C++ 和 Java 的"
"互操作性。"
#: src/running-the-course/course-structure.md:22
msgid ""
"You will need an [AOSP checkout][1]. Make a checkout of the [course\n"
"repository][2] on the same machine and move the `src/android/` directory "
"into\n"
"the root of your AOSP checkout. This will ensure that the Android build "
"system\n"
"sees the `Android.bp` files in `src/android/`."
msgstr ""
"你将需要[签出 AOSP][1]。在同一机器上签出[课程库][2],\n"
"然后将 `src/android/` 目录移至"
"所签出的 AOSP 的根目录。这将确保 Android 构建系统"
"能检测到 `src/android/` 中的 `Android.bp` 文件。"
#: src/running-the-course/course-structure.md:27
msgid ""
"Ensure that `adb sync` works with your emulator or real device and pre-build "
"all\n"
"Android examples using `src/android/build_all.sh`. Read the script to see "
"the\n"
"commands it runs and make sure they work when you run them by hand."
msgstr ""
"确保 `adb sync` 适用于你的模拟器或实际设备,\n"
"并使用 `src/android/build_all.sh` 预构建所有 Android 示例。请阅读脚本,\n"
"查看它所运行的命令,并确保这些命令能在你手动运行时正确执行。"
#: src/running-the-course/course-structure.md:34
msgid "### Bare-Metal"
msgstr "### 裸机"
#: src/running-the-course/course-structure.md:36
msgid ""
"The [Bare-Metal Deep Dive](../bare-metal.md): a full day class on using Rust "
"for\n"
"bare-metal (embedded) development. Both microcontrollers and application\n"
"processors are covered."
msgstr ""
"“[深入探究裸机](../bare-metal.md)”课程为期一天,旨在介绍如何使用 Rust 进行"
"裸机(嵌入式)开发。其中涵盖了微控制器和应用\n"
"处理器。"
#: src/running-the-course/course-structure.md:40
msgid ""
"For the microcontroller part, you will need to buy the [BBC\n"
"micro:bit](https://microbit.org/) v2 development board ahead of time. "
"Everybody\n"
"will need to install a number of packages as described on the [welcome\n"
"page](../bare-metal.md)."
msgstr ""
"对于微控制器部分,你需要提前购买\n"
"[BBC micro:bit](https://microbit.org/) 第 2 版开发板。每个人"
"都需要安装多个软件包,\n"
"具体如[欢迎页面](../bare-metal.md)中所述。"
#: src/running-the-course/course-structure.md:45
msgid "### Concurrency"
msgstr "### 并发"
#: src/running-the-course/course-structure.md:47
msgid ""
"The [Concurrency Deep Dive](../concurrency.md) is a full day class on "
"classical\n"
"as well as `async`/`await` concurrency."
msgstr ""
"“[深入探究并发](../concurrency.md)”课程为期一天,旨在介绍传统并发"
"和 `async`/`await` 并发。"
#: src/running-the-course/course-structure.md:50
msgid ""
"You will need a fresh crate set up and the dependencies downloaded and ready "
"to\n"
"go. You can then copy/paste the examples into `src/main.rs` to experiment "
"with\n"
"them:"
msgstr ""
"你需要设置一个新 crate,下载所需的依赖项,\n"
"做好课前准备。然后,你可以将示例复制/粘贴到 `src/main.rs` 中,\n"
"以便对以下代码进行实验:"
#: src/running-the-course/course-structure.md:54
msgid ""
"```shell\n"
"cargo init concurrency\n"
"cd concurrency\n"
"cargo add tokio --features full\n"
"cargo run\n"
"```"
msgstr ""
"```shell\n"
"cargo init concurrency\n"
"cd concurrency\n"
"cargo add tokio --features full\n"
"cargo run\n"
"```"
#: src/running-the-course/course-structure.md:61
msgid "## Format"
msgstr "## 课程形式"
#: src/running-the-course/course-structure.md:63
msgid ""
"The course is meant to be very interactive and we recommend letting the\n"
"questions drive the exploration of Rust!"
msgstr ""
"本课程的互动性非常强,\n"
"建议你以问题驱动探索 Rust!"
#: src/running-the-course/keyboard-shortcuts.md:1
msgid "# Keyboard Shortcuts"
msgstr "# 键盘快捷键"
#: src/running-the-course/keyboard-shortcuts.md:3
msgid "There are several useful keyboard shortcuts in mdBook:"
msgstr "mdBook 中有一些实用键盘快捷键:"
#: src/running-the-course/keyboard-shortcuts.md:5
msgid ""
"* <kbd>Arrow-Left</kbd>: Navigate to the previous page.\n"
"* <kbd>Arrow-Right</kbd>: Navigate to the next page.\n"
"* <kbd>Ctrl + Enter</kbd>: Execute the code sample that has focus.\n"
"* <kbd>s</kbd>: Activate the search bar."
msgstr ""
"* <kbd>向左箭头</kbd>:转到上一页。\n"
"* <kbd>向右箭头</kbd>:转到下一页。\n"
"* <kbd>Ctrl + Enter</kbd>:执行具有焦点的代码示例。\n"
"* <kbd>s</kbd>:激活搜索栏。"
#: src/running-the-course/translations.md:1
msgid "# Translations"
msgstr "# 翻译"
#: src/running-the-course/translations.md:3
msgid ""
"The course has been translated into other languages by a set of wonderful\n"
"volunteers:"
msgstr ""
"一批优秀的志愿者已将本课程"
"翻译成其他语言:"
#: src/running-the-course/translations.md:6
msgid ""
"* [Brazilian Portuguese][pt-BR] by [@rastringer] and [@hugojacob].\n"
"* [Korean][ko] by [@keispace], [@jiyongp] and [@jooyunghan]."
msgstr ""
"* [巴西葡萄牙语][pt-BR]:[@rastringer] 和 [@hugojacob]。\n"
"* [韩语][ko]:[@keispace]、[@jiyongp] 和 [@jooyunghan]。"
#: src/running-the-course/translations.md:9
msgid ""
"Use the language picker in the top-right corner to switch between languages."
msgstr "使用右上角的语言选择器切换语言。"
#: src/running-the-course/translations.md:20
msgid ""
"If you want to help with this effort, please see [our instructions] for how "
"to\n"
"get going. Translations are coordinated on the [issue tracker]."
msgstr ""
"如果你想参与其中,请参阅[我们的说明],\n"
"了解如何开始翻译。翻译工作将通过[问题跟踪器]进行协调。"
#: src/cargo.md:1
msgid "# Using Cargo"
msgstr "# 使用 Cargo"
#: src/cargo.md:3
msgid ""
"When you start reading about Rust, you will soon meet [Cargo](https://doc."
"rust-lang.org/cargo/), the standard tool\n"
"used in the Rust ecosystem to build and run Rust applications. Here we want "
"to\n"
"give a brief overview of what Cargo is and how it fits into the wider "
"ecosystem\n"
"and how it fits into this training."
msgstr ""
"开始了解 Rust 后,你很快就会遇到 [Cargo](https://doc.rust-lang.org/cargo/),"
"这是 Rust 生态系统中\n"
"用于构建和运行 Rust 应用的标准工具。在这里,我们希望\n"
"简要介绍一下什么是 Cargo,它如何融入更广泛的生态系统,\n"
"以及我们如何在本培训中合理利用 Cargo。"
#: src/cargo.md:8
msgid "## Installation"
msgstr "## 安装"
#: src/cargo.md:10
msgid "### Rustup (Recommended)"
msgstr "### Rustup(推荐)"
#: src/cargo.md:12
msgid ""
"You can follow the instructions to install cargo and rust compiler, among "
"other standard ecosystem tools with the [rustup][3] tool, which is "
"maintained by the Rust Foundation."
msgstr ""
"你可以按照说明,使用由 Rust 基金会维护的 [rustup][3] 工具安装 cargo 和 rust "
"编译器,以及其他标准的生态系统工具。"
#: src/cargo.md:14
msgid ""
"Along with cargo and rustc, Rustup will install itself as a command line "
"utility that you can use to install/switch toolchains, setup cross "
"compilation, etc."
msgstr ""
"Rustup 将与 cargo 和 rustc 一起安装为命令行实用程序,你可以用它来安装/切换工"
"具链、设置交叉编译等。"
#: src/cargo.md:16
msgid "### Package Managers"
msgstr "### 软件包管理系统"
#: src/cargo.md:18
msgid "#### Debian"
msgstr "#### Debian"
#: src/cargo.md:20
msgid ""
"On Debian/Ubuntu, you can install Cargo, the Rust source and the [Rust "
"formatter][6] with"
msgstr ""
"在 Debian/Ubuntu 上,你可以通过以下方式安装 Cargo、Rust 源代码和 [Rust 格式设"
"置工具][6]:"
#: src/cargo.md:22
msgid ""
"```shell\n"
"$ sudo apt install cargo rust-src rustfmt\n"
"```"
msgstr ""
"```shell\n"
"$ sudo apt install cargo rust-src rustfmt\n"
"```"
#: src/cargo.md:26
msgid ""
"This will allow [rust-analyzer][1] to jump to the definitions. We suggest "
"using\n"
"[VS Code][2] to edit the code (but any LSP compatible editor works)."
msgstr ""
"这将允许 [rust-analyzer][1] 跳到定义。我们建议使用\n"
"[VS Code][2] 来编写代码(也可使用任何兼容 LSP 的编辑器)。"
#: src/cargo.md:29
msgid ""
"Some folks also like to use the [JetBrains][4] family of IDEs, which do "
"their own analysis but have their own tradeoffs. If you prefer them, you can "
"install the [Rust Plugin][5]. Please take note that as of January 2023 "
"debugging only works on the CLion version of the JetBrains IDEA suite."
msgstr ""
"有些人还喜欢使用 [JetBrains][4] IDE 系列自行分析,但会根据自身情况加以权衡。"
"如果你想使用这些工具,可以安装 [Rust 插件][5]。请注意,自 2023 年 1 月起,调"
"试仅适用于 CLion 版本的 JetBrains IDEA 套件。"
#: src/cargo/rust-ecosystem.md:1
msgid "# The Rust Ecosystem"
msgstr "# Rust 生态系统"
#: src/cargo/rust-ecosystem.md:3
msgid ""
"The Rust ecosystem consists of a number of tools, of which the main ones are:"
msgstr "Rust 生态系统由许多工具组成,其中的主要工具包括:"
#: src/cargo/rust-ecosystem.md:5
msgid ""
"* `rustc`: the Rust compiler which turns `.rs` files into binaries and "
"other\n"
" intermediate formats.\n"
"\n"
"* `cargo`: the Rust dependency manager and build tool. Cargo knows how to\n"
" download dependencies hosted on <https://crates.io> and it will pass them "
"to\n"
" `rustc` when building your project. Cargo also comes with a built-in test\n"
" runner which is used to execute unit tests.\n"
"\n"
"* `rustup`: the Rust toolchain installer and updater. This tool is used to\n"
" install and update `rustc` and `cargo` when new versions of Rust is "
"released.\n"
" In addition, `rustup` can also download documentation for the standard\n"
" library. You can have multiple versions of Rust installed at once and "
"`rustup`\n"
" will let you switch between them as needed."
msgstr ""
"* `rustc`:Rust 编译器,可将 `.rs` 文件转换为二进制文件和其他\n"
"中间格式。\n"
"\n"
"* `cargo`:Rust 依赖项管理器和构建工具。Cargo 知道如何\n"
"下载托管在 <https://crates.io> 上的依赖项,并在构建项目时将它们\n"
"传递给 `rustc`。Cargo 还附带一个内置的\n"
"测试运行程序,用于执行单元测试。\n"
"\n"
"* `rustup`:Rust 工具链安装程序和更新程序。发布新版本 Rust 时,此工具用于\n"
"安装并更新 `rustc` 和 `cargo`。\n"
"此外,`rustup` 还可以下载标准\n"
"库的文档。你可以同时安装多个版本的 Rust,并且 `rustup`\n"
"可让你根据需要在这些版本之间切换。"
#: src/cargo/rust-ecosystem.md:21 src/hello-world.md:25
#: src/hello-world/small-example.md:27 src/why-rust/runtime.md:10
#: src/why-rust/modern.md:21 src/basic-syntax/compound-types.md:30
#: src/basic-syntax/references.md:23
#: src/pattern-matching/destructuring-enums.md:35
#: src/error-handling/try-operator.md:48
#: src/error-handling/converting-error-types-example.md:50
#: src/concurrency/threads.md:30 src/async/async-await.md:25
msgid "Key points:"
msgstr "关键点:"
#: src/cargo/rust-ecosystem.md:23
msgid ""
"* Rust has a rapid release schedule with a new release coming out\n"
" every six weeks. New releases maintain backwards compatibility with\n"
" old releases --- plus they enable new functionality.\n"
"\n"
"* There are three release channels: \"stable\", \"beta\", and \"nightly\".\n"
"\n"
"* New features are being tested on \"nightly\", \"beta\" is what becomes\n"
" \"stable\" every six weeks.\n"
"\n"
"* Rust also has [editions]: the current edition is Rust 2021. Previous\n"
" editions were Rust 2015 and Rust 2018.\n"
"\n"
" * The editions are allowed to make backwards incompatible changes to\n"
" the language.\n"
"\n"
" * To prevent breaking code, editions are opt-in: you select the\n"
" edition for your crate via the `Cargo.toml` file.\n"
"\n"
" * To avoid splitting the ecosystem, Rust compilers can mix code\n"
" written for different editions.\n"
"\n"
" * Mention that it is quite rare to ever use the compiler directly not "
"through `cargo` (most users never do).\n"
"\n"
" * It might be worth alluding that Cargo itself is an extremely powerful "
"and comprehensive tool. It is capable of many advanced features including "
"but not limited to: \n"
" * Project/package structure\n"
" * [workspaces]\n"
" * Dev Dependencies and Runtime Dependency management/caching\n"
" * [build scripting]\n"
" * [global installation]\n"
" * It is also extensible with sub command plugins as well (such as "
"[cargo clippy]).\n"
" * Read more from the [official Cargo Book]"
msgstr ""
"* Rust 有一个快速发布时间表,每六周就会发布一次\n"
"新版本。新版本保持与\n"
"旧版本的向后兼容性,还添加了新功能。\n"
"\n"
"* 共有三个发布阶段:“稳定版”“Beta 版”和“夜间版”。\n"
"\n"
"* 我们会在“夜间版”上测试新功能,每六周将“Beta 版”升级为\n"
"“稳定版”。\n"
"\n"
"* Rust 也有三个[版本]:当前版本是 Rust 2021。之前的\n"
"版本是 Rust 2015 和 Rust 2018。\n"
"\n"
" * 这些版本支持对语言进行向后不兼容的\n"
"更改。\n"
"\n"
" * 为防止破坏代码,你可以自行选择版本:\n"
"通过 `Cargo.toml` 文件为 crate 选择合适的版本。\n"
"\n"
" * 为免分割生态系统,Rust 编译器可以混合使用\n"
"为不同版本编写的代码。\n"
"\n"
" * 提及不通过 `cargo` 而直接使用编译器的情况相当少见(大多数用户从不这样"
"做)。\n"
"\n"
" * 值得注意的是,Cargo 本身就是一个功能强大且全面的工具。它能够实现许多高级"
"功能,包括但不限于:\n"
" * 项目/软件包结构\n"
" * [工作区]\n"
" * 开发依赖项和运行时依赖项管理/缓存\n"
" * [构建脚本]\n"
" * [全局安装] ]\n"
" * 它还可以使用子命令插件(例如 [cargo clippy])进行扩展。\n"
" * 如需了解详情,请参阅[ Cargo 官方图书]"
#: src/cargo/code-samples.md:1
msgid "# Code Samples in This Training"
msgstr " # 本培训中的代码示例"
#: src/cargo/code-samples.md:3
msgid ""
"For this training, we will mostly explore the Rust language through "
"examples\n"
"which can be executed through your browser. This makes the setup much easier "
"and\n"
"ensures a consistent experience for everyone."
msgstr ""
"在本培训中,我们将主要通过示例\n"
"探索 Rust 语言,这些示例可通过浏览器执行。这能大大简化设置过程,\n"
"并确保所有人都能获得一致的体验。"
#: src/cargo/code-samples.md:7
msgid ""
"Installing Cargo is still encouraged: it will make it easier for you to do "
"the\n"
"exercises. On the last day, we will do a larger exercise which shows you how "
"to\n"
"work with dependencies and for that you need Cargo."
msgstr ""
"我们仍然建议你安装 Cargo:它有助于你更轻松地完成\n"
"练习。在最后一天,我们要做一个更大的练习,\n"
"向你展示如何使用依赖项,因此你需要安装 Cargo。"
#: src/cargo/code-samples.md:11
msgid "The code blocks in this course are fully interactive:"
msgstr "本课程中的代码块是完全交互式的:"
#: src/cargo/code-samples.md:13
msgid ""
"```rust,editable\n"
"fn main() {\n"
" println!(\"Edit me!\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" println!(\"Edit me!\");\n"
"}\n"
"```"
#: src/cargo/code-samples.md:19
msgid ""
"You can use <kbd>Ctrl + Enter</kbd> to execute the code when focus is in "
"the\n"
"text box."
msgstr ""
"当文本框为\n"
"焦点时,你可以使用 <kbd>Ctrl + Enter</kbd> 来执行代码。"
#: src/cargo/code-samples.md:24
msgid ""
"Most code samples are editable like shown above. A few code samples\n"
"are not editable for various reasons:"
msgstr ""
"大多数代码示例都可修改(如上图所示)。少数代码示例\n"
"可能会因各种原因而不可修改:"
#: src/cargo/code-samples.md:27
msgid ""
"* The embedded playgrounds cannot execute unit tests. Copy-paste the\n"
" code and open it in the real Playground to demonstrate unit tests.\n"
"\n"
"* The embedded playgrounds lose their state the moment you navigate\n"
" away from the page! This is the reason that the students should\n"
" solve the exercises using a local Rust installation or via the\n"
" Playground."
msgstr ""
"* 嵌入式 Playground 无法执行单元测试。将代码复制并粘贴\n"
"到实际 Playground 中,以演示单元测试。\n"
"\n"
"* 嵌入式 Playground 会在你离开页面后立即\n"
"丢失其状态!正因如此,学员应\n"
"使用本地安装的 Rust 或通过\n"
"Playground 解题。"
#: src/cargo/running-locally.md:1
msgid "# Running Code Locally with Cargo"
msgstr "# 使用 Cargo 在本地运行代码"
#: src/cargo/running-locally.md:3
msgid ""
"If you want to experiment with the code on your own system, then you will "
"need\n"
"to first install Rust. Do this by following the [instructions in the Rust\n"
"Book][1]. This should give you a working `rustc` and `cargo`. At the time "
"of\n"
"writing, the latest stable Rust release has these version numbers:"
msgstr ""
"如果你想在自己的系统上对代码进行实验,\n"
"则需要先安装 Rust。为此,请按照 [Rust 图书中的\n"
"说明][1]操作。这应会为你提供一个有效的 `rustc` 和 `cargo`。在撰写\n"
"本文时,最新的 Rust 稳定版具有以下版本号:"
#: src/cargo/running-locally.md:8
msgid ""
"```shell\n"
"% rustc --version\n"
"rustc 1.69.0 (84c898d65 2023-04-16)\n"
"% cargo --version\n"
"cargo 1.69.0 (6e9a83356 2023-04-12)\n"
"```"
msgstr ""
"```shell\n"
"% rustc --version\n"
"rustc 1.69.0 (84c898d65 2023-04-16)\n"
"% cargo --version\n"
"cargo 1.69.0 (6e9a83356 2023-04-12)\n"
"```"
#: src/cargo/running-locally.md:15
msgid ""
"With this in place, follow these steps to build a Rust binary from one\n"
"of the examples in this training:"
msgstr ""
"了解这些信息后,请按照以下步骤从本培训中的\n"
"一个示例中构建 Rust 二进制文件:"
#: src/cargo/running-locally.md:18
msgid ""
"1. Click the \"Copy to clipboard\" button on the example you want to copy.\n"
"\n"
"2. Use `cargo new exercise` to create a new `exercise/` directory for your "
"code:\n"
"\n"
" ```shell\n"
" $ cargo new exercise\n"
" Created binary (application) `exercise` package\n"
" ```\n"
"\n"
"3. Navigate into `exercise/` and use `cargo run` to build and run your "
"binary:\n"
"\n"
" ```shell\n"
" $ cd exercise\n"
" $ cargo run\n"
" Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)\n"
" Finished dev [unoptimized + debuginfo] target(s) in 0.75s\n"
" Running `target/debug/exercise`\n"
" Hello, world!\n"
" ```\n"
"\n"
"4. Replace the boiler-plate code in `src/main.rs` with your own code. For\n"
" example, using the example on the previous page, make `src/main.rs` look "
"like\n"
"\n"
" ```rust\n"
" fn main() {\n"
" println!(\"Edit me!\");\n"
" }\n"
" ```\n"
"\n"
"5. Use `cargo run` to build and run your updated binary:\n"
"\n"
" ```shell\n"
" $ cargo run\n"
" Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)\n"
" Finished dev [unoptimized + debuginfo] target(s) in 0.24s\n"
" Running `target/debug/exercise`\n"
" Edit me!\n"
" ```\n"
"\n"
"6. Use `cargo check` to quickly check your project for errors, use `cargo "
"build`\n"
" to compile it without running it. You will find the output in `target/"
"debug/`\n"
" for a normal debug build. Use `cargo build --release` to produce an "
"optimized\n"
" release build in `target/release/`.\n"
"\n"
"7. You can add dependencies for your project by editing `Cargo.toml`. When "
"you\n"
" run `cargo` commands, it will automatically download and compile missing\n"
" dependencies for you."
msgstr ""
"1. 在你要复制的示例上点击“复制到剪贴板”按钮。\n"
"\n"
"2. 使用 `cargo new exercise` 为你的代码新建一个 `exercise/` 目录:\n"
"\n"
" ```shell\n"
" $ cargo new exercise\n"
" Created binary (application) `exercise` package\n"
" ```\n"
"\n"
"3. 导航至 `exercise/` 并使用 `cargo run` 构建并运行你的二进制文件:\n"
"\n"
" ```shell\n"
" $ cd exercise\n"
" $ cargo run\n"
" Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)\n"
" Finished dev [unoptimized + debuginfo] target(s) in 0.75s\n"
" Running `target/debug/exercise`\n"
" Hello, world!\n"
" ```\n"
"\n"
"4. 将 `src/main.rs` 中的样板代码替换为你自己的代码。例如,\n"
"使用上一页中的示例,将 `src/main.rs` 改为:\n"
"\n"
" ```rust\n"
" fn main() {\n"
" println!(\"Edit me!\");\n"
" }\n"
" ```\n"
"\n"
"5. 使用 `cargo run` 构建并运行你更新后的二进制文件:\n"
"\n"
" ```shell\n"
" $ cargo run\n"
" Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)\n"
" Finished dev [unoptimized + debuginfo] target(s) in 0.24s\n"
" Running `target/debug/exercise`\n"
" Edit me!\n"
" ```\n"
"\n"
"6. 使用 `cargo check` 快速检查项目是否存在错误;使用 `cargo build`\n"
"只进行编译,而不运行。你可以在 `target/debug/`\n"
"中找到常规调试 build 的输出。使用 `cargo build --release` 在 `target/release/"
"` 中生成经过优化的\n"
"发布 build。\n"
"\n"
"7. 你可以通过修改 `Cargo.toml` 为项目添加依赖项。当你\n"
"运行 `cargo` 命令时,系统会自动为你下载和编译缺失\n"
"的依赖项。"
#: src/cargo/running-locally.md:70
msgid ""
"Try to encourage the class participants to install Cargo and use a\n"
"local editor. It will make their life easier since they will have a\n"
"normal development environment."
msgstr ""
"尽量鼓励全班学员安装 Cargo 并使用\n"
"本地编辑器。这能为他们营造常规\n"
"开发环境,让工作变得更加轻松。"
#: src/welcome-day-1.md:1
msgid "# Welcome to Day 1"
msgstr "# 欢迎来到第一天"
#: src/welcome-day-1.md:3
msgid ""
"This is the first day of Comprehensive Rust. We will cover a lot of ground\n"
"today:"
msgstr "现在是学习 Comprehensive Rust 的第一天。今天我们会涉及很多内容:"
#: src/welcome-day-1.md:6
msgid ""
"* Basic Rust syntax: variables, scalar and compound types, enums, structs,\n"
" references, functions, and methods.\n"
"\n"
"* Memory management: stack vs heap, manual memory management, scope-based "
"memory\n"
" management, and garbage collection.\n"
"\n"
"* Ownership: move semantics, copying and cloning, borrowing, and lifetimes."
msgstr ""
"* Rust 基本语法:变量,标量(scalar)和复合(compound)类型,枚举(enum),结构体(struct),引用,"
"函数和方法。\n"
"\n"
"* 内存管理:栈与堆,手动内存管理,基于作用域的内存管理,以及垃圾回收。\n"
"\n"
"* 所有权:移动(move)的语义,复制(copy)和克隆(clone),借用(borrow),以及生命周期。"
#: src/welcome-day-1.md:16
msgid "Please remind the students that:"
msgstr "请提醒学生:"
#: src/welcome-day-1.md:18
msgid ""
"* They should ask questions when they get them, don't save them to the end.\n"
"* The class is meant to be interactive and discussions are very much "
"encouraged!\n"
" * As an instructor, you should try to keep the discussions relevant, i."
"e.,\n"
" keep the related to how Rust does things vs some other language. It can "
"be\n"
" hard to find the right balance, but err on the side of allowing "
"discussions\n"
" since they engage people much more than one-way communication.\n"
"* The questions will likely mean that we talk about things ahead of the "
"slides.\n"
" * This is perfectly okay! Repetition is an important part of learning. "
"Remember\n"
" that the slides are just a support and you are free to skip them as you\n"
" like."
msgstr ""
"* 他们可以随时提问,不需要留到最后。\n"
"* 这个课程本应该是互动的,我们鼓励大家积极讨论。\n"
" * 作为讲师,你应该尽量保证讨论话题的相关性,例如,讨论围绕Rust是如何做某些事情,而不是其他的语言"
"如何如何。\n"
" 这个平衡点不容易找到,但是尽量倾向于允许 \n"
" 讨论,因为讨论比起单方面的灌输更有利于让大家投入。\n"
"* 有些问题会导致我们提前谈到后面的内容\n"
" * 这完全没有问题! 重复是学习的一个重要方法。请记得\n"
" 这些幻灯片只是一个辅助,你可以选择性地跳过。"
#: src/welcome-day-1.md:29
msgid ""
"The idea for the first day is to show _just enough_ of Rust to be able to "
"speak\n"
"about the famous borrow checker. The way Rust handles memory is a major "
"feature\n"
"and we should show students this right away."
msgstr ""
"第一天的主要目标是要谈到著名的 borrow checker,其他方面点到为止。Rust 处理内存的方式是其主要特点,这"
"点我们应该尽早展示给学生。"
#: src/welcome-day-1.md:33
msgid ""
"If you're teaching this in a classroom, this is a good place to go over the\n"
"schedule. We suggest splitting the day into two parts (following the slides):"
msgstr ""
"如果你是在教室里教授此课程,不妨在这里介绍一下时间安排。 这边建议是把每天分成两部分(跟着幻灯片来):"
#: src/welcome-day-1.md:36
msgid ""
"* Morning: 9:00 to 12:00,\n"
"* Afternoon: 13:00 to 16:00."
msgstr ""
"* 早上:9:00 到 12:00,\n"
"* 下午:13:00 到 16:00。"
#: src/welcome-day-1.md:39
msgid ""
"You can of course adjust this as necessary. Please make sure to include "
"breaks,\n"
"we recommend a break every hour!"
msgstr "当然你也可以看情况调整时间。但是请务必记得提供休息时间。我们建议每个小时休息一次!"
#: src/welcome-day-1/what-is-rust.md:1
msgid "# What is Rust?"
msgstr "# 什么是 Rust ?"
#: src/welcome-day-1/what-is-rust.md:3
msgid ""
"Rust is a new programming language which had its [1.0 release in 2015][1]:"
msgstr ""
"Rust 是一种新的编程语言,它的[1.0 版本于 2015 年发布][1]:"
#: src/welcome-day-1/what-is-rust.md:5
msgid ""
"* Rust is a statically compiled language in a similar role as C++\n"
" * `rustc` uses LLVM as its backend.\n"
"* Rust supports many [platforms and\n"
" architectures](https://doc.rust-lang.org/nightly/rustc/platform-support."
"html):\n"
" * x86, ARM, WebAssembly, ...\n"
" * Linux, Mac, Windows, ...\n"
"* Rust is used for a wide range of devices:\n"
" * firmware and boot loaders,\n"
" * smart displays,\n"
" * mobile phones,\n"
" * desktops,\n"
" * servers."
msgstr ""
"* Rust 是一种静态编译语言,其功能定位与 C++ 相似\n"
" * `rustc` 使用 LLVM 作为它的后端。\n"
"* Rust 支持多种[平台和架构](https://doc.rust-lang.org/nightly/rustc/platform-support."
"html):\n"
" * x86, ARM, WebAssembly, ...\n"
" * Linux, Mac, Windows, ...\n"
"* Rust 被广泛用于各种设备中:\n"
" * 固件和引导程序,\n"
" * 智能显示器,\n"
" * 手机,\n"
" * 桌面,\n"
" * 服务器。"
#: src/welcome-day-1/what-is-rust.md:21
msgid "Rust fits in the same area as C++:"
msgstr "Rust 和 C++ 适用于类似的场景:"
#: src/welcome-day-1/what-is-rust.md:23
msgid ""
"* High flexibility.\n"
"* High level of control.\n"
"* Can be scaled down to very constrained devices like mobile phones.\n"
"* Has no runtime or garbage collection.\n"
"* Focuses on reliability and safety without sacrificing performance."
msgstr ""
"* 极高的灵活性。\n"
"* 高度的控制能力。\n"
"* 能够在资源极度有限的设备(如手机)上运行。\n"
"* 没有运行时和垃圾收集。\n"
"* 关注程序可靠性和安全性,而不会牺牲任何性能。"
#: src/hello-world.md:1
msgid "# Hello World!"
msgstr "# Hello World!"
#: src/hello-world.md:3
msgid ""
"Let us jump into the simplest possible Rust program, a classic Hello World\n"
"program:"
msgstr ""
"让我们进入最简单的 Rust 程序,一个经典的 Hello World 程序:"
#: src/hello-world.md:6
msgid ""
"```rust,editable\n"
"fn main() {\n"
" println!(\"Hello 🌍!\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" println!(\"Hello 🌍!\");\n"
"}\n"
"```"
#: src/hello-world.md:12
msgid "What you see:"
msgstr "你看到的:"
#: src/hello-world.md:14
msgid ""
"* Functions are introduced with `fn`.\n"
"* Blocks are delimited by curly braces like in C and C++.\n"
"* The `main` function is the entry point of the program.\n"
"* Rust has hygienic macros, `println!` is an example of this.\n"
"* Rust strings are UTF-8 encoded and can contain any Unicode character."
msgstr ""
"* 函数以 `fn` 开头。\n"
"* 像 C 和 C++ 一样,块由花括号分隔。\n"
"* `main` 函数是程序的入口。\n"
"* Rust 有卫生宏 (hygienic macros),`println!` 就是一个例子。\n"
"* Rust 字符串是 UTF-8 编码的,可以包含任何 Unicode 字符。"
#: src/hello-world.md:22
msgid ""
"This slide tries to make the students comfortable with Rust code. They will "
"see\n"
"a ton of it over the next four days so we start small with something "
"familiar."
msgstr "这张幻灯片试图让学生们熟悉 Rust 代码。在接下来的四天里,他们会看到很多 Rust 代码, 所以我们从一些熟悉的东西开始。"
#: src/hello-world.md:27
msgid ""
"* Rust is very much like other languages in the C/C++/Java tradition. It is\n"
" imperative (not functional) and it doesn't try to reinvent things unless\n"
" absolutely necessary.\n"
"\n"
"* Rust is modern with full support for things like Unicode.\n"
"\n"
"* Rust uses macros for situations where you want to have a variable number "
"of\n"
" arguments (no function [overloading](basic-syntax/functions-interlude."
"md)).\n"
"\n"
"* Macros being 'hygienic' means they don't accidentally capture identifiers "
"from\n"
" the scope they are used in. Rust macros are actually only\n"
" [partially hygienic](https://veykril.github.io/tlborm/decl-macros/minutiae/"
"hygiene.html)."
msgstr ""
"* Rust 非常像 C/C++/Java 等其他传统语言。它是指令式语言(而非函数式),而且除非绝对必要,它不会尝试重新发明新的概念。\n"
"* Rust 是一种现代编程语言,它完全支持 Unicode 等特性。\n"
"* 在需要处理可变数量的参数的情况下,Rust 使用宏(没有函数[重载](basic-syntax/functions-interlude.md))。\n"
"* 宏是“卫生的”意味着它们不会意外地捕获它们所在作用域中的标识符。Rust 的宏实际上只是[部分卫生](https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html)。"
#: src/hello-world/small-example.md:1
msgid "# Small Example"
msgstr "# 简短示例"
#: src/hello-world/small-example.md:3
msgid "Here is a small example program in Rust:"
msgstr "以下是一个简短的 Rust 示例程序"
#: src/hello-world/small-example.md:5
msgid ""
"```rust,editable\n"
"fn main() { // Program entry point\n"
" let mut x: i32 = 6; // Mutable variable binding\n"
" print!(\"{x}\"); // Macro for printing, like printf\n"
" while x != 1 { // No parenthesis around expression\n"
" if x % 2 == 0 { // Math like in other languages\n"
" x = x / 2;\n"
" } else {\n"
" x = 3 * x + 1;\n"
" }\n"
" print!(\" -> {x}\");\n"
" }\n"
" println!();\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() { // 程序入口\n"
" let mut x: i32 = 6; // 可变变量绑定\n"
" print!(\"{x}\"); // 与 printf 类似的输出宏\n"
" while x != 1 { // 表达式周围没有括号\n"
" if x % 2 == 0 { // 与其他语言类似的数值计算\n"
" x = x / 2;\n"
" } else {\n"
" x = 3 * x + 1;\n"
" }\n"
" print!(\" -> {x}\");\n"
" }\n"
" println!();\n"
"}\n"
"```"
#: src/hello-world/small-example.md:23
msgid ""
"The code implements the Collatz conjecture: it is believed that the loop "
"will\n"
"always end, but this is not yet proved. Edit the code and play with "
"different\n"
"inputs."
msgstr ""
"这段代码实现了 Collatz 猜想:猜想认为该循环总是会结束,但该猜想还没有被证明。可以编辑代码来尝试不同的输入。"
#: src/hello-world/small-example.md:29
msgid ""
"* Explain that all variables are statically typed. Try removing `i32` to "
"trigger\n"
" type inference. Try with `i8` instead and trigger a runtime integer "
"overflow.\n"
"\n"
"* Change `let mut x` to `let x`, discuss the compiler error.\n"
"\n"
"* Show how `print!` gives a compilation error if the arguments don't match "
"the\n"
" format string.\n"
"\n"
"* Show how you need to use `{}` as a placeholder if you want to print an\n"
" expression which is more complex than just a single variable.\n"
"\n"
"* Show the students the standard library, show them how to search for `std::"
"fmt`\n"
" which has the rules of the formatting mini-language. It's important that "
"the\n"
" students become familiar with searching in the standard library."
msgstr ""
"* 说明所有变量的类型都是静态的。尝试删除 `i32` 来触发类型推断。尝试使用 `i8` 来触发运行时整数溢出。\n"
"\n"
"* 将 `let mut x` 改为 `let x`,讨论出现的编译错误。\n"
"\n"
"* 展示 `print!` 在参数与格式字符串不匹配时产生的编译错误。\n"
"\n"
"* 展示如何使用 `{}` 作为占位符,来输出比单个变量更复杂的表达式。\n"
"\n"
"* 向学生展示标准库,展示如何搜索 `std::"
"fmt`,其中包含用于格式化字符串的微型语言规则。要点是让学生熟悉在标准库中搜索的过程。"
#: src/why-rust.md:1
msgid "# Why Rust?"
msgstr "# 为什么选择 Rust?"
#: src/why-rust.md:3
msgid "Some unique selling points of Rust:"
msgstr "Rust 有一些独特的卖点:"
#: src/why-rust.md:5
msgid ""
"* Compile time memory safety.\n"
"* Lack of undefined runtime behavior.\n"
"* Modern language features."
msgstr ""
"* 编译期内存安全。\n"
"* 没有运行时未定义行为。\n"
"* 现代的编程语言特性。"
#: src/why-rust.md:11
msgid ""
"Make sure to ask the class which languages they have experience with. "
"Depending\n"
"on the answer you can highlight different features of Rust:"
msgstr ""
"应该问问学生们都使用过哪些语言。根据答案侧重讲解 Rust 的不同特性:"
#: src/why-rust.md:14
msgid ""
"* Experience with C or C++: Rust eliminates a whole class of _runtime "
"errors_\n"
" via the borrow checker. You get performance like in C and C++, but you "
"don't\n"
" have the memory unsafety issues. In addition, you get a modern language "
"with\n"
" constructs like pattern matching and built-in dependency management.\n"
"\n"
"* Experience with Java, Go, Python, JavaScript...: You get the same memory "
"safety\n"
" as in those languages, plus a similar high-level language feeling. In "
"addition\n"
" you get fast and predictable performance like C and C++ (no garbage "
"collector)\n"
" as well as access to low-level hardware (should you need it)"
msgstr ""
"* 使用过 C 或 C++:Rust 利用\"借用检查\"消除了一类 _运行时错误_ 。你可以达到堪比 C 和 C++\n"
"的性能,而没有内存不安全的问题。并且你还可以得到些现代的语言构造,比如模式匹配和内置依赖管理。\n"
"\n"
"* 使用过 Java, Go, Python, JavaScript...:你可以得到和这些语言相同的内存安全特性,并拥有"
"类似的使用高级语言的感受。同时你可以得到类似 C 和 C++ 的高速且可预测的执行性能(无垃圾回收机制)"
",以及在需要时对底层硬件的访问。"
#: src/why-rust/compile-time.md:1
msgid "# Compile Time Guarantees"
msgstr "# 编译期保障"
#: src/why-rust/compile-time.md:3
msgid "Static memory management at compile time:"
msgstr "编译期静态内存管理:"
#: src/why-rust/compile-time.md:5
msgid ""
"* No uninitialized variables.\n"
"* No memory leaks (_mostly_, see notes).\n"
"* No double-frees.\n"
"* No use-after-free.\n"
"* No `NULL` pointers.\n"
"* No forgotten locked mutexes.\n"
"* No data races between threads.\n"
"* No iterator invalidation."
msgstr ""
"* 不存在未初始化的变量。\n"
"* 不存在内存泄漏(_通常情况下_,见注释)。\n"
"* 不存在“双重释放”。\n"
"* 不存在“释放后使用”。\n"
"* 不存在 `NULL` 指针。\n"
"* 不存在被遗忘的互斥锁。\n"
"* 不存在线程之间的数据竞争。\n"
"* 不存在迭代器失效。"
#: src/why-rust/compile-time.md:16
msgid ""
"It is possible to produce memory leaks in (safe) Rust. Some examples\n"
"are:"
msgstr ""
"在(安全的)Rust 中也有可能产生内存泄漏。例如:"
#: src/why-rust/compile-time.md:19
msgid ""
"* You can for use [`Box::leak`] to leak a pointer. A use of this could\n"
" be to get runtime-initialized and runtime-sized static variables\n"
"* You can use [`std::mem::forget`] to make the compiler \"forget\" about\n"
" a value (meaning the destructor is never run).\n"
"* You can also accidentally create a [reference cycle] with `Rc` or\n"
" `Arc`.\n"
"* In fact, some will consider infinitely populating a collection a memory\n"
" leak and Rust does not protect from those."
msgstr ""
"* 可以使用 [`Box::leak`] 来泄漏一个指针。该方法可以用于得到在运行时决定大小和初始化的静态变量\n"
"* 可以使用 [`std::mem::forget`] 来让编译器“忘记”一个值(即其析构函数不会被执行)。\n"
"* 可以使用 `Rc` 或 `Arc` 意外创建一个循环引用([reference cycle])。\n"
"* 实际上,有人认为无限填充一个集合也是一种内存泄漏,Rust 对此没有保护。"
#: src/why-rust/compile-time.md:28
msgid ""
"For the purpose of this course, \"No memory leaks\" should be understood\n"
"as \"Pretty much no *accidental* memory leaks\"."
msgstr ""
"就本课程而言,“不存在内存泄漏”应理解为“几乎没有 *意外* 内存泄漏”。"
#: src/why-rust/runtime.md:1
msgid "# Runtime Guarantees"
msgstr "# 运行时保障"
#: src/why-rust/runtime.md:3
msgid "No undefined behavior at runtime:"
msgstr "Rust 没有运行时未定义行为:"
#: src/why-rust/runtime.md:5
msgid ""
"* Array access is bounds checked.\n"
"* Integer overflow is defined."
msgstr ""
"* 数组访问有边界检查。\n"
"* 整数溢出的行为有明确定义。"
#: src/why-rust/runtime.md:12
msgid ""
"* Integer overflow is defined via a compile-time flag. The options are\n"
" either a panic (a controlled crash of the program) or wrap-around\n"
" semantics. By default, you get panics in debug mode (`cargo build`)\n"
" and wrap-around in release mode (`cargo build --release`).\n"
"\n"
"* Bounds checking cannot be disabled with a compiler flag. It can also\n"
" not be disabled directly with the `unsafe` keyword. However,\n"
" `unsafe` allows you to call functions such as `slice::get_unchecked`\n"
" which does not do bounds checking."
msgstr ""
"* 整数溢出的行为由编译时的标志指定。可以选择 panic(一种受控的程序崩溃)或使用“绕回(wrap-around)”语义。"
"默认情况下,使用调试模式编译(`cargo build`)的行为为 panic,"
"使用发布模式编译(`cargo build --release`)的行为为“绕回”。\n"
"\n"
"* 边界检查不能使用编译标志禁用,也不能直接通过 `unsafe` 关键字禁用。然而,\n"
"`unsafe` 允许你调用 `slice::get_unchecked` 等不做边界检查的函数。"
#: src/why-rust/modern.md:1
msgid "# Modern Features"
msgstr "# 现代特性"
#: src/why-rust/modern.md:3
msgid "Rust is built with all the experience gained in the last 40 years."
msgstr "Rust 建立于过去 40 年来所获得的经验之上。"
#: src/why-rust/modern.md:5
msgid "## Language Features"
msgstr "## 语言特性"
#: src/why-rust/modern.md:7
msgid ""
"* Enums and pattern matching.\n"
"* Generics.\n"
"* No overhead FFI.\n"
"* Zero-cost abstractions."
msgstr ""
"* 枚举和模式匹配。\n"
"* 泛型。\n"
"* 无额外开销外部函数接口(FFI)。\n"
"* 零成本抽象。"
#: src/why-rust/modern.md:12
msgid "## Tooling"
msgstr "## 工具"
#: src/why-rust/modern.md:14
msgid ""
"* Great compiler errors.\n"
"* Built-in dependency manager.\n"
"* Built-in support for testing.\n"
"* Excellent Language Server Protocol support."
msgstr ""
"* 强大的编译器错误提示。\n"
"* 内置依赖管理器。\n"
"* 对测试的内置支持。\n"
"* 优秀的语言服务协议(Language Server Protocol)支持。"
#: src/why-rust/modern.md:23
msgid ""
"* Zero-cost abstractions, similar to C++, means that you don't have to "
"'pay'\n"
" for higher-level programming constructs with memory or CPU. For example,\n"
" writing a loop using `for` should result in roughly the same low level\n"
" instructions as using the `.iter().fold()` construct.\n"
"\n"
"* It may be worth mentioning that Rust enums are 'Algebraic Data Types', "
"also\n"
" known as 'sum types', which allow the type system to express things like\n"
" `Option<T>` and `Result<T, E>`.\n"
"\n"
"* Remind people to read the errors --- many developers have gotten used to\n"
" ignore lengthy compiler output. The Rust compiler is significantly more\n"
" talkative than other compilers. It will often provide you with "
"_actionable_\n"
" feedback, ready to copy-paste into your code.\n"
"\n"
"* The Rust standard library is small compared to languages like Java, "
"Python,\n"
" and Go. Rust does not come with several things you might consider standard "
"and\n"
" essential:\n"
"\n"
" * a random number generator, but see [rand].\n"
" * support for SSL or TLS, but see [rusttls].\n"
" * support for JSON, but see [serde_json].\n"
"\n"
" The reasoning behind this is that functionality in the standard library "
"cannot\n"
" go away, so it has to be very stable. For the examples above, the Rust\n"
" community is still working on finding the best solution --- and perhaps "
"there\n"
" isn't a single \"best solution\" for some of these things.\n"
"\n"
" Rust comes with a built-in package manager in the form of Cargo and this "
"makes\n"
" it trivial to download and compile third-party crates. A consequence of "
"this\n"
" is that the standard library can be smaller.\n"
"\n"
" Discovering good third-party crates can be a problem. Sites like\n"
" <https://lib.rs/> help with this by letting you compare health metrics "
"for\n"
" crates to find a good and trusted one.\n"
" \n"
"* [rust-analyzer] is a well supported LSP implementation used in major\n"
" IDEs and text editors."
msgstr ""
"* 与 C++ 类似的零成本抽象,意味着你不需要为高级程序语言的结构“付出”更多的内存和 CPU。"
"例如使用 `for` 循环与使用 `.iter().fold()` 结构应该会生成大致相同的底层指令。\n"
"\n"
"* 值得一提的是,Rust 的枚举是“代数数据类型”(也叫“和类型”)。它使得类型系统可以表示\n"
" `Option<T>` 和 `Result<T, E>` 等结构。\n"
"\n"
"* 提醒学生去阅读编译错误 --- 许多开发者已经习惯去忽略冗长的编译器输出。Rust 编译器会比其它编译器更健谈。"
"它通常会提供 _可操作的_ 反馈,可以直接复制粘贴到代码中。\n"
"\n"
"* 相比 Java, Python 和 Go 等语言,Rust 标准库较为精简。Rust 并没有内置一些你可能认为标准和必要的功能:\n"
"\n"
" * 随机数生成器,可以使用 [rand] 替代。\n"
" * SSL 和 TLS 支持,可以使用 [rusttls] 替代。\n"
" * JSON 支持,可以使用 [serde_json] 替代。\n"
"\n"
" Rust 这么做的原因是标准库中的功能是无法去除的,因此该功能必须非常稳定。"
"对于以上例子,Rust 社区仍在寻找最佳解决方案 --- 甚至对一些情况可能没有单一的“最佳解决方案”。\n"
"\n"
" Rust 内置了一个包管理器 Cargo,使得下载和编译第三方 crate 变得简单。这也导致标准库可以更加精简。\n"
"\n"
" 发现高质量的第三方 crate 也许是一个问题。\n"
" <https://lib.rs/> 等网站对此问题有所帮助。它能帮你比较 crate 的健康指标,以找到一个高质量并受信任的 crate。\n"
" \n"
"* [rust-analyzer] 是一个受到广泛支持的 LSP 实现,被主流的 IDE 和文本编辑器所使用。"
#: src/basic-syntax.md:1
msgid "# Basic Syntax"
msgstr "# 基本语法"
#: src/basic-syntax.md:3
msgid "Much of the Rust syntax will be familiar to you from C, C++ or Java:"
msgstr "Rust 的许多语法与 C, C++ 和 Java 的语法相似"
#: src/basic-syntax.md:5
msgid ""
"* Blocks and scopes are delimited by curly braces.\n"
"* Line comments are started with `//`, block comments are delimited by `/"
"* ...\n"
" */`.\n"
"* Keywords like `if` and `while` work the same.\n"
"* Variable assignment is done with `=`, comparison is done with `==`."
msgstr ""
"* 代码块和作用域都是由花括号来界定的。\n"
"* 行内注释以 `//` 起始,块注释使用 `/"
"* ...\n"
" */` 来界定。\n"
"* `if` 和 `while` 等关键词作用与以上语言一致。\n"
"* 变量赋值使用 `=`,值之间比较使用 `==`。"
#: src/basic-syntax/scalar-types.md:1
msgid "# Scalar Types"
msgstr "# 标量类型"
#: src/basic-syntax/scalar-types.md:3
msgid ""
"| | Types | "
"Literals |\n"
"|------------------------|--------------------------------------------|-------------------------------|\n"
"| Signed integers | `i8`, `i16`, `i32`, `i64`, `i128`, `isize` | "
"`-10`, `0`, `1_000`, `123i64` |\n"
"| Unsigned integers | `u8`, `u16`, `u32`, `u64`, `u128`, `usize` | `0`, "
"`123`, `10u16` |\n"
"| Floating point numbers | `f32`, `f64` | "
"`3.14`, `-10.0e20`, `2f32` |\n"
"| Strings | `&str` | "
"`\"foo\"`, `\"two\\nlines\"` |\n"
"| Unicode scalar values | `char` | "
"`'a'`, `'α'`, `'∞'` |\n"
"| Booleans | `bool` | "
"`true`, `false` |"
msgstr ""
"| | 类型 | "
"字面量 |\n"
"|------------------------|--------------------------------------------|-------------------------------|\n"
"| 有符号整数 | `i8`, `i16`, `i32`, `i64`, `i128`, `isize` | "
"`-10`, `0`, `1_000`, `123i64` |\n"
"| 无符号整数 | `u8`, `u16`, `u32`, `u64`, `u128`, `usize` | `0`, "
"`123`, `10u16` |\n"
"| 浮点数 | `f32`, `f64` | "
"`3.14`, `-10.0e20`, `2f32` |\n"
"| 字符串 | `&str` | "
"`\"foo\"`, `\"two\\nlines\"` |\n"
"| Unicode 标量类型 | `char` | "
"`'a'`, `'α'`, `'∞'` |\n"
"| 布尔值 | `bool` | "
"`true`, `false` |"
#: src/basic-syntax/scalar-types.md:12
msgid "The types have widths as follows:"
msgstr "各类型占用的空间为:"
#: src/basic-syntax/scalar-types.md:14
msgid ""
"* `iN`, `uN`, and `fN` are _N_ bits wide,\n"
"* `isize` and `usize` are the width of a pointer,\n"
"* `char` is 32 bit wide,\n"
"* `bool` is 8 bit wide."
msgstr "* `iN`, `uN` 和 `fN` 占用 _N_ 位,\n"
"* `isize` 和 `usize` 占用一个指针大小的空间,\n"
"* `char` 占用 32 位空间,\n"
"* `bool` 占用 8 位空间。"
#: src/basic-syntax/scalar-types.md:21
msgid "There are a few syntaxes which are not shown above:"
msgstr "上表中还有一些未提及的语法:"
#: src/basic-syntax/scalar-types.md:23
msgid ""
"- Raw strings allow you to create a `&str` value with escapes disabled: "
"`r\"\\n\"\n"
" == \"\\\\\\\\n\"`. You can embed double-quotes by using an equal amount of "
"`#` on\n"
" either side of the quotes:\n"
"\n"
" ```rust,editable\n"
" fn main() {\n"
" println!(r#\"<a href=\"link.html\">link</a>\"#);\n"
" println!(\"<a href=\\\"link.html\\\">link</a>\");\n"
" }\n"
" ```\n"
"\n"
"- Byte strings allow you to create a `&[u8]` value directly:\n"
"\n"
" ```rust,editable\n"
" fn main() {\n"
" println!(\"{:?}\", b\"abc\");\n"
" println!(\"{:?}\", &[97, 98, 99]);\n"
" }\n"
" ```"
msgstr ""
"- 原始字符串可在创建 `&str` 时禁用转义:"
"`r\"\\n\"\n"
" == \"\\\\\\\\n\"`。可以在外层引号两侧添加相同数量的 `#`,以在字符串中嵌入双引号:\n"
"\n"
" ```rust,editable\n"
" fn main() {\n"
" println!(r#\"<a href=\"link.html\">link</a>\"#);\n"
" println!(\"<a href=\\\"link.html\\\">link</a>\");\n"
" }\n"
" ```\n"
"\n"
"- 字节串可以用于直接创建 `&[u8]` 类型的值:\n"
"\n"
" ```rust,editable\n"
" fn main() {\n"
" println!(\"{:?}\", b\"abc\");\n"
" println!(\"{:?}\", &[97, 98, 99]);\n"
" }\n"
" ```"
#: src/basic-syntax/compound-types.md:1
msgid "# Compound Types"
msgstr "# 复合类型"
#: src/basic-syntax/compound-types.md:3
msgid ""
"| | Types | Literals "
"|\n"
"|--------|-------------------------------|-----------------------------------|\n"
"| Arrays | `[T; N]` | `[20, 30, 40]`, `[0; 3]` "
"|\n"
"| Tuples | `()`, `(T,)`, `(T1, T2)`, ... | `()`, `('x',)`, `('x', 1.2)`, ... "
"|"
msgstr ""
"| | 类型 | 字面量 "
"|\n"
"|--------|-------------------------------|-----------------------------------|\n"
"| 数组(Arrays) | `[T; N]` | `[20, 30, 40]`, `[0; 3]` "
"|\n"
"| 元组(Tuples) | `()`, `(T,)`, `(T1, T2)`, ... | `()`, `('x',)`, `('x', 1.2)`, ... "
"|"
#: src/basic-syntax/compound-types.md:8
msgid "Array assignment and access:"
msgstr "数组的赋值和访问操作:"
#: src/basic-syntax/compound-types.md:10
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let mut a: [i8; 10] = [42; 10];\n"
" a[5] = 0;\n"
" println!(\"a: {:?}\", a);\n"
"}\n"
"```"
msgstr ""
#: src/basic-syntax/compound-types.md:18
msgid "Tuple assignment and access:"
msgstr "元组的赋值和访问操作:"
#: src/basic-syntax/compound-types.md:20
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let t: (i8, bool) = (7, true);\n"
" println!(\"1st index: {}\", t.0);\n"
" println!(\"2nd index: {}\", t.1);\n"
"}\n"
"```"
msgstr ""
#: src/basic-syntax/compound-types.md:32
msgid "Arrays:"
msgstr "数组:"
#: src/basic-syntax/compound-types.md:34
msgid ""
"* Arrays have elements of the same type, `T`, and length, `N`, which is a "
"compile-time constant.\n"
" Note that the length of the array is *part of its type*, which means that "
"`[u8; 3]` and\n"
" `[u8; 4]` are considered two different types.\n"
"\n"
"* We can use literals to assign values to arrays.\n"
"\n"
"* In the main function, the print statement asks for the debug "
"implementation with the `?` format\n"
" parameter: `{}` gives the default output, `{:?}` gives the debug output. "
"We\n"
" could also have used `{a}` and `{a:?}` without specifying the value after "
"the\n"
" format string.\n"
"\n"
"* Adding `#`, eg `{a:#?}`, invokes a \"pretty printing\" format, which can "
"be easier to read."
msgstr ""
"* 数组中的元素具有相同的类型 `T`,数组的长度为 `N`,`N` 是一个编译期常量。\n"
" 需要注意的是数组的长度是它*类型的一部分*, 这意味着 "
"`[u8; 3]` 和\n"
" `[u8; 4]` 在 Rust 中被认为是不同的类型。\n"
"\n"
"* 我们可以使用字面量来为数组赋值。\n"
"\n"
"* 在主函数中,打印(print)语句使用 `?` 格式请求调试实现。\n"
" 使用参数 `{}` 打印默认输出,`{:?}` 表示以调试格式输出。 "
"我们也可以不在格式化字符串后面指定变量值,直接使用 `{a}` 和 `{a:?}` 进行输出。"
"\n"
"* 添加 `#`, 比如 `{a:#?}`, 会输出“美观打印(pretty printing)” 格式, 这种格式可能会更加易读。"
#: src/basic-syntax/compound-types.md:47
msgid "Tuples:"
msgstr "元组:"
#: src/basic-syntax/compound-types.md:49
msgid ""
"* Like arrays, tuples have a fixed length.\n"
"\n"
"* Tuples group together values of different types into a compound type.\n"
"\n"
"* Fields of a tuple can be accessed by the period and the index of the "
"value, e.g. `t.0`, `t.1`.\n"
"\n"
"* The empty tuple `()` is also known as the \"unit type\". It is both a "
"type, and\n"
" the only valid value of that type - that is to say both the type and its "
"value\n"
" are expressed as `()`. It is used to indicate, for example, that a "
"function or\n"
" expression has no return value, as we'll see in a future slide. \n"
" * You can think of it as `void` that can be familiar to you from other \n"
" programming languages."
msgstr ""
"* 和数组一样,元组也具有固定的长度。\n"
"\n"
"* 元组将不同类型的值组成一个复合类型。\n"
"\n"
"* 元组中的字段可以通过英文句号加上值的下标进行访问"
"比如:`t.0`, `t.1`。\n"
"\n"
"* 空元组 `()` 也被称作 “单元(unit)类型”. 它既是一个"
"类型,\n"
" 也是这种类型的唯一值——也就是说它的类型和它的"
" 值都被表示为 `()`。它通常用于表示,比如,一个"
" 函数或表达式没有返回值,我们会在后续的幻灯片种见到这种用法。"
" \n"
" * 你可以将其理解为你可能在其他编程语言中比较熟悉的 \n"
" `void` 类型"
#: src/basic-syntax/references.md:1
msgid "# References"
msgstr "# 引用"
#: src/basic-syntax/references.md:3
msgid "Like C++, Rust has references:"
msgstr "如同 C++ 一样,Rust 也提供了引用类型。"
#: src/basic-syntax/references.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let mut x: i32 = 10;\n"
" let ref_x: &mut i32 = &mut x;\n"
" *ref_x = 20;\n"
" println!(\"x: {x}\");\n"
"}\n"
"```"
msgstr ""
#: src/basic-syntax/references.md:14
msgid "Some notes:"
msgstr "一些注意事项:"
#: src/basic-syntax/references.md:16
msgid ""
"* We must dereference `ref_x` when assigning to it, similar to C and C++ "
"pointers.\n"
"* Rust will auto-dereference in some cases, in particular when invoking\n"
" methods (try `ref_x.count_ones()`).\n"
"* References that are declared as `mut` can be bound to different values "
"over their lifetime."
msgstr ""
"* 就像 C 与 C++ 中的指针一样,对引用 `ref_x` 进行赋值时,我们必须对其解引用。\n"
"* Rust 有时会进行自动解引用。比如调用方法 `ref_x.count_ones()` 时,ref_x 会被解引用。\n"
"* 如果引用值被声明为 `mut`(可变引用),那么这个引用值可以在它的生命周期内被绑定为不同的值。"
#: src/basic-syntax/references.md:25
msgid ""
"* Be sure to note the difference between `let mut ref_x: &i32` and `let "
"ref_x:\n"
" &mut i32`. The first one represents a mutable reference which can be bound "
"to\n"
" different values, while the second represents a reference to a mutable "
"value."
msgstr ""
"* 注意 `let mut ref_x: &i32` 与 `let ref_x: &mut i32` "
"之间的区别。第一条语句声明了一个可变引用,所以我们可以修改这个引用所绑定的值;第二条语句声明了一个指向可变变量的引用。"
#: src/basic-syntax/references-dangling.md:1
msgid "# Dangling References"
msgstr "# 悬垂引用(Dangling References)"
#: src/basic-syntax/references-dangling.md:3
msgid "Rust will statically forbid dangling references:"
msgstr "Rust 会静态地禁止悬垂引用:"
#: src/basic-syntax/references-dangling.md:5
msgid ""
"```rust,editable,compile_fail\n"
"fn main() {\n"
" let ref_x: &i32;\n"
" {\n"
" let x: i32 = 10;\n"
" ref_x = &x;\n"
" }\n"
" println!(\"ref_x: {ref_x}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable,compile_fail\n"
"fn main() {\n"
" let ref_x: &i32;\n"
" {\n"
" let x: i32 = 10;\n"
" ref_x = &x;\n"
" }\n"
" println!(\"ref_x: {ref_x}\");\n"
"}\n"
"```"
#: src/basic-syntax/references-dangling.md:16
msgid ""
"* A reference is said to \"borrow\" the value it refers to.\n"
"* Rust is tracking the lifetimes of all references to ensure they live long\n"
" enough.\n"
"* We will talk more about borrowing when we get to ownership."
msgstr ""
"* 一个引用被认为是“借用(borrow)”了它指向的值。\n"
"* Rust 会跟踪所有引用的生命周期,以确保这些值的存活时间足够长。\n"
"* 我们会在讲到所有权(ownership)时详细讨论借用(borrow)。"
#: src/basic-syntax/slices.md:1
msgid "# Slices"
msgstr "# 切片"
#: src/basic-syntax/slices.md:3
msgid "A slice gives you a view into a larger collection:"
msgstr "切片 (slice) 的作用是提供对集合 (collection) 的视图 (view):"
#: src/basic-syntax/slices.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let a: [i32; 6] = [10, 20, 30, 40, 50, 60];\n"
" println!(\"a: {a:?}\");\n"
"\n"
" let s: &[i32] = &a[2..4];\n"
" println!(\"s: {s:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/basic-syntax/slices.md:15
msgid ""
"* Slices borrow data from the sliced type.\n"
"* Question: What happens if you modify `a[3]`?"
msgstr ""
"* 切片从被切片的类型中借用 (borrow) 数据。\n"
"* 请思考:如果我们改变 `a[3]`,将会产生怎样的后果?"
#: src/basic-syntax/slices.md:20
msgid ""
"* We create a slice by borrowing `a` and specifying the starting and ending "
"indexes in brackets.\n"
"\n"
"* If the slice starts at index 0, Rust’s range syntax allows us to drop the "
"starting index, meaning that `&a[0..a.len()]` and `&a[..a.len()]` are "
"identical.\n"
" \n"
"* The same is true for the last index, so `&a[2..a.len()]` and `&a[2..]` are "
"identical.\n"
"\n"
"* To easily create a slice of the full array, we can therefore use "
"`&a[..]`.\n"
"\n"
"* `s` is a reference to a slice of `i32`s. Notice that the type of `s` "
"(`&[i32]`) no longer mentions the array length. This allows us to perform "
"computation on slices of different sizes.\n"
" \n"
"* Slices always borrow from another object. In this example, `a` has to "
"remain 'alive' (in scope) for at least as long as our slice. \n"
" \n"
"* The question about modifying `a[3]` can spark an interesting discussion, "
"but the answer is that for memory safety reasons\n"
" you cannot do it through `a` after you created a slice, but you can read "
"the data from both `a` and `s` safely. \n"
" More details will be explained in the borrow checker section."
msgstr ""
"* 创建切片时,我们借用了 `a` ,并在方括号中标明了起始和结尾下标。\n"
"* 如果切片的起始下标为 0, Rust 语法允许我们省略起始下标。比如说 `&a[0..a.len()]` 与 `&a[..a.len()]` 是等价的。\n"
"* 结尾下标也可以用相同方式省略。比如说 `&a[2..a.len()]` 和 `&a[2..]` 是等价的。\n"
"* 因此,我们可以用 `&a[..]` 来创建包含整个数组的切片。\n"
"* 切片会从另外一个对象中借用数据。在这个例子中, `a` 必须在其切片存活时保持存活(处于作用域中)。\n"
"* 关于修改 `a[3]` 的问题可能会引发精彩的讨论。正确答案是:为了保证内存安全,在创建切片后,我们不能通过 `a` 来修改数据。不过我们可以通过 "
"`a` 或者 `s` 来读取数据。我们将会在“借用”章节着重介绍这个内容。"
#: src/basic-syntax/string-slices.md:1
msgid "# `String` vs `str`"
msgstr ""
#: src/basic-syntax/string-slices.md:3
msgid "We can now understand the two string types in Rust:"
msgstr "现在我们就可以理解 Rust 中的两种字符串类型:"
#: src/basic-syntax/string-slices.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let s1: &str = \"World\";\n"
" println!(\"s1: {s1}\");\n"
"\n"
" let mut s2: String = String::from(\"Hello \");\n"
" println!(\"s2: {s2}\");\n"
" s2.push_str(s1);\n"
" println!(\"s2: {s2}\");\n"
" \n"
" let s3: &str = &s2[6..];\n"
" println!(\"s3: {s3}\");\n"
"}\n"
"```"
msgstr ""
#: src/basic-syntax/string-slices.md:20
msgid "Rust terminology:"
msgstr "Rust 术语:"
#: src/basic-syntax/string-slices.md:22
msgid ""
"* `&str` an immutable reference to a string slice.\n"
"* `String` a mutable string buffer."
msgstr ""
"* `&str` 是一个指向字符串片段的不可变引用。\n"
"* `String` 是一个可变字符串缓冲区。"
#: src/basic-syntax/string-slices.md:27
msgid ""
"* `&str` introduces a string slice, which is an immutable reference to UTF-8 "
"encoded string data \n"
" stored in a block of memory. String literals (`”Hello”`), are stored in "
"the program’s binary.\n"
"\n"
"* Rust’s `String` type is a wrapper around a vector of bytes. As with a "
"`Vec<T>`, it is owned.\n"
" \n"
"* As with many other types `String::from()` creates a string from a string "
"literal; `String::new()` \n"
" creates a new empty string, to which string data can be added using the "
"`push()` and `push_str()` methods.\n"
"\n"
"* The `format!()` macro is a convenient way to generate an owned string from "
"dynamic values. It \n"
" accepts the same format specification as `println!()`.\n"
" \n"
"* You can borrow `&str` slices from `String` via `&` and optionally range "
"selection.\n"
" \n"
"* For C++ programmers: think of `&str` as `const char*` from C++, but the "
"one that always points \n"
" to a valid string in memory. Rust `String` is a rough equivalent of `std::"
"string` from C++ \n"
" (main difference: it can only contain UTF-8 encoded bytes and will never "
"use a small-string optimization).\n"
" "
msgstr ""
"* `&str` 引入了一个字符串切片,它是一个指向保存在内存块中的 UTF-8 编码字符串数据的不可变引用。"
" 字符串字面量(`”Hello”`)会保存在程序的二进制文件中。\n"
"\n"
"* Rust 的 `String` 类型是一个字节 vector 的封装。和 `Vec<T>` 一样,它是拥有所有权的。\n"
" \n"
"* 和其他类型一样,`String::from()` 会从字符串字面量创建一个字符串;`String::new()` 会创建一个新的空字符串,"
" 之后可以使用 `push()` 和 `push_str()` 方法向其中添加字符串数据。\n"
"\n"
"* `format!()` 宏可以方便地动态生成拥有所有权的字符串。它接受和 `println!()` 相同的格式规范。\n"
" \n"
"* 你可以通过 `&` 和可选的范围选择从 `String` 中借用 `&str` 切片。\n"
" \n"
"* 对于 C++ 程序员:可以把 `&str` 当作 C++ 中的 `const char*`,但是它总是指向内存中的一个有效字符串。"
" Rust 的 `String` 大致相当于 C++ 中 `std::string` (主要区别:它只能包含 UTF-8 编码的字节,"
" 并且永远不会使用小字符串优化(small-string optimization))。\n"
" "
#: src/basic-syntax/functions.md:1
msgid "# Functions"
msgstr "# 函数(Functions)"
#: src/basic-syntax/functions.md:3
msgid ""
"A Rust version of the famous [FizzBuzz](https://en.wikipedia.org/wiki/"
"Fizz_buzz) interview question:"
msgstr ""
"一个 Rust 版本的著名 [FizzBuzz](https://en.wikipedia.org/wiki/Fizz_buzz) 面试题:"
#: src/basic-syntax/functions.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" print_fizzbuzz_to(20);\n"
"}\n"
"\n"
"fn is_divisible(n: u32, divisor: u32) -> bool {\n"
" if divisor == 0 {\n"
" return false;\n"
" }\n"
" n % divisor == 0\n"
"}\n"
"\n"
"fn fizzbuzz(n: u32) -> String {\n"
" let fizz = if is_divisible(n, 3) { \"fizz\" } else { \"\" };\n"
" let buzz = if is_divisible(n, 5) { \"buzz\" } else { \"\" };\n"
" if fizz.is_empty() && buzz.is_empty() {\n"
" return format!(\"{n}\");\n"
" }\n"
" format!(\"{fizz}{buzz}\")\n"
"}\n"
"\n"
"fn print_fizzbuzz_to(n: u32) {\n"
" for i in 1..=n {\n"
" println!(\"{}\", fizzbuzz(i));\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/basic-syntax/functions.md:35
msgid ""
"* We refer in `main` to a function written below. Neither forward "
"declarations nor headers are necessary. \n"
"* Declaration parameters are followed by a type (the reverse of some "
"programming languages), then a return type.\n"
"* The last expression in a function body (or any block) becomes the return "
"value. Simply omit the `;` at the end of the expression.\n"
"* Some functions have no return value, and return the 'unit type', `()`. The "
"compiler will infer this if the `-> ()` return type is omitted.\n"
"* The range expression in the `for` loop in `print_fizzbuzz_to()` contains "
"`=n`, which causes it to include the upper bound."
msgstr ""
"* 我们在 `main` 中引用了下面编写的一个函数。不需要提前声明或添加头文件。 \n"
"* 类型跟随在声明的参数后(与某些编程语言相反),然后是返回类型。\n"
"* 函数体(或任何块)中的最后一个表达式将成为返回值。只需省略表达式末尾的 `;` 即可。\n"
"* 有些函数没有返回值,会返回“单元类型(unit type)”`()`。如果省略了`-> ()`的返回类型,编译器将会自动推断。\n"
"* `print_fizzbuzz_to()`函数中`for`循环的范围表达式(range expression)包含`=n`,这会导致它包括上限。"
#: src/basic-syntax/rustdoc.md:1
msgid "# Rustdoc"
msgstr "# Rustdoc"
#: src/basic-syntax/rustdoc.md:3
msgid ""
"All language items in Rust can be documented using special `///` syntax."
msgstr ""
"Rust 中的所有语言元素都可以通过特殊的 `///` 语法进行文档化。"
#: src/basic-syntax/rustdoc.md:5
msgid ""
"```rust,editable\n"
"/// Determine whether the first argument is divisible by the second "
"argument.\n"
"///\n"
"/// If the second argument is zero, the result is false.\n"
"fn is_divisible_by(lhs: u32, rhs: u32) -> bool {\n"
" if rhs == 0 {\n"
" return false; // Corner case, early return\n"
" }\n"
" lhs % rhs == 0 // The last expression in a block is the return "
"value\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"/// 判断第一个参数是否可以被第二个参数整除。\n"
"///\n"
"/// 如果第二个参数是 0,则返回结果为 false。\n"
"fn is_divisible_by(lhs: u32, rhs: u32) -> bool {\n"
" if rhs == 0 {\n"
" return false; // 边界条件,直接返回\n"
" }\n"
" lhs % rhs == 0 // 代码块中的最后一个表达式就是它的返回值\n"
"}\n"
"```"
#: src/basic-syntax/rustdoc.md:17
msgid ""
"The contents are treated as Markdown. All published Rust library crates are\n"
"automatically documented at [`docs.rs`](https://docs.rs) using the\n"
"[rustdoc](https://doc.rust-lang.org/rustdoc/what-is-rustdoc.html) tool. It "
"is\n"
"idiomatic to document all public items in an API using this pattern."
msgstr ""
"文档的内容会被当做 Markdown 处理。所有已发布 Rust 库 crate 都会自动被[rustdoc](https://doc.rust-lang.org/rustdoc/what-is-rustdoc.html) 工具在 [`docs.rs`](https://docs.rs)存档。 "
"按照这种方式来为 API 中的所有公开项编写文档是 Rust 中惯用的做法。"
#: src/basic-syntax/rustdoc.md:24
msgid ""
"* Show students the generated docs for the `rand` crate at\n"
" [`docs.rs/rand`](https://docs.rs/rand).\n"
"\n"
"* This course does not include rustdoc on slides, just to save space, but "
"in\n"
" real code they should be present.\n"
"\n"
"* Inner doc comments are discussed later (in the page on modules) and need "
"not\n"
" be addressed here."
msgstr ""
"* 向学生展示在 [`docs.rs/rand`](https://docs.rs/rand) 中为 `rand` crate 生成的文档。\n"
"* 本课程的幻灯片中不包含 rustdoc,这是为了节省空间,但是在实际的代码中,应当编写相关的程序文档。\n"
"* 内部文档注释将在稍后(在讲解模块的页面)讨论,这里无需进行说明。"
#: src/basic-syntax/methods.md:1 src/methods.md:1
msgid "# Methods"
msgstr "# 方法"
#: src/basic-syntax/methods.md:3
msgid ""
"Methods are functions associated with a type. The `self` argument of a "
"method is\n"
"an instance of the type it is associated with:"
msgstr ""
"方法是与某种类型关联的函数。方法的 `self` 参数是与其关联类型的一个实例:"
#: src/basic-syntax/methods.md:6
msgid ""
"```rust,editable\n"
"struct Rectangle {\n"
" width: u32,\n"
" height: u32,\n"
"}\n"
"\n"
"impl Rectangle {\n"
" fn area(&self) -> u32 {\n"
" self.width * self.height\n"
" }\n"
"\n"
" fn inc_width(&mut self, delta: u32) {\n"
" self.width += delta;\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let mut rect = Rectangle { width: 10, height: 5 };\n"
" println!(\"old area: {}\", rect.area());\n"
" rect.inc_width(5);\n"
" println!(\"new area: {}\", rect.area());\n"
"}\n"
"```"
msgstr ""
#: src/basic-syntax/methods.md:30
msgid ""
"* We will look much more at methods in today's exercise and in tomorrow's "
"class."
msgstr ""
"我们将在今天的练习和明天的课程中更深入地学习方法相关的概念。"
#: src/basic-syntax/methods.md:34
msgid ""
"- Add a `Rectangle::new` constructor and call this from `main`:\n"
"\n"
" ```rust,editable,compile_fail\n"
" fn new(width: u32, height: u32) -> Rectangle {\n"
" Rectangle { width, height }\n"
" }\n"
" ```\n"
"\n"
"- Add a `Rectangle::new_square(width: u32)` constructor to illustrate that\n"
" constructors can take arbitrary parameters."
msgstr ""
"- 新增一个 `Rectangle::new` 构造函数并在 `main` 函数中调用它:\n"
"\n"
" ```rust,editable,compile_fail\n"
" fn new(width: u32, height: u32) -> Rectangle {\n"
" Rectangle { width, height }\n"
" }\n"
" ```\n"
"\n"
"- 新增一个 `Rectangle::new_square(width: u32)` 构造函数来说明构造函数可以接受任意参数。"
#: src/basic-syntax/functions-interlude.md:1
msgid "# Function Overloading"
msgstr "# 函数重载"
#: src/basic-syntax/functions-interlude.md:3
msgid "Overloading is not supported:"
msgstr "# 不支持重载:"
#: src/basic-syntax/functions-interlude.md:5
msgid ""
"* Each function has a single implementation:\n"
" * Always takes a fixed number of parameters.\n"
" * Always takes a single set of parameter types.\n"
"* Default values are not supported:\n"
" * All call sites have the same number of arguments.\n"
" * Macros are sometimes used as an alternative."
msgstr ""
"* 每一个函数都只有一种实现:\n"
" * 始终接受固定个数的形参。\n"
" * 始终接受一组形参类型。\n"
"* 不支持提供默认值:\n"
" * 实参的数量在所有调用的地方都是一样的。\n"
" * 有时可以用宏(Macro)作为替代。"
#: src/basic-syntax/functions-interlude.md:12
msgid "However, function parameters can be generic:"
msgstr "然而,函数形参可以是泛型(generics):"
#: src/basic-syntax/functions-interlude.md:14
msgid ""
"```rust,editable\n"
"fn pick_one<T>(a: T, b: T) -> T {\n"
" if std::process::id() % 2 == 0 { a } else { b }\n"
"}\n"
"\n"
"fn main() {\n"
" println!(\"coin toss: {}\", pick_one(\"heads\", \"tails\"));\n"
" println!(\"cash prize: {}\", pick_one(500, 1000));\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn pick_one<T>(a: T, b: T) -> T {\n"
" if std::process::id() % 2 == 0 { a } else { b }\n"
"}\n"
"\n"
"fn main() {\n"
" println!(\"coin toss: {}\", pick_one(\"heads\", \"tails\"));\n"
" println!(\"cash prize: {}\", pick_one(500, 1000));\n"
"}\n"
"```"
#: src/basic-syntax/functions-interlude.md:27
msgid ""
"* When using generics, the standard library's `Into<T>` can provide a kind "
"of limited\n"
" polymorphism on argument types. We will see more details in a later "
"section."
msgstr ""
"* 标准库中的 `Into<T>` 通过泛型参数提供了一种具有"
"有限多态性的参数类型。详见之后的章节。"
#: src/exercises/day-1/morning.md:1
msgid "# Day 1: Morning Exercises"
msgstr "# 第一天上午习题"
#: src/exercises/day-1/morning.md:3
msgid "In these exercises, we will explore two parts of Rust:"
msgstr "在这些习题中,我们将探索 Rust 的两个部分:"
#: src/exercises/day-1/morning.md:5
msgid ""
"* Implicit conversions between types.\n"
"\n"
"* Arrays and `for` loops."
msgstr ""
"* 类型之间的隐式转换。\n"
"\n"
"* 数组和 `for` 循环。"
#: src/exercises/day-1/morning.md:11
msgid "A few things to consider while solving the exercises:"
msgstr "在解题时要考虑几件事:"
#: src/exercises/day-1/morning.md:13
msgid ""
"* Use a local Rust installation, if possible. This way you can get\n"
" auto-completion in your editor. See the page about [Using Cargo] for "
"details\n"
" on installing Rust.\n"
"\n"
"* Alternatively, use the Rust Playground."
msgstr ""
"* 最好使用本地安装的 Rust,以实现在编辑器中自动补全。关于安装 Rust 的细节,请参见 [使用 Cargo] 页面。\n"
"\n"
"* 也可以使用 Rust Playground 作为替代。"
#: src/exercises/day-1/morning.md:19
msgid ""
"The code snippets are not editable on purpose: the inline code snippets "
"lose\n"
"their state if you navigate away from the page."
msgstr ""
"页面内嵌的代码片段是不可编辑的:因为离开页面后内嵌代码片段中的修改会丢失。"
#: src/exercises/day-1/morning.md:22 src/exercises/day-1/afternoon.md:11
#: src/exercises/day-2/morning.md:11 src/exercises/day-2/afternoon.md:7
#: src/exercises/day-3/morning.md:7 src/exercises/bare-metal/morning.md:7
#: src/exercises/bare-metal/afternoon.md:7
#: src/exercises/concurrency/morning.md:12
#: src/exercises/concurrency/afternoon.md:13
msgid ""
"After looking at the exercises, you can look at the [solutions] provided."
msgstr ""
"读完习题后,可以阅读本书提供的 [题解]。"
#: src/exercises/day-1/implicit-conversions.md:1
msgid "# Implicit Conversions"
msgstr "# 隐式类型转换"
#: src/exercises/day-1/implicit-conversions.md:3
msgid ""
"Rust will not automatically apply _implicit conversions_ between types "
"([unlike\n"
"C++][3]). You can see this in a program like this:"
msgstr ""
"[与 C++ 不同][3],Rust 不会自动进行 _隐式类型转换_。例如,下面的程序中不存在隐式类型转换:"
#: src/exercises/day-1/implicit-conversions.md:6
msgid ""
"```rust,editable,compile_fail\n"
"fn multiply(x: i16, y: i16) -> i16 {\n"
" x * y\n"
"}\n"
"\n"
"fn main() {\n"
" let x: i8 = 15;\n"
" let y: i16 = 1000;\n"
"\n"
" println!(\"{x} * {y} = {}\", multiply(x, y));\n"
"}\n"
"```"
msgstr ""
"```rust,editable,compile_fail\n"
"fn multiply(x: i16, y: i16) -> i16 {\n"
" x * y\n"
"}\n"
"\n"
"fn main() {\n"
" let x: i8 = 15;\n"
" let y: i16 = 1000;\n"
"\n"
" println!(\"{x} * {y} = {}\", multiply(x, y));\n"
"}\n"
"```"
#: src/exercises/day-1/implicit-conversions.md:19
msgid ""
"The Rust integer types all implement the [`From<T>`][1] and [`Into<T>`][2]\n"
"traits to let us convert between them. The `From<T>` trait has a single "
"`from()`\n"
"method and similarly, the `Into<T>` trait has a single `into()` method.\n"
"Implementing these traits is how a type expresses that it can be converted "
"into\n"
"another type."
msgstr ""
"Rust 的整数类型都实现了 [`From<T>`][1] 和 [`Into<T>`][2]\n"
"trait,使得我们可以在它们之间进行转换。`From<T>` trait 包含 "
"`from()`\n"
"方法,`Into<T>` trait 包含 `into()` 方法。"
"类型通过实现这些 trait 来表达它将被如何转换为另一个类型。"
#: src/exercises/day-1/implicit-conversions.md:25
msgid ""
"The standard library has an implementation of `From<i8> for i16`, which "
"means\n"
"that we can convert a variable `x` of type `i8` to an `i16` by calling \n"
"`i16::from(x)`. Or, simpler, with `x.into()`, because `From<i8> for i16`\n"
"implementation automatically create an implementation of `Into<i16> for i8`."
msgstr ""
"标准库中包含 `From<i8> for i16` 的实现,即我们可以通过调用 `i16::from(x)` 来将 `i8`\n"
"类型的变量 `x` 转换为 `i16`。或者也可以简单地使用 `x.into()`,因为 `From<i8> for i16`\n"
"的实现会自动创建 `Into<i16> for i8` 的实现。"
#: src/exercises/day-1/implicit-conversions.md:30
msgid ""
"The same applies for your own `From` implementations for your own types, so "
"it is\n"
"sufficient to only implement `From` to get a respective `Into` "
"implementation automatically."
msgstr ""
"这同样也适用于自定义类型的 `From` 实现,只需实现 `From` 就可以自动得到对应的 `Into` 实现。"
#: src/exercises/day-1/implicit-conversions.md:33
msgid ""
"1. Execute the above program and look at the compiler error.\n"
"\n"
"2. Update the code above to use `into()` to do the conversion.\n"
"\n"
"3. Change the types of `x` and `y` to other things (such as `f32`, `bool`,\n"
" `i128`) to see which types you can convert to which other types. Try\n"
" converting small types to big types and the other way around. Check the\n"
" [standard library documentation][1] to see if `From<T>` is implemented "
"for\n"
" the pairs you check."
msgstr ""
"1. 执行上述程序,并查看对应的编译错误。\n"
"\n"
"2. 修改代码,使用 `into()` 进行类型转换。\n"
"\n"
"3. 修改 `x` 和 `y` 的类型(例如 `f32`, `bool`,\n"
" `i128` 等)来了解哪些类型之间可以相互转换。尝试将较小的类型转换为较大的类型和将较大的类型转换为较小的类型。阅读\n"
" [标准库文档][1] 来了解对于你所尝试的两个类型 `From<T>` 是否已被实现。"
#: src/exercises/day-1/for-loops.md:1
msgid "# Arrays and `for` Loops"
msgstr "# 数组与 `for` 循环"
#: src/exercises/day-1/for-loops.md:3
msgid "We saw that an array can be declared like this:"
msgstr "我们可以这样声明一个数组:"
#: src/exercises/day-1/for-loops.md:5
msgid ""
"```rust\n"
"let array = [10, 20, 30];\n"
"```"
msgstr ""
"```rust\n"
"let array = [10, 20, 30];\n"
"```"
#: src/exercises/day-1/for-loops.md:9
msgid ""
"You can print such an array by asking for its debug representation with `{:?}"
"`:"
msgstr ""
"你可以使用 `{:?}` 来打印这种数组的调试格式:"
#: src/exercises/day-1/for-loops.md:11
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let array = [10, 20, 30];\n"
" println!(\"array: {array:?}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let array = [10, 20, 30];\n"
" println!(\"array: {array:?}\");\n"
"}\n"
"```"
#: src/exercises/day-1/for-loops.md:18
msgid ""
"Rust lets you iterate over things like arrays and ranges using the `for`\n"
"keyword:"
msgstr ""
"在 Rust 中,可以使用 `for` 关键词遍历数组和区间等元素:"
#: src/exercises/day-1/for-loops.md:21
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let array = [10, 20, 30];\n"
" print!(\"Iterating over array:\");\n"
" for n in array {\n"
" print!(\" {n}\");\n"
" }\n"
" println!();\n"
"\n"
" print!(\"Iterating over range:\");\n"
" for i in 0..3 {\n"
" print!(\" {}\", array[i]);\n"
" }\n"
" println!();\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let array = [10, 20, 30];\n"
" print!(\"Iterating over array:\");\n"
" for n in array {\n"
" print!(\" {n}\");\n"
" }\n"
" println!();\n"
"\n"
" print!(\"Iterating over range:\");\n"
" for i in 0..3 {\n"
" print!(\" {}\", array[i]);\n"
" }\n"
" println!();\n"
"}\n"
"```"
#: src/exercises/day-1/for-loops.md:38
msgid ""
"Use the above to write a function `pretty_print` which pretty-print a matrix "
"and\n"
"a function `transpose` which will transpose a matrix (turn rows into "
"columns):"
msgstr ""
"使用以上知识,写一个用易读的格式输出矩阵的 `pretty_print` 函数,以及一个对矩阵进行转置(将行和列互换)的\n"
"`transpose` 函数:"
#: src/exercises/day-1/for-loops.md:41
msgid ""
"```bob\n"
" ⎛⎡1 2 3⎤⎞ ⎡1 4 7⎤\n"
"\"transpose\"⎜⎢4 5 6⎥⎟ \"==\"⎢2 5 8⎥\n"
" ⎝⎣7 8 9⎦⎠ ⎣3 6 9⎦\n"
"```"
msgstr ""
"```bob\n"
" ⎛⎡1 2 3⎤⎞ ⎡1 4 7⎤\n"
"\"transpose\"⎜⎢4 5 6⎥⎟ \"==\"⎢2 5 8⎥\n"
" ⎝⎣7 8 9⎦⎠ ⎣3 6 9⎦\n"
"```"
#: src/exercises/day-1/for-loops.md:47
msgid "Hard-code both functions to operate on 3 × 3 matrices."
msgstr "硬编码这两个函数,让它们处理 3 × 3 的矩阵。"
#: src/exercises/day-1/for-loops.md:49
msgid ""
"Copy the code below to <https://play.rust-lang.org/> and implement the\n"
"functions:"
msgstr ""
"将下面的代码复制到 <https://play.rust-lang.org/> 并实现上述函数:"
#: src/exercises/day-1/for-loops.md:52
msgid ""
"```rust,should_panic\n"
"// TODO: remove this when you're done with your implementation.\n"
"#![allow(unused_variables, dead_code)]\n"
"\n"
"fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {\n"
" unimplemented!()\n"
"}\n"
"\n"
"fn pretty_print(matrix: &[[i32; 3]; 3]) {\n"
" unimplemented!()\n"
"}\n"
"\n"
"fn main() {\n"
" let matrix = [\n"
" [101, 102, 103], // <-- the comment makes rustfmt add a newline\n"
" [201, 202, 203],\n"
" [301, 302, 303],\n"
" ];\n"
"\n"
" println!(\"matrix:\");\n"
" pretty_print(&matrix);\n"
"\n"
" let transposed = transpose(matrix);\n"
" println!(\"transposed:\");\n"
" pretty_print(&transposed);\n"
"}\n"
"```"
msgstr ""
"```rust,should_panic\n"
"// TODO: 完成你的实现后移除此行。\n"
"#![allow(unused_variables, dead_code)]\n"
"\n"
"fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {\n"
" unimplemented!()\n"
"}\n"
"\n"
"fn pretty_print(matrix: &[[i32; 3]; 3]) {\n"
" unimplemented!()\n"
"}\n"
"\n"
"fn main() {\n"
" let matrix = [\n"
" [101, 102, 103], // <-- 这个注释会让 rustfmt 添加一个新行\n"
" [201, 202, 203],\n"
" [301, 302, 303],\n"
" ];\n"
"\n"
" println!(\"matrix:\");\n"
" pretty_print(&matrix);\n"
"\n"
" let transposed = transpose(matrix);\n"
" println!(\"transposed:\");\n"
" pretty_print(&transposed);\n"
"}\n"
"```"
#: src/exercises/day-1/for-loops.md:80
msgid "## Bonus Question"
msgstr "## 附加题"
#: src/exercises/day-1/for-loops.md:82
msgid ""
"Could you use `&[i32]` slices instead of hard-coded 3 × 3 matrices for your\n"
"argument and return types? Something like `&[&[i32]]` for a two-dimensional\n"
"slice-of-slices. Why or why not?"
msgstr ""
"是否可以使用 `&[i32]` 切片而不是硬编码的 3 × 3 矩阵作为函数的参数和返回类型?例如使用\n"
"`&[&[i32]]` 表示一个二维的切片的切片。为什么这样做是可行或不可行的?"
#: src/exercises/day-1/for-loops.md:87
msgid ""
"See the [`ndarray` crate](https://docs.rs/ndarray/) for a production "
"quality\n"
"implementation."
msgstr ""
"参考 [`ndarray` crate](https://docs.rs/ndarray/) 以了解该功能满足生产环境质量的实现。"
#: src/exercises/day-1/for-loops.md:92
msgid ""
"The solution and the answer to the bonus section are available in the \n"
"[Solution](solutions-morning.md#arrays-and-for-loops) section."
msgstr ""
"题目解答和附加题的答案在\n"
"[题解](solutions-morning.md#arrays-and-for-loops) 章节中。"
#: src/basic-syntax/variables.md:1
msgid "# Variables"
msgstr "# 变量"
#: src/basic-syntax/variables.md:3
msgid ""
"Rust provides type safety via static typing. Variable bindings are immutable "
"by\n"
"default:"
msgstr ""
"Rust 通过静态类型实现了类型安全。变量绑定默认是不可变的:"
#: src/basic-syntax/variables.md:6
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let x: i32 = 10;\n"
" println!(\"x: {x}\");\n"
" // x = 20;\n"
" // println!(\"x: {x}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let x: i32 = 10;\n"
" println!(\"x: {x}\");\n"
" // x = 20;\n"
" // println!(\"x: {x}\");\n"
"}\n"
"```"
#: src/basic-syntax/variables.md:17
msgid ""
"* Due to type inference the `i32` is optional. We will gradually show the "
"types less and less as the course progresses.\n"
"* Note that since `println!` is a macro, `x` is not moved, even using the "
"function like syntax of `println!(\"x: {}\", x)`"
msgstr ""
"* 由于类型推导,`i32` 可以省略。随着课程推进,我们会越来越少地看到类型声明。\n"
"* 需要注意的是由于 `println!` 是一个宏,尽管使用了一个 `println!(\"x: {}\", x)` 这样"
"形如函数的语法,`x` 也不会被移动。"
#: src/basic-syntax/type-inference.md:1
msgid "# Type Inference"
msgstr "# 类型推导"
#: src/basic-syntax/type-inference.md:3
msgid "Rust will look at how the variable is _used_ to determine the type:"
msgstr "Rust 会根据变量的使用来确定其类型:"
#: src/basic-syntax/type-inference.md:5
msgid ""
"```rust,editable\n"
"fn takes_u32(x: u32) {\n"
" println!(\"u32: {x}\");\n"
"}\n"
"\n"
"fn takes_i8(y: i8) {\n"
" println!(\"i8: {y}\");\n"
"}\n"
"\n"
"fn main() {\n"
" let x = 10;\n"
" let y = 20;\n"
"\n"
" takes_u32(x);\n"
" takes_i8(y);\n"
" // takes_u32(y);\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn takes_u32(x: u32) {\n"
" println!(\"u32: {x}\");\n"
"}\n"
"\n"
"fn takes_i8(y: i8) {\n"
" println!(\"i8: {y}\");\n"
"}\n"
"\n"
"fn main() {\n"
" let x = 10;\n"
" let y = 20;\n"
"\n"
" takes_u32(x);\n"
" takes_i8(y);\n"
" // takes_u32(y);\n"
"}\n"
"```"
#: src/basic-syntax/type-inference.md:26
msgid ""
"This slide demonstrates how the Rust compiler infers types based on "
"constraints given by variable declarations and usages."
msgstr ""
"这张幻灯片演示了 Rust 编译器是如何根据变量声明和用法来推导其类型的。"
#: src/basic-syntax/type-inference.md:28
msgid ""
"It is very important to emphasize that variables declared like this are not "
"of some sort of dynamic \"any type\" that can\n"
"hold any data. The machine code generated by such declaration is identical "
"to the explicit declaration of a type.\n"
"The compiler does the job for us and helps us write more concise code."
msgstr ""
"需要重点强调的是这样声明的变量并非像那种动态类型语言中可以持有任何数据的“任何类型”。"
"这种声明所生成的机器码与明确类型声明完全相同。"
"编译器进行类型推导能够让我们编写更简略的代码。"
#: src/basic-syntax/type-inference.md:32
#, fuzzy
msgid ""
"The following code tells the compiler to copy into a certain generic "
"container without the code ever explicitly specifying the contained type, "
"using `_` as a placeholder:"
msgstr ""
"下面的代码通过使用 `_` 占位符来告诉编译器无需明确指定其类型就可以将对应数据拷贝到该容器: "
#: src/basic-syntax/type-inference.md:34
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let mut v = Vec::new();\n"
" v.push((10, false));\n"
" v.push((20, true));\n"
" println!(\"v: {v:?}\");\n"
"\n"
" let vv = v.iter().collect::<std::collections::HashSet<_>>();\n"
" println!(\"vv: {vv:?}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let mut v = Vec::new();\n"
" v.push((10, false));\n"
" v.push((20, true));\n"
" println!(\"v: {v:?}\");\n"
"\n"
" let vv = v.iter().collect::<std::collections::HashSet<_>>();\n"
" println!(\"vv: {vv:?}\");\n"
"}\n"
"```"
#: src/basic-syntax/type-inference.md:46
msgid ""
"[`collect`](https://doc.rust-lang.org/stable/std/iter/trait.Iterator."
"html#method.collect) relies on `FromIterator`, which [`HashSet`](https://doc."
"rust-lang.org/std/iter/trait.FromIterator.html) implements."
msgstr ""
"[`collect`](https://doc.rust-lang.org/stable/std/iter/trait.Iterator."
"html#method.collect) 依赖 [`HashSet`](https://doc."
"rust-lang.org/std/iter/trait.FromIterator.html) 实现的 `FromIterator`。"
#: src/basic-syntax/static-and-const.md:1
msgid "# Static and Constant Variables"
msgstr "# 静态 (Static) 变量和常数 (Constant) 变量"
#: src/basic-syntax/static-and-const.md:3
msgid "Global state is managed with static and constant variables."
msgstr "全局的状态是由静态变量和常数变量来管理的。"
#: src/basic-syntax/static-and-const.md:5
msgid "## `const`"
msgstr "## `const`"
#: src/basic-syntax/static-and-const.md:7
msgid "You can declare compile-time constants:"
msgstr "你可以声明编译期 (compile-time) 常量:"
#: src/basic-syntax/static-and-const.md:9
msgid ""
"```rust,editable\n"
"const DIGEST_SIZE: usize = 3;\n"
"const ZERO: Option<u8> = Some(42);\n"
"\n"
"fn compute_digest(text: &str) -> [u8; DIGEST_SIZE] {\n"
" let mut digest = [ZERO.unwrap_or(0); DIGEST_SIZE];\n"
" for (idx, &b) in text.as_bytes().iter().enumerate() {\n"
" digest[idx % DIGEST_SIZE] = digest[idx % DIGEST_SIZE]."
"wrapping_add(b);\n"
" }\n"
" digest\n"
"}\n"
"\n"
"fn main() {\n"
" let digest = compute_digest(\"Hello\");\n"
" println!(\"Digest: {digest:?}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"const DIGEST_SIZE: usize = 3;\n"
"const ZERO: Option<u8> = Some(42);\n"
"\n"
"fn compute_digest(text: &str) -> [u8; DIGEST_SIZE] {\n"
" let mut digest = [ZERO.unwrap_or(0); DIGEST_SIZE];\n"
" for (idx, &b) in text.as_bytes().iter().enumerate() {\n"
" digest[idx % DIGEST_SIZE] = digest[idx % DIGEST_SIZE]."
"wrapping_add(b);\n"
" }\n"
" digest\n"
"}\n"
"\n"
"fn main() {\n"
" let digest = compute_digest(\"Hello\");\n"
" println!(\"Digest: {digest:?}\");\n"
"}\n"
"```"
#: src/basic-syntax/static-and-const.md:27
msgid "According to the [Rust RFC Book][1] these are inlined upon use."
msgstr "根据 [Rust RFC Book][1] 这些变量在使用时是内联 (inlined) 的。"
#: src/basic-syntax/static-and-const.md:29
msgid "## `static`"
msgstr "## `static`"
#: src/basic-syntax/static-and-const.md:31
msgid "You can also declare static variables:"
msgstr "你也可以声明静态变量:"
#: src/basic-syntax/static-and-const.md:33
msgid ""
"```rust,editable\n"
"static BANNER: &str = \"Welcome to RustOS 3.14\";\n"
"\n"
"fn main() {\n"
" println!(\"{BANNER}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"static BANNER: &str = \"Welcome to RustOS 3.14\";\n"
"\n"
"fn main() {\n"
" println!(\"{BANNER}\");\n"
"}\n"
"```"
#: src/basic-syntax/static-and-const.md:41
msgid ""
"As noted in the [Rust RFC Book][1], these are not inlined upon use and have "
"an actual associated memory location. This is useful for unsafe and "
"embedded code, and the variable lives through the entirety of the program "
"execution."
msgstr ""
"正如 [Rust RFC Book][1] 中所述,这些变量在使用时并不是内联的,"
"而且还具有实际相关联的内存位置。这对于不安全的嵌入式代码是有用的,"
"并且这些变量存在于整个程序的执行过程之中。"
#: src/basic-syntax/static-and-const.md:44
msgid ""
"We will look at mutating static data in the [chapter on Unsafe Rust](../"
"unsafe.md)."
msgstr ""
"我们会在[关于不安全的Rust的章节](../unsafe.md)中研究改变静态数据。"
#: src/basic-syntax/static-and-const.md:48
msgid ""
"* Mention that `const` behaves semantically similar to C++'s `constexpr`.\n"
"* `static`, on the other hand, is much more similar to a `const` or mutable "
"global variable in C++.\n"
"* It isn't super common that one would need a runtime evaluated constant, "
"but it is helpful and safer than using a static."
msgstr ""
"* 值得一提的是,`const` 在语义上与C++的 `constexpr` 类似。\n"
"* 另一方面,`static` 远远更类似于C++中的 `const` 或可改变的全局变量。\n"
"* 虽然需要使用在运行中求值的常量的情况并不是很常见,但是它是有帮助的,"
"而且比使用静态变量更安全。"
#: src/basic-syntax/scopes-shadowing.md:1
msgid "# Scopes and Shadowing"
msgstr "# 作用域和隐藏 (Shadowing) "
#: src/basic-syntax/scopes-shadowing.md:3
msgid ""
"You can shadow variables, both those from outer scopes and variables from "
"the\n"
"same scope:"
msgstr ""
"你可以隐藏变量,位于外部作用域的变量和\n"
"相同作用域的变量都可以:"
#: src/basic-syntax/scopes-shadowing.md:6
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let a = 10;\n"
" println!(\"before: {a}\");\n"
"\n"
" {\n"
" let a = \"hello\";\n"
" println!(\"inner scope: {a}\");\n"
"\n"
" let a = true;\n"
" println!(\"shadowed in inner scope: {a}\");\n"
" }\n"
"\n"
" println!(\"after: {a}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let a = 10;\n"
" println!(\"before: {a}\");\n"
"\n"
" {\n"
" let a = \"hello\";\n"
" println!(\"inner scope: {a}\");\n"
"\n"
" let a = true;\n"
" println!(\"shadowed in inner scope: {a}\");\n"
" }\n"
"\n"
" println!(\"after: {a}\");\n"
"}\n"
"```"
#: src/basic-syntax/scopes-shadowing.md:25
msgid ""
"* Definition: Shadowing is different from mutation, because after shadowing "
"both variable's memory locations exist at the same time. Both are available "
"under the same name, depending where you use it in the code. \n"
"* A shadowing variable can have a different type. \n"
"* Shadowing looks obscure at first, but is convenient for holding on to "
"values after `.unwrap()`.\n"
"* The following code demonstrates why the compiler can't simply reuse memory "
"locations when shadowing an immutable variable in a scope, even if the type "
"does not change."
msgstr ""
"* 定义: 隐藏和变更 (mutation) 不同,因为在隐藏之后,两个变量都会同时存在于内存的不同位置中。"
"在同一个名字下的两个变量都是可以被使用的,但是你在代码的哪里使用会最终决定你使用哪一个变量。\n"
"* 一个隐藏变量可以具有不同的类型。\n"
"* 隐藏起初看起来会有些晦涩,但是它很便于存 `.unwrap()` 之后的得到的值。\n"
"* 以下代码说明了为什么在作用域内隐藏一个不可变的变量时,即使是在变量类型没有改变的情况下,"
"编译器也不能简单地重复利用之前的内存位置。"
#: src/basic-syntax/scopes-shadowing.md:30
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let a = 1;\n"
" let b = &a;\n"
" let a = a + 1;\n"
" println!(\"{a} {b}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let a = 1;\n"
" let b = &a;\n"
" let a = a + 1;\n"
" println!(\"{a} {b}\");\n"
"}\n"
"```"
#: src/memory-management.md:1
msgid "# Memory Management"
msgstr "# 内存管理"
#: src/memory-management.md:3
msgid "Traditionally, languages have fallen into two broad categories:"
msgstr "传统上,语言分为两大类:"
#: src/memory-management.md:5
msgid ""
"* Full control via manual memory management: C, C++, Pascal, ...\n"
"* Full safety via automatic memory management at runtime: Java, Python, Go, "
"Haskell, ..."
msgstr ""
"* 通过手动内存管理实现完全控制:C、C++、Pascal…\n"
"* 运行时通过自动内存管理实现完全安全:Java、Python、Go、Haskell…"
#: src/memory-management.md:8
msgid "Rust offers a new mix:"
msgstr "Rust 提供了一个全新的组合:"
#: src/memory-management.md:10
msgid ""
"> Full control *and* safety via compile time enforcement of correct memory\n"
"> management."
msgstr ""
"> 通过编译时强制执行正确的内存"
">管理来实现完全控制与安全。"
#: src/memory-management.md:13
msgid "It does this with an explicit ownership concept."
msgstr "它通过一个明确的所有权(ownership)概念来实现此目的。"
#: src/memory-management.md:15
msgid "First, let's refresh how memory management works."
msgstr "首先,我们回顾一下内存管理的工作原理。"
#: src/memory-management/stack-vs-heap.md:1
msgid "# The Stack vs The Heap"
msgstr "# 栈与堆"
#: src/memory-management/stack-vs-heap.md:3
msgid ""
"* Stack: Continuous area of memory for local variables.\n"
" * Values have fixed sizes known at compile time.\n"
" * Extremely fast: just move a stack pointer.\n"
" * Easy to manage: follows function calls.\n"
" * Great memory locality.\n"
"\n"
"* Heap: Storage of values outside of function calls.\n"
" * Values have dynamic sizes determined at runtime.\n"
" * Slightly slower than the stack: some book-keeping needed.\n"
" * No guarantee of memory locality."
msgstr ""
"* 栈:局部变量的连续内存区域。\n"
" * 值在编译时具有已知的固定大小。\n"
" * 速度极快:只需移动一个栈指针。\n"
" * 易于管理:遵循函数调用规则。\n"
" * 优秀的内存局部性。\n"
"\n"
"* 堆:函数调用之外的值的存储。\n"
" * 值具有动态大小,具体大小需在运行时确定。\n"
" * 比栈稍慢:需要向系统申请空间。\n"
" * 不保证内存局部性。"
#: src/memory-management/stack.md:1
msgid "# Stack Memory"
msgstr "# 栈内存"
#: src/memory-management/stack.md:3
msgid ""
"Creating a `String` puts fixed-sized data on the stack and dynamically "
"sized\n"
"data on the heap:"
msgstr ""
"创建 `String` 时将固定大小的数据存储在栈上,\n"
"并将动态大小的数据存储在堆上:"
#: src/memory-management/stack.md:6
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let s1 = String::from(\"Hello\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let s1 = String::from(\"Hello\");\n"
"}\n"
"```"
#: src/memory-management/stack.md:12
msgid ""
"```bob\n"
" Stack Heap\n"
".- - - - - - - - - - - - - -. .- - - - - - - - - - - - - - - -.\n"
": : : :\n"
": s1 : : :\n"
": +-----------+-------+ : : +----+----+----+----+----+ :\n"
": | ptr | o---+---+-----+-->| H | e | l | l | o | :\n"
": | len | 5 | : : +----+----+----+----+----+ :\n"
": | capacity | 5 | : : :\n"
": +-----------+-------+ : : :\n"
": : `- - - - - - - - - - - - - - - -'\n"
"`- - - - - - - - - - - - - -'\n"
"```"
msgstr ""
"```bob\n"
" 栈 堆\n"
".- - - - - - - - - - - - - -. .- - - - - - - - - - - - - - - -.\n"
": : : :\n"
": s1 : : :\n"
": +-----------+-------+ : : +----+----+----+----+----+ :\n"
": | ptr | o---+---+-----+-->| H | e | l | l | o | :\n"
": | len | 5 | : : +----+----+----+----+----+ :\n"
": | capacity | 5 | : : :\n"
": +-----------+-------+ : : :\n"
": : `- - - - - - - - - - - - - - - -'\n"
"`- - - - - - - - - - - - - -'\n"
"```"
#: src/memory-management/stack.md:28
msgid ""
"* Mention that a `String` is backed by a `Vec`, so it has a capacity and "
"length and can grow if mutable via reallocation on the heap.\n"
"\n"
"* If students ask about it, you can mention that the underlying memory is "
"heap allocated using the [System Allocator] and custom allocators can be "
"implemented using the [Allocator API]\n"
"\n"
"* We can inspect the memory layout with `unsafe` code. However, you should "
"point out that this is rightfully unsafe!\n"
"\n"
" ```rust,editable\n"
" fn main() {\n"
" let mut s1 = String::from(\"Hello\");\n"
" s1.push(' ');\n"
" s1.push_str(\"world\");\n"
" // DON'T DO THIS AT HOME! For educational purposes only.\n"
" // String provides no guarantees about its layout, so this could "
"lead to\n"
" // undefined behavior.\n"
" unsafe {\n"
" let (capacity, ptr, len): (usize, usize, usize) = std::mem::"
"transmute(s1);\n"
" println!(\"ptr = {ptr:#x}, len = {len}, capacity = "
"{capacity}\");\n"
" }\n"
" }\n"
" ```"
msgstr ""
"* 指出 `String` 底层由 `Vec` 实现,因此它具有容量和长度,如果值可变,则可以通过在堆上重新分配存储空间进行增长。\n"
"\n"
"* 如果学员提出相关问题,你可以提及我们不仅能使用[系统分配器]在堆上分配底层内"
"存,还能使用 [Allocator API] 实现自定义分配器\n"
"\n"
"* 我们可以使用 `unsafe` 代码检查内存布局。不过,你应该指出,这种做法不安全!\n"
"\n"
" ```rust,editable\n"
" fn main() {\n"
" let mut s1 = String::from(\"Hello\");\n"
" s1.push(' ');\n"
" s1.push_str(\"world\");\n"
" // DON'T DO THIS AT HOME! For educational purposes only.\n"
" // String provides no guarantees about its layout, so this could "
"lead to\n"
" // undefined behavior.\n"
" unsafe {\n"
" let (capacity, ptr, len): (usize, usize, usize) = std::mem::"
"transmute(s1);\n"
" println!(\"ptr = {ptr:#x}, len = {len}, capacity = "
"{capacity}\");\n"
" }\n"
" }\n"
" ```"
#: src/memory-management/manual.md:1
msgid "# Manual Memory Management"
msgstr "# 手动内存管理"
#: src/memory-management/manual.md:3
msgid "You allocate and deallocate heap memory yourself."
msgstr "你自己实现堆内存分配和释放。"
#: src/memory-management/manual.md:5
msgid ""
"If not done with care, this can lead to crashes, bugs, security "
"vulnerabilities, and memory leaks."
msgstr "稍有不慎,这可能会导致崩溃、bug、安全漏洞和内存泄漏。"
#: src/memory-management/manual.md:7
msgid "## C Example"
msgstr "## C++ 示例"
#: src/memory-management/manual.md:9
msgid "You must call `free` on every pointer you allocate with `malloc`:"
msgstr "你必须对使用 `malloc` 分配的每个指针调用 `free`:"
#: src/memory-management/manual.md:11
msgid ""
"```c\n"
"void foo(size_t n) {\n"
" int* int_array = (int*)malloc(n * sizeof(int));\n"
" //\n"
" // ... lots of code\n"
" //\n"
" free(int_array);\n"
"}\n"
"```"
msgstr ""
"```c\n"
"void foo(size_t n) {\n"
" int* int_array = (int*)malloc(n * sizeof(int));\n"
" //\n"
" // ... lots of code\n"
" //\n"
" free(int_array);\n"
"}\n"
"```"
#: src/memory-management/manual.md:21
msgid ""
"Memory is leaked if the function returns early between `malloc` and `free`: "
"the\n"
"pointer is lost and we cannot deallocate the memory."
msgstr ""
"如果函数在 `malloc` 和 `free` 之间提前返回,则会导致内存泄漏:\n"
"指针丢失,而我们无法释放对应的内存。"
#: src/memory-management/scope-based.md:1
msgid "# Scope-Based Memory Management"
msgstr "# 基于作用域的内存管理"
#: src/memory-management/scope-based.md:3
msgid ""
"Constructors and destructors let you hook into the lifetime of an object."
msgstr "构造函数和析构函数让你可以钩入对象的生命周期。"
#: src/memory-management/scope-based.md:5
msgid ""
"By wrapping a pointer in an object, you can free memory when the object is\n"
"destroyed. The compiler guarantees that this happens, even if an exception "
"is\n"
"raised."
msgstr ""
"通过将指针封装在对象中,你可以在该对象\n"
"被销毁时释放内存。编译器可保证这一点的实现,即使"
"引发了异常也不例外。"
#: src/memory-management/scope-based.md:9
msgid ""
"This is often called _resource acquisition is initialization_ (RAII) and "
"gives\n"
"you smart pointers."
msgstr ""
"这通常称为“资源获取即初始化 (resource acquisition is initialization, RAII)”,\n"
"并为你提供智能指针。"
#: src/memory-management/scope-based.md:12
msgid "## C++ Example"
msgstr "## C++ 示例"
#: src/memory-management/scope-based.md:14
msgid ""
"```c++\n"
"void say_hello(std::unique_ptr<Person> person) {\n"
" std::cout << \"Hello \" << person->name << std::endl;\n"
"}\n"
"```"
msgstr ""
"```c++\n"
"void say_hello(std::unique_ptr<Person> person) {\n"
" std::cout << \"Hello \" << person->name << std::endl;\n"
"}\n"
"```"
#: src/memory-management/scope-based.md:20
msgid ""
"* The `std::unique_ptr` object is allocated on the stack, and points to\n"
" memory allocated on the heap.\n"
"* At the end of `say_hello`, the `std::unique_ptr` destructor will run.\n"
"* The destructor frees the `Person` object it points to."
msgstr ""
"* `std::unique_ptr` 对象在栈上分配内存,并指向"
"在堆上分配的内存。\n"
"* 在 `say_hello` 结束时,`std::unique_ptr` 析构函数将运行。\n"
"* 析构函数释放它所指向的 `Person` 对象。"
#: src/memory-management/scope-based.md:25
msgid ""
"Special move constructors are used when passing ownership to a function:"
msgstr "将所有权传递给函数时,使用特殊的 move 构造函数:"
#: src/memory-management/scope-based.md:27
msgid ""
"```c++\n"
"std::unique_ptr<Person> person = find_person(\"Carla\");\n"
"say_hello(std::move(person));\n"
"```"
msgstr ""
"```c++\n"
"std::unique_ptr<Person> person = find_person(\"Carla\");\n"
"say_hello(std::move(person));\n"
"```"
#: src/memory-management/garbage-collection.md:1
msgid "# Automatic Memory Management"
msgstr "# 自动内存管理"
#: src/memory-management/garbage-collection.md:3
msgid ""
"An alternative to manual and scope-based memory management is automatic "
"memory\n"
"management:"
msgstr ""
"自动内存管理是手动和基于作用域的内存管理\n"
"的替代方案:"
#: src/memory-management/garbage-collection.md:6
msgid ""
"* The programmer never allocates or deallocates memory explicitly.\n"
"* A garbage collector finds unused memory and deallocates it for the "
"programmer."
msgstr ""
"* 程序员从不显式分配或取消分配内存。\n"
"* 垃圾回收器找到未使用的内存,并为程序员将其取消分配。"
#: src/memory-management/garbage-collection.md:9
msgid "## Java Example"
msgstr "## Java 示例"
#: src/memory-management/garbage-collection.md:11
msgid "The `person` object is not deallocated after `sayHello` returns:"
msgstr "`sayHello` 返回后,`person` 对象未被取消分配:"
#: src/memory-management/garbage-collection.md:13
msgid ""
"```java\n"
"void sayHello(Person person) {\n"
" System.out.println(\"Hello \" + person.getName());\n"
"}\n"
"```"
msgstr ""
"```java\n"
"void sayHello(Person person) {\n"
" System.out.println(\"Hello \" + person.getName());\n"
"}\n"
"```"
#: src/memory-management/rust.md:1
msgid "# Memory Management in Rust"
msgstr "# Rust 中的内存管理"
#: src/memory-management/rust.md:3
msgid "Memory management in Rust is a mix:"
msgstr "Rust 中的内存管理是一种混合模式:"
#: src/memory-management/rust.md:5
msgid ""
"* Safe and correct like Java, but without a garbage collector.\n"
"* Depending on which abstraction (or combination of abstractions) you "
"choose, can be a single unique pointer, reference counted, or atomically "
"reference counted.\n"
"* Scope-based like C++, but the compiler enforces full adherence.\n"
"* A Rust user can choose the right abstraction for the situation, some even "
"have no cost at runtime like C."
msgstr ""
"* 像 Java 一样安全又正确,但没有垃圾回收器。\n"
"* 根据你选择的抽象(或抽象组合),可以是单个唯一指针,也可以是引用计数,或原"
"子引用计数。\n"
"* 像 C++ 一样基于作用域,但编译器会强制完全遵循规则。\n"
"* Rust 用户可以根据具体情况选择合适的抽象,有些甚至没有像 C 那样的运行时开"
"销。"
#: src/memory-management/rust.md:10
msgid "It achieves this by modeling _ownership_ explicitly."
msgstr "它通过对“所有权”进行显式建模来实现这一点。"
#: src/memory-management/rust.md:14
msgid ""
"* If asked how at this point, you can mention that in Rust this is usually "
"handled by RAII wrapper types such as [Box], [Vec], [Rc], or [Arc]. These "
"encapsulate ownership and memory allocation via various means, and prevent "
"the potential errors in C.\n"
"\n"
"* You may be asked about destructors here, the [Drop] trait is the Rust "
"equivalent."
msgstr ""
"* 如果此时被问及如何操作,你可以提及在 Rust 中,这通常由 RAII 封装容器类型"
"(例如 [Box]、[Vec]、[Rc] 或 [Arc])处理。这些类型通过各种方式封装了所有权和"
"内存分配,并防止了 C 中潜在错误的发生。\n"
"\n"
"* 你可能会被问及析构函数,此处 [Drop] trait 是 Rust 等效项。"
#: src/memory-management/comparison.md:1
msgid "# Comparison"
msgstr "# 比较"
#: src/memory-management/comparison.md:3
msgid "Here is a rough comparison of the memory management techniques."
msgstr "下面是对内存管理技术的粗略比较。"
#: src/memory-management/comparison.md:5
msgid "## Pros of Different Memory Management Techniques"
msgstr "## 不同内存管理技术的优点"
#: src/memory-management/comparison.md:7
msgid ""
"* Manual like C:\n"
" * No runtime overhead.\n"
"* Automatic like Java:\n"
" * Fully automatic.\n"
" * Safe and correct.\n"
"* Scope-based like C++:\n"
" * Partially automatic.\n"
" * No runtime overhead.\n"
"* Compiler-enforced scope-based like Rust:\n"
" * Enforced by compiler.\n"
" * No runtime overhead.\n"
" * Safe and correct."
msgstr ""
"* 手动(如 C):\n"
" * 无运行时开销。\n"
"* 自动(如 Java):\n"
" * 完全自动。\n"
" * 安全且正确。\n"
"* 基于作用域(如 C++):\n"
" * 部分自动。\n"
" * 无运行时开销。\n"
"* 由编译器强制执行、基于作用域(如 Rust):\n"
" * 由编译器强制执行。\n"
" * 无运行时开销。\n"
" * 安全且正确。"
#: src/memory-management/comparison.md:20
msgid "## Cons of Different Memory Management Techniques"
msgstr "## 不同内存管理技术的缺点"
#: src/memory-management/comparison.md:22
msgid ""
"* Manual like C:\n"
" * Use-after-free.\n"
" * Double-frees.\n"
" * Memory leaks.\n"
"* Automatic like Java:\n"
" * Garbage collection pauses.\n"
" * Destructor delays.\n"
"* Scope-based like C++:\n"
" * Complex, opt-in by programmer.\n"
" * Potential for use-after-free.\n"
"* Compiler-enforced and scope-based like Rust:\n"
" * Some upfront complexity.\n"
" * Can reject valid programs."
msgstr ""
"* 手动(如 C):\n"
" * 释放后使用。\n"
" * 双重释放。\n"
" * 内存泄漏。\n"
"* 自动(如 Java):\n"
" * 垃圾回收暂停。\n"
" * 析构函数延迟。\n"
"* 基于作用域(如 C++):\n"
" * 复杂,由程序员自选。\n"
" * 有望释放后使用。\n"
"* 由编译器强制执行、基于作用域(如 Rust):\n"
" * 前期有些复杂。\n"
" * 可能拒绝有效的程序。"
#: src/ownership.md:1
msgid "# Ownership"
msgstr "# 所有权"
#: src/ownership.md:3
msgid ""
"All variable bindings have a _scope_ where they are valid and it is an error "
"to\n"
"use a variable outside its scope:"
msgstr ""
"所有变量绑定都有一个有效的“作用域”,使用\n"
"超出其作用域的变量是错误的:"
#: src/ownership.md:6
msgid ""
"```rust,editable,compile_fail\n"
"struct Point(i32, i32);\n"
"\n"
"fn main() {\n"
" {\n"
" let p = Point(3, 4);\n"
" println!(\"x: {}\", p.0);\n"
" }\n"
" println!(\"y: {}\", p.1);\n"
"}\n"
"```"
msgstr ""
"```rust,editable,compile_fail\n"
"struct Point(i32, i32);\n"
"\n"
"fn main() {\n"
" {\n"
" let p = Point(3, 4);\n"
" println!(\"x: {}\", p.0);\n"
" }\n"
" println!(\"y: {}\", p.1);\n"
"}\n"
"```"
#: src/ownership.md:18
msgid ""
"* At the end of the scope, the variable is _dropped_ and the data is freed.\n"
"* A destructor can run here to free up resources.\n"
"* We say that the variable _owns_ the value."
msgstr ""
"* 作用域结束时,变量会“被丢弃”,数据会被释放。\n"
"* 析构函数可在此运行以释放资源。\n"
"* 指出变量“拥有”值。"
#: src/ownership/move-semantics.md:1
msgid "# Move Semantics"
msgstr "# 移动语义"
#: src/ownership/move-semantics.md:3
msgid "An assignment will transfer ownership between variables:"
msgstr "赋值操作将在变量之间转移所有权:"
#: src/ownership/move-semantics.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let s1: String = String::from(\"Hello!\");\n"
" let s2: String = s1;\n"
" println!(\"s2: {s2}\");\n"
" // println!(\"s1: {s1}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let s1: String = String::from(\"Hello!\");\n"
" let s2: String = s1;\n"
" println!(\"s2: {s2}\");\n"
" // println!(\"s1: {s1}\");\n"
"}\n"
"```"
#: src/ownership/move-semantics.md:14
msgid ""
"* The assignment of `s1` to `s2` transfers ownership.\n"
"* The data was _moved_ from `s1` and `s1` is no longer accessible.\n"
"* When `s1` goes out of scope, nothing happens: it has no ownership.\n"
"* When `s2` goes out of scope, the string data is freed.\n"
"* There is always _exactly_ one variable binding which owns a value."
msgstr ""
"* 将 `s1` 赋值给 `s2`,即转移了所有权。\n"
"* 数据从 `s1`“移出”,且 `s1` 不再可供访问。\n"
"* 当 `s1` 离开作用域时,什么都不会发生:它没有所有权。\n"
"* 当 `s2` 离开作用域时,字符串数据被释放。\n"
"* 变量绑定在任一时刻有且“只有”一个值。"
#: src/ownership/move-semantics.md:22
msgid ""
"* Mention that this is the opposite of the defaults in C++, which copies by "
"value unless you use `std::move` (and the move constructor is defined!).\n"
"\n"
"* In Rust, clones are explicit (by using `clone`)."
msgstr ""
"* 指出这与 C++ 中的默认值相反。除非你使用 `std::move`(并已定义 move 构造函"
"数!),否则 C++ 中的默认值是按值复制的。\n"
"\n"
"* 在 Rust 中,克隆是显式的(通过使用 `clone`)。"
#: src/ownership/moved-strings-rust.md:1
msgid "# Moved Strings in Rust"
msgstr "# Rust 中移动的字符串"
#: src/ownership/moved-strings-rust.md:3
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let s1: String = String::from(\"Rust\");\n"
" let s2: String = s1;\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let s1: String = String::from(\"Rust\");\n"
" let s2: String = s1;\n"
"}\n"
"```"
#: src/ownership/moved-strings-rust.md:10
msgid ""
"* The heap data from `s1` is reused for `s2`.\n"
"* When `s1` goes out of scope, nothing happens (it has been moved from)."
msgstr ""
"* `s1` 中的堆数据会被 `s2` 重复使用。\n"
"* 当 `s1` 离开作用域时,什么都不会发生(它已被移出)。"
#: src/ownership/moved-strings-rust.md:13
msgid "Before move to `s2`:"
msgstr "移动到 `s2` 中之前:"
#: src/ownership/moved-strings-rust.md:15
msgid ""
"```bob\n"
" Stack Heap\n"
".- - - - - - - - - - - - - -. .- - - - - - - - - - - - - -.\n"
": : : :\n"
": s1 : : :\n"
": +-----------+-------+ : : +----+----+----+----+ :\n"
": | ptr | o---+---+-----+-->| R | u | s | t | :\n"
": | len | 4 | : : +----+----+----+----+ :\n"
": | capacity | 4 | : : :\n"
": +-----------+-------+ : : :\n"
": : `- - - - - - - - - - - - - -'\n"
": :\n"
"`- - - - - - - - - - - - - -'\n"
"```"
msgstr ""
"```bob\n"
" 栈 堆\n"
".- - - - - - - - - - - - - -. .- - - - - - - - - - - - - -.\n"
": : : :\n"
": s1 : : :\n"
": +-----------+-------+ : : +----+----+----+----+ :\n"
": | ptr | o---+---+-----+-->| R | u | s | t | :\n"
": | len | 4 | : : +----+----+----+----+ :\n"
": | capacity | 4 | : : :\n"
": +-----------+-------+ : : :\n"
": : `- - - - - - - - - - - - - -'\n"
": :\n"
"`- - - - - - - - - - - - - -'\n"
"```"
#: src/ownership/moved-strings-rust.md:30
msgid "After move to `s2`:"
msgstr "移动到 `s2` 中之后:"
#: src/ownership/moved-strings-rust.md:32
msgid ""
"```bob\n"
" Stack Heap\n"
".- - - - - - - - - - - - - -. .- - - - - - - - - - - - - -.\n"
": : : :\n"
": s1 \"(inaccessible)\" : : :\n"
": +-----------+-------+ : : +----+----+----+----+ :\n"
": | ptr | o---+---+--+--+-->| R | u | s | t | :\n"
": | len | 4 | : | : +----+----+----+----+ :\n"
": | capacity | 4 | : | : :\n"
": +-----------+-------+ : | : :\n"
": : | `- - - - - - - - - - - - - -'\n"
": s2 : |\n"
": +-----------+-------+ : |\n"
": | ptr | o---+---+--'\n"
": | len | 4 | :\n"
": | capacity | 4 | :\n"
": +-----------+-------+ :\n"
": :\n"
"`- - - - - - - - - - - - - -'\n"
"```"
msgstr ""
"```bob\n"
" 栈 堆\n"
".- - - - - - - - - - - - - -. .- - - - - - - - - - - - - -.\n"
": : : :\n"
": s1 \"(无法访问)\" : : :\n"
": +-----------+-------+ : : +----+----+----+----+ :\n"
": | ptr | o---+---+--+--+-->| R | u | s | t | :\n"
": | len | 4 | : | : +----+----+----+----+ :\n"
": | capacity | 4 | : | : :\n"
": +-----------+-------+ : | : :\n"
": : | `- - - - - - - - - - - - - -'\n"
": s2 : |\n"
": +-----------+-------+ : |\n"
": | ptr | o---+---+--'\n"
": | len | 4 | :\n"
": | capacity | 4 | :\n"
": +-----------+-------+ :\n"
": :\n"
"`- - - - - - - - - - - - - -'\n"
"```"
#: src/ownership/double-free-modern-cpp.md:1
msgid "# Double Frees in Modern C++"
msgstr "# 现代 C++ 中的双重释放"
#: src/ownership/double-free-modern-cpp.md:3
msgid "Modern C++ solves this differently:"
msgstr "现代 C++ 以不同的方式解决此问题:"
#: src/ownership/double-free-modern-cpp.md:5
msgid ""
"```c++\n"
"std::string s1 = \"Cpp\";\n"
"std::string s2 = s1; // Duplicate the data in s1.\n"
"```"
msgstr ""
"```c++\n"
"std::string s1 = \"Cpp\";\n"
"std::string s2 = s1; // 复制 s1 中的数据。\n"
"```"
#: src/ownership/double-free-modern-cpp.md:10
msgid ""
"* The heap data from `s1` is duplicated and `s2` gets its own independent "
"copy.\n"
"* When `s1` and `s2` go out of scope, they each free their own memory."
msgstr ""
"* `s1` 中的堆数据被复制,`s2` 获得自己的独立副本。\n"
"* 当 `s1` 和 `s2` 离开作用域时,它们会各自释放自己的内存。"
#: src/ownership/double-free-modern-cpp.md:13
msgid "Before copy-assignment:"
msgstr "复制-赋值之前:"
#: src/ownership/double-free-modern-cpp.md:16
msgid ""
"```bob\n"
" Stack Heap\n"
".- - - - - - - - - - - - - -. .- - - - - - - - - - - -.\n"
": : : :\n"
": s1 : : :\n"
": +-----------+-------+ : : +----+----+----+ :\n"
": | ptr | o---+---+--+--+-->| C | p | p | :\n"
": | len | 3 | : : +----+----+----+ :\n"
": | capacity | 3 | : : :\n"
": +-----------+-------+ : : :\n"
": : `- - - - - - - - - - - -'\n"
"`- - - - - - - - - - - - - -'\n"
"```"
msgstr ""
"```bob\n"
" 栈 堆\n"
".- - - - - - - - - - - - - -. .- - - - - - - - - - - -.\n"
": : : :\n"
": s1 : : :\n"
": +-----------+-------+ : : +----+----+----+ :\n"
": | ptr | o---+---+--+--+-->| C | p | p | :\n"
": | len | 3 | : : +----+----+----+ :\n"
": | capacity | 3 | : : :\n"
": +-----------+-------+ : : :\n"
": : `- - - - - - - - - - - -'\n"
"`- - - - - - - - - - - - - -'\n"
"```"
#: src/ownership/double-free-modern-cpp.md:30
msgid "After copy-assignment:"
msgstr "复制-赋值之后:"
#: src/ownership/double-free-modern-cpp.md:32
msgid ""
"```bob\n"
" Stack Heap\n"
".- - - - - - - - - - - - - -. .- - - - - - - - - - - -.\n"
": : : :\n"
": s1 : : :\n"
": +-----------+-------+ : : +----+----+----+ :\n"
": | ptr | o---+---+--+--+-->| C | p | p | :\n"
": | len | 3 | : : +----+----+----+ :\n"
": | capacity | 3 | : : :\n"
": +-----------+-------+ : : :\n"
": : : :\n"
": s2 : : :\n"
": +-----------+-------+ : : +----+----+----+ :\n"
": | ptr | o---+---+-----+-->| C | p | p | :\n"
": | len | 3 | : : +----+----+----+ :\n"
": | capacity | 3 | : : :\n"
": +-----------+-------+ : : :\n"
": : `- - - - - - - - - - - -'\n"
"`- - - - - - - - - - - - - -'\n"
"```"
msgstr ""
"```bob\n"
" 栈 堆\n"
".- - - - - - - - - - - - - -. .- - - - - - - - - - - -.\n"
": : : :\n"
": s1 : : :\n"
": +-----------+-------+ : : +----+----+----+ :\n"
": | ptr | o---+---+--+--+-->| C | p | p | :\n"
": | len | 3 | : : +----+----+----+ :\n"
": | capacity | 3 | : : :\n"
": +-----------+-------+ : : :\n"
": : : :\n"
": s2 : : :\n"
": +-----------+-------+ : : +----+----+----+ :\n"
": | ptr | o---+---+-----+-->| C | p | p | :\n"
": | len | 3 | : : +----+----+----+ :\n"
": | capacity | 3 | : : :\n"
": +-----------+-------+ : : :\n"
": : `- - - - - - - - - - - -'\n"
"`- - - - - - - - - - - - - -'\n"
"```"
#: src/ownership/moves-function-calls.md:1
msgid "# Moves in Function Calls"
msgstr "# 函数调用中的移动"
#: src/ownership/moves-function-calls.md:3
msgid ""
"When you pass a value to a function, the value is assigned to the function\n"
"parameter. This transfers ownership:"
msgstr ""
"你将值传递给函数时,该值会被赋给函数\n"
"参数。这就转移了所有权:"
#: src/ownership/moves-function-calls.md:6
msgid ""
"```rust,editable\n"
"fn say_hello(name: String) {\n"
" println!(\"Hello {name}\")\n"
"}\n"
"\n"
"fn main() {\n"
" let name = String::from(\"Alice\");\n"
" say_hello(name);\n"
" // say_hello(name);\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn say_hello(name: String) {\n"
" println!(\"Hello {name}\")\n"
"}\n"
"\n"
"fn main() {\n"
" let name = String::from(\"Alice\");\n"
" say_hello(name);\n"
" // say_hello(name);\n"
"}\n"
"```"
#: src/ownership/moves-function-calls.md:20
msgid ""
"* With the first call to `say_hello`, `main` gives up ownership of `name`. "
"Afterwards, `name` cannot be used anymore within `main`.\n"
"* The heap memory allocated for `name` will be freed at the end of the "
"`say_hello` function.\n"
"* `main` can retain ownership if it passes `name` as a reference (`&name`) "
"and if `say_hello` accepts a reference as a parameter.\n"
"* Alternatively, `main` can pass a clone of `name` in the first call (`name."
"clone()`).\n"
"* Rust makes it harder than C++ to inadvertently create copies by making "
"move semantics the default, and by forcing programmers to make clones "
"explicit."
msgstr ""
"* 首次调用 `say_hello` 时,`main` 便放弃了 `name` 的所有权。此后,`main` 中不"
"能再使用 `name`。\n"
"* 在 `say_hello` 函数结束时,系统会释放为 `name` 分配的堆内存。\n"
"* 如果 `main` 将 `name` 作为引用 (`&name`) 传递过去,且 `say_hello` 接受作为"
"参数的引用,则可保留所有权。\n"
"* 此外,`main` 也可以在首次调用时传递 `name` 的克隆 (`name.clone()`)。\n"
"* 相较于 C++,Rust 通过将移动语义设为默认值,并强制程序员进行显式克隆,更难以"
"无意中创建副本。"
#: src/ownership/copy-clone.md:1
msgid "# Copying and Cloning"
msgstr "# 复制和克隆"
#: src/ownership/copy-clone.md:3
msgid ""
"While move semantics are the default, certain types are copied by default:"
msgstr "虽然移动语义是默认的,但默认情况下会复制某些类型:"
#: src/ownership/copy-clone.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let x = 42;\n"
" let y = x;\n"
" println!(\"x: {x}\");\n"
" println!(\"y: {y}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let x = 42;\n"
" let y = x;\n"
" println!(\"x: {x}\");\n"
" println!(\"y: {y}\");\n"
"}\n"
"```"
#: src/ownership/copy-clone.md:14
msgid "These types implement the `Copy` trait."
msgstr "这些类型实现了 `Copy` trait。"
#: src/ownership/copy-clone.md:16
msgid "You can opt-in your own types to use copy semantics:"
msgstr "你可以选择自己的类型来使用复制语义:"
#: src/ownership/copy-clone.md:18
msgid ""
"```rust,editable\n"
"#[derive(Copy, Clone, Debug)]\n"
"struct Point(i32, i32);\n"
"\n"
"fn main() {\n"
" let p1 = Point(3, 4);\n"
" let p2 = p1;\n"
" println!(\"p1: {p1:?}\");\n"
" println!(\"p2: {p2:?}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"#[derive(Copy, Clone, Debug)]\n"
"struct Point(i32, i32);\n"
"\n"
"fn main() {\n"
" let p1 = Point(3, 4);\n"
" let p2 = p1;\n"
" println!(\"p1: {p1:?}\");\n"
" println!(\"p2: {p2:?}\");\n"
"}\n"
"```"
#: src/ownership/copy-clone.md:30
msgid ""
"* After the assignment, both `p1` and `p2` own their own data.\n"
"* We can also use `p1.clone()` to explicitly copy the data."
msgstr ""
"* 赋值之后,`p1` 和 `p2` 都拥有自己的数据。\n"
"* 我们还可以使用 `p1.clone()` 显式复制数据。"
#: src/ownership/copy-clone.md:35
msgid "Copying and cloning are not the same thing:"
msgstr "复制和克隆是两码事:"
#: src/ownership/copy-clone.md:37
msgid ""
"* Copying refers to bitwise copies of memory regions and does not work on "
"arbitrary objects.\n"
"* Copying does not allow for custom logic (unlike copy constructors in C+"
"+).\n"
"* Cloning is a more general operation and also allows for custom behavior by "
"implementing the `Clone` trait.\n"
"* Copying does not work on types that implement the `Drop` trait."
msgstr ""
"* 复制是指内存区域的按位复制,不适用于任意对象。\n"
"* 复制不允许自定义逻辑(不同于 C++ 中的复制构造函数)。\n"
"* 克隆是一种更通用的操作,也允许通过实现 `Clone` trait 来自定义行为。\n"
"* 复制不适用于实现 `Drop` trait 的类型。"
#: src/ownership/copy-clone.md:42 src/ownership/lifetimes-function-calls.md:29
msgid "In the above example, try the following:"
msgstr "在上述示例中,请尝试以下操作:"
#: src/ownership/copy-clone.md:44
msgid ""
"* Add a `String` field to `struct Point`. It will not compile because "
"`String` is not a `Copy` type.\n"
"* Remove `Copy` from the `derive` attribute. The compiler error is now in "
"the `println!` for `p1`.\n"
"* Show that it works if you clone `p1` instead."
msgstr ""
"* 在 `struct Point` 中添加 `String` 字段。由于 `String` 不属于 `Copy` 类型,"
"因此无法编译。\n"
"* 从 `derive` 属性中移除 `Copy`。现在,编译器错误位于 `p1`的 `println!` "
"中。\n"
"* 指出如果你改为克隆 `p1`,则可按预期运行。"
#: src/ownership/copy-clone.md:48
msgid ""
"If students ask about `derive`, it is sufficient to say that this is a way "
"to generate code in Rust\n"
"at compile time. In this case the default implementations of `Copy` and "
"`Clone` traits are generated."
msgstr ""
"如果学员问起 `derive`,只需说这是一种\n"
"在编译时生成 Rust 代码的方法。在这种情况下,系统会生成 `Copy` 和 `Clone` "
"trait 的默认实现。"
#: src/ownership/borrowing.md:1
msgid "# Borrowing"
msgstr "# 借用"
#: src/ownership/borrowing.md:3
msgid ""
"Instead of transferring ownership when calling a function, you can let a\n"
"function _borrow_ the value:"
msgstr ""
"调用函数时,你可以让\n"
"函数“借用”值,而不是转移所有权:"
#: src/ownership/borrowing.md:6
msgid ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"struct Point(i32, i32);\n"
"\n"
"fn add(p1: &Point, p2: &Point) -> Point {\n"
" Point(p1.0 + p2.0, p1.1 + p2.1)\n"
"}\n"
"\n"
"fn main() {\n"
" let p1 = Point(3, 4);\n"
" let p2 = Point(10, 20);\n"
" let p3 = add(&p1, &p2);\n"
" println!(\"{p1:?} + {p2:?} = {p3:?}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"struct Point(i32, i32);\n"
"\n"
"fn add(p1: &Point, p2: &Point) -> Point {\n"
" Point(p1.0 + p2.0, p1.1 + p2.1)\n"
"}\n"
"\n"
"fn main() {\n"
" let p1 = Point(3, 4);\n"
" let p2 = Point(10, 20);\n"
" let p3 = add(&p1, &p2);\n"
" println!(\"{p1:?} + {p2:?} = {p3:?}\");\n"
"}\n"
"```"
#: src/ownership/borrowing.md:22
msgid ""
"* The `add` function _borrows_ two points and returns a new point.\n"
"* The caller retains ownership of the inputs."
msgstr ""
"* `add` 函数“借用”两个点并返回一个新点。\n"
"* 调用方会保留输入的所有权。"
#: src/ownership/borrowing.md:27
msgid "Notes on stack returns:"
msgstr "关于栈返回的说明:"
#: src/ownership/borrowing.md:28
msgid ""
"* Demonstrate that the return from `add` is cheap because the compiler can "
"eliminate the copy operation. Change the above code to print stack addresses "
"and run it on the [Playground]. In the \"DEBUG\" optimization level, the "
"addresses should change, while they stay the same when changing to the "
"\"RELEASE\" setting:\n"
"\n"
" ```rust,editable\n"
" #[derive(Debug)]\n"
" struct Point(i32, i32);\n"
"\n"
" fn add(p1: &Point, p2: &Point) -> Point {\n"
" let p = Point(p1.0 + p2.0, p1.1 + p2.1);\n"
" println!(\"&p.0: {:p}\", &p.0);\n"
" p\n"
" }\n"
"\n"
" fn main() {\n"
" let p1 = Point(3, 4);\n"
" let p2 = Point(10, 20);\n"
" let p3 = add(&p1, &p2);\n"
" println!(\"&p3.0: {:p}\", &p3.0);\n"
" println!(\"{p1:?} + {p2:?} = {p3:?}\");\n"
" }\n"
" ```\n"
"* The Rust compiler can do return value optimization (RVO).\n"
"* In C++, copy elision has to be defined in the language specification "
"because constructors can have side effects. In Rust, this is not an issue at "
"all. If RVO did not happen, Rust will always performs a simple and efficient "
"`memcpy` copy."
msgstr ""
"* 证明从 `add` 返回的开销很低,因为编译器可以消除复制操作。更改上述代码以输出"
"栈地址,并在 [Playground] 上运行它。在“调试”优化级别中,地址应发生变化,而在"
"改成“发布”设置时保持不变:\n"
"\n"
" ```rust,editable\n"
" #[derive(Debug)]\n"
" struct Point(i32, i32);\n"
"\n"
" fn add(p1: &Point, p2: &Point) -> Point {\n"
" let p = Point(p1.0 + p2.0, p1.1 + p2.1);\n"
" println!(\"&p.0: {:p}\", &p.0);\n"
" p\n"
" }\n"
"\n"
" fn main() {\n"
" let p1 = Point(3, 4);\n"
" let p2 = Point(10, 20);\n"
" let p3 = add(&p1, &p2);\n"
" println!(\"&p3.0: {:p}\", &p3.0);\n"
" println!(\"{p1:?} + {p2:?} = {p3:?}\");\n"
" }\n"
" ```\n"
"* Rust 编译器能够执行返回值优化 (RVO)。\n"
"* 在 C++ 中,必须在语言规范中定义复制省略,因为构造函数可能会有附带效应。在 "
"Rust 中,这完全不是问题。如果 RVO 未发生,Rust 将始终执行简单且高效的 "
"`memcpy` 复制。"
#: src/ownership/shared-unique-borrows.md:1
msgid "# Shared and Unique Borrows"
msgstr "# 共享和唯一的借用"
#: src/ownership/shared-unique-borrows.md:3
msgid "Rust puts constraints on the ways you can borrow values:"
msgstr "Rust 限制了借用值的方式:"
#: src/ownership/shared-unique-borrows.md:5
msgid ""
"* You can have one or more `&T` values at any given time, _or_\n"
"* You can have exactly one `&mut T` value."
msgstr ""
"* 在任何给定时间,你都可以有一个或多个 `&T` 值,或者\n"
"* 你可以有且只有一个 `&mut T` 值。"
#: src/ownership/shared-unique-borrows.md:8
msgid ""
"```rust,editable,compile_fail\n"
"fn main() {\n"
" let mut a: i32 = 10;\n"
" let b: &i32 = &a;\n"
"\n"
" {\n"
" let c: &mut i32 = &mut a;\n"
" *c = 20;\n"
" }\n"
"\n"
" println!(\"a: {a}\");\n"
" println!(\"b: {b}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable,compile_fail\n"
"fn main() {\n"
" let mut a: i32 = 10;\n"
" let b: &i32 = &a;\n"
"\n"
" {\n"
" let c: &mut i32 = &mut a;\n"
" *c = 20;\n"
" }\n"
"\n"
" println!(\"a: {a}\");\n"
" println!(\"b: {b}\");\n"
"}\n"
"```"
#: src/ownership/shared-unique-borrows.md:25
msgid ""
"* The above code does not compile because `a` is borrowed as mutable "
"(through `c`) and as immutable (through `b`) at the same time.\n"
"* Move the `println!` statement for `b` before the scope that introduces `c` "
"to make the code compile.\n"
"* After that change, the compiler realizes that `b` is only ever used before "
"the new mutable borrow of `a` through `c`. This is a feature of the borrow "
"checker called \"non-lexical lifetimes\"."
msgstr ""
"* 上述代码无法编译,因为 `a` 同时作为可变值(通过 `c`)和不可变值(通过 `b`)"
"被借用。\n"
"* 将`b` 的 `println!` 语句移到引入 `c` 的作用域之前,这段代码就可以编译。\n"
"* 这样更改后,编译器会发现 `b` 只在通过 `c` 对 `a` 进行新可变借用之前使用过。"
"这是借用检查器的一个功能,名为“非词法作用域生命周期”。"
#: src/ownership/lifetimes.md:1
msgid "# Lifetimes"
msgstr "# 生命周期"
#: src/ownership/lifetimes.md:3
msgid "A borrowed value has a _lifetime_:"
msgstr "借用的值是有“生命周期”的:"
#: src/ownership/lifetimes.md:5
msgid ""
"* The lifetime can be implicit: `add(p1: &Point, p2: &Point) -> Point`.\n"
"* Lifetimes can also be explicit: `&'a Point`, `&'document str`.\n"
"* Read `&'a Point` as \"a borrowed `Point` which is valid for at least the\n"
" lifetime `a`\".\n"
"* Lifetimes are always inferred by the compiler: you cannot assign a "
"lifetime\n"
" yourself.\n"
" * Lifetime annotations create constraints; the compiler verifies that "
"there is\n"
" a valid solution.\n"
"* Lifetimes for function arguments and return values must be fully "
"specified,\n"
" but Rust allows these to be elidied in most cases with [a few simple\n"
" rules](https://doc.rust-lang.org/nomicon/lifetime-elision.html)."
msgstr ""
#: src/ownership/lifetimes-function-calls.md:1
msgid "# Lifetimes in Function Calls"
msgstr "# 函数调用中的生命周期"
#: src/ownership/lifetimes-function-calls.md:3
msgid ""
"In addition to borrowing its arguments, a function can return a borrowed "
"value:"
msgstr "除了借用其参数之外,函数还可以返回借用的值:"
#: src/ownership/lifetimes-function-calls.md:5
msgid ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"struct Point(i32, i32);\n"
"\n"
"fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {\n"
" if p1.0 < p2.0 { p1 } else { p2 }\n"
"}\n"
"\n"
"fn main() {\n"
" let p1: Point = Point(10, 10);\n"
" let p2: Point = Point(20, 20);\n"
" let p3: &Point = left_most(&p1, &p2);\n"
" println!(\"left-most point: {:?}\", p3);\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"struct Point(i32, i32);\n"
"\n"
"fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {\n"
" if p1.0 < p2.0 { p1 } else { p2 }\n"
"}\n"
"\n"
"fn main() {\n"
" let p1: Point = Point(10, 10);\n"
" let p2: Point = Point(20, 20);\n"
" let p3: &Point = left_most(&p1, &p2);\n"
" println!(\"left-most point: {:?}\", p3);\n"
"}\n"
"```"
#: src/ownership/lifetimes-function-calls.md:21
msgid ""
"* `'a` is a generic parameter, it is inferred by the compiler.\n"
"* Lifetimes start with `'` and `'a` is a typical default name.\n"
"* Read `&'a Point` as \"a borrowed `Point` which is valid for at least the\n"
" lifetime `a`\".\n"
" * The _at least_ part is important when parameters are in different scopes."
msgstr ""
"* `'a` 是一个泛型形参,由编译器推断出来。\n"
"* 以 `'` 和 `'a` 开头的生命周期是典型的默认名称。\n"
"* 将 `&'a Point` 读取为“借用的 `Point,至少\n"
"在 `a` 生命周期内有效。\n"
" * 当参数在不同的作用域时,“至少”部分至关重要。"
#: src/ownership/lifetimes-function-calls.md:31
msgid ""
"* Move the declaration of `p2` and `p3` into a a new scope (`{ ... }`), "
"resulting in the following code:\n"
" ```rust,ignore\n"
" #[derive(Debug)]\n"
" struct Point(i32, i32);\n"
"\n"
" fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {\n"
" if p1.0 < p2.0 { p1 } else { p2 }\n"
" }\n"
"\n"
" fn main() {\n"
" let p1: Point = Point(10, 10);\n"
" let p3: &Point;\n"
" {\n"
" let p2: Point = Point(20, 20);\n"
" p3 = left_most(&p1, &p2);\n"
" }\n"
" println!(\"left-most point: {:?}\", p3);\n"
" }\n"
" ```\n"
" Note how this does not compile since `p3` outlives `p2`.\n"
"\n"
"* Reset the workspace and change the function signature to `fn left_most<'a, "
"'b>(p1: &'a Point, p2: &'a Point) -> &'b Point`. This will not compile "
"because the relationship between the lifetimes `'a` and `'b` is unclear.\n"
"* Another way to explain it:\n"
" * Two references to two values are borrowed by a function and the function "
"returns\n"
" another reference.\n"
" * It must have come from one of those two inputs (or from a global "
"variable).\n"
" * Which one is it? The compiler needs to to know, so at the call site the "
"returned reference is not used\n"
" for longer than a variable from where the reference came from."
msgstr ""
#: src/ownership/lifetimes-data-structures.md:1
msgid "# Lifetimes in Data Structures"
msgstr "# 数据结构中的生命周期"
#: src/ownership/lifetimes-data-structures.md:3
msgid ""
"If a data type stores borrowed data, it must be annotated with a lifetime:"
msgstr "如果数据类型存储了借用的数据,则必须对其添加生命周期注释:"
#: src/ownership/lifetimes-data-structures.md:5
msgid ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"struct Highlight<'doc>(&'doc str);\n"
"\n"
"fn erase(text: String) {\n"
" println!(\"Bye {text}!\");\n"
"}\n"
"\n"
"fn main() {\n"
" let text = String::from(\"The quick brown fox jumps over the lazy dog."
"\");\n"
" let fox = Highlight(&text[4..19]);\n"
" let dog = Highlight(&text[35..43]);\n"
" // erase(text);\n"
" println!(\"{fox:?}\");\n"
" println!(\"{dog:?}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"struct Highlight<'doc>(&'doc str);\n"
"\n"
"fn erase(text: String) {\n"
" println!(\"Bye {text}!\");\n"
"}\n"
"\n"
"fn main() {\n"
" let text = String::from(\"The quick brown fox jumps over the lazy dog."
"\");\n"
" let fox = Highlight(&text[4..19]);\n"
" let dog = Highlight(&text[35..43]);\n"
" // erase(text);\n"
" println!(\"{fox:?}\");\n"
" println!(\"{dog:?}\");\n"
"}\n"
"```"
#: src/ownership/lifetimes-data-structures.md:25
msgid ""
"* In the above example, the annotation on `Highlight` enforces that the data "
"underlying the contained `&str` lives at least as long as any instance of "
"`Highlight` that uses that data.\n"
"* If `text` is consumed before the end of the lifetime of `fox` (or `dog`), "
"the borrow checker throws an error.\n"
"* Types with borrowed data force users to hold on to the original data. This "
"can be useful for creating lightweight views, but it generally makes them "
"somewhat harder to use.\n"
"* When possible, make data structures own their data directly.\n"
"* Some structs with multiple references inside can have more than one "
"lifetime annotation. This can be necessary if there is a need to describe "
"lifetime relationships between the references themselves, in addition to the "
"lifetime of the struct itself. Those are very advanced use cases."
msgstr ""
"* 在上述示例中,`Highlight` 注释会强制包含 `&str` 的底层数据的生命周期至少与"
"使用该数据的任何 `Highlight` 实例一样长。\n"
"* 如果 `text` 在 `fox`(或 `dog`)的生命周期结束前被消耗,借用检查器将抛出一"
"个错误。\n"
"* 借用数据的类型会迫使用户保留原始数据。这对于创建轻量级视图很有用,但通常会"
"使它们更难使用。\n"
"* 如有可能,让数据结构直接拥有自己的数据。\n"
"* 一些包含多个引用的结构可以有多个生命周期注释。除了结构体本身的生命周期之"
"外,如果需要描述引用之间的生命周期关系,则可能需要这样做。这些都是非常高级的"
"用例。"
#: src/exercises/day-1/afternoon.md:1
msgid "# Day 1: Afternoon Exercises"
msgstr ""
#: src/exercises/day-1/afternoon.md:3
msgid "We will look at two things:"
msgstr ""
#: src/exercises/day-1/afternoon.md:5
msgid ""
"* A small book library,\n"
"\n"
"* Iterators and ownership (hard)."
msgstr ""
#: src/exercises/day-1/book-library.md:1
msgid "# Designing a Library"
msgstr ""
#: src/exercises/day-1/book-library.md:3
msgid ""
"We will learn much more about structs and the `Vec<T>` type tomorrow. For "
"now,\n"
"you just need to know part of its API:"
msgstr ""
#: src/exercises/day-1/book-library.md:6
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let mut vec = vec![10, 20];\n"
" vec.push(30);\n"
" let midpoint = vec.len() / 2;\n"
" println!(\"middle value: {}\", vec[midpoint]);\n"
" for item in &vec {\n"
" println!(\"item: {item}\");\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-1/book-library.md:18
msgid ""
"Use this to create a library application. Copy the code below to\n"
"<https://play.rust-lang.org/> and update the types to make it compile:"
msgstr ""
#: src/exercises/day-1/book-library.md:21
msgid ""
"```rust,should_panic\n"
"struct Library {\n"
" books: Vec<Book>,\n"
"}\n"
"\n"
"struct Book {\n"
" title: String,\n"
" year: u16,\n"
"}\n"
"\n"
"impl Book {\n"
" // This is a constructor, used below.\n"
" fn new(title: &str, year: u16) -> Book {\n"
" Book {\n"
" title: String::from(title),\n"
" year,\n"
" }\n"
" }\n"
"}\n"
"\n"
"// Implement the methods below. Update the `self` parameter to\n"
"// indicate the method's required level of ownership over the object:\n"
"//\n"
"// - `&self` for shared read-only access,\n"
"// - `&mut self` for unique and mutable access,\n"
"// - `self` for unique access by value.\n"
"impl Library {\n"
" fn new() -> Library {\n"
" todo!(\"Initialize and return a `Library` value\")\n"
" }\n"
"\n"
" //fn len(self) -> usize {\n"
" // todo!(\"Return the length of `self.books`\")\n"
" //}\n"
"\n"
" //fn is_empty(self) -> bool {\n"
" // todo!(\"Return `true` if `self.books` is empty\")\n"
" //}\n"
"\n"
" //fn add_book(self, book: Book) {\n"
" // todo!(\"Add a new book to `self.books`\")\n"
" //}\n"
"\n"
" //fn print_books(self) {\n"
" // todo!(\"Iterate over `self.books` and each book's title and "
"year\")\n"
" //}\n"
"\n"
" //fn oldest_book(self) -> Option<&Book> {\n"
" // todo!(\"Return a reference to the oldest book (if any)\")\n"
" //}\n"
"}\n"
"\n"
"// This shows the desired behavior. Uncomment the code below and\n"
"// implement the missing methods. You will need to update the\n"
"// method signatures, including the \"self\" parameter! You may\n"
"// also need to update the variable bindings within main.\n"
"fn main() {\n"
" let library = Library::new();\n"
"\n"
" //println!(\"The library is empty: {}\", library.is_empty());\n"
" //\n"
" //library.add_book(Book::new(\"Lord of the Rings\", 1954));\n"
" //library.add_book(Book::new(\"Alice's Adventures in Wonderland\", "
"1865));\n"
" //\n"
" //println!(\"The library is no longer empty: {}\", library.is_empty());\n"
" //\n"
" //\n"
" //library.print_books();\n"
" //\n"
" //match library.oldest_book() {\n"
" // Some(book) => println!(\"The oldest book is {}\", book.title),\n"
" // None => println!(\"The library is empty!\"),\n"
" //}\n"
" //\n"
" //println!(\"The library has {} books\", library.len());\n"
" //library.print_books();\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-1/book-library.md:102
msgid "[Solution](solutions-afternoon.md#designing-a-library)"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:1
msgid "# Iterators and Ownership"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:3
msgid ""
"The ownership model of Rust affects many APIs. An example of this is the\n"
"[`Iterator`](https://doc.rust-lang.org/std/iter/trait.Iterator.html) and\n"
"[`IntoIterator`](https://doc.rust-lang.org/std/iter/trait.IntoIterator."
"html)\n"
"traits."
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:8
msgid "## `Iterator`"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:10
msgid ""
"Traits are like interfaces: they describe behavior (methods) for a type. "
"The\n"
"`Iterator` trait simply says that you can call `next` until you get `None` "
"back:"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:13
msgid ""
"```rust\n"
"pub trait Iterator {\n"
" type Item;\n"
" fn next(&mut self) -> Option<Self::Item>;\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:20
msgid "You use this trait like this:"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:22
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let v: Vec<i8> = vec![10, 20, 30];\n"
" let mut iter = v.iter();\n"
"\n"
" println!(\"v[0]: {:?}\", iter.next());\n"
" println!(\"v[1]: {:?}\", iter.next());\n"
" println!(\"v[2]: {:?}\", iter.next());\n"
" println!(\"No more items: {:?}\", iter.next());\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:34
msgid "What is the type returned by the iterator? Test your answer here:"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:36
msgid ""
"```rust,editable,compile_fail\n"
"fn main() {\n"
" let v: Vec<i8> = vec![10, 20, 30];\n"
" let mut iter = v.iter();\n"
"\n"
" let v0: Option<..> = iter.next();\n"
" println!(\"v0: {v0:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:46
msgid "Why is this type used?"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:48
msgid "## `IntoIterator`"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:50
msgid ""
"The `Iterator` trait tells you how to _iterate_ once you have created an\n"
"iterator. The related trait `IntoIterator` tells you how to create the "
"iterator:"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:53
msgid ""
"```rust\n"
"pub trait IntoIterator {\n"
" type Item;\n"
" type IntoIter: Iterator<Item = Self::Item>;\n"
"\n"
" fn into_iter(self) -> Self::IntoIter;\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:62
msgid ""
"The syntax here means that every implementation of `IntoIterator` must\n"
"declare two types:"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:65
msgid ""
"* `Item`: the type we iterate over, such as `i8`,\n"
"* `IntoIter`: the `Iterator` type returned by the `into_iter` method."
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:68
msgid ""
"Note that `IntoIter` and `Item` are linked: the iterator must have the same\n"
"`Item` type, which means that it returns `Option<Item>`"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:71
msgid "Like before, what is the type returned by the iterator?"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:73
msgid ""
"```rust,editable,compile_fail\n"
"fn main() {\n"
" let v: Vec<String> = vec![String::from(\"foo\"), String::"
"from(\"bar\")];\n"
" let mut iter = v.into_iter();\n"
"\n"
" let v0: Option<..> = iter.next();\n"
" println!(\"v0: {v0:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:83
msgid "## `for` Loops"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:85
msgid ""
"Now that we know both `Iterator` and `IntoIterator`, we can build `for` "
"loops.\n"
"They call `into_iter()` on an expression and iterates over the resulting\n"
"iterator:"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:89
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let v: Vec<String> = vec![String::from(\"foo\"), String::"
"from(\"bar\")];\n"
"\n"
" for word in &v {\n"
" println!(\"word: {word}\");\n"
" }\n"
"\n"
" for word in v {\n"
" println!(\"word: {word}\");\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:103
msgid "What is the type of `word` in each loop?"
msgstr ""
#: src/exercises/day-1/iterators-and-ownership.md:105
msgid ""
"Experiment with the code above and then consult the documentation for "
"[`impl\n"
"IntoIterator for\n"
"&Vec<T>`](https://doc.rust-lang.org/std/vec/struct.Vec.html#impl-"
"IntoIterator-for-%26%27a%20Vec%3CT%2C%20A%3E)\n"
"and [`impl IntoIterator for\n"
"Vec<T>`](https://doc.rust-lang.org/std/vec/struct.Vec.html#impl-IntoIterator-"
"for-Vec%3CT%2C%20A%3E)\n"
"to check your answers."
msgstr ""
#: src/welcome-day-2.md:1
msgid "# Welcome to Day 2"
msgstr "# 欢迎来到第二天"
#: src/welcome-day-2.md:3
msgid "Now that we have seen a fair amount of Rust, we will continue with:"
msgstr "现在我们已经了解了相当多的Rust,接下来我们将学习:"
#: src/welcome-day-2.md:5
msgid ""
"* Structs, enums, methods.\n"
"\n"
"* Pattern matching: destructuring enums, structs, and arrays.\n"
"\n"
"* Control flow constructs: `if`, `if let`, `while`, `while let`, `break`, "
"and\n"
" `continue`.\n"
"\n"
"* The Standard Library: `String`, `Option` and `Result`, `Vec`, `HashMap`, "
"`Rc`\n"
" and `Arc`.\n"
"\n"
"* Modules: visibility, paths, and filesystem hierarchy."
msgstr ""
"* 结构体(struct), 枚举(enum), 方法(method)。\n"
"\n"
"* 模式匹配: 解构枚举, 结构体和数组(array)。\n"
"\n"
"* 控制流的构造: `if`, `if let`, `while`, `while let`, `break`, "
"和\n"
" `continue`。\n"
"\n"
"* 标准库: `字符串(String)`, `选项(Option)` 和 `结果(Result)`, `动态数组(Vec)`, `散列表(HashMap)`, "
"`引用计数(Rc)`\n"
" 和 `共享引用计数(Arc)`。\n"
"\n"
"* 模块: 可见性, 路径和文件系统的层次结构。"
#: src/structs.md:1
msgid "# Structs"
msgstr "# 结构体"
#: src/structs.md:3
msgid "Like C and C++, Rust has support for custom structs:"
msgstr "与 C 和 C++ 一样,Rust 支持自定义结构体:"
#: src/structs.md:5
msgid ""
"```rust,editable\n"
"struct Person {\n"
" name: String,\n"
" age: u8,\n"
"}\n"
"\n"
"fn main() {\n"
" let mut peter = Person {\n"
" name: String::from(\"Peter\"),\n"
" age: 27,\n"
" };\n"
" println!(\"{} is {} years old\", peter.name, peter.age);\n"
" \n"
" peter.age = 28;\n"
" println!(\"{} is {} years old\", peter.name, peter.age);\n"
" \n"
" let jackie = Person {\n"
" name: String::from(\"Jackie\"),\n"
" ..peter\n"
" };\n"
" println!(\"{} is {} years old\", jackie.name, jackie.age);\n"
"}\n"
"```"
msgstr ""
#: src/structs.md:31 src/enums.md:33 src/enums/sizes.md:29 src/methods.md:30
#: src/methods/example.md:46 src/pattern-matching.md:25
#: src/pattern-matching/match-guards.md:22 src/control-flow/blocks.md:42
msgid "Key Points:"
msgstr "关键点:"
#: src/structs.md:33
msgid ""
"* Structs work like in C or C++.\n"
" * Like in C++, and unlike in C, no typedef is needed to define a type.\n"
" * Unlike in C++, there is no inheritance between structs.\n"
"* Methods are defined in an `impl` block, which we will see in following "
"slides.\n"
"* This may be a good time to let people know there are different types of "
"structs. \n"
" * Zero-sized structs `e.g., struct Foo;` might be used when implementing a "
"trait on some type but don’t have any data that you want to store in the "
"value itself. \n"
" * The next slide will introduce Tuple structs, used when the field names "
"are not important.\n"
"* The syntax `..peter` allows us to copy the majority of the fields from the "
"old struct without having to explicitly type it all out. It must always be "
"the last element."
msgstr ""
#: src/structs/tuple-structs.md:1
msgid "# Tuple Structs"
msgstr "# 元组结构体"
#: src/structs/tuple-structs.md:3
msgid "If the field names are unimportant, you can use a tuple struct:"
msgstr "如果字段名称不重要,您可以使用元组结构体:"
#: src/structs/tuple-structs.md:5
msgid ""
"```rust,editable\n"
"struct Point(i32, i32);\n"
"\n"
"fn main() {\n"
" let p = Point(17, 23);\n"
" println!(\"({}, {})\", p.0, p.1);\n"
"}\n"
"```"
msgstr ""
#: src/structs/tuple-structs.md:14
msgid "This is often used for single-field wrappers (called newtypes):"
msgstr "这通常用于单字段封装容器(称为 newtype):"
#: src/structs/tuple-structs.md:16
msgid ""
"```rust,editable,compile_fail\n"
"struct PoundsOfForce(f64);\n"
"struct Newtons(f64);\n"
"\n"
"fn compute_thruster_force() -> PoundsOfForce {\n"
" todo!(\"Ask a rocket scientist at NASA\")\n"
"}\n"
"\n"
"fn set_thruster_force(force: Newtons) {\n"
" // ...\n"
"}\n"
"\n"
"fn main() {\n"
" let force = compute_thruster_force();\n"
" set_thruster_force(force);\n"
"}\n"
"\n"
"```"
msgstr ""
#: src/structs/tuple-structs.md:37
msgid ""
"* Newtypes are a great way to encode additional information about the value "
"in a primitive type, for example:\n"
" * The number is measured in some units: `Newtons` in the example above.\n"
" * The value passed some validation when it was created, so you no longer "
"have to validate it again at every use: 'PhoneNumber(String)` or "
"`OddNumber(u32)`.\n"
"* Demonstrate how to add a `f64` value to a `Newtons` type by accessing the "
"single field in the newtype.\n"
" * Rust generally doesn’t like inexplicit things, like automatic "
"unwrapping or for instance using booleans as integers.\n"
" * Operator overloading is discussed on Day 3 (generics). "
msgstr ""
#: src/structs/field-shorthand.md:1
msgid "# Field Shorthand Syntax"
msgstr "# 字段简写语法"
#: src/structs/field-shorthand.md:3
msgid ""
"If you already have variables with the right names, then you can create the\n"
"struct using a shorthand:"
msgstr "如果您已有名称正确的变量,则可以使用简写形式创建结构体:"
#: src/structs/field-shorthand.md:6
msgid ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"struct Person {\n"
" name: String,\n"
" age: u8,\n"
"}\n"
"\n"
"impl Person {\n"
" fn new(name: String, age: u8) -> Person {\n"
" Person { name, age }\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let peter = Person::new(String::from(\"Peter\"), 27);\n"
" println!(\"{peter:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/structs/field-shorthand.md:27
msgid ""
"* The `new` function could be written using `Self` as a type, as it is "
"interchangeable with the struct type name\n"
"\n"
" ```rust,editable\n"
" #[derive(Debug)]\n"
" struct Person {\n"
" name: String,\n"
" age: u8,\n"
" }\n"
" impl Person {\n"
" fn new(name: String, age: u8) -> Self {\n"
" Self { name, age }\n"
" }\n"
" }\n"
" ``` \n"
"* Implement the `Default` trait for the struct. Define some fields and use "
"the default values for the other fields.\n"
"\n"
" ```rust,editable\n"
" #[derive(Debug)]\n"
" struct Person {\n"
" name: String,\n"
" age: u8,\n"
" }\n"
" impl Default for Person {\n"
" fn default() -> Person {\n"
" Person {\n"
" name: \"Bot\".to_string(),\n"
" age: 0,\n"
" }\n"
" }\n"
" }\n"
" fn create_default() {\n"
" let tmp = Person {\n"
" ..Default::default()\n"
" };\n"
" let tmp = Person {\n"
" name: \"Sam\".to_string(),\n"
" ..Default::default()\n"
" };\n"
" }\n"
" ```\n"
"\n"
"* Methods are defined in the `impl` block.\n"
"* Use struct update syntax to define a new structure using `peter`. Note "
"that the variable `peter` will no longer be accessible afterwards.\n"
"* Use `{:#?}` when printing structs to request the `Debug` representation."
msgstr ""
#: src/enums.md:1
msgid "# Enums"
msgstr "# 枚举"
#: src/enums.md:3
msgid ""
"The `enum` keyword allows the creation of a type which has a few\n"
"different variants:"
msgstr ""
"`enum` 关键字允许创建具有几个\n"
"不同变体的类型:"
#: src/enums.md:6
msgid ""
"```rust,editable\n"
"fn generate_random_number() -> i32 {\n"
" 4 // Chosen by fair dice roll. Guaranteed to be random.\n"
"}\n"
"\n"
"#[derive(Debug)]\n"
"enum CoinFlip {\n"
" Heads,\n"
" Tails,\n"
"}\n"
"\n"
"fn flip_coin() -> CoinFlip {\n"
" let random_number = generate_random_number();\n"
" if random_number % 2 == 0 {\n"
" return CoinFlip::Heads;\n"
" } else {\n"
" return CoinFlip::Tails;\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" println!(\"You got: {:?}\", flip_coin());\n"
"}\n"
"```"
msgstr ""
#: src/enums.md:36
msgid ""
"* Enumerations allow you to collect a set of values under one type\n"
"* This page offers an enum type `CoinFlip` with two variants `Heads` and "
"`Tail`. You might note the namespace when using variants.\n"
"* This might be a good time to compare Structs and Enums:\n"
" * In both, you can have a simple version without fields (unit struct) or "
"one with different types of fields (variant payloads). \n"
" * In both, associated functions are defined within an `impl` block.\n"
" * You could even implement the different variants of an enum with separate "
"structs but then they wouldn’t be the same type as they would if they were "
"all defined in an enum. "
msgstr ""
"* 枚举允许你从一种类型下收集一组值\n"
"* 本页提供了一个枚举类型 `CoinFlip`,其中包含 `Heads` 和`Tail`两个变体。在使"
"用变体时,你可能会注意到命名空间。\n"
"* 这可能是比较结构体和枚举的好时机:\n"
" * 在这两者中,你可以获得一个不含字段的简单版本(单位结构体),或一个包含不"
"同类型字段的版本(变体载荷)。\n"
" * 在这两者中,关联的函数都在 `impl` 块中定义。\n"
" * 你甚至可以使用单独的结构体实现枚举的不同变体,但这样一来,如果它们都已在"
"枚举中定义,类型与之前也不一样。"
#: src/enums/variant-payloads.md:1
msgid "# Variant Payloads"
msgstr "# 变体载荷"
#: src/enums/variant-payloads.md:3
msgid ""
"You can define richer enums where the variants carry data. You can then use "
"the\n"
"`match` statement to extract the data from each variant:"
msgstr ""
"你可以定义更丰富的枚举,其中变体会携带数据。然后,你可以使用\n"
"`match` 语句从每个变体中提取数据:"
#: src/enums/variant-payloads.md:6
msgid ""
"```rust,editable\n"
"enum WebEvent {\n"
" PageLoad, // Variant without payload\n"
" KeyPress(char), // Tuple struct variant\n"
" Click { x: i64, y: i64 }, // Full struct variant\n"
"}\n"
"\n"
"#[rustfmt::skip]\n"
"fn inspect(event: WebEvent) {\n"
" match event {\n"
" WebEvent::PageLoad => println!(\"page loaded\"),\n"
" WebEvent::KeyPress(c) => println!(\"pressed '{c}'\"),\n"
" WebEvent::Click { x, y } => println!(\"clicked at x={x}, y={y}\"),\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let load = WebEvent::PageLoad;\n"
" let press = WebEvent::KeyPress('x');\n"
" let click = WebEvent::Click { x: 20, y: 80 };\n"
"\n"
" inspect(load);\n"
" inspect(press);\n"
" inspect(click);\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"enum WebEvent {\n"
" PageLoad, // Variant without payload\n"
" KeyPress(char), // Tuple struct variant\n"
" Click { x: i64, y: i64 }, // Full struct variant\n"
"}\n"
"\n"
"#[rustfmt::skip]\n"
"fn inspect(event: WebEvent) {\n"
" match event {\n"
" WebEvent::PageLoad => println!(\"page loaded\"),\n"
" WebEvent::KeyPress(c) => println!(\"pressed '{c}'\"),\n"
" WebEvent::Click { x, y } => println!(\"clicked at x={x}, y={y}\"),\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let load = WebEvent::PageLoad;\n"
" let press = WebEvent::KeyPress('x');\n"
" let click = WebEvent::Click { x: 20, y: 80 };\n"
"\n"
" inspect(load);\n"
" inspect(press);\n"
" inspect(click);\n"
"}\n"
"```"
#: src/enums/variant-payloads.md:35
msgid ""
"* The values in the enum variants can only be accessed after being pattern "
"matched. The pattern binds references to the fields in the \"match arm\" "
"after the `=>`.\n"
" * The expression is matched against the patterns from top to bottom. There "
"is no fall-through like in C or C++.\n"
" * The match expression has a value. The value is the last expression in "
"the match arm which was executed.\n"
" * Starting from the top we look for what pattern matches the value then "
"run the code following the arrow. Once we find a match, we stop. \n"
"* Demonstrate what happens when the search is inexhaustive. Note the "
"advantage the Rust compiler provides by confirming when all cases are "
"handled. \n"
"* `match` inspects a hidden discriminant field in the `enum`.\n"
"* It is possible to retrieve the discriminant by calling `std::mem::"
"discriminant()`\n"
" * This is useful, for example, if implementing `PartialEq` for structs "
"where comparing field values doesn't affect equality.\n"
"* `WebEvent::Click { ... }` is not exactly the same as `WebEvent::"
"Click(Click)` with a top level `struct Click { ... }`. The inlined version "
"cannot implement traits, for example. \n"
" "
msgstr ""
"* 枚举变体中的值只有在被模式匹配后,才可访问。模式将引用绑定到 `=>` 之后"
"的“match 分支”中的字段。\n"
" * 表达式会从上到下与模式匹配。没有像 C 或 C++ 中那样的跳转。\n"
" * 匹配表达式拥有一个值。值是 match 分支中被执行的最后一个表达式。\n"
" * 从顶部开始,查找与该值匹配的模式,然后沿箭头运行代码。一旦找到匹配,我们"
"便会停止。\n"
"* 展示搜索不详尽时会发生的情况。请注意 Rust 编译器的优势,即确认所有情况何时"
"都得到了处理。\n"
"* `match` 会检查 `enum` 中的隐藏的判别字段。\n"
"* 可以通过调用 `std::mem::discriminant()` 来检索判别\n"
" * 这很有用,例如如果为结构体实现 `PartialEq`,比较字段值不会影响等式。\n"
"* `WebEvent::Click { ... }` 与含顶层 `struct Click { ... }` 的 `WebEvent::"
"Click(Click)` 不完全相同。例如,内嵌版本无法实现 trait。\n"
" "
#: src/enums/sizes.md:1
msgid "# Enum Sizes"
msgstr "# 枚举大小"
#: src/enums/sizes.md:3
msgid ""
"Rust enums are packed tightly, taking constraints due to alignment into "
"account:"
msgstr "Rust 枚举被紧密地打包,考虑到了对齐的影响,因此存在一些限制:"
#: src/enums/sizes.md:5
msgid ""
"```rust,editable\n"
"use std::mem::{align_of, size_of};\n"
"\n"
"macro_rules! dbg_size {\n"
" ($t:ty) => {\n"
" println!(\"{}: size {} bytes, align: {} bytes\",\n"
" stringify!($t), size_of::<$t>(), align_of::<$t>());\n"
" };\n"
"}\n"
"\n"
"enum Foo {\n"
" A,\n"
" B,\n"
"}\n"
"\n"
"fn main() {\n"
" dbg_size!(Foo);\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"use std::mem::{align_of, size_of};\n"
"\n"
"macro_rules! dbg_size {\n"
" ($t:ty) => {\n"
" println!(\"{}: size {} bytes, align: {} bytes\",\n"
" stringify!($t), size_of::<$t>(), align_of::<$t>());\n"
" };\n"
"}\n"
"\n"
"enum Foo {\n"
" A,\n"
" B,\n"
"}\n"
"\n"
"fn main() {\n"
" dbg_size!(Foo);\n"
"}\n"
"```"
#: src/enums/sizes.md:25
msgid ""
"* See the [Rust Reference](https://doc.rust-lang.org/reference/type-layout."
"html)."
msgstr ""
"* 请参阅 [Rust 引用](https://doc.rust-lang.org/reference/type-layout.html)。"
#: src/enums/sizes.md:31
msgid ""
" * Internally Rust is using a field (discriminant) to keep track of the enum "
"variant.\n"
"\n"
" * You can control the discriminant if needed (e.g., for compatibility with "
"C):\n"
" \n"
" ```rust,editable\n"
" #[repr(u32)]\n"
" enum Bar {\n"
" A, // 0\n"
" B = 10000,\n"
" C, // 10001\n"
" }\n"
" \n"
" fn main() {\n"
" println!(\"A: {}\", Bar::A as u32);\n"
" println!(\"B: {}\", Bar::B as u32);\n"
" println!(\"C: {}\", Bar::C as u32);\n"
" }\n"
" ```\n"
"\n"
" Without `repr`, the discriminant type takes 2 bytes, because 10001 fits "
"2\n"
" bytes.\n"
"\n"
"\n"
" * Try out other types such as\n"
" \n"
" * `dbg_size!(bool)`: size 1 bytes, align: 1 bytes,\n"
" * `dbg_size!(Option<bool>)`: size 1 bytes, align: 1 bytes (niche "
"optimization, see below),\n"
" * `dbg_size!(&i32)`: size 8 bytes, align: 8 bytes (on a 64-bit "
"machine),\n"
" * `dbg_size!(Option<&i32>)`: size 8 bytes, align: 8 bytes (null pointer "
"optimization, see below).\n"
"\n"
" * Niche optimization: Rust will merge use unused bit patterns for the enum\n"
" discriminant.\n"
"\n"
" * Null pointer optimization: For [some\n"
" types](https://doc.rust-lang.org/std/option/#representation), Rust "
"guarantees\n"
" that `size_of::<T>()` equals `size_of::<Option<T>>()`.\n"
"\n"
" Example code if you want to show how the bitwise representation *may* "
"look like in practice.\n"
" It's important to note that the compiler provides no guarantees "
"regarding this representation, therefore this is totally unsafe.\n"
"\n"
" ```rust,editable\n"
" use std::mem::transmute;\n"
"\n"
" macro_rules! dbg_bits {\n"
" ($e:expr, $bit_type:ty) => {\n"
" println!(\"- {}: {:#x}\", stringify!($e), transmute::<_, "
"$bit_type>($e));\n"
" };\n"
" }\n"
"\n"
" fn main() {\n"
" // TOTALLY UNSAFE. Rust provides no guarantees about the bitwise\n"
" // representation of types.\n"
" unsafe {\n"
" println!(\"Bitwise representation of bool\");\n"
" dbg_bits!(false, u8);\n"
" dbg_bits!(true, u8);\n"
"\n"
" println!(\"Bitwise representation of Option<bool>\");\n"
" dbg_bits!(None::<bool>, u8);\n"
" dbg_bits!(Some(false), u8);\n"
" dbg_bits!(Some(true), u8);\n"
"\n"
" println!(\"Bitwise representation of Option<Option<bool>>\");\n"
" dbg_bits!(Some(Some(false)), u8);\n"
" dbg_bits!(Some(Some(true)), u8);\n"
" dbg_bits!(Some(None::<bool>), u8);\n"
" dbg_bits!(None::<Option<bool>>, u8);\n"
"\n"
" println!(\"Bitwise representation of Option<&i32>\");\n"
" dbg_bits!(None::<&i32>, usize);\n"
" dbg_bits!(Some(&0i32), usize);\n"
" }\n"
" }\n"
" ```\n"
"\n"
" More complex example if you want to discuss what happens when we chain "
"more than 256 `Option`s together.\n"
"\n"
" ```rust,editable\n"
" #![recursion_limit = \"1000\"]\n"
"\n"
" use std::mem::transmute;\n"
" \n"
" macro_rules! dbg_bits {\n"
" ($e:expr, $bit_type:ty) => {\n"
" println!(\"- {}: {:#x}\", stringify!($e), transmute::<_, "
"$bit_type>($e));\n"
" };\n"
" }\n"
"\n"
" // Macro to wrap a value in 2^n Some() where n is the number of \"@\" "
"signs.\n"
" // Increasing the recursion limit is required to evaluate this macro.\n"
" macro_rules! many_options {\n"
" ($value:expr) => { Some($value) };\n"
" ($value:expr, @) => {\n"
" Some(Some($value))\n"
" };\n"
" ($value:expr, @ $($more:tt)+) => {\n"
" many_options!(many_options!($value, $($more)+), $($more)+)\n"
" };\n"
" }\n"
"\n"
" fn main() {\n"
" // TOTALLY UNSAFE. Rust provides no guarantees about the bitwise\n"
" // representation of types.\n"
" unsafe {\n"
" assert_eq!(many_options!(false), Some(false));\n"
" assert_eq!(many_options!(false, @), Some(Some(false)));\n"
" assert_eq!(many_options!(false, @@), "
"Some(Some(Some(Some(false)))));\n"
"\n"
" println!(\"Bitwise representation of a chain of 128 Option's."
"\");\n"
" dbg_bits!(many_options!(false, @@@@@@@), u8);\n"
" dbg_bits!(many_options!(true, @@@@@@@), u8);\n"
"\n"
" println!(\"Bitwise representation of a chain of 256 Option's."
"\");\n"
" dbg_bits!(many_options!(false, @@@@@@@@), u16);\n"
" dbg_bits!(many_options!(true, @@@@@@@@), u16);\n"
"\n"
" println!(\"Bitwise representation of a chain of 257 Option's."
"\");\n"
" dbg_bits!(many_options!(Some(false), @@@@@@@@), u16);\n"
" dbg_bits!(many_options!(Some(true), @@@@@@@@), u16);\n"
" dbg_bits!(many_options!(None::<bool>, @@@@@@@@), u16);\n"
" }\n"
" }\n"
" ```"
msgstr ""
" * 在内部,Rust 使用字段(判别)来跟踪枚举变体。\n"
"\n"
" * 你可以根据需要控制判别(例如,与 C 的兼容性):\n"
" \n"
" ```rust,editable\n"
" #[repr(u32)]\n"
" enum Bar {\n"
" A, // 0\n"
" B = 10000,\n"
" C, // 10001\n"
" }\n"
" \n"
" fn main() {\n"
" println!(\"A: {}\", Bar::A as u32);\n"
" println!(\"B: {}\", Bar::B as u32);\n"
" println!(\"C: {}\", Bar::C as u32);\n"
" }\n"
" ```\n"
"\n"
" 如果不使用 `repr`,判别类型会占用 2 个字节,因为 10001 是一个 2\n"
"个字节的数值。\n"
"\n"
"\n"
" * 试试其他类型,例如:\n"
" \n"
" * `dbg_size!(bool)`:大小占用 1 个字节,对齐占用 1 个字节;\n"
" * `dbg_size!(Option<bool>)`:大小占用 1 个字节,对齐占用 1 个字节(小众"
"优化,请参阅下文);\n"
" * `dbg_size!(&i32)`:大小占用 8 个字节,对齐占用 8 个字节(在 64 位设备"
"上);\n"
" * `dbg_size!(Option<&i32>)`:大小占用 8 个字节,对齐占用 8 个字节(Null "
"指针优化,请参阅下文)。\n"
"\n"
" * 小众优化:Rust 将对枚举判别合并使用\n"
"未使用的位模式。\n"
"\n"
" * Null 指针优化:对于[某些\n"
"类型](https://doc.rust-lang.org/std/option/#representation),Rust 保证\n"
"`size_of::<T>()` 等效于 `size_of::<Option<T>>()`。\n"
"\n"
" 如果你想展示位表示方式在实践中“可能”会是什么样子,请参考示例代码。\n"
" 请务必注意,编译器对此表示法不提供任何保证,因此这是完全不安全的。\n"
"\n"
" ```rust,editable\n"
" use std::mem::transmute;\n"
"\n"
" macro_rules! dbg_bits {\n"
" ($e:expr, $bit_type:ty) => {\n"
" println!(\"- {}: {:#x}\", stringify!($e), transmute::<_, "
"$bit_type>($e));\n"
" };\n"
" }\n"
"\n"
" fn main() {\n"
" // TOTALLY UNSAFE. Rust provides no guarantees about the bitwise\n"
" // representation of types.\n"
" unsafe {\n"
" println!(\"Bitwise representation of bool\");\n"
" dbg_bits!(false, u8);\n"
" dbg_bits!(true, u8);\n"
"\n"
" println!(\"Bitwise representation of Option<bool>\");\n"
" dbg_bits!(None::<bool>, u8);\n"
" dbg_bits!(Some(false), u8);\n"
" dbg_bits!(Some(true), u8);\n"
"\n"
" println!(\"Bitwise representation of Option<Option<bool>>\");\n"
" dbg_bits!(Some(Some(false)), u8);\n"
" dbg_bits!(Some(Some(true)), u8);\n"
" dbg_bits!(Some(None::<bool>), u8);\n"
" dbg_bits!(None::<Option<bool>>, u8);\n"
"\n"
" println!(\"Bitwise representation of Option<&i32>\");\n"
" dbg_bits!(None::<&i32>, usize);\n"
" dbg_bits!(Some(&0i32), usize);\n"
" }\n"
" }\n"
" ```\n"
"\n"
" 如果你想讨论当我们把 256 个以上的 `Option` 串联在一起时会发生什么,可以"
"用更复杂的示例。\n"
"\n"
" ```rust,editable\n"
" #![recursion_limit = \"1000\"]\n"
"\n"
" use std::mem::transmute;\n"
" \n"
" macro_rules! dbg_bits {\n"
" ($e:expr, $bit_type:ty) => {\n"
" println!(\"- {}: {:#x}\", stringify!($e), transmute::<_, "
"$bit_type>($e));\n"
" };\n"
" }\n"
"\n"
" // 用于封装 2^n Some() 中的值的宏,其中 n 的 \"@\" 符号的个数。\n"
" // 增加递归限制需要评估这个宏。\n"
" macro_rules! many_options {\n"
" ($value:expr) => { Some($value) };\n"
" ($value:expr, @) => {\n"
" Some(Some($value))\n"
" };\n"
" ($value:expr, @ $($more:tt)+) => {\n"
" many_options!(many_options!($value, $($more)+), $($more)+)\n"
" };\n"
" }\n"
"\n"
" fn main() {\n"
" // TOTALLY UNSAFE. Rust provides no guarantees about the bitwise\n"
" // representation of types.\n"
" unsafe {\n"
" assert_eq!(many_options!(false), Some(false));\n"
" assert_eq!(many_options!(false, @), Some(Some(false)));\n"
" assert_eq!(many_options!(false, @@), "
"Some(Some(Some(Some(false)))));\n"
"\n"
" println!(\"Bitwise representation of a chain of 128 Option's."
"\");\n"
" dbg_bits!(many_options!(false, @@@@@@@), u8);\n"
" dbg_bits!(many_options!(true, @@@@@@@), u8);\n"
"\n"
" println!(\"Bitwise representation of a chain of 256 Option's."
"\");\n"
" dbg_bits!(many_options!(false, @@@@@@@@), u16);\n"
" dbg_bits!(many_options!(true, @@@@@@@@), u16);\n"
"\n"
" println!(\"Bitwise representation of a chain of 257 Option's."
"\");\n"
" dbg_bits!(many_options!(Some(false), @@@@@@@@), u16);\n"
" dbg_bits!(many_options!(Some(true), @@@@@@@@), u16);\n"
" dbg_bits!(many_options!(None::<bool>, @@@@@@@@), u16);\n"
" }\n"
" }\n"
" ```"
#: src/methods.md:3
msgid ""
"Rust allows you to associate functions with your new types. You do this with "
"an\n"
"`impl` block:"
msgstr ""
#: src/methods.md:6
msgid ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"struct Person {\n"
" name: String,\n"
" age: u8,\n"
"}\n"
"\n"
"impl Person {\n"
" fn say_hello(&self) {\n"
" println!(\"Hello, my name is {}\", self.name);\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let peter = Person {\n"
" name: String::from(\"Peter\"),\n"
" age: 27,\n"
" };\n"
" peter.say_hello();\n"
"}\n"
"```"
msgstr ""
#: src/methods.md:31
msgid ""
"* It can be helpful to introduce methods by comparing them to functions.\n"
" * Methods are called on an instance of a type (such as a struct or enum), "
"the first parameter represents the instance as `self`.\n"
" * Developers may choose to use methods to take advantage of method "
"receiver syntax and to help keep them more organized. By using methods we "
"can keep all the implementation code in one predictable place.\n"
"* Point out the use of the keyword `self`, a method receiver. \n"
" * Show that it is an abbreviated term for `self:&Self` and perhaps show "
"how the struct name could also be used. \n"
" * Explain that `Self` is a type alias for the type the `impl` block is in "
"and can be used elsewhere in the block.\n"
" * Note how `self` is used like other structs and dot notation can be used "
"to refer to individual fields.\n"
" * This might be a good time to demonstrate how the `&self` differs from "
"`self` by modifying the code and trying to run say_hello twice. \n"
"* We describe the distinction between method receivers next.\n"
" "
msgstr ""
#: src/methods/receiver.md:1
msgid "# Method Receiver"
msgstr ""
#: src/methods/receiver.md:3
msgid ""
"The `&self` above indicates that the method borrows the object immutably. "
"There\n"
"are other possible receivers for a method:"
msgstr ""
#: src/methods/receiver.md:6
msgid ""
"* `&self`: borrows the object from the caller using a shared and immutable\n"
" reference. The object can be used again afterwards.\n"
"* `&mut self`: borrows the object from the caller using a unique and "
"mutable\n"
" reference. The object can be used again afterwards.\n"
"* `self`: takes ownership of the object and moves it away from the caller. "
"The\n"
" method becomes the owner of the object. The object will be dropped "
"(deallocated)\n"
" when the method returns, unless its ownership is explicitly\n"
" transmitted. Complete ownership does not automatically mean mutability.\n"
"* `mut self`: same as above, but the method can mutate the object. \n"
"* No receiver: this becomes a static method on the struct. Typically used "
"to\n"
" create constructors which are called `new` by convention."
msgstr ""
#: src/methods/receiver.md:18
msgid ""
"Beyond variants on `self`, there are also\n"
"[special wrapper types](https://doc.rust-lang.org/reference/special-types-"
"and-traits.html)\n"
"allowed to be receiver types, such as `Box<Self>`."
msgstr ""
#: src/methods/receiver.md:24
msgid ""
"Consider emphasizing \"shared and immutable\" and \"unique and mutable\". "
"These constraints always come\n"
"together in Rust due to borrow checker rules, and `self` is no exception. It "
"isn't possible to\n"
"reference a struct from multiple locations and call a mutating (`&mut self`) "
"method on it."
msgstr ""
#: src/methods/example.md:1 src/concurrency/shared_state/example.md:1
msgid "# Example"
msgstr "# 示例"
#: src/methods/example.md:3
msgid ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"struct Race {\n"
" name: String,\n"
" laps: Vec<i32>,\n"
"}\n"
"\n"
"impl Race {\n"
" fn new(name: &str) -> Race { // No receiver, a static method\n"
" Race { name: String::from(name), laps: Vec::new() }\n"
" }\n"
"\n"
" fn add_lap(&mut self, lap: i32) { // Exclusive borrowed read-write "
"access to self\n"
" self.laps.push(lap);\n"
" }\n"
"\n"
" fn print_laps(&self) { // Shared and read-only borrowed access to self\n"
" println!(\"Recorded {} laps for {}:\", self.laps.len(), self.name);\n"
" for (idx, lap) in self.laps.iter().enumerate() {\n"
" println!(\"Lap {idx}: {lap} sec\");\n"
" }\n"
" }\n"
"\n"
" fn finish(self) { // Exclusive ownership of self\n"
" let total = self.laps.iter().sum::<i32>();\n"
" println!(\"Race {} is finished, total lap time: {}\", self.name, "
"total);\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let mut race = Race::new(\"Monaco Grand Prix\");\n"
" race.add_lap(70);\n"
" race.add_lap(68);\n"
" race.print_laps();\n"
" race.add_lap(71);\n"
" race.print_laps();\n"
" race.finish();\n"
" // race.add_lap(42);\n"
"}\n"
"```"
msgstr ""
#: src/methods/example.md:47
msgid ""
"* All four methods here use a different method receiver.\n"
" * You can point out how that changes what the function can do with the "
"variable values and if/how it can be used again in `main`.\n"
" * You can showcase the error that appears when trying to call `finish` "
"twice.\n"
"* Note that although the method receivers are different, the non-static "
"functions are called the same way in the main body. Rust enables automatic "
"referencing and dereferencing when calling methods. Rust automatically adds "
"in the `&`, `*`, `muts` so that that object matches the method signature.\n"
"* You might point out that `print_laps` is using a vector that is iterated "
"over. We describe vectors in more detail in the afternoon. "
msgstr ""
#: src/pattern-matching.md:1
msgid "# Pattern Matching"
msgstr "# 模式匹配"
#: src/pattern-matching.md:3
msgid ""
"The `match` keyword let you match a value against one or more _patterns_. "
"The\n"
"comparisons are done from top to bottom and the first match wins."
msgstr "使用关键词 `match` 对一个值进行模式匹配。进行匹配时,会从上至下依次进行比较,并选定第一个匹配成功的结果。"
#: src/pattern-matching.md:6
msgid "The patterns can be simple values, similarly to `switch` in C and C++:"
msgstr "模式 (pattern) 可以是简单的值,其用法类似于 C 与 C++ 中的 `switch` 。"
#: src/pattern-matching.md:8
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let input = 'x';\n"
"\n"
" match input {\n"
" 'q' => println!(\"Quitting\"),\n"
" 'a' | 's' | 'w' | 'd' => println!(\"Moving around\"),\n"
" '0'..='9' => println!(\"Number input\"),\n"
" _ => println!(\"Something else\"),\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/pattern-matching.md:21
msgid "The `_` pattern is a wildcard pattern which matches any value."
msgstr "模式 `_` 是外卡 (wildcard) 模式。它可以匹配任何值。"
#: src/pattern-matching.md:26
msgid ""
"* You might point out how some specific characters are being used when in a "
"pattern\n"
" * `|` as an `or`\n"
" * `..` can expand as much as it needs to be\n"
" * `1..=5` represents an inclusive range\n"
" * `_` is a wild card\n"
"* It can be useful to show how binding works, by for instance replacing a "
"wildcard character with a variable, or removing the quotes around `q`.\n"
"* You can demonstrate matching on a reference.\n"
"* This might be a good time to bring up the concept of irrefutable patterns, "
"as the term can show up in error messages.\n"
" "
msgstr ""
"* 你可以解释一些用于表达模式的特殊字符的用法\n"
" *`|` 表示或 (or)\n"
" *`..` 可以展开为任意一个或多个值\n"
" *`1..=5` 代表了一个闭区间范围\n"
"* 解释模式匹配中的绑定的原理可能会很有帮助。比如可以用一个变量替代外卡,或者去除 `q` 外面的引号。\n"
"* 你可以展示如何匹配一个引用。\n"
"* 现在是一个讲解不可反驳 (irrefutable) 模式的好时机。因为这个术语可能会出现在错误信息中。"
#: src/pattern-matching/destructuring-enums.md:1
msgid "# Destructuring Enums"
msgstr ""
#: src/pattern-matching/destructuring-enums.md:3
msgid ""
"Patterns can also be used to bind variables to parts of your values. This is "
"how\n"
"you inspect the structure of your types. Let us start with a simple `enum` "
"type:"
msgstr ""
#: src/pattern-matching/destructuring-enums.md:6
msgid ""
"```rust,editable\n"
"enum Result {\n"
" Ok(i32),\n"
" Err(String),\n"
"}\n"
"\n"
"fn divide_in_two(n: i32) -> Result {\n"
" if n % 2 == 0 {\n"
" Result::Ok(n / 2)\n"
" } else {\n"
" Result::Err(format!(\"cannot divide {n} into two equal parts\"))\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let n = 100;\n"
" match divide_in_two(n) {\n"
" Result::Ok(half) => println!(\"{n} divided in two is {half}\"),\n"
" Result::Err(msg) => println!(\"sorry, an error happened: {msg}\"),\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/pattern-matching/destructuring-enums.md:29
msgid ""
"Here we have used the arms to _destructure_ the `Result` value. In the "
"first\n"
"arm, `half` is bound to the value inside the `Ok` variant. In the second "
"arm,\n"
"`msg` is bound to the error message."
msgstr ""
#: src/pattern-matching/destructuring-enums.md:36
msgid ""
"* The `if`/`else` expression is returning an enum that is later unpacked "
"with a `match`.\n"
"* You can try adding a third variant to the enum definition and displaying "
"the errors when running the code. Point out the places where your code is "
"now inexhaustive and how the compiler tries to give you hints."
msgstr ""
#: src/pattern-matching/destructuring-structs.md:1
msgid "# Destructuring Structs"
msgstr ""
#: src/pattern-matching/destructuring-structs.md:3
msgid "You can also destructure `structs`:"
msgstr ""
#: src/pattern-matching/destructuring-structs.md:5
msgid ""
"```rust,editable\n"
"struct Foo {\n"
" x: (u32, u32),\n"
" y: u32,\n"
"}\n"
"\n"
"#[rustfmt::skip]\n"
"fn main() {\n"
" let foo = Foo { x: (1, 2), y: 3 };\n"
" match foo {\n"
" Foo { x: (1, b), y } => println!(\"x.0 = 1, b = {b}, y = {y}\"),\n"
" Foo { y: 2, x: i } => println!(\"y = 2, x = {i:?}\"),\n"
" Foo { y, .. } => println!(\"y = {y}, other fields were "
"ignored\"),\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/pattern-matching/destructuring-structs.md:23
msgid ""
"* Change the literal values in `foo` to match with the other patterns.\n"
"* Add a new field to `Foo` and make changes to the pattern as needed.\n"
"* The distinction between a capture and a constant expression can be hard "
"to\n"
" spot. Try changing the `2` in the second arm to a variable, and see that "
"it subtly\n"
" doesn't work. Change it to a `const` and see it working again."
msgstr ""
#: src/pattern-matching/destructuring-arrays.md:1
msgid "# Destructuring Arrays"
msgstr "# 解构数组"
#: src/pattern-matching/destructuring-arrays.md:3
msgid ""
"You can destructure arrays, tuples, and slices by matching on their elements:"
msgstr ""
"你可以通过元素匹配来解构数组、元组和切片:"
#: src/pattern-matching/destructuring-arrays.md:5
msgid ""
"```rust,editable\n"
"#[rustfmt::skip]\n"
"fn main() {\n"
" let triple = [0, -2, 3];\n"
" println!(\"Tell me about {triple:?}\");\n"
" match triple {\n"
" [0, y, z] => println!(\"First is 0, y = {y}, and z = {z}\"),\n"
" [1, ..] => println!(\"First is 1 and the rest were ignored\"),\n"
" _ => println!(\"All elements were ignored\"),\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/pattern-matching/destructuring-arrays.md:21
msgid ""
"* Destructuring of slices of unknown length also works with patterns of "
"fixed length.\n"
"\n"
"\n"
" ```rust,editable\n"
" fn main() {\n"
" inspect(&[0, -2, 3]);\n"
" inspect(&[0, -2, 3, 4]);\n"
" }\n"
"\n"
" #[rustfmt::skip]\n"
" fn inspect(slice: &[i32]) {\n"
" println!(\"Tell me about {slice:?}\");\n"
" match slice {\n"
" &[0, y, z] => println!(\"First is 0, y = {y}, and z = {z}\"),\n"
" &[1, ..] => println!(\"First is 1 and the rest were "
"ignored\"),\n"
" _ => println!(\"All elements were ignored\"),\n"
" }\n"
" }\n"
" ```\n"
" \n"
"* Create a new pattern using `_` to represent an element. \n"
"* Add more values to the array.\n"
"* Point out that how `..` will expand to account for different number of "
"elements.\n"
"* Show matching against the tail with patterns `[.., b]` and `[a@..,b]`"
msgstr ""
"* 对未知长度的切片进行解构也可以使用固定长度的模式。\n"
"\n"
"\n"
" ```rust,editable\n"
" fn main() {\n"
" inspect(&[0, -2, 3]);\n"
" inspect(&[0, -2, 3, 4]);\n"
" }\n"
"\n"
" #[rustfmt::skip]\n"
" fn inspect(slice: &[i32]) {\n"
" println!(\"Tell me about {slice:?}\");\n"
" match slice {\n"
" &[0, y, z] => println!(\"First is 0, y = {y}, and z = {z}\"),\n"
" &[1, ..] => println!(\"First is 1 and the rest were "
"ignored\"),\n"
" _ => println!(\"All elements were ignored\"),\n"
" }\n"
" }\n"
" ```\n"
" \n"
"* 使用 `_` 创建一个新的模式来代表一个元素。\n"
"* 向数组中添加更多的值。\n"
"* 指出 `..` 是如何扩展以适应不同数量的元素的。 \n"
"* 展示使用模式 `[.., b]` 和 `[a@..,b]` 来匹配切片的尾部。"
#: src/pattern-matching/match-guards.md:1
msgid "# Match Guards"
msgstr ""
#: src/pattern-matching/match-guards.md:3
msgid ""
"When matching, you can add a _guard_ to a pattern. This is an arbitrary "
"Boolean\n"
"expression which will be executed if the pattern matches:"
msgstr ""
#: src/pattern-matching/match-guards.md:6
msgid ""
"```rust,editable\n"
"#[rustfmt::skip]\n"
"fn main() {\n"
" let pair = (2, -2);\n"
" println!(\"Tell me about {pair:?}\");\n"
" match pair {\n"
" (x, y) if x == y => println!(\"These are twins\"),\n"
" (x, y) if x + y == 0 => println!(\"Antimatter, kaboom!\"),\n"
" (x, _) if x % 2 == 1 => println!(\"The first one is odd\"),\n"
" _ => println!(\"No correlation...\"),\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/pattern-matching/match-guards.md:23
msgid ""
"* Match guards as a separate syntax feature are important and necessary when "
"we wish to concisely express more complex ideas than patterns alone would "
"allow.\n"
"* They are not the same as separate `if` expression inside of the match arm. "
"An `if` expression inside of the branch block (after `=>`) happens after the "
"match arm is selected. Failing the `if` condition inside of that block won't "
"result in other arms\n"
"of the original `match` expression being considered. \n"
"* You can use the variables defined in the pattern in your if expression.\n"
"* The condition defined in the guard applies to every expression in a "
"pattern with an `|`."
msgstr ""
#: src/exercises/day-2/morning.md:1
msgid "# Day 2: Morning Exercises"
msgstr "# 第二天上午习题"
#: src/exercises/day-2/morning.md:3
msgid "We will look at implementing methods in two contexts:"
msgstr "我们将考虑以下两种场景:"
#: src/exercises/day-2/morning.md:5
msgid ""
"* Simple struct which tracks health statistics.\n"
"\n"
"* Multiple structs and enums for a drawing library."
msgstr ""
"* 实现一个简单的结构体中的方法,用于追踪健康统计数据。\n"
"\n"
"* 实现多个结构体和枚举中的方法,用于绘图库。"
#: src/exercises/day-2/health-statistics.md:1
msgid "# Health Statistics"
msgstr "# 健康统计"
#: src/exercises/day-2/health-statistics.md:3
msgid ""
"You're working on implementing a health-monitoring system. As part of that, "
"you\n"
"need to keep track of users' health statistics."
msgstr ""
"你正在实现一个健康监控系统。作为其中的一部分,你需要对用户的健康统计数据进行追踪。"
#: src/exercises/day-2/health-statistics.md:6
msgid ""
"You'll start with some stubbed functions in an `impl` block as well as a "
"`User`\n"
"struct definition. Your goal is to implement the stubbed out methods on the\n"
"`User` `struct` defined in the `impl` block."
msgstr ""
"`User` 结构体的定义和 `impl` 块中一些函数的框架已经给出。你的目标是实现在 `impl` 块中定义的 `User` `struct` 的方法。"
#: src/exercises/day-2/health-statistics.md:10
msgid ""
"Copy the code below to <https://play.rust-lang.org/> and fill in the "
"missing\n"
"methods:"
msgstr ""
"将以下代码复制到 <https://play.rust-lang.org/>,并填充缺失的方法:"
#: src/exercises/day-2/health-statistics.md:13
msgid ""
"```rust,should_panic\n"
"// TODO: remove this when you're done with your implementation.\n"
"#![allow(unused_variables, dead_code)]\n"
"\n"
"struct User {\n"
" name: String,\n"
" age: u32,\n"
" weight: f32,\n"
"}\n"
"\n"
"impl User {\n"
" pub fn new(name: String, age: u32, weight: f32) -> Self {\n"
" unimplemented!()\n"
" }\n"
"\n"
" pub fn name(&self) -> &str {\n"
" unimplemented!()\n"
" }\n"
"\n"
" pub fn age(&self) -> u32 {\n"
" unimplemented!()\n"
" }\n"
"\n"
" pub fn weight(&self) -> f32 {\n"
" unimplemented!()\n"
" }\n"
"\n"
" pub fn set_age(&mut self, new_age: u32) {\n"
" unimplemented!()\n"
" }\n"
"\n"
" pub fn set_weight(&mut self, new_weight: f32) {\n"
" unimplemented!()\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let bob = User::new(String::from(\"Bob\"), 32, 155.2);\n"
" println!(\"I'm {} and my age is {}\", bob.name(), bob.age());\n"
"}\n"
"\n"
"#[test]\n"
"fn test_weight() {\n"
" let bob = User::new(String::from(\"Bob\"), 32, 155.2);\n"
" assert_eq!(bob.weight(), 155.2);\n"
"}\n"
"\n"
"#[test]\n"
"fn test_set_age() {\n"
" let mut bob = User::new(String::from(\"Bob\"), 32, 155.2);\n"
" assert_eq!(bob.age(), 32);\n"
" bob.set_age(33);\n"
" assert_eq!(bob.age(), 33);\n"
"}\n"
"```"
msgstr ""
"```rust,should_panic\n"
"// TODO: 实现完成后删除此行。\n"
"#![allow(unused_variables, dead_code)]\n"
"\n"
"struct User {\n"
" name: String,\n"
" age: u32,\n"
" weight: f32,\n"
"}\n"
"\n"
"impl User {\n"
" pub fn new(name: String, age: u32, weight: f32) -> Self {\n"
" unimplemented!()\n"
" }\n"
"\n"
" pub fn name(&self) -> &str {\n"
" unimplemented!()\n"
" }\n"
"\n"
" pub fn age(&self) -> u32 {\n"
" unimplemented!()\n"
" }\n"
"\n"
" pub fn weight(&self) -> f32 {\n"
" unimplemented!()\n"
" }\n"
"\n"
" pub fn set_age(&mut self, new_age: u32) {\n"
" unimplemented!()\n"
" }\n"
"\n"
" pub fn set_weight(&mut self, new_weight: f32) {\n"
" unimplemented!()\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let bob = User::new(String::from(\"Bob\"), 32, 155.2);\n"
" println!(\"I'm {} and my age is {}\", bob.name(), bob.age());\n"
"}\n"
"\n"
"#[test]\n"
"fn test_weight() {\n"
" let bob = User::new(String::from(\"Bob\"), 32, 155.2);\n"
" assert_eq!(bob.weight(), 155.2);\n"
"}\n"
"\n"
"#[test]\n"
"fn test_set_age() {\n"
" let mut bob = User::new(String::from(\"Bob\"), 32, 155.2);\n"
" assert_eq!(bob.age(), 32);\n"
" bob.set_age(33);\n"
" assert_eq!(bob.age(), 33);\n"
"}\n"
"```"
#: src/exercises/day-2/points-polygons.md:1
msgid "# Polygon Struct"
msgstr ""
#: src/exercises/day-2/points-polygons.md:3
msgid ""
"We will create a `Polygon` struct which contain some points. Copy the code "
"below\n"
"to <https://play.rust-lang.org/> and fill in the missing methods to make "
"the\n"
"tests pass:"
msgstr ""
#: src/exercises/day-2/points-polygons.md:7
msgid ""
"```rust\n"
"// TODO: remove this when you're done with your implementation.\n"
"#![allow(unused_variables, dead_code)]\n"
"\n"
"pub struct Point {\n"
" // add fields\n"
"}\n"
"\n"
"impl Point {\n"
" // add methods\n"
"}\n"
"\n"
"pub struct Polygon {\n"
" // add fields\n"
"}\n"
"\n"
"impl Polygon {\n"
" // add methods\n"
"}\n"
"\n"
"pub struct Circle {\n"
" // add fields\n"
"}\n"
"\n"
"impl Circle {\n"
" // add methods\n"
"}\n"
"\n"
"pub enum Shape {\n"
" Polygon(Polygon),\n"
" Circle(Circle),\n"
"}\n"
"\n"
"#[cfg(test)]\n"
"mod tests {\n"
" use super::*;\n"
"\n"
" fn round_two_digits(x: f64) -> f64 {\n"
" (x * 100.0).round() / 100.0\n"
" }\n"
"\n"
" #[test]\n"
" fn test_point_magnitude() {\n"
" let p1 = Point::new(12, 13);\n"
" assert_eq!(round_two_digits(p1.magnitude()), 17.69);\n"
" }\n"
"\n"
" #[test]\n"
" fn test_point_dist() {\n"
" let p1 = Point::new(10, 10);\n"
" let p2 = Point::new(14, 13);\n"
" assert_eq!(round_two_digits(p1.dist(p2)), 5.00);\n"
" }\n"
"\n"
" #[test]\n"
" fn test_point_add() {\n"
" let p1 = Point::new(16, 16);\n"
" let p2 = p1 + Point::new(-4, 3);\n"
" assert_eq!(p2, Point::new(12, 19));\n"
" }\n"
"\n"
" #[test]\n"
" fn test_polygon_left_most_point() {\n"
" let p1 = Point::new(12, 13);\n"
" let p2 = Point::new(16, 16);\n"
"\n"
" let mut poly = Polygon::new();\n"
" poly.add_point(p1);\n"
" poly.add_point(p2);\n"
" assert_eq!(poly.left_most_point(), Some(p1));\n"
" }\n"
"\n"
" #[test]\n"
" fn test_polygon_iter() {\n"
" let p1 = Point::new(12, 13);\n"
" let p2 = Point::new(16, 16);\n"
"\n"
" let mut poly = Polygon::new();\n"
" poly.add_point(p1);\n"
" poly.add_point(p2);\n"
"\n"
" let points = poly.iter().cloned().collect::<Vec<_>>();\n"
" assert_eq!(points, vec![Point::new(12, 13), Point::new(16, 16)]);\n"
" }\n"
"\n"
" #[test]\n"
" fn test_shape_perimeters() {\n"
" let mut poly = Polygon::new();\n"
" poly.add_point(Point::new(12, 13));\n"
" poly.add_point(Point::new(17, 11));\n"
" poly.add_point(Point::new(16, 16));\n"
" let shapes = vec![\n"
" Shape::from(poly),\n"
" Shape::from(Circle::new(Point::new(10, 20), 5)),\n"
" ];\n"
" let perimeters = shapes\n"
" .iter()\n"
" .map(Shape::perimeter)\n"
" .map(round_two_digits)\n"
" .collect::<Vec<_>>();\n"
" assert_eq!(perimeters, vec![15.48, 31.42]);\n"
" }\n"
"}\n"
"\n"
"#[allow(dead_code)]\n"
"fn main() {}\n"
"```"
msgstr ""
#: src/exercises/day-2/points-polygons.md:117
msgid ""
"Since the method signatures are missing from the problem statements, the key "
"part\n"
"of the exercise is to specify those correctly. You don't have to modify the "
"tests."
msgstr ""
#: src/exercises/day-2/points-polygons.md:120
msgid "Other interesting parts of the exercise:"
msgstr ""
#: src/exercises/day-2/points-polygons.md:122
msgid ""
"* Derive a `Copy` trait for some structs, as in tests the methods sometimes "
"don't borrow their arguments.\n"
"* Discover that `Add` trait must be implemented for two objects to be "
"addable via \"+\". Note that we do not discuss generics until Day 3."
msgstr ""
#: src/control-flow.md:1
msgid "# Control Flow"
msgstr "# 控制流"
#: src/control-flow.md:3
msgid ""
"As we have seen, `if` is an expression in Rust. It is used to conditionally\n"
"evaluate one of two blocks, but the blocks can have a value which then "
"becomes\n"
"the value of the `if` expression. Other control flow expressions work "
"similarly\n"
"in Rust."
msgstr ""
"正如我们所知,`if` 是 Rust 中的一个表达式。它用于有条件地\n"
"评估两个块中的一个,但这些块可以有一个值,\n"
"然后成为 `if` 表达式的值。其他控制流表达式在 Rust 中也有类似\n"
"的运作方式。"
#: src/control-flow/blocks.md:1
msgid "# Blocks"
msgstr "# 块"
#: src/control-flow/blocks.md:3
msgid ""
"A block in Rust has a value and a type: the value is the last expression of "
"the\n"
"block:"
msgstr ""
"Rust 中的块包含值和类型:值是\n"
"块的最后一个表达式:"
#: src/control-flow/blocks.md:6
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let x = {\n"
" let y = 10;\n"
" println!(\"y: {y}\");\n"
" let z = {\n"
" let w = {\n"
" 3 + 4\n"
" };\n"
" println!(\"w: {w}\");\n"
" y * w\n"
" };\n"
" println!(\"z: {z}\");\n"
" z - y\n"
" };\n"
" println!(\"x: {x}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let x = {\n"
" let y = 10;\n"
" println!(\"y: {y}\");\n"
" let z = {\n"
" let w = {\n"
" 3 + 4\n"
" };\n"
" println!(\"w: {w}\");\n"
" y * w\n"
" };\n"
" println!(\"z: {z}\");\n"
" z - y\n"
" };\n"
" println!(\"x: {x}\");\n"
"}\n"
"```"
#: src/control-flow/blocks.md:25
msgid ""
"The same rule is used for functions: the value of the function body is the\n"
"return value:"
msgstr ""
"同样的规则也适用于函数:函数主体的值\n"
"是返回值:"
#: src/control-flow/blocks.md:28
msgid ""
"```rust,editable\n"
"fn double(x: i32) -> i32 {\n"
" x + x\n"
"}\n"
"\n"
"fn main() {\n"
" println!(\"doubled: {}\", double(7));\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn double(x: i32) -> i32 {\n"
" x + x\n"
"}\n"
"\n"
"fn main() {\n"
" println!(\"doubled: {}\", double(7));\n"
"}\n"
"```"
#: src/control-flow/blocks.md:38
msgid ""
"However if the last expression ends with `;`, then the resulting value and "
"type is `()`."
msgstr "不过,如果最后一个表达式以 `;` 结尾,那么生成的值和类型为 `()`。"
#: src/control-flow/blocks.md:43
msgid ""
"* The point of this slide is to show that blocks have a type and value in "
"Rust. \n"
"* You can show how the value of the block changes by changing the last line "
"in the block. For instance, adding/removing a semicolon or using a "
"`return`.\n"
" "
msgstr ""
"* 这张幻灯片的重点是说明在 Rust 中,块有类型和值。\n"
"* 你可以通过更改块的最后一行,来展示块值的变化情况。例如,添加/移除分号或使"
"用 `return`。\n"
" "
#: src/control-flow/if-expressions.md:1
msgid "# `if` expressions"
msgstr "# `if` 表达式"
#: src/control-flow/if-expressions.md:3
msgid ""
"You use [`if`\n"
"expressions](https://doc.rust-lang.org/reference/expressions/if-expr.html#if-"
"expressions)\n"
"exactly like `if` statements in other languages:"
msgstr ""
"[`if`\n"
"表达式](https://doc.rust-lang.org/reference/expressions/if-expr.html#if-"
"expressions)\n"
"的用法与其他语言中的 `if` 语句完全一样。"
#: src/control-flow/if-expressions.md:7
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let mut x = 10;\n"
" if x % 2 == 0 {\n"
" x = x / 2;\n"
" } else {\n"
" x = 3 * x + 1;\n"
" }\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let mut x = 10;\n"
" if x % 2 == 0 {\n"
" x = x / 2;\n"
" } else {\n"
" x = 3 * x + 1;\n"
" }\n"
"}\n"
"```"
#: src/control-flow/if-expressions.md:18
msgid ""
"In addition, you can use `if` as an expression. The last expression of each\n"
"block becomes the value of the `if` expression:"
msgstr ""
"此外,你还可以将 `if` 用作一个表达式。每个块的最后一个表达式\n"
"将成为 `if` 表达式的值:"
#: src/control-flow/if-expressions.md:22
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let mut x = 10;\n"
" x = if x % 2 == 0 {\n"
" x / 2\n"
" } else {\n"
" 3 * x + 1\n"
" };\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let mut x = 10;\n"
" x = if x % 2 == 0 {\n"
" x / 2\n"
" } else {\n"
" 3 * x + 1\n"
" };\n"
"}\n"
"```"
#: src/control-flow/if-expressions.md:35
msgid ""
"Because `if` is an expression and must have a particular type, both of its "
"branch blocks must have the same type. Consider showing what happens if you "
"add `;` after `x / 2` in the second example."
msgstr ""
"由于 `if` 是一个表达式且必须有一个特定的类型,因此它的两个分支块必须有相同的"
"类型。考虑在第二个示例中将 `;` 添加到 `x / 2` 的后面,看看会出现什么情况。"
#: src/control-flow/if-let-expressions.md:1
msgid "# `if let` expressions"
msgstr "# `if let` 表达式"
#: src/control-flow/if-let-expressions.md:3
msgid ""
"The [`if let`\n"
"expression](https://doc.rust-lang.org/reference/expressions/if-expr.html#if-"
"let-expressions)\n"
"lets you execute different code depending on whether a value matches a "
"pattern:"
msgstr ""
"[`if let`\n"
"表达式](https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-"
"expressions)\n"
"能让你根据某个值是否与模式相匹配来执行不同的代码:"
#: src/control-flow/if-let-expressions.md:7
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let arg = std::env::args().next();\n"
" if let Some(value) = arg {\n"
" println!(\"Program name: {value}\");\n"
" } else {\n"
" println!(\"Missing name?\");\n"
" }\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let arg = std::env::args().next();\n"
" if let Some(value) = arg {\n"
" println!(\"Program name: {value}\");\n"
" } else {\n"
" println!(\"Missing name?\");\n"
" }\n"
"}\n"
"```"
#: src/control-flow/if-let-expressions.md:18
#: src/control-flow/while-let-expressions.md:21
#: src/control-flow/match-expressions.md:23
msgid ""
"See [pattern matching](../pattern-matching.md) for more details on patterns "
"in\n"
"Rust."
msgstr ""
"如需详细了解 Rust 中\n"
"的模式,请参阅[模式匹配](../pattern-matching.md)。"
#: src/control-flow/if-let-expressions.md:23
msgid ""
"* `if let` can be more concise than `match`, e.g., when only one case is "
"interesting. In contrast, `match` requires all branches to be covered.\n"
"* A common usage is handling `Some` values when working with `Option`.\n"
"* Unlike `match`, `if let` does not support guard clauses for pattern "
"matching.\n"
"* Since 1.65, a similar [let-else](https://doc.rust-lang.org/rust-by-example/"
"flow_control/let_else.html) construct allows to do a destructuring "
"assignment, or if it fails, have a non-returning block branch (panic/return/"
"break/continue):\n"
"\n"
" ```rust,editable\n"
" fn main() {\n"
" println!(\"{:?}\", second_word_to_upper(\"foo bar\"));\n"
" }\n"
" \n"
" fn second_word_to_upper(s: &str) -> Option<String> {\n"
" let mut it = s.split(' ');\n"
" let (Some(_), Some(item)) = (it.next(), it.next()) else {\n"
" return None;\n"
" };\n"
" Some(item.to_uppercase())\n"
" }"
msgstr ""
"* `if let` 可能比 `match` 更简洁,例如,当只关注一种情况时。相比之下,"
"`match` 要求覆盖所有分支。\n"
"* 使用 `Option` 时,常见的做法是处理 `Some` 值。\n"
"* 与 `match` 不同的是,`if let` 不支持模式匹配的 guard 子句。\n"
"* 自 1.65 版以来,类似的 [let-else](https://doc.rust-lang.org/rust-by-"
"example/flow_control/let_else.html) 结构允许执行解构赋值,或者如果不满足条"
"件,则有一个非返回块分支 (panic/return/break/continue):\n"
"\n"
" ```rust,editable\n"
" fn main() {\n"
" println!(\"{:?}\", second_word_to_upper(\"foo bar\"));\n"
" }\n"
" \n"
" fn second_word_to_upper(s: &str) -> Option<String> {\n"
" let mut it = s.split(' ');\n"
" let (Some(_), Some(item)) = (it.next(), it.next()) else {\n"
" return None;\n"
" };\n"
" Some(item.to_uppercase())\n"
" }"
#: src/control-flow/while-expressions.md:1
msgid "# `while` loops"
msgstr "# `while` 循环"
#: src/control-flow/while-expressions.md:3
msgid ""
"The [`while` keyword](https://doc.rust-lang.org/reference/expressions/loop-"
"expr.html#predicate-loops)\n"
"works very similar to other languages:"
msgstr ""
"[`while` 关键字](https://doc.rust-lang.org/reference/expressions/loop-expr."
"html#predicate-loops)\n"
" 的工作方式与其他语言非常相似:"
#: src/control-flow/while-expressions.md:6
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let mut x = 10;\n"
" while x != 1 {\n"
" x = if x % 2 == 0 {\n"
" x / 2\n"
" } else {\n"
" 3 * x + 1\n"
" };\n"
" }\n"
" println!(\"Final x: {x}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let mut x = 10;\n"
" while x != 1 {\n"
" x = if x % 2 == 0 {\n"
" x / 2\n"
" } else {\n"
" 3 * x + 1\n"
" };\n"
" }\n"
" println!(\"Final x: {x}\");\n"
"}\n"
"```"
#: src/control-flow/while-let-expressions.md:1
msgid "# `while let` loops"
msgstr "# `while let` 循环"
#: src/control-flow/while-let-expressions.md:3
msgid ""
"Like with `if let`, there is a [`while let`](https://doc.rust-lang.org/"
"reference/expressions/loop-expr.html#predicate-pattern-loops)\n"
"variant which repeatedly tests a value against a pattern:"
msgstr ""
"与 `if let` 一样,[`with let`](https://doc.rust-lang.org/reference/"
"expressions/loop-expr.html#predicate-pattern-loops)\n"
"变体会针对一个模式重复测试一个值:"
#: src/control-flow/while-let-expressions.md:6
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let v = vec![10, 20, 30];\n"
" let mut iter = v.into_iter();\n"
"\n"
" while let Some(x) = iter.next() {\n"
" println!(\"x: {x}\");\n"
" }\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let v = vec![10, 20, 30];\n"
" let mut iter = v.into_iter();\n"
"\n"
" while let Some(x) = iter.next() {\n"
" println!(\"x: {x}\");\n"
" }\n"
"}\n"
"```"
#: src/control-flow/while-let-expressions.md:17
msgid ""
"Here the iterator returned by `v.iter()` will return a `Option<i32>` on "
"every\n"
"call to `next()`. It returns `Some(x)` until it is done, after which it "
"will\n"
"return `None`. The `while let` lets us keep iterating through all items."
msgstr ""
"在这里,每次\n"
"调用 `next()` 时,`v.iter()` 返回的迭代器都会返回一个 `Option<i32>`。它将一直"
"返回 `Some(x)`,直到完成。\n"
" 之后它将返回 `None`。`while let`能让我们持续迭代所有项。"
#: src/control-flow/while-let-expressions.md:26
msgid ""
"* Point out that the `while let` loop will keep going as long as the value "
"matches the pattern.\n"
"* You could rewrite the `while let` loop as an infinite loop with an if "
"statement that breaks when there is no value to unwrap for `iter.next()`. "
"The `while let` provides syntactic sugar for the above scenario.\n"
" "
msgstr ""
"* 指出只要值与模式匹配,`while let` 循环就会一直进行下去。\n"
"* 你可以使用 if 语句将 `while let` 循环重写为无限循环,当 `iter.next()` 没有"
"值可以解封时中断。`while let` 为上述情况提供了语法糖。\n"
" "
#: src/control-flow/for-expressions.md:1
msgid "# `for` loops"
msgstr "# `for` 循环"
#: src/control-flow/for-expressions.md:3
msgid ""
"The [`for` loop](https://doc.rust-lang.org/std/keyword.for.html) is closely\n"
"related to the [`while let` loop](while-let-expression.md). It will\n"
"automatically call `into_iter()` on the expression and then iterate over it:"
msgstr ""
"[`for` 循环](https://doc.rust-lang.org/std/keyword.for.html)\n"
"与 [`when let` 循环](when-let-expression.md)密切相关。它会\n"
" 自动对表达式调用 `into_iter()`,然后对其进行迭代:"
#: src/control-flow/for-expressions.md:7
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let v = vec![10, 20, 30];\n"
"\n"
" for x in v {\n"
" println!(\"x: {x}\");\n"
" }\n"
" \n"
" for i in (0..10).step_by(2) {\n"
" println!(\"i: {i}\");\n"
" }\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let v = vec![10, 20, 30];\n"
"\n"
" for x in v {\n"
" println!(\"x: {x}\");\n"
" }\n"
" \n"
" for i in (0..10).step_by(2) {\n"
" println!(\"i: {i}\");\n"
" }\n"
"}\n"
"```"
#: src/control-flow/for-expressions.md:21
msgid "You can use `break` and `continue` here as usual."
msgstr "你可以在此照常使用 `break` 和 `continue`。"
#: src/control-flow/for-expressions.md:25
msgid ""
"* Index iteration is not a special syntax in Rust for just that case.\n"
"* `(0..10)` is a range that implements an `Iterator` trait. \n"
"* `step_by` is a method that returns another `Iterator` that skips every "
"other element. \n"
"* Modify the elements in the vector and explain the compiler errors. Change "
"vector `v` to be mutable and the for loop to `for x in v.iter_mut()`."
msgstr ""
"* 在这种情况下,索引迭代在 Rust 中并不是一个特殊的语法。\n"
"* `(0..10)` 是实现 `Iterator` trait 的范围。\n"
"* `step_by` 是返回另一个 `Iterator` 的方法,用于逐一跳过所有其他元素。\n"
"* 修改矢量中的元素并说明编译器错误。将矢量 `v` 改为可变,并将 for 循环改为 "
"`for x in v.iter_mut()`。"
#: src/control-flow/loop-expressions.md:1
msgid "# `loop` expressions"
msgstr "# `loop` 表达式"
#: src/control-flow/loop-expressions.md:3
msgid ""
"Finally, there is a [`loop` keyword](https://doc.rust-lang.org/reference/"
"expressions/loop-expr.html#infinite-loops)\n"
"which creates an endless loop."
msgstr ""
"最后是用于创建无限循环的 [`loop` 关键字](https://doc.rust-lang.org/reference/"
"expressions/loop-expr.html#infinite-loops)\n"
"。"
#: src/control-flow/loop-expressions.md:6
msgid "Here you must either `break` or `return` to stop the loop:"
msgstr "在下例中,你必须 `break` 或 `return` 才能停止循环:"
#: src/control-flow/loop-expressions.md:8
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let mut x = 10;\n"
" loop {\n"
" x = if x % 2 == 0 {\n"
" x / 2\n"
" } else {\n"
" 3 * x + 1\n"
" };\n"
" if x == 1 {\n"
" break;\n"
" }\n"
" }\n"
" println!(\"Final x: {x}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let mut x = 10;\n"
" loop {\n"
" x = if x % 2 == 0 {\n"
" x / 2\n"
" } else {\n"
" 3 * x + 1\n"
" };\n"
" if x == 1 {\n"
" break;\n"
" }\n"
" }\n"
" println!(\"Final x: {x}\");\n"
"}\n"
"```"
#: src/control-flow/loop-expressions.md:27
msgid ""
"* Break the `loop` with a value (e.g. `break 8`) and print it out.\n"
"* Note that `loop` is the only looping construct which returns a non-"
"trivial\n"
" value. This is because it's guaranteed to be entered at least once "
"(unlike\n"
" `while` and `for` loops)."
msgstr ""
"* 用一个值(例如 `break 8`)来中断 `loop` 并将其输出。\n"
"* 请注意,`loop` 是唯一返回有意义的值的循环结构。\n"
" 这是因为它保证至少被输入一次(与 `while` 和 `for` 循环不同)。"
#: src/control-flow/match-expressions.md:1
msgid "# `match` expressions"
msgstr "# `match` 表达式"
#: src/control-flow/match-expressions.md:3
msgid ""
"The [`match` keyword](https://doc.rust-lang.org/reference/expressions/match-"
"expr.html)\n"
"is used to match a value against one or more patterns. In that sense, it "
"works\n"
"like a series of `if let` expressions:"
msgstr ""
"[`match` 关键字](https://doc.rust-lang.org/reference/expressions/match-expr."
"html)\n"
"用于将一个值与一个或多个模式进行匹配。从这个意义上讲,它的工作方式\n"
"类似于一系列的 `if let` 表达式:"
#: src/control-flow/match-expressions.md:7
msgid ""
"```rust,editable\n"
"fn main() {\n"
" match std::env::args().next().as_deref() {\n"
" Some(\"cat\") => println!(\"Will do cat things\"),\n"
" Some(\"ls\") => println!(\"Will ls some files\"),\n"
" Some(\"mv\") => println!(\"Let's move some files\"),\n"
" Some(\"rm\") => println!(\"Uh, dangerous!\"),\n"
" None => println!(\"Hmm, no program name?\"),\n"
" _ => println!(\"Unknown program name!\"),\n"
" }\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" match std::env::args().next().as_deref() {\n"
" Some(\"cat\") => println!(\"Will do cat things\"),\n"
" Some(\"ls\") => println!(\"Will ls some files\"),\n"
" Some(\"mv\") => println!(\"Let's move some files\"),\n"
" Some(\"rm\") => println!(\"Uh, dangerous!\"),\n"
" None => println!(\"Hmm, no program name?\"),\n"
" _ => println!(\"Unknown program name!\"),\n"
" }\n"
"}\n"
"```"
#: src/control-flow/match-expressions.md:20
msgid ""
"Like `if let`, each match arm must have the same type. The type is the last\n"
"expression of the block, if any. In the example above, the type is `()`."
msgstr ""
"与 `if let` 类似,每个匹配分支必须有相同的类型。该类型是块的最后一个\n"
"表达式(如有)。在上例中,类型是 `()`。"
#: src/control-flow/match-expressions.md:28
msgid ""
"* Save the match expression to a variable and print it out.\n"
"* Remove `.as_deref()` and explain the error.\n"
" * `std::env::args().next()` returns an `Option<String>`, but we cannot "
"match against `String`.\n"
" * `as_deref()` transforms an `Option<T>` to `Option<&T::Target>`. In our "
"case, this turns `Option<String>` into `Option<&str>`.\n"
" * We can now use pattern matching to match against the `&str` inside "
"`Option`."
msgstr ""
"* 将 match 表达式保存到一个变量中并输出结果。\n"
"* 移除 `.as_deref()` 并说明错误。\n"
" * `std::env::args().next()` 会返回 `Option<String>`,但无法与 `String` "
"进行匹配。\n"
" * `as_deref()` 会将 `Option<T>` 转换为 `Option<&T::Target>`。在我们的示例"
"中,这会将 `Option<String>` 转换为 `Option<&str>`。\n"
" * 现在,我们可以使用模式匹配来匹配 `Option` 中的 `&str`。"
#: src/control-flow/break-continue.md:1
msgid "# `break` and `continue`"
msgstr "# `break` 和 `continue`"
#: src/control-flow/break-continue.md:3
msgid ""
"- If you want to exit a loop early, use [`break`](https://doc.rust-lang.org/"
"reference/expressions/loop-expr.html#break-expressions),\n"
"- If you want to immediately start\n"
"the next iteration use [`continue`](https://doc.rust-lang.org/reference/"
"expressions/loop-expr.html#continue-expressions)."
msgstr ""
"- 如果你想提前退出循环,请使用 [`break`](https://doc.rust-lang.org/reference/"
"expressions/loop-expr.html#break-expressions),\n"
"- 如果需要立即启动\n"
"下一次迭代,请使用 [`continue`](https://doc.rust-lang.org/reference/"
"expressions/loop-expr.html#continue-expressions)。"
#: src/control-flow/break-continue.md:7
msgid ""
"Both `continue` and `break` can optionally take a label argument which is "
"used\n"
"to break out of nested loops:"
msgstr ""
"`continue` 和 `break` 都可以选择接受一个标签参数,用来\n"
"终止嵌套循环:"
#: src/control-flow/break-continue.md:10
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let v = vec![10, 20, 30];\n"
" let mut iter = v.into_iter();\n"
" 'outer: while let Some(x) = iter.next() {\n"
" println!(\"x: {x}\");\n"
" let mut i = 0;\n"
" while i < x {\n"
" println!(\"x: {x}, i: {i}\");\n"
" i += 1;\n"
" if i == 3 {\n"
" break 'outer;\n"
" }\n"
" }\n"
" }\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn main() {\n"
" let v = vec![10, 20, 30];\n"
" let mut iter = v.into_iter();\n"
" 'outer: while let Some(x) = iter.next() {\n"
" println!(\"x: {x}\");\n"
" let mut i = 0;\n"
" while i < x {\n"
" println!(\"x: {x}, i: {i}\");\n"
" i += 1;\n"
" if i == 3 {\n"
" break 'outer;\n"
" }\n"
" }\n"
" }\n"
"}\n"
"```"
#: src/control-flow/break-continue.md:28
msgid ""
"In this case we break the outer loop after 3 iterations of the inner loop."
msgstr "在本示例中,我们会在内循环 3 次迭代后终止外循环。"
#: src/std.md:1
msgid "# Standard Library"
msgstr "# 标准库"
#: src/std.md:3
msgid ""
"Rust comes with a standard library which helps establish a set of common "
"types\n"
"used by Rust library and programs. This way, two libraries can work "
"together\n"
"smoothly because they both use the same `String` type."
msgstr ""
"Rust 附带一个标准库,此库有助于建立一个供 Rust 库和程序\n"
"使用的常用类型集。这样一来,两个库便可顺畅地搭配运作,\n"
"因为它们使用相同的 `String` 类型。"
#: src/std.md:7
msgid "The common vocabulary types include:"
msgstr "常见的词汇类型包括:"
#: src/std.md:9
msgid ""
"* [`Option` and `Result`](std/option-result.md) types: used for optional "
"values\n"
" and [error handling](error-handling.md).\n"
"\n"
"* [`String`](std/string.md): the default string type used for owned data.\n"
"\n"
"* [`Vec`](std/vec.md): a standard extensible vector.\n"
"\n"
"* [`HashMap`](std/hashmap.md): a hash map type with a configurable hashing\n"
" algorithm.\n"
"\n"
"* [`Box`](std/box.md): an owned pointer for heap-allocated data.\n"
"\n"
"* [`Rc`](std/rc.md): a shared reference-counted pointer for heap-allocated "
"data."
msgstr ""
"* [`Option` 和 `Result`](std/option-result.md) 类型:用于可选值和\n"
"[错误处理](error-handling.md)。\n"
"\n"
"* [`String`](std/string.md):用于自有数据的默认字符串类型。\n"
"\n"
"* [`Vec`](std/vec.md):标准的可扩展矢量。\n"
"\n"
"* [`HashMap`](std/hashmap.md):采用可配置哈希算法的哈希映射\n"
"类型。\n"
"\n"
"* [`Box`](std/box.md):适用于堆分配数据的自有指针。\n"
"\n"
"* [`Rc`](std/rc.md):适用于堆分配数据的共享引用计数指针。"
#: src/std.md:25
msgid ""
" * In fact, Rust contains several layers of the Standard Library: `core`, "
"`alloc` and `std`. \n"
" * `core` includes the most basic types and functions that don't depend on "
"`libc`, allocator or\n"
" even the presence of an operating system. \n"
" * `alloc` includes types which require a global heap allocator, such as "
"`Vec`, `Box` and `Arc`.\n"
" * Embedded Rust applications often only use `core`, and sometimes `alloc`."
msgstr ""
" * Rust 实际上含有多个层级的标准库,分别是 `core`、`alloc` 和 `std`。\n"
" * `core` 包括最基本的类型与函数,这些类型与函数不依赖于 `libc`、分配器\n"
"或是否存在操作系统。\n"
" * `alloc` 包括需要全局堆分配器的类型,例如 `Vec`、`Box` 和 `Arc`。\n"
" * 嵌入式 Rust 应用通常只使用 `core`,偶尔会使用 `alloc`。"
#: src/std/option-result.md:1
msgid "# `Option` and `Result`"
msgstr "# `Option` 和 `Result`"
#: src/std/option-result.md:3
msgid "The types represent optional data:"
msgstr "这些类型表示可选数据:"
#: src/std/option-result.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let numbers = vec![10, 20, 30];\n"
" let first: Option<&i8> = numbers.first();\n"
" println!(\"first: {first:?}\");\n"
"\n"
" let idx: Result<usize, usize> = numbers.binary_search(&10);\n"
" println!(\"idx: {idx:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/std/option-result.md:18
msgid ""
"* `Option` and `Result` are widely used not just in the standard library.\n"
"* `Option<&T>` has zero space overhead compared to `&T`.\n"
"* `Result` is the standard type to implement error handling as we will see "
"on Day 3.\n"
"* `binary_search` returns `Result<usize, usize>`.\n"
" * If found, `Result::Ok` holds the index where the element is found.\n"
" * Otherwise, `Result::Err` contains the index where such an element should "
"be inserted."
msgstr ""
"* `Option` 和 `Result` 的使用范围很广,不局限于标准库。\n"
"* 相较于 `&T`,`Option<&T>` 的空间开销为零。\n"
"* `Result` 是用于实现错误处理的标准类型,我们将在第 3 天的课程中介绍。\n"
"* `binary_search` 会返回 `Result<usize, usize>`。\n"
" * 如果找到该元素,`Result::Ok` 会保留该元素所在位置的索引。\n"
" * 如果没有找到该元素,`Result::Err` 会包含应插入这类元素的索引。"
#: src/std/string.md:1
msgid "# String"
msgstr "# String"
#: src/std/string.md:3
msgid ""
"[`String`][1] is the standard heap-allocated growable UTF-8 string buffer:"
msgstr "[`String`][1] 是标准堆分配的可扩容 UTF-8 字符串缓冲区:"
#: src/std/string.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let mut s1 = String::new();\n"
" s1.push_str(\"Hello\");\n"
" println!(\"s1: len = {}, capacity = {}\", s1.len(), s1.capacity());\n"
"\n"
" let mut s2 = String::with_capacity(s1.len() + 1);\n"
" s2.push_str(&s1);\n"
" s2.push('!');\n"
" println!(\"s2: len = {}, capacity = {}\", s2.len(), s2.capacity());\n"
"\n"
" let s3 = String::from(\"🇨🇭\");\n"
" println!(\"s3: len = {}, number of chars = {}\", s3.len(),\n"
" s3.chars().count());\n"
"}\n"
"```"
msgstr ""
#: src/std/string.md:22
msgid ""
"`String` implements [`Deref<Target = str>`][2], which means that you can "
"call all\n"
"`str` methods on a `String`."
msgstr ""
"`String` 会实现 [`Deref<Target = str>`][2],这意味着您可以\n"
"对 `String` 调用所有 `str` 方法。"
#: src/std/string.md:30
msgid ""
"* `String::new` returns a new empty string, use `String::with_capacity` when "
"you know how much data you want to push to the string.\n"
"* `String::len` returns the size of the `String` in bytes (which can be "
"different from its length in characters).\n"
"* `String::chars` returns an iterator over the actual characters. Note that "
"a `char` can be different from what a human will consider a \"character\" "
"due to [grapheme clusters](https://docs.rs/unicode-segmentation/latest/"
"unicode_segmentation/struct.Graphemes.html).\n"
"* When people refer to strings they could either be talking about `&str` or "
"`String`. \n"
"* When a type implements `Deref<Target = T>`, the compiler will let you "
"transparently call methods from `T`.\n"
" * `String` implements `Deref<Target = str>` which transparently gives it "
"access to `str`'s methods.\n"
" * Write and compare `let s3 = s1.deref();` and `let s3 = &*s1`;.\n"
"* `String` is implemented as a wrapper around a vector of bytes, many of the "
"operations you see supported on vectors are also supported on `String`, but "
"with some extra guarantees.\n"
"* Compare the different ways to index a `String`:\n"
" * To a character by using `s3.chars().nth(i).unwrap()` where `i` is in-"
"bound, out-of-bounds.\n"
" * To a substring by using `s3[0..4]`, where that slice is on character "
"boundaries or not."
msgstr ""
#: src/std/vec.md:1
msgid "# `Vec`"
msgstr "# `Vec`"
#: src/std/vec.md:3
msgid "[`Vec`][1] is the standard resizable heap-allocated buffer:"
msgstr "[`Vec`][1] 是标准的可调整大小堆分配缓冲区:"
#: src/std/vec.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let mut v1 = Vec::new();\n"
" v1.push(42);\n"
" println!(\"v1: len = {}, capacity = {}\", v1.len(), v1.capacity());\n"
"\n"
" let mut v2 = Vec::with_capacity(v1.len() + 1);\n"
" v2.extend(v1.iter());\n"
" v2.push(9999);\n"
" println!(\"v2: len = {}, capacity = {}\", v2.len(), v2.capacity());\n"
"\n"
" // Canonical macro to initialize a vector with elements.\n"
" let mut v3 = vec![0, 0, 1, 2, 3, 4];\n"
"\n"
" // Retain only the even elements.\n"
" v3.retain(|x| x % 2 == 0);\n"
" println!(\"{v3:?}\");\n"
"\n"
" // Remove consecutive duplicates.\n"
" v3.dedup();\n"
" println!(\"{v3:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/std/vec.md:29
msgid ""
"`Vec` implements [`Deref<Target = [T]>`][2], which means that you can call "
"slice\n"
"methods on a `Vec`."
msgstr ""
"`Vec` 会实现 [`Deref<Target = [T]>`][2],这意味着您可以对 `Vec`\n"
"调用 slice 方法。"
#: src/std/vec.md:37
msgid ""
"* `Vec` is a type of collection, along with `String` and `HashMap`. The data "
"it contains is stored\n"
" on the heap. This means the amount of data doesn't need to be known at "
"compile time. It can grow\n"
" or shrink at runtime.\n"
"* Notice how `Vec<T>` is a generic type too, but you don't have to specify "
"`T` explicitly. As always\n"
" with Rust type inference, the `T` was established during the first `push` "
"call.\n"
"* `vec![...]` is a canonical macro to use instead of `Vec::new()` and it "
"supports adding initial\n"
" elements to the vector.\n"
"* To index the vector you use `[` `]`, but they will panic if out of bounds. "
"Alternatively, using\n"
" `get` will return an `Option`. The `pop` function will remove the last "
"element.\n"
"* Show iterating over a vector and mutating the value:\n"
" `for e in &mut v { *e += 50; }`"
msgstr ""
#: src/std/hashmap.md:1
msgid "# `HashMap`"
msgstr "# `HashMap`"
#: src/std/hashmap.md:3
msgid "Standard hash map with protection against HashDoS attacks:"
msgstr "标准的哈希映射,内含针对 HashDoS 攻击的保护措施:"
#: src/std/hashmap.md:5
msgid ""
"```rust,editable\n"
"use std::collections::HashMap;\n"
"\n"
"fn main() {\n"
" let mut page_counts = HashMap::new();\n"
" page_counts.insert(\"Adventures of Huckleberry Finn\".to_string(), "
"207);\n"
" page_counts.insert(\"Grimms' Fairy Tales\".to_string(), 751);\n"
" page_counts.insert(\"Pride and Prejudice\".to_string(), 303);\n"
"\n"
" if !page_counts.contains_key(\"Les Misérables\") {\n"
" println!(\"We know about {} books, but not Les Misérables.\",\n"
" page_counts.len());\n"
" }\n"
"\n"
" for book in [\"Pride and Prejudice\", \"Alice's Adventure in "
"Wonderland\"] {\n"
" match page_counts.get(book) {\n"
" Some(count) => println!(\"{book}: {count} pages\"),\n"
" None => println!(\"{book} is unknown.\")\n"
" }\n"
" }\n"
"\n"
" // Use the .entry() method to insert a value if nothing is found.\n"
" for book in [\"Pride and Prejudice\", \"Alice's Adventure in "
"Wonderland\"] {\n"
" let page_count: &mut i32 = page_counts.entry(book.to_string())."
"or_insert(0);\n"
" *page_count += 1;\n"
" }\n"
"\n"
" println!(\"{page_counts:#?}\");\n"
"}\n"
"```"
msgstr ""
#: src/std/hashmap.md:38
msgid ""
"* `HashMap` is not defined in the prelude and needs to be brought into "
"scope.\n"
"* Try the following lines of code. The first line will see if a book is in "
"the hashmap and if not return an alternative value. The second line will "
"insert the alternative value in the hashmap if the book is not found.\n"
"\n"
" ```rust,ignore\n"
" let pc1 = page_counts\n"
" .get(\"Harry Potter and the Sorcerer's Stone \")\n"
" .unwrap_or(&336);\n"
" let pc2 = page_counts\n"
" .entry(\"The Hunger Games\".to_string())\n"
" .or_insert(374);\n"
" ```\n"
"* Unlike `vec!`, there is unfortunately no standard `hashmap!` macro.\n"
" * Although, since Rust 1.56, HashMap implements [`From<[(K, V); N]>`][1], "
"which allows us to easily initialize a hash map from a literal array:\n"
"\n"
" ```rust,ignore\n"
" let page_counts = HashMap::from([\n"
" (\"Harry Potter and the Sorcerer's Stone\".to_string(), 336),\n"
" (\"The Hunger Games\".to_string(), 374),\n"
" ]);\n"
" ```\n"
"\n"
" * Alternatively HashMap can be built from any `Iterator` which yields key-"
"value tuples.\n"
"* We are showing `HashMap<String, i32>`, and avoid using `&str` as key to "
"make examples easier. Using references in collections can, of course, be "
"done,\n"
" but it can lead into complications with the borrow checker.\n"
" * Try removing `to_string()` from the example above and see if it still "
"compiles. Where do you think we might run into issues?"
msgstr ""
#: src/std/box.md:1
msgid "# `Box`"
msgstr "# `Box`"
#: src/std/box.md:3
msgid "[`Box`][1] is an owned pointer to data on the heap:"
msgstr "[`Box`][1] 是指向堆上数据的自有指针:"
#: src/std/box.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let five = Box::new(5);\n"
" println!(\"five: {}\", *five);\n"
"}\n"
"```"
msgstr ""
#: src/std/box.md:13
msgid ""
"```bob\n"
" Stack Heap\n"
".- - - - - - -. .- - - - - - -.\n"
": : : :\n"
": five : : :\n"
": +-----+ : : +-----+ :\n"
": | o---|---+-----+-->| 5 | :\n"
": +-----+ : : +-----+ :\n"
": : : :\n"
": : : :\n"
"`- - - - - - -' `- - - - - - -'\n"
"```"
msgstr ""
#: src/std/box.md:26
msgid ""
"`Box<T>` implements `Deref<Target = T>`, which means that you can [call "
"methods\n"
"from `T` directly on a `Box<T>`][2]."
msgstr ""
"`Box<T>` 会实现 `Deref<Target = T>`,这意味着您可以[直接在 `Box<T>` 上通过 "
"`T`\n"
"调用相应方法][2]。"
#: src/std/box.md:34
msgid ""
"* `Box` is like `std::unique_ptr` in C++, except that it's guaranteed to be "
"not null. \n"
"* In the above example, you can even leave out the `*` in the `println!` "
"statement thanks to `Deref`. \n"
"* A `Box` can be useful when you:\n"
" * have a type whose size that can't be known at compile time, but the "
"Rust compiler wants to know an exact size.\n"
" * want to transfer ownership of a large amount of data. To avoid copying "
"large amounts of data on the stack, instead store the data on the heap in a "
"`Box` so only the pointer is moved."
msgstr ""
"* 在 C++ 中,`Box` 与 `std::unique_ptr` 类似,除了它一定会不为 null 以外。\n"
"* 在上面的示例中,因为有 `Deref`,您甚至可以在 `println!` 语句中省略 `*`。\n"
"* 在以下情况下,`Box` 可能会很实用:\n"
" * 在编译时间遇到无法知晓大小的类型,但 Rust 编译器需要知道确切大小。\n"
" * 想要转让大量数据的所有权。为避免在堆栈上复制大量数据,请改为将数据存储"
"在 `Box` 中的堆上,以便仅移动指针。"
#: src/std/box-recursive.md:1
msgid "# Box with Recursive Data Structures"
msgstr "# 包含递归数据结构的 Box"
#: src/std/box-recursive.md:3
msgid ""
"Recursive data types or data types with dynamic sizes need to use a `Box`:"
msgstr "递归数据类型或具有动态大小的数据类型需要使用 `Box`:"
#: src/std/box-recursive.md:5 src/std/box-niche.md:3
msgid ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"enum List<T> {\n"
" Cons(T, Box<List<T>>),\n"
" Nil,\n"
"}\n"
"\n"
"fn main() {\n"
" let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::"
"new(List::Nil))));\n"
" println!(\"{list:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/std/box-recursive.md:18
msgid ""
"```bob\n"
" Stack Heap\n"
".- - - - - - - - - - - - -. .- - - - - - - - - - - - - - - - - - - - - - "
"- -.\n"
": : : :\n"
": "
"list : : :\n"
": +------+----+----+ : : +------+----+----+ +------+----+----"
"+ :\n"
": | Cons | 1 | o--+----+-----+--->| Cons | 2 | o--+--->| Nil | // | // "
"| :\n"
": +------+----+----+ : : +------+----+----+ +------+----+----"
"+ :\n"
": : : :\n"
": : : :\n"
"'- - - - - - - - - - - - -' '- - - - - - - - - - - - - - - - - - - - - - "
"- -'\n"
"```"
msgstr ""
#: src/std/box-recursive.md:33
msgid ""
"* If the `Box` was not used here and we attempted to embed a `List` directly "
"into the `List`,\n"
"the compiler would not compute a fixed size of the struct in memory, it "
"would look infinite.\n"
"\n"
"* `Box` solves this problem as it has the same size as a regular pointer and "
"just points at the next\n"
"element of the `List` in the heap.\n"
"\n"
"* Remove the `Box` in the List definition and show the compiler error. "
"\"Recursive with indirection\" is a hint you might want to use a Box or "
"reference of some kind, instead of storing a value directly. \n"
" "
msgstr ""
"* 如果这里未使用 `Box`,且我们曾尝试将一个 `List` 直接嵌入 `List`,\n"
"编译器就不会计算内存中结构体的固定大小,结构体看起来会像是无限大。\n"
"\n"
"* `Box` 大小与一般指针相同,并且只会指向堆中的下一个 `List` 元素,\n"
"因此可以解决这个问题。\n"
"\n"
"* 将 `Box` 从 List 定义中移除后,画面上会显示编译器错误。如果您看"
"到“Recursive with indirection”错误消息,这是在提示您使用 Box 或其他类型的引"
"用,而不是直接储存值。\n"
" "
#: src/std/box-niche.md:1
msgid "# Niche Optimization"
msgstr "# 小众优化"
#: src/std/box-niche.md:16
msgid ""
"A `Box` cannot be empty, so the pointer is always valid and non-`null`. "
"This\n"
"allows the compiler to optimize the memory layout:"
msgstr ""
"`Box` 不得为空,因此指针始终有效且非 `null`。这样,\n"
"编译器就可以优化内存布局:"
#: src/std/box-niche.md:19
msgid ""
"```bob\n"
" Stack Heap\n"
".- - - - - - - - - - - - -. .- - - - - - - - - - - - - - - - - - - - - - "
"-.\n"
": : : :\n"
": "
"list : : :\n"
": +----+----+ : : +----+----+ +----+------"
"+ :\n"
": | 1 | o--+-----------+-----+--->| 2 | o--+--->| // | null "
"| :\n"
": +----+----+ : : +----+----+ +----+------"
"+ :\n"
": : : :\n"
": : : :\n"
"`- - - - - - - - - - - - -' '- - - - - - - - - - - - - - - - - - - - - - "
"-'\n"
"```"
msgstr ""
#: src/std/rc.md:1
msgid "# `Rc`"
msgstr "# `Rc`"
#: src/std/rc.md:3
msgid ""
"[`Rc`][1] is a reference-counted shared pointer. Use this when you need to "
"refer\n"
"to the same data from multiple places:"
msgstr ""
"[`Rc`][1] 是引用计数的共享指针。如果您需要从多个位置\n"
"引用相同的数据,请使用此指针:"
#: src/std/rc.md:6
msgid ""
"```rust,editable\n"
"use std::rc::Rc;\n"
"\n"
"fn main() {\n"
" let mut a = Rc::new(10);\n"
" let mut b = Rc::clone(&a);\n"
"\n"
" println!(\"a: {a}\");\n"
" println!(\"b: {b}\");\n"
"}\n"
"```"
msgstr ""
#: src/std/rc.md:18
msgid ""
"* If you need to mutate the data inside an `Rc`, you will need to wrap the "
"data in\n"
" a type such as [`Cell` or `RefCell`][2].\n"
"* See [`Arc`][3] if you are in a multi-threaded context.\n"
"* You can *downgrade* a shared pointer into a [`Weak`][4] pointer to create "
"cycles\n"
" that will get dropped."
msgstr ""
"* 如果您需要在 `Rc` 内修改数据,则需将数据封装入\n"
"[`Cell` 或 `RefCell`][2] 等类型中。\n"
"* 如果您在多线程情境中,请参阅 [`Arc`][3]。\n"
"* 您可以将共享指针*降级*为 [`Weak`][4] 指针,\n"
"以便创建之后会被舍弃的循环引用。"
#: src/std/rc.md:31
msgid ""
"* `Rc`'s count ensures that its contained value is valid for as long as "
"there are references.\n"
"* Like C++'s `std::shared_ptr`.\n"
"* `Rc::clone` is cheap: it creates a pointer to the same allocation and "
"increases the reference count. Does not make a deep clone and can generally "
"be ignored when looking for performance issues in code.\n"
"* `make_mut` actually clones the inner value if necessary (\"clone-on-"
"write\") and returns a mutable reference.\n"
"* Use `Rc::strong_count` to check the reference count.\n"
"* Compare the different datatypes mentioned. `Box` enables (im)mutable "
"borrows that are enforced at compile time. `RefCell` enables (im)mutable "
"borrows that are enforced at run time and will panic if it fails at "
"runtime.\n"
"* `Rc::downgrade` gives you a *weakly reference-counted* object to\n"
" create cycles that will be dropped properly (likely in combination with\n"
" `RefCell`)."
msgstr ""
"* `Rc` 的计数可确保只要有引用,内含的值就会保持有效。\n"
"* 类似 C++ 的 `std::shared_ptr`。\n"
"* `Rc::clone` 的成本很低:这个做法会创建指向相同分配的指针,并增加引用计数,"
"而不会产生深层的克隆,排查代码性能问题时通常可以忽略。\n"
"* `make_mut` 实际上会在必要时克隆内部值(“clone-on-write”),并返回可变的引"
"用。\n"
"* 使用 `Rc::strong_count` 可查看引用计数。\n"
"* 比较提及的不同数据类型。`Box` 可启用在编译时强制执行的可变/不可变借用。"
"`RefCell` 可启用在运行时强制执行的可变/不可变借用,如果在运行时失败,将产生恐"
"慌。\n"
"* `Rc::downgrade` 会向您提供 *弱引用计数* 对象,\n"
"以便创建之后会被适当舍弃的周期(可能会与\n"
"`RefCell` 组合)。"
#: src/std/rc.md:41
msgid ""
"```rust,editable\n"
"use std::rc::{Rc, Weak};\n"
"use std::cell::RefCell;\n"
"\n"
"#[derive(Debug)]\n"
"struct Node {\n"
" value: i64,\n"
" parent: Option<Weak<RefCell<Node>>>,\n"
" children: Vec<Rc<RefCell<Node>>>,\n"
"}\n"
"\n"
"fn main() {\n"
" let mut root = Rc::new(RefCell::new(Node {\n"
" value: 42,\n"
" parent: None,\n"
" children: vec![],\n"
" }));\n"
" let child = Rc::new(RefCell::new(Node {\n"
" value: 43,\n"
" children: vec![],\n"
" parent: Some(Rc::downgrade(&root))\n"
" }));\n"
" root.borrow_mut().children.push(child);\n"
"\n"
" println!(\"graph: {root:#?}\");\n"
"}\n"
"```"
msgstr ""
#: src/modules.md:1
msgid "# Modules"
msgstr ""
#: src/modules.md:3
msgid "We have seen how `impl` blocks let us namespace functions to a type."
msgstr ""
#: src/modules.md:5
msgid "Similarly, `mod` lets us namespace types and functions:"
msgstr ""
#: src/modules.md:7
msgid ""
"```rust,editable\n"
"mod foo {\n"
" pub fn do_something() {\n"
" println!(\"In the foo module\");\n"
" }\n"
"}\n"
"\n"
"mod bar {\n"
" pub fn do_something() {\n"
" println!(\"In the bar module\");\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" foo::do_something();\n"
" bar::do_something();\n"
"}\n"
"```"
msgstr ""
#: src/modules.md:28
msgid ""
"* Packages provide functionality and include a `Cargo.toml` file that "
"describes how to build a bundle of 1+ crates.\n"
"* Crates are a tree of modules, where a binary crate creates an executable "
"and a library crate compiles to a library.\n"
"* Modules define organization, scope, and are the focus of this section."
msgstr ""
#: src/modules/visibility.md:1
msgid "# Visibility"
msgstr ""
#: src/modules/visibility.md:3
msgid "Modules are a privacy boundary:"
msgstr ""
#: src/modules/visibility.md:5
msgid ""
"* Module items are private by default (hides implementation details).\n"
"* Parent and sibling items are always visible.\n"
"* In other words, if an item is visible in module `foo`, it's visible in all "
"the\n"
" descendants of `foo`."
msgstr ""
#: src/modules/visibility.md:10
msgid ""
"```rust,editable\n"
"mod outer {\n"
" fn private() {\n"
" println!(\"outer::private\");\n"
" }\n"
"\n"
" pub fn public() {\n"
" println!(\"outer::public\");\n"
" }\n"
"\n"
" mod inner {\n"
" fn private() {\n"
" println!(\"outer::inner::private\");\n"
" }\n"
"\n"
" pub fn public() {\n"
" println!(\"outer::inner::public\");\n"
" super::private();\n"
" }\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" outer::public();\n"
"}\n"
"```"
msgstr ""
#: src/modules/visibility.md:39
msgid "* Use the `pub` keyword to make modules public."
msgstr ""
#: src/modules/visibility.md:41
msgid ""
"Additionally, there are advanced `pub(...)` specifiers to restrict the scope "
"of public visibility."
msgstr ""
#: src/modules/visibility.md:43
msgid ""
"* See the [Rust Reference](https://doc.rust-lang.org/reference/visibility-"
"and-privacy.html#pubin-path-pubcrate-pubsuper-and-pubself).\n"
"* Configuring `pub(crate)` visibility is a common pattern.\n"
"* Less commonly, you can give visibility to a specific path.\n"
"* In any case, visibility must be granted to an ancestor module (and all of "
"its descendants)."
msgstr ""
#: src/modules/paths.md:1
msgid "# Paths"
msgstr ""
#: src/modules/paths.md:3
msgid "Paths are resolved as follows:"
msgstr ""
#: src/modules/paths.md:5
msgid ""
"1. As a relative path:\n"
" * `foo` or `self::foo` refers to `foo` in the current module,\n"
" * `super::foo` refers to `foo` in the parent module.\n"
"\n"
"2. As an absolute path:\n"
" * `crate::foo` refers to `foo` in the root of the current crate,\n"
" * `bar::foo` refers to `foo` in the `bar` crate."
msgstr ""
#: src/modules/paths.md:13
msgid ""
"A module can bring symbols from another module into scope with `use`.\n"
"You will typically see something like this at the top of each module:"
msgstr ""
#: src/modules/paths.md:16
msgid ""
"```rust,editable\n"
"use std::collections::HashSet;\n"
"use std::mem::transmute;\n"
"```"
msgstr ""
#: src/modules/filesystem.md:1
msgid "# Filesystem Hierarchy"
msgstr ""
#: src/modules/filesystem.md:3
msgid "The module content can be omitted:"
msgstr ""
#: src/modules/filesystem.md:5
msgid ""
"```rust,editable,compile_fail\n"
"mod garden;\n"
"```"
msgstr ""
#: src/modules/filesystem.md:9
msgid "The `garden` module content is found at:"
msgstr ""
#: src/modules/filesystem.md:11
msgid ""
"* `src/garden.rs` (modern Rust 2018 style)\n"
"* `src/garden/mod.rs` (older Rust 2015 style)"
msgstr ""
#: src/modules/filesystem.md:14
msgid "Similarly, a `garden::vegetables` module can be found at:"
msgstr ""
#: src/modules/filesystem.md:16
msgid ""
"* `src/garden/vegetables.rs` (modern Rust 2018 style)\n"
"* `src/garden/vegetables/mod.rs` (older Rust 2015 style)"
msgstr ""
#: src/modules/filesystem.md:19
msgid "The `crate` root is in:"
msgstr ""
#: src/modules/filesystem.md:21
msgid ""
"* `src/lib.rs` (for a library crate)\n"
"* `src/main.rs` (for a binary crate)"
msgstr ""
#: src/modules/filesystem.md:24
msgid ""
"Modules defined in files can be documented, too, using \"inner doc "
"comments\".\n"
"These document the item that contains them -- in this case, a module."
msgstr ""
#: src/modules/filesystem.md:27
msgid ""
"```rust,editable,compile_fail\n"
"//! This module implements the garden, including a highly performant "
"germination\n"
"//! implementation.\n"
"\n"
"// Re-export types from this module.\n"
"pub use seeds::SeedPacket;\n"
"pub use garden::Garden;\n"
"\n"
"/// Sow the given seed packets.\n"
"pub fn sow(seeds: Vec<SeedPacket>) { todo!() }\n"
"\n"
"/// Harvest the produce in the garden that is ready.\n"
"pub fn harvest(garden: &mut Garden) { todo!() }\n"
"```"
msgstr ""
#: src/modules/filesystem.md:44
msgid ""
"* The change from `module/mod.rs` to `module.rs` doesn't preclude the use of "
"submodules in Rust 2018.\n"
" (It was mandatory in Rust 2015.)\n"
"\n"
" The following is valid:\n"
"\n"
" ```ignore\n"
" src/\n"
" ├── main.rs\n"
" ├── top_module.rs\n"
" └── top_module/\n"
" └── sub_module.rs\n"
" ```\n"
"\n"
"* The main reason for the change is to prevent many files named `mod.rs`, "
"which can be hard\n"
" to distinguish in IDEs.\n"
"\n"
"* Rust will look for modules in `modulename/mod.rs` and `modulename.rs`, but "
"this can be changed\n"
" with a compiler directive:\n"
"\n"
" ```rust,ignore\n"
" #[path = \"some/path.rs\"]\n"
" mod some_module { }\n"
" ```\n"
"\n"
" This is useful, for example, if you would like to place tests for a module "
"in a file named\n"
" `some_module_test.rs`, similar to the convention in Go."
msgstr ""
#: src/exercises/day-2/afternoon.md:1
msgid "# Day 2: Afternoon Exercises"
msgstr "# 第二天下午习题"
#: src/exercises/day-2/afternoon.md:3
msgid "The exercises for this afternoon will focus on strings and iterators."
msgstr "今天下午的习题将重点关注字符串(string)和迭代器(iterator)。"
#: src/exercises/day-2/luhn.md:1
msgid "# Luhn Algorithm"
msgstr ""
#: src/exercises/day-2/luhn.md:3
msgid ""
"The [Luhn algorithm](https://en.wikipedia.org/wiki/Luhn_algorithm) is used "
"to\n"
"validate credit card numbers. The algorithm takes a string as input and does "
"the\n"
"following to validate the credit card number:"
msgstr ""
#: src/exercises/day-2/luhn.md:7
msgid ""
"* Ignore all spaces. Reject number with less than two digits.\n"
"\n"
"* Moving from right to left, double every second digit: for the number "
"`1234`,\n"
" we double `3` and `1`.\n"
"\n"
"* After doubling a digit, sum the digits. So doubling `7` becomes `14` "
"which\n"
" becomes `5`.\n"
"\n"
"* Sum all the undoubled and doubled digits.\n"
"\n"
"* The credit card number is valid if the sum ends with `0`."
msgstr ""
#: src/exercises/day-2/luhn.md:19
msgid ""
"Copy the following code to <https://play.rust-lang.org/> and implement the\n"
"function:"
msgstr ""
#: src/exercises/day-2/luhn.md:23
msgid ""
"```rust\n"
"// TODO: remove this when you're done with your implementation.\n"
"#![allow(unused_variables, dead_code)]\n"
"\n"
"pub fn luhn(cc_number: &str) -> bool {\n"
" unimplemented!()\n"
"}\n"
"\n"
"#[test]\n"
"fn test_non_digit_cc_number() {\n"
" assert!(!luhn(\"foo\"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_empty_cc_number() {\n"
" assert!(!luhn(\"\"));\n"
" assert!(!luhn(\" \"));\n"
" assert!(!luhn(\" \"));\n"
" assert!(!luhn(\" \"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_single_digit_cc_number() {\n"
" assert!(!luhn(\"0\"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_two_digit_cc_number() {\n"
" assert!(luhn(\" 0 0 \"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_valid_cc_number() {\n"
" assert!(luhn(\"4263 9826 4026 9299\"));\n"
" assert!(luhn(\"4539 3195 0343 6467\"));\n"
" assert!(luhn(\"7992 7398 713\"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_invalid_cc_number() {\n"
" assert!(!luhn(\"4223 9826 4026 9299\"));\n"
" assert!(!luhn(\"4539 3195 0343 6476\"));\n"
" assert!(!luhn(\"8273 1232 7352 0569\"));\n"
"}\n"
"\n"
"#[allow(dead_code)]\n"
"fn main() {}\n"
"```"
msgstr ""
#: src/exercises/day-2/strings-iterators.md:1
msgid "# Strings and Iterators"
msgstr ""
#: src/exercises/day-2/strings-iterators.md:3
msgid ""
"In this exercise, you are implementing a routing component of a web server. "
"The\n"
"server is configured with a number of _path prefixes_ which are matched "
"against\n"
"_request paths_. The path prefixes can contain a wildcard character which\n"
"matches a full segment. See the unit tests below."
msgstr ""
#: src/exercises/day-2/strings-iterators.md:8
msgid ""
"Copy the following code to <https://play.rust-lang.org/> and make the tests\n"
"pass. Try avoiding allocating a `Vec` for your intermediate results:"
msgstr ""
#: src/exercises/day-2/strings-iterators.md:12
msgid ""
"```rust\n"
"// TODO: remove this when you're done with your implementation.\n"
"#![allow(unused_variables, dead_code)]\n"
"\n"
"pub fn prefix_matches(prefix: &str, request_path: &str) -> bool {\n"
" unimplemented!()\n"
"}\n"
"\n"
"#[test]\n"
"fn test_matches_without_wildcard() {\n"
" assert!(prefix_matches(\"/v1/publishers\", \"/v1/publishers\"));\n"
" assert!(prefix_matches(\"/v1/publishers\", \"/v1/publishers/"
"abc-123\"));\n"
" assert!(prefix_matches(\"/v1/publishers\", \"/v1/publishers/abc/"
"books\"));\n"
"\n"
" assert!(!prefix_matches(\"/v1/publishers\", \"/v1\"));\n"
" assert!(!prefix_matches(\"/v1/publishers\", \"/v1/publishersBooks\"));\n"
" assert!(!prefix_matches(\"/v1/publishers\", \"/v1/parent/"
"publishers\"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_matches_with_wildcard() {\n"
" assert!(prefix_matches(\n"
" \"/v1/publishers/*/books\",\n"
" \"/v1/publishers/foo/books\"\n"
" ));\n"
" assert!(prefix_matches(\n"
" \"/v1/publishers/*/books\",\n"
" \"/v1/publishers/bar/books\"\n"
" ));\n"
" assert!(prefix_matches(\n"
" \"/v1/publishers/*/books\",\n"
" \"/v1/publishers/foo/books/book1\"\n"
" ));\n"
"\n"
" assert!(!prefix_matches(\"/v1/publishers/*/books\", \"/v1/"
"publishers\"));\n"
" assert!(!prefix_matches(\n"
" \"/v1/publishers/*/books\",\n"
" \"/v1/publishers/foo/booksByAuthor\"\n"
" ));\n"
"}\n"
"```"
msgstr ""
#: src/welcome-day-3.md:1
msgid "# Welcome to Day 3"
msgstr ""
#: src/welcome-day-3.md:3
msgid "Today, we will cover some more advanced topics of Rust:"
msgstr ""
#: src/welcome-day-3.md:5
msgid ""
"* Traits: deriving traits, default methods, and important standard library\n"
" traits.\n"
"\n"
"* Generics: generic data types, generic methods, monomorphization, and "
"trait\n"
" objects.\n"
"\n"
"* Error handling: panics, `Result`, and the try operator `?`.\n"
"\n"
"* Testing: unit tests, documentation tests, and integration tests.\n"
"\n"
"* Unsafe Rust: raw pointers, static variables, unsafe functions, and extern\n"
" functions."
msgstr ""
#: src/generics.md:1
msgid "# Generics"
msgstr "# 泛型"
#: src/generics.md:3
msgid ""
"Rust support generics, which lets you abstract an algorithm (such as "
"sorting)\n"
"over the types used in the algorithm."
msgstr ""
"Rust 支持泛型,允许您根据算法(例如排序)中使用的类型对算法进行抽象化处理。"
#: src/generics/data-types.md:1
msgid "# Generic Data Types"
msgstr "# 通用数据类型"
#: src/generics/data-types.md:3
msgid "You can use generics to abstract over the concrete field type:"
msgstr "您可以使用泛型对具体字段类型进行抽象化处理:"
#: src/generics/data-types.md:5
msgid ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"struct Point<T> {\n"
" x: T,\n"
" y: T,\n"
"}\n"
"\n"
"fn main() {\n"
" let integer = Point { x: 5, y: 10 };\n"
" let float = Point { x: 1.0, y: 4.0 };\n"
" println!(\"{integer:?} and {float:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/generics/data-types.md:21
msgid ""
"* Try declaring a new variable `let p = Point { x: 5, y: 10.0 };`.\n"
"\n"
"* Fix the code to allow points that have elements of different types."
msgstr ""
#: src/generics/methods.md:1
msgid "# Generic Methods"
msgstr "# 泛型方法"
#: src/generics/methods.md:3
msgid "You can declare a generic type on your `impl` block:"
msgstr "您可以在 `impl` 块中声明通用类型:"
#: src/generics/methods.md:5
msgid ""
"```rust,editable\n"
"#[derive(Debug)]\n"
"struct Point<T>(T, T);\n"
"\n"
"impl<T> Point<T> {\n"
" fn x(&self) -> &T {\n"
" &self.0 // + 10\n"
" }\n"
"\n"
" // fn set_x(&mut self, x: T)\n"
"}\n"
"\n"
"fn main() {\n"
" let p = Point(5, 10);\n"
" println!(\"p.x = {}\", p.x());\n"
"}\n"
"```"
msgstr ""
#: src/generics/methods.md:25
msgid ""
"* *Q:* Why `T` is specified twice in `impl<T> Point<T> {}`? Isn't that "
"redundant?\n"
" * This is because it is a generic implementation section for generic "
"type. They are independently generic.\n"
" * It means these methods are defined for any `T`.\n"
" * It is possible to write `impl Point<u32> { .. }`. \n"
" * `Point` is still generic and you can use `Point<f64>`, but methods "
"in this block will only be available for `Point<u32>`."
msgstr ""
"* *问:*为什么 `T` 在 `impl<T> Point<T> {}` 中指定了两次?这不是多余的吗?\n"
" * 这是因为它是泛型类型的泛型实现部分。它们是独立的泛型内容。\n"
" * 这意味着这些方法是针对所有 `T` 定义的。\n"
" * 可以编写 `impl Point<u32> { .. }`。\n"
" * `Point` 依然是一个泛型,并且您可以使用 `Point<f64>`,但此块中的方法将仅"
"适用于 `Point<u32>`。"
#: src/generics/monomorphization.md:1
msgid "# Monomorphization"
msgstr "# 单态化"
#: src/generics/monomorphization.md:3
msgid "Generic code is turned into non-generic code based on the call sites:"
msgstr "泛型代码根据调用位置转换为非泛型代码:"
#: src/generics/monomorphization.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let integer = Some(5);\n"
" let float = Some(5.0);\n"
"}\n"
"```"
msgstr ""
#: src/generics/monomorphization.md:12
msgid "behaves as if you wrote"
msgstr "具体行为与您所编写的一样"
#: src/generics/monomorphization.md:14
msgid ""
"```rust,editable\n"
"enum Option_i32 {\n"
" Some(i32),\n"
" None,\n"
"}\n"
"\n"
"enum Option_f64 {\n"
" Some(f64),\n"
" None,\n"
"}\n"
"\n"
"fn main() {\n"
" let integer = Option_i32::Some(5);\n"
" let float = Option_f64::Some(5.0);\n"
"}\n"
"```"
msgstr ""
#: src/generics/monomorphization.md:31
msgid ""
"This is a zero-cost abstraction: you get exactly the same result as if you "
"had\n"
"hand-coded the data structures without the abstraction."
msgstr ""
"这是零成本的抽象化处理:您得到的结果不会受到影响,也就是说,与在没有进行抽象"
"化处理的情况下,对数据结构进行手动编码时的结果一样。"
#: src/traits.md:1
msgid "# Traits"
msgstr "# 特征"
#: src/traits.md:3
msgid ""
"Rust lets you abstract over types with traits. They're similar to interfaces:"
msgstr "Rust 让您可以依据特征对类型进行抽象化处理。特征与接口类似:"
#: src/traits.md:5
msgid ""
"```rust,editable\n"
"trait Pet {\n"
" fn name(&self) -> String;\n"
"}\n"
"\n"
"struct Dog {\n"
" name: String,\n"
"}\n"
"\n"
"struct Cat;\n"
"\n"
"impl Pet for Dog {\n"
" fn name(&self) -> String {\n"
" self.name.clone()\n"
" }\n"
"}\n"
"\n"
"impl Pet for Cat {\n"
" fn name(&self) -> String {\n"
" String::from(\"The cat\") // No name, cats won't respond to it "
"anyway.\n"
" }\n"
"}\n"
"\n"
"fn greet<P: Pet>(pet: &P) {\n"
" println!(\"Who's a cutie? {} is!\", pet.name());\n"
"}\n"
"\n"
"fn main() {\n"
" let fido = Dog { name: \"Fido\".into() };\n"
" greet(&fido);\n"
"\n"
" let captain_floof = Cat;\n"
" greet(&captain_floof);\n"
"}\n"
"```"
msgstr ""
#: src/traits/trait-objects.md:1
msgid "# Trait Objects"
msgstr "# 特征(Trait)对象"
#: src/traits/trait-objects.md:3
msgid ""
"Trait objects allow for values of different types, for instance in a "
"collection:"
msgstr "特征(Trait)对象可接受不同类型的值,举例来说,在集合中会是这样:"
#: src/traits/trait-objects.md:5
msgid ""
"```rust,editable\n"
"trait Pet {\n"
" fn name(&self) -> String;\n"
"}\n"
"\n"
"struct Dog {\n"
" name: String,\n"
"}\n"
"\n"
"struct Cat;\n"
"\n"
"impl Pet for Dog {\n"
" fn name(&self) -> String {\n"
" self.name.clone()\n"
" }\n"
"}\n"
"\n"
"impl Pet for Cat {\n"
" fn name(&self) -> String {\n"
" String::from(\"The cat\") // No name, cats won't respond to it "
"anyway.\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let pets: Vec<Box<dyn Pet>> = vec![\n"
" Box::new(Cat),\n"
" Box::new(Dog { name: String::from(\"Fido\") }),\n"
" ];\n"
" for pet in pets {\n"
" println!(\"Hello {}!\", pet.name());\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/traits/trait-objects.md:40
msgid "Memory layout after allocating `pets`:"
msgstr "以下是分配 `pets` 后的内存布局:"
#: src/traits/trait-objects.md:42
msgid ""
"```bob\n"
" Stack Heap\n"
".- - - - - - - - - - - - - -. .- - - - - - - - - - - - - - - - - - - - - "
"- -.\n"
": : : :\n"
": "
"pets : : :\n"
": +-----------+-------+ : : +-----+-----"
"+ :\n"
": | ptr | o---+---+-----+-->| o o | o o "
"| :\n"
": | len | 2 | : : +-|-|-+-|-|-"
"+ :\n"
": | capacity | 2 | : : | | | | +---------------"
"+ :\n"
": +-----------+-------+ : : | | | '-->| name: \"Fido\" "
"| :\n"
": : : | | | +---------------"
"+ :\n"
"`- - - - - - - - - - - - - -' : | | "
"| :\n"
" : | | | +----------------------"
"+ : \n"
" : | | '---->| \"<Dog as Pet>::name\" "
"| :\n"
" : | | +----------------------"
"+ : \n"
" : | "
"| : \n"
" : | | +-"
"+ : \n"
" : | '-->|"
"\\| : \n"
" : | +-"
"+ : \n"
" : "
"| : \n"
" : | +----------------------"
"+ : \n"
" : '---->| \"<Cat as Pet>::name\" "
"| : \n"
" : +----------------------"
"+ :\n"
" : :\n"
" '- - - - - - - - - - - - - - - - - - - - - "
"- -'\n"
"\n"
"```"
msgstr ""
#: src/traits/trait-objects.md:72
msgid ""
"* Types that implement a given trait may be of different sizes. This makes "
"it impossible to have things like `Vec<Pet>` in the example above.\n"
"* `dyn Pet` is a way to tell the compiler about a dynamically sized type "
"that implements `Pet`.\n"
"* In the example, `pets` holds *fat pointers* to objects that implement "
"`Pet`. The fat pointer consists of two components, a pointer to the actual "
"object and a pointer to the virtual method table for the `Pet` "
"implementation of that particular object.\n"
"* Compare these outputs in the above example:\n"
" ```rust,ignore\n"
" println!(\"{} {}\", std::mem::size_of::<Dog>(), std::mem::size_of::"
"<Cat>());\n"
" println!(\"{} {}\", std::mem::size_of::<&Dog>(), std::mem::size_of::"
"<&Cat>());\n"
" println!(\"{}\", std::mem::size_of::<&dyn Pet>());\n"
" println!(\"{}\", std::mem::size_of::<Box<dyn Pet>>());\n"
" ```"
msgstr ""
#: src/traits/deriving-traits.md:1
msgid "# Deriving Traits"
msgstr "# 派生特征"
#: src/traits/deriving-traits.md:3
msgid "You can let the compiler derive a number of traits:"
msgstr "您可以让编译器派生多个特征:"
#: src/traits/deriving-traits.md:5
msgid ""
"```rust,editable\n"
"#[derive(Debug, Clone, PartialEq, Eq, Default)]\n"
"struct Player {\n"
" name: String,\n"
" strength: u8,\n"
" hit_points: u8,\n"
"}\n"
"\n"
"fn main() {\n"
" let p1 = Player::default();\n"
" let p2 = p1.clone();\n"
" println!(\"Is {:?}\\nequal to {:?}?\\nThe answer is {}!\", &p1, &p2,\n"
" if p1 == p2 { \"yes\" } else { \"no\" });\n"
"}\n"
"```"
msgstr ""
#: src/traits/default-methods.md:1
msgid "# Default Methods"
msgstr "# 默认方法"
#: src/traits/default-methods.md:3
msgid "Traits can implement behavior in terms of other trait methods:"
msgstr "特征可以依照其他特征方法来实现行为:"
#: src/traits/default-methods.md:5
msgid ""
"```rust,editable\n"
"trait Equals {\n"
" fn equal(&self, other: &Self) -> bool;\n"
" fn not_equal(&self, other: &Self) -> bool {\n"
" !self.equal(other)\n"
" }\n"
"}\n"
"\n"
"#[derive(Debug)]\n"
"struct Centimeter(i16);\n"
"\n"
"impl Equals for Centimeter {\n"
" fn equal(&self, other: &Centimeter) -> bool {\n"
" self.0 == other.0\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let a = Centimeter(10);\n"
" let b = Centimeter(20);\n"
" println!(\"{a:?} equals {b:?}: {}\", a.equal(&b));\n"
" println!(\"{a:?} not_equals {b:?}: {}\", a.not_equal(&b));\n"
"}\n"
"```"
msgstr ""
#: src/traits/default-methods.md:32
msgid ""
"* Traits may specify pre-implemented (default) methods and methods that "
"users are required to\n"
" implement themselves. Methods with default implementations can rely on "
"required methods.\n"
"\n"
"* Move method `not_equal` to a new trait `NotEqual`.\n"
"\n"
"* Make `NotEqual` a super trait for `Equal`.\n"
" ```rust,editable,compile_fail\n"
" trait NotEqual: Equals {\n"
" fn not_equal(&self, other: &Self) -> bool {\n"
" !self.equal(other)\n"
" }\n"
" }\n"
" ```\n"
"\n"
"* Provide a blanket implementation of `NotEqual` for `Equal`.\n"
" ```rust,editable,compile_fail\n"
" trait NotEqual {\n"
" fn not_equal(&self, other: &Self) -> bool;\n"
" }\n"
"\n"
" impl<T> NotEqual for T where T: Equals {\n"
" fn not_equal(&self, other: &Self) -> bool {\n"
" !self.equal(other)\n"
" }\n"
" }\n"
" ```\n"
" * With the blanket implementation, you no longer need `NotEqual` as a "
"super trait for `Equal`.\n"
" "
msgstr ""
#: src/traits/trait-bounds.md:1
msgid "# Trait Bounds"
msgstr "# 特征边界"
#: src/traits/trait-bounds.md:3
msgid ""
"When working with generics, you often want to require the types to "
"implement\n"
"some trait, so that you can call this trait's methods."
msgstr ""
"使用泛型时,您通常会想要利用类型来实现某些特性,\n"
"这样才能调用此特征的方法。"
#: src/traits/trait-bounds.md:6
msgid "You can do this with `T: Trait` or `impl Trait`:"
msgstr "您可以使用 `T: Trait` 或 `impl Trait` 执行此操作:"
#: src/traits/trait-bounds.md:8
msgid ""
"```rust,editable\n"
"fn duplicate<T: Clone>(a: T) -> (T, T) {\n"
" (a.clone(), a.clone())\n"
"}\n"
"\n"
"// Syntactic sugar for:\n"
"// fn add_42_millions<T: Into<i32>>(x: T) -> i32 {\n"
"fn add_42_millions(x: impl Into<i32>) -> i32 {\n"
" x.into() + 42_000_000\n"
"}\n"
"\n"
"// struct NotClonable;\n"
"\n"
"fn main() {\n"
" let foo = String::from(\"foo\");\n"
" let pair = duplicate(foo);\n"
" println!(\"{pair:?}\");\n"
"\n"
" let many = add_42_millions(42_i8);\n"
" println!(\"{many}\");\n"
" let many_more = add_42_millions(10_000_000);\n"
" println!(\"{many_more}\");\n"
"}\n"
"```"
msgstr ""
#: src/traits/trait-bounds.md:35
msgid "Show a `where` clause, students will encounter it when reading code."
msgstr "显示 `where` 子句,学员在阅读代码时会看到它。"
#: src/traits/trait-bounds.md:37
msgid ""
"```rust,ignore\n"
"fn duplicate<T>(a: T) -> (T, T)\n"
"where\n"
" T: Clone,\n"
"{\n"
" (a.clone(), a.clone())\n"
"}\n"
"```"
msgstr ""
"```rust,ignore\n"
"fn duplicate<T>(a: T) -> (T, T)\n"
"where\n"
" T: Clone,\n"
"{\n"
" (a.clone(), a.clone())\n"
"}\n"
"```"
#: src/traits/trait-bounds.md:46
msgid ""
"* It declutters the function signature if you have many parameters.\n"
"* It has additional features making it more powerful.\n"
" * If someone asks, the extra feature is that the type on the left of \":"
"\" can be arbitrary, like `Option<T>`.\n"
" "
msgstr ""
"* 它会在您有多个形参的情况下整理函数签名。\n"
"* 它具有额外功能,因此也更强大。\n"
" * 如果有人提问,便阐明额外功能是指“:”左侧的类别可为任意值,例如 "
"`Option<T>`。\n"
" "
#: src/traits/impl-trait.md:1
msgid "# `impl Trait`"
msgstr "# `impl Trait`"
#: src/traits/impl-trait.md:3
msgid ""
"Similar to trait bounds, an `impl Trait` syntax can be used in function\n"
"arguments and return values:"
msgstr ""
"与特征边界类似,`impl Trait` 语法可以在函数实参\n"
"和返回值中使用:"
#: src/traits/impl-trait.md:6
msgid ""
"```rust,editable\n"
"use std::fmt::Display;\n"
"\n"
"fn get_x(name: impl Display) -> impl Display {\n"
" format!(\"Hello {name}\")\n"
"}\n"
"\n"
"fn main() {\n"
" let x = get_x(\"foo\");\n"
" println!(\"{x}\");\n"
"}\n"
"```"
msgstr ""
#: src/traits/impl-trait.md:19
msgid "* `impl Trait` allows you to work with types which you cannot name."
msgstr "* `impl Trait` 让您可使用无法命名的类型。"
#: src/traits/impl-trait.md:23
msgid ""
"The meaning of `impl Trait` is a bit different in the different positions."
msgstr "`impl Trait` 的意义因使用位置而略有不同。"
#: src/traits/impl-trait.md:25
msgid ""
"* For a parameter, `impl Trait` is like an anonymous generic parameter with "
"a trait bound.\n"
"\n"
"* For a return type, it means that the return type is some concrete type "
"that implements the trait,\n"
" without naming the type. This can be useful when you don't want to expose "
"the concrete type in a\n"
" public API.\n"
"\n"
" Inference is hard in return position. A function returning `impl Foo` "
"picks\n"
" the concrete type it returns, without writing it out in the source. A "
"function\n"
" returning a generic type like `collect<B>() -> B` can return any type\n"
" satisfying `B`, and the caller may need to choose one, such as with `let "
"x:\n"
" Vec<_> = foo.collect()` or with the turbofish, `foo.collect::<Vec<_>>()`."
msgstr ""
"* 对形参来说,`impl Trait` 就像是具有特征边界的匿名泛型形参。\n"
"\n"
"* 对返回值类型来说,它则意味着返回值类型就是实现该特征的某具体类型,\n"
"无需为该类型命名。如果您不想在公共 API 中公开该具体类型,便可\n"
"使用此方法。\n"
"\n"
"在返回位置处进行推断有一定难度。会返回 `impl Foo` 的函数会挑选\n"
"自身返回的具体类型,而不必在来源中写出此信息。会返回\n"
"泛型类型(例如 `collect<B>() -> B`)的函数则可返回符合 `B`\n"
"的任何类型,而调用方可能需要选择一个类型,例如使用 `let x:\n"
" Vec<_> = foo.collect()` 或使用以下 Turbofish:`foo.collect::<Vec<_>>()`。"
#: src/traits/impl-trait.md:37
msgid ""
"This example is great, because it uses `impl Display` twice. It helps to "
"explain that\n"
"nothing here enforces that it is _the same_ `impl Display` type. If we used "
"a single \n"
"`T: Display`, it would enforce the constraint that input `T` and return `T` "
"type are the same type.\n"
"It would not work for this particular function, as the type we expect as "
"input is likely not\n"
"what `format!` returns. If we wanted to do the same via `: Display` syntax, "
"we'd need two\n"
"independent generic parameters."
msgstr ""
"这是一个非常棒的示例,因为它使用了两次 `impl Display`。这有助于说明\n"
"此处没有任何项目会强制使用相同的 `impl Display` 类型。如果我们使用单个\n"
"`T: Display`,它会强制限制输入 `T` 和返回 `T` 均为同一类型。\n"
"这并不适用于这个特定函数,因为我们预期作为输入的类型可能\n"
"不会是 `format!` 返回的值。如果我们希望通过 `: Display` 语法执行相同的操作,"
"则需要两个\n"
"独立的泛型形参。"
#: src/traits/important-traits.md:1
msgid "# Important Traits"
msgstr "# 重要特征"
#: src/traits/important-traits.md:3
msgid ""
"We will now look at some of the most common traits of the Rust standard "
"library:"
msgstr "现在,我们来看看 Rust 标准库的一些最常见的特征:"
#: src/traits/important-traits.md:5
msgid ""
"* [`Iterator`][1] and [`IntoIterator`][2] used in `for` loops,\n"
"* [`From`][3] and [`Into`][4] used to convert values,\n"
"* [`Read`][5] and [`Write`][6] used for IO,\n"
"* [`Add`][7], [`Mul`][8], ... used for operator overloading, and\n"
"* [`Drop`][9] used for defining destructors.\n"
"* [`Default`][10] used to construct a default instance of a type."
msgstr ""
"* [`Iterator`][1] 和 [`IntoIterator`][2] 用于 `for` 循环中,\n"
"* [`From`][3] 和 [`Into`][4] 用于转换值,\n"
"* [`Read`][5] 和 [`Write`][6] 用于实现 IO。\n"
"* [`Add`][7]、[`Mul`][8] 等用于实现运算符重载,\n"
"* [`Drop`][9] 用于定义析构函数。\n"
"* [`Default`][10] 用于构建相应类型的默认实例。"
#: src/traits/iterator.md:1
msgid "# Iterators"
msgstr "# 迭代器"
#: src/traits/iterator.md:3
msgid "You can implement the [`Iterator`][1] trait on your own types:"
msgstr "您可以自行实现 [`Iterator`][1] 特征:"
#: src/traits/iterator.md:5
msgid ""
"```rust,editable\n"
"struct Fibonacci {\n"
" curr: u32,\n"
" next: u32,\n"
"}\n"
"\n"
"impl Iterator for Fibonacci {\n"
" type Item = u32;\n"
"\n"
" fn next(&mut self) -> Option<Self::Item> {\n"
" let new_next = self.curr + self.next;\n"
" self.curr = self.next;\n"
" self.next = new_next;\n"
" Some(self.curr)\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let fib = Fibonacci { curr: 0, next: 1 };\n"
" for (i, n) in fib.enumerate().take(5) {\n"
" println!(\"fib({i}): {n}\");\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/traits/iterator.md:32
msgid ""
"* The `Iterator` trait implements many common functional programming "
"operations over collections \n"
" (e.g. `map`, `filter`, `reduce`, etc). This is the trait where you can "
"find all the documentation\n"
" about them. In Rust these functions should produce the code as efficient "
"as equivalent imperative\n"
" implementations.\n"
" \n"
"* `IntoIterator` is the trait that makes for loops work. It is implemented "
"by collection types such as\n"
" `Vec<T>` and references to them such as `&Vec<T>` and `&[T]`. Ranges also "
"implement it. This is why\n"
" you can iterate over a vector with `for i in some_vec { .. }` but\n"
" `some_vec.next()` doesn't exist."
msgstr ""
"* `Iterator` 特征会对集合实现许多常见的函数程序操作,\n"
"例如 `map``filter`和`reduce` 等。您可以通过此特征找到有关它们的所有\n"
"文档。在 Rust 中,这些函数应生成代码,且生成的代码应与等效命令式实现一样\n"
"高效。\n"
" \n"
"* `IntoIterator` 是迫使 for 循环运作的特征。此特征由集合类型\n"
"(例如 `Vec<T>`)和相关引用(例如 `&Vec<T>` 和 `&[T]`)而实现。此外,范围也会"
"实现这项特征。因此,\n"
"您可以使用 `for i in some_vec { .. }` 来遍历某矢量,但\n"
"`some_vec.next()` 不存在。"
#: src/traits/from-iterator.md:1
msgid "# FromIterator"
msgstr "# FromIterator"
#: src/traits/from-iterator.md:3
msgid ""
"[`FromIterator`][1] lets you build a collection from an [`Iterator`][2]."
msgstr "[`FromIterator`][1] 让您可通过 [`Iterator`][2] 构建一个集合。"
#: src/traits/from-iterator.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let primes = vec![2, 3, 5, 7];\n"
" let prime_squares = primes\n"
" .into_iter()\n"
" .map(|prime| prime * prime)\n"
" .collect::<Vec<_>>();\n"
"}\n"
"```"
msgstr ""
#: src/traits/from-iterator.md:17
msgid ""
"`Iterator` implements\n"
"`fn collect<B>(self) -> B\n"
"where\n"
" B: FromIterator<Self::Item>,\n"
" Self: Sized`"
msgstr ""
"`Iterator` 会实现\n"
"`fn collect<B>(self) -> B\n"
"where\n"
" B: FromIterator<Self::Item>,\n"
" Self: Sized`"
#: src/traits/from-iterator.md:23
msgid ""
"There are also implementations which let you do cool things like convert an\n"
"`Iterator<Item = Result<V, E>>` into a `Result<Vec<V>, E>`."
msgstr ""
"还有一些实现,让您可执行一些很酷的操作,比如\n"
"将 `Iterator<Item = Result<V, E>>` 转换成 `Result<Vec<V>, E>`。"
#: src/traits/from-into.md:1
msgid "# `From` and `Into`"
msgstr "# `From` 和 `Into`"
#: src/traits/from-into.md:3
msgid ""
"Types implement [`From`][1] and [`Into`][2] to facilitate type conversions:"
msgstr "类型会实现 [`From`][1] 和 [`Into`][2] 以加快类型转换:"
#: src/traits/from-into.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let s = String::from(\"hello\");\n"
" let addr = std::net::Ipv4Addr::from([127, 0, 0, 1]);\n"
" let one = i16::from(true);\n"
" let bigger = i32::from(123i16);\n"
" println!(\"{s}, {addr}, {one}, {bigger}\");\n"
"}\n"
"```"
msgstr ""
#: src/traits/from-into.md:15
msgid ""
"[`Into`][2] is automatically implemented when [`From`][1] is implemented:"
msgstr "实现 [`From`][1] 后,系统会自动实现 [`Into`][2]:"
#: src/traits/from-into.md:17
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let s: String = \"hello\".into();\n"
" let addr: std::net::Ipv4Addr = [127, 0, 0, 1].into();\n"
" let one: i16 = true.into();\n"
" let bigger: i32 = 123i16.into();\n"
" println!(\"{s}, {addr}, {one}, {bigger}\");\n"
"}\n"
"```"
msgstr ""
#: src/traits/from-into.md:29
msgid ""
"* That's why it is common to only implement `From`, as your type will get "
"`Into` implementation too.\n"
"* When declaring a function argument input type like \"anything that can be "
"converted into a `String`\", the rule is opposite, you should use `Into`.\n"
" Your function will accept types that implement `From` and those that "
"_only_ implement `Into`.\n"
" "
msgstr ""
"* 这就是为什么通常只需实现 `From`,因为您的类型也会实现 `Into`。\n"
"* 若要声明某个函数实参输入类型(例如“任何可转换成 `String` 的类型”),规则便"
"会相反,此时应使用 `Into`。\n"
"您的函数会接受可实现 `From` 的类型,以及那些仅实现 `Into` 的类型。\n"
" "
#: src/traits/read-write.md:1
msgid "# `Read` and `Write`"
msgstr "# `Read` 和 `Write`"
#: src/traits/read-write.md:3
msgid ""
"Using [`Read`][1] and [`BufRead`][2], you can abstract over `u8` sources:"
msgstr "您可以使用 [`Read`][1] 和 [`BufRead`][2] 对 `u8` 来源进行抽象化处理:"
#: src/traits/read-write.md:5
msgid ""
"```rust,editable\n"
"use std::io::{BufRead, BufReader, Read, Result};\n"
"\n"
"fn count_lines<R: Read>(reader: R) -> usize {\n"
" let buf_reader = BufReader::new(reader);\n"
" buf_reader.lines().count()\n"
"}\n"
"\n"
"fn main() -> Result<()> {\n"
" let slice: &[u8] = b\"foo\\nbar\\nbaz\\n\";\n"
" println!(\"lines in slice: {}\", count_lines(slice));\n"
"\n"
" let file = std::fs::File::open(std::env::current_exe()?)?;\n"
" println!(\"lines in file: {}\", count_lines(file));\n"
" Ok(())\n"
"}\n"
"```"
msgstr ""
#: src/traits/read-write.md:23
msgid "Similarly, [`Write`][3] lets you abstract over `u8` sinks:"
msgstr "您同样可使用 [`Write`][3] 对 `u8` 接收器进行抽象化处理:"
#: src/traits/read-write.md:25
msgid ""
"```rust,editable\n"
"use std::io::{Result, Write};\n"
"\n"
"fn log<W: Write>(writer: &mut W, msg: &str) -> Result<()> {\n"
" writer.write_all(msg.as_bytes())?;\n"
" writer.write_all(\"\\n\".as_bytes())\n"
"}\n"
"\n"
"fn main() -> Result<()> {\n"
" let mut buffer = Vec::new();\n"
" log(&mut buffer, \"Hello\")?;\n"
" log(&mut buffer, \"World\")?;\n"
" println!(\"Logged: {:?}\", buffer);\n"
" Ok(())\n"
"}\n"
"```"
msgstr ""
#: src/traits/drop.md:1
msgid "# The `Drop` Trait"
msgstr "# `Drop` 特征"
#: src/traits/drop.md:3
msgid ""
"Values which implement [`Drop`][1] can specify code to run when they go out "
"of scope:"
msgstr "用于实现 [`Drop`][1] 的值可以指定在超出范围时运行的代码:"
#: src/traits/drop.md:5
msgid ""
"```rust,editable\n"
"struct Droppable {\n"
" name: &'static str,\n"
"}\n"
"\n"
"impl Drop for Droppable {\n"
" fn drop(&mut self) {\n"
" println!(\"Dropping {}\", self.name);\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let a = Droppable { name: \"a\" };\n"
" {\n"
" let b = Droppable { name: \"b\" };\n"
" {\n"
" let c = Droppable { name: \"c\" };\n"
" let d = Droppable { name: \"d\" };\n"
" println!(\"Exiting block B\");\n"
" }\n"
" println!(\"Exiting block A\");\n"
" }\n"
" drop(a);\n"
" println!(\"Exiting main\");\n"
"}\n"
"```"
msgstr ""
#: src/traits/drop.md:34 src/traits/operators.md:26
msgid "Discussion points:"
msgstr "讨论点:"
#: src/traits/drop.md:36
msgid ""
"* Why doesn't `Drop::drop` take `self`?\n"
" * Short-answer: If it did, `std::mem::drop` would be called at the end "
"of\n"
" the block, resulting in another call to `Drop::drop`, and a stack\n"
" overflow!\n"
"* Try replacing `drop(a)` with `a.drop()`."
msgstr ""
"* 为什么 `Drop::drop` 不使用 `self`?\n"
" * 简答:如果这样的话,系统会在代码块结尾\n"
"调用 `std::mem::drop`,进而引发再一次调用 `Drop::drop`,并引发堆栈\n"
"溢出!\n"
"* 尝试用 `a.drop()` 替换 `drop(a)`。"
#: src/traits/default.md:1
msgid "# The `Default` Trait"
msgstr "# `Default` 特征"
#: src/traits/default.md:3
msgid "[`Default`][1] trait provides a default implementation of a trait."
msgstr ""
#: src/traits/default.md:5
msgid ""
"```rust,editable\n"
"#[derive(Debug, Default)]\n"
"struct Derived {\n"
" x: u32,\n"
" y: String,\n"
" z: Implemented,\n"
"}\n"
"\n"
"#[derive(Debug)]\n"
"struct Implemented(String);\n"
"\n"
"impl Default for Implemented {\n"
" fn default() -> Self {\n"
" Self(\"John Smith\".into())\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let default_struct: Derived = Default::default();\n"
" println!(\"{default_struct:#?}\");\n"
"\n"
" let almost_default_struct = Derived {\n"
" y: \"Y is set!\".into(),\n"
" ..Default::default()\n"
" };\n"
" println!(\"{almost_default_struct:#?}\");\n"
"\n"
" let nothing: Option<Derived> = None;\n"
" println!(\"{:#?}\", nothing.unwrap_or_default());\n"
"}\n"
"\n"
"```"
msgstr ""
#: src/traits/default.md:40
msgid ""
" * It can be implemented directly or it can be derived via "
"`#[derive(Default)]`.\n"
" * Derived implementation will produce an instance where all fields are set "
"to their default values.\n"
" * This means all types in the struct must implement `Default` too.\n"
" * Standard Rust types often implement `Default` with reasonable values (e."
"g. `0`, `\"\"`, etc).\n"
" * The partial struct copy works nicely with default.\n"
" * Rust standard library is aware that types can implement `Default` and "
"provides convenience methods that use it."
msgstr ""
" * 系统可以直接实现它,也可以通过 `#[derive(Default)]` 派生出它。\n"
" * 派生的实现会生成一个实例,其中字段全都设为其默认值。\n"
" * 这意味着,该结构体中的所有类型也都必须实现 `Default`。\n"
" * 标准的 Rust 类型通常会以合理的值(例如 `0``\"\"` 等)实现 `Default`。\n"
" * 部分结构体副本可与默认值完美搭配运作。\n"
" * Rust 标准库了解类型可能会实现 `Default`,因此提供了便利的使用方式。"
#: src/traits/operators.md:1
msgid "# `Add`, `Mul`, ..."
msgstr "# `Add``Mul`…"
#: src/traits/operators.md:3
msgid "Operator overloading is implemented via traits in [`std::ops`][1]:"
msgstr "运算符重载是通过 [`std::ops`][1] 中的特征实现的:"
#: src/traits/operators.md:5
msgid ""
"```rust,editable\n"
"#[derive(Debug, Copy, Clone)]\n"
"struct Point { x: i32, y: i32 }\n"
"\n"
"impl std::ops::Add for Point {\n"
" type Output = Self;\n"
"\n"
" fn add(self, other: Self) -> Self {\n"
" Self {x: self.x + other.x, y: self.y + other.y}\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let p1 = Point { x: 10, y: 20 };\n"
" let p2 = Point { x: 100, y: 200 };\n"
" println!(\"{:?} + {:?} = {:?}\", p1, p2, p1 + p2);\n"
"}\n"
"```"
msgstr ""
#: src/traits/operators.md:28
msgid ""
"* You could implement `Add` for `&Point`. In which situations is that "
"useful? \n"
" * Answer: `Add:add` consumes `self`. If type `T` for which you are\n"
" overloading the operator is not `Copy`, you should consider "
"overloading\n"
" the operator for `&T` as well. This avoids unnecessary cloning on "
"the\n"
" call site.\n"
"* Why is `Output` an associated type? Could it be made a type parameter?\n"
" * Short answer: Type parameters are controlled by the caller, but\n"
" associated types (like `Output`) are controlled by the implementor "
"of a\n"
" trait."
msgstr ""
#: src/traits/closures.md:1
msgid "# Closures"
msgstr "# 闭包"
#: src/traits/closures.md:3
msgid ""
"Closures or lambda expressions have types which cannot be named. However, "
"they\n"
"implement special [`Fn`](https://doc.rust-lang.org/std/ops/trait.Fn.html),\n"
"[`FnMut`](https://doc.rust-lang.org/std/ops/trait.FnMut.html), and\n"
"[`FnOnce`](https://doc.rust-lang.org/std/ops/trait.FnOnce.html) traits:"
msgstr ""
"闭包或 lambda 表达式具有无法命名的类型。不过,它们会\n"
"实现特殊的 [`Fn`](https://doc.rust-lang.org/std/ops/trait.Fn.html),\n"
"[`FnMut`](https://doc.rust-lang.org/std/ops/trait.FnMut.html) 和\n"
"[`FnOnce`](https://doc.rust-lang.org/std/ops/trait.FnOnce.html) 特征:"
#: src/traits/closures.md:8
msgid ""
"```rust,editable\n"
"fn apply_with_log(func: impl FnOnce(i32) -> i32, input: i32) -> i32 {\n"
" println!(\"Calling function on {input}\");\n"
" func(input)\n"
"}\n"
"\n"
"fn main() {\n"
" let add_3 = |x| x + 3;\n"
" let mul_5 = |x| x * 5;\n"
"\n"
" println!(\"add_3: {}\", apply_with_log(add_3, 10));\n"
" println!(\"mul_5: {}\", apply_with_log(mul_5, 20));\n"
"}\n"
"```"
msgstr ""
#: src/traits/closures.md:25
msgid ""
"If you have an `FnOnce`, you may only call it once. It might consume "
"captured values."
msgstr ""
#: src/traits/closures.md:27
msgid ""
"An `FnMut` might mutate captured values, so you can call it multiple times "
"but not concurrently."
msgstr ""
#: src/traits/closures.md:29
msgid ""
"An `Fn` neither consumes nor mutates captured values, or perhaps captures "
"nothing at all, so it can\n"
"be called multiple times concurrently."
msgstr ""
#: src/traits/closures.md:43
msgid ""
"`FnMut` is a subtype of `FnOnce`. `Fn` is a subtype of `FnMut` and `FnOnce`. "
"I.e. you can use an\n"
"`FnMut` wherever an `FnOnce` is called for, and you can use an `Fn` wherever "
"an `FnMut` or `FnOnce`\n"
"is called for."
msgstr ""
"`FnMut` 是 `FnOnce` 的子类型。`Fn` 是 `FnMut` 和 `FnOnce` 的子类型。也就是"
"说,您可以在任何\n"
"需要调用 `FnOnce` 的地方使用 `FnMut`,还可在任何需要调用 `FnMut` 或 `FnOnce` "
"的地方\n"
"使用 `Fn`。"
#: src/traits/closures.md:36
msgid "`move` closures only implement `FnOnce`."
msgstr ""
#: src/traits/default.md:3
msgid "[`Default`][1] trait produces a default value for a type."
msgstr "[`Default`][1] 特征会为类型生成默认值。"
#: src/traits/operators.md:28
msgid ""
"* You could implement `Add` for `&Point`. In which situations is that "
"useful? \n"
" * Answer: `Add:add` consumes `self`. If type `T` for which you are\n"
" overloading the operator is not `Copy`, you should consider "
"overloading\n"
" the operator for `&T` as well. This avoids unnecessary cloning on "
"the\n"
" call site.\n"
"* Why is `Output` an associated type? Could it be made a type parameter of "
"the method?\n"
" * Short answer: Function type parameters are controlled by the caller, "
"but\n"
" associated types (like `Output`) are controlled by the implementor "
"of a\n"
" trait.\n"
"* You could implement `Add` for two different types, e.g.\n"
" `impl Add<(i32, i32)> for Point` would add a tuple to a `Point`."
msgstr ""
"* 您可以针对 `&Point` 实现 `Add`。此做法在哪些情况下可派上用场?\n"
" * 回答:`Add:add` 会耗用 `self`。如果您的运算符重载对象\n"
"(即类型 `T`)不是 `Copy`,建议您也为 `&T`\n"
"重载运算符。这可避免调用点上存在不必要的\n"
"克隆任务。\n"
"* 为什么 `Output` 是关联类型?可将它用作该方法的类型形参吗?\n"
" * 简答:函数类型形参是由调用方控管,但\n"
"`Output` 这类关联类型则由特征实现人员\n"
"控管。\n"
"* 您可以针对两种不同类型实现 `Add`,例如,\n"
"`impl Add<(i32, i32)> for Point` 会向 `Point` 中添加元组。"
#: src/traits/closures.md:34
msgid ""
"An `Fn` (e.g. `add_3`) neither consumes nor mutates captured values, or "
"perhaps captures\n"
"nothing at all. It can be called multiple times concurrently."
msgstr ""
"`Fn`(例如 `add_3`)既不会耗用也不会修改捕获的值,或许\n"
"也不会捕获任何值。它可被并发调用多次。"
#: src/traits/closures.md:37
msgid ""
"An `FnMut` (e.g. `accumulate`) might mutate captured values. You can call it "
"multiple times,\n"
"but not concurrently."
msgstr ""
"`FnMut`(例如 `accumulate`)可能会改变捕获的值。您可以多次调用它,\n"
"但不能并发调用它。"
#: src/traits/closures.md:40
msgid ""
"If you have an `FnOnce` (e.g. `multiply_sum`), you may only call it once. It "
"might consume\n"
"captured values."
msgstr ""
"如果您使用 `FnOnce`(例如 `multiply_sum`),或许只能调用它一次。它可能会耗"
"用\n"
"所捕获的值。"
#: src/traits/closures.md:47
msgid ""
"The compiler also infers `Copy` (e.g. for `add_3`) and `Clone` (e.g. "
"`multiply_sum`),\n"
"depending on what the closure captures."
msgstr ""
"编译器也会推断 `Copy`(例如针对 `add_3`)和 `Clone`(例如 "
"`multiply_sum`),\n"
"具体取决于闭包捕获的数据。"
#: src/traits/closures.md:50
msgid ""
"By default, closures will capture by reference if they can. The `move` "
"keyword makes them capture\n"
"by value."
msgstr ""
"默认情况下,闭包会依据引用来捕获数据(如果可以的话)。`move` 关键字则可让闭包"
"依据值\n"
"来捕获数据。"
#: src/exercises/day-3/morning.md:1
msgid "# Day 3: Morning Exercises"
msgstr ""
#: src/exercises/day-3/morning.md:3
msgid "We will design a classical GUI library traits and trait objects."
msgstr ""
#: src/exercises/day-3/simple-gui.md:1
msgid "# A Simple GUI Library"
msgstr ""
#: src/exercises/day-3/simple-gui.md:3
msgid ""
"Let us design a classical GUI library using our new knowledge of traits and\n"
"trait objects."
msgstr ""
#: src/exercises/day-3/simple-gui.md:6
msgid "We will have a number of widgets in our library:"
msgstr ""
#: src/exercises/day-3/simple-gui.md:8
msgid ""
"* `Window`: has a `title` and contains other widgets.\n"
"* `Button`: has a `label` and a callback function which is invoked when the\n"
" button is pressed.\n"
"* `Label`: has a `label`."
msgstr ""
#: src/exercises/day-3/simple-gui.md:13
msgid "The widgets will implement a `Widget` trait, see below."
msgstr ""
#: src/exercises/day-3/simple-gui.md:15
msgid ""
"Copy the code below to <https://play.rust-lang.org/>, fill in the missing\n"
"`draw_into` methods so that you implement the `Widget` trait:"
msgstr ""
#: src/exercises/day-3/simple-gui.md:18
msgid ""
"```rust,should_panic\n"
"// TODO: remove this when you're done with your implementation.\n"
"#![allow(unused_imports, unused_variables, dead_code)]\n"
"\n"
"pub trait Widget {\n"
" /// Natural width of `self`.\n"
" fn width(&self) -> usize;\n"
"\n"
" /// Draw the widget into a buffer.\n"
" fn draw_into(&self, buffer: &mut dyn std::fmt::Write);\n"
"\n"
" /// Draw the widget on standard output.\n"
" fn draw(&self) {\n"
" let mut buffer = String::new();\n"
" self.draw_into(&mut buffer);\n"
" println!(\"{buffer}\");\n"
" }\n"
"}\n"
"\n"
"pub struct Label {\n"
" label: String,\n"
"}\n"
"\n"
"impl Label {\n"
" fn new(label: &str) -> Label {\n"
" Label {\n"
" label: label.to_owned(),\n"
" }\n"
" }\n"
"}\n"
"\n"
"pub struct Button {\n"
" label: Label,\n"
" callback: Box<dyn FnMut()>,\n"
"}\n"
"\n"
"impl Button {\n"
" fn new(label: &str, callback: Box<dyn FnMut()>) -> Button {\n"
" Button {\n"
" label: Label::new(label),\n"
" callback,\n"
" }\n"
" }\n"
"}\n"
"\n"
"pub struct Window {\n"
" title: String,\n"
" widgets: Vec<Box<dyn Widget>>,\n"
"}\n"
"\n"
"impl Window {\n"
" fn new(title: &str) -> Window {\n"
" Window {\n"
" title: title.to_owned(),\n"
" widgets: Vec::new(),\n"
" }\n"
" }\n"
"\n"
" fn add_widget(&mut self, widget: Box<dyn Widget>) {\n"
" self.widgets.push(widget);\n"
" }\n"
"\n"
" fn inner_width(&self) -> usize {\n"
" std::cmp::max(\n"
" self.title.chars().count(),\n"
" self.widgets.iter().map(|w| w.width()).max().unwrap_or(0),\n"
" )\n"
" }\n"
"}\n"
"\n"
"\n"
"impl Widget for Label {\n"
" fn width(&self) -> usize {\n"
" unimplemented!()\n"
" }\n"
"\n"
" fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {\n"
" unimplemented!()\n"
" }\n"
"}\n"
"\n"
"impl Widget for Button {\n"
" fn width(&self) -> usize {\n"
" unimplemented!()\n"
" }\n"
"\n"
" fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {\n"
" unimplemented!()\n"
" }\n"
"}\n"
"\n"
"impl Widget for Window {\n"
" fn width(&self) -> usize {\n"
" unimplemented!()\n"
" }\n"
"\n"
" fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {\n"
" unimplemented!()\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" let mut window = Window::new(\"Rust GUI Demo 1.23\");\n"
" window.add_widget(Box::new(Label::new(\"This is a small text GUI demo."
"\")));\n"
" window.add_widget(Box::new(Button::new(\n"
" \"Click me!\",\n"
" Box::new(|| println!(\"You clicked the button!\")),\n"
" )));\n"
" window.draw();\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-3/simple-gui.md:130
msgid "The output of the above program can be something simple like this:"
msgstr ""
#: src/exercises/day-3/simple-gui.md:132
msgid ""
"```text\n"
"========\n"
"Rust GUI Demo 1.23\n"
"========\n"
"\n"
"This is a small text GUI demo.\n"
"\n"
"| Click me! |\n"
"```"
msgstr ""
#: src/exercises/day-3/simple-gui.md:142
msgid ""
"If you want to draw aligned text, you can use the\n"
"[fill/alignment](https://doc.rust-lang.org/std/fmt/index."
"html#fillalignment)\n"
"formatting operators. In particular, notice how you can pad with different\n"
"characters (here a `'/'`) and how you can control alignment:"
msgstr ""
#: src/exercises/day-3/simple-gui.md:147
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let width = 10;\n"
" println!(\"left aligned: |{:/<width$}|\", \"foo\");\n"
" println!(\"centered: |{:/^width$}|\", \"foo\");\n"
" println!(\"right aligned: |{:/>width$}|\", \"foo\");\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-3/simple-gui.md:156
msgid ""
"Using such alignment tricks, you can for example produce output like this:"
msgstr ""
#: src/exercises/day-3/simple-gui.md:158
msgid ""
"```text\n"
"+--------------------------------+\n"
"| Rust GUI Demo 1.23 |\n"
"+================================+\n"
"| This is a small text GUI demo. |\n"
"| +-----------+ |\n"
"| | Click me! | |\n"
"| +-----------+ |\n"
"+--------------------------------+\n"
"```"
msgstr ""
#: src/error-handling.md:1
msgid "# Error Handling"
msgstr "# 错误处理"
#: src/error-handling.md:3
msgid "Error handling in Rust is done using explicit control flow:"
msgstr "Rust 中的错误处理是使用显式控制流来进行的:"
#: src/error-handling.md:5
msgid ""
"* Functions that can have errors list this in their return type,\n"
"* There are no exceptions."
msgstr ""
"* 包含错误的函数会在返回类型中列出相关信息。\n"
"* 此规则没有例外。"
#: src/error-handling/panics.md:1
msgid "# Panics"
msgstr "# Panics"
#: src/error-handling/panics.md:3
msgid "Rust will trigger a panic if a fatal error happens at runtime:"
msgstr "如果运行时发生严重错误,Rust 会触发 panic:"
#: src/error-handling/panics.md:5
msgid ""
"```rust,editable,should_panic\n"
"fn main() {\n"
" let v = vec![10, 20, 30];\n"
" println!(\"v[100]: {}\", v[100]);\n"
"}\n"
"```"
msgstr ""
#: src/error-handling/panics.md:12
msgid ""
"* Panics are for unrecoverable and unexpected errors.\n"
" * Panics are symptoms of bugs in the program.\n"
"* Use non-panicking APIs (such as `Vec::get`) if crashing is not acceptable."
msgstr ""
"* Panic 用于指示不可恢复的意外错误。\n"
" * Panic反映了程序中的 bug 问题。\n"
"* 如果崩溃不可接受,请使用不会触发 panic 的 API(例如 `Vec::get`)。"
#: src/error-handling/panic-unwind.md:1
msgid "# Catching the Stack Unwinding"
msgstr "# 捕获堆栈展开"
#: src/error-handling/panic-unwind.md:3
msgid ""
"By default, a panic will cause the stack to unwind. The unwinding can be "
"caught:"
msgstr "默认情况下,panic 会导致堆栈展开。您可以捕获展开信息:"
#: src/error-handling/panic-unwind.md:5
msgid ""
"```rust,editable\n"
"use std::panic;\n"
"\n"
"let result = panic::catch_unwind(|| {\n"
" println!(\"hello!\");\n"
"});\n"
"assert!(result.is_ok());\n"
"\n"
"let result = panic::catch_unwind(|| {\n"
" panic!(\"oh no!\");\n"
"});\n"
"assert!(result.is_err());\n"
"```"
msgstr ""
#: src/error-handling/panic-unwind.md:21
msgid ""
"* This can be useful in servers which should keep running even if a single\n"
" request crashes.\n"
"* This does not work if `panic = 'abort'` is set in your `Cargo.toml`."
msgstr ""
"* 如果服务器需要持续运行(即使是在请求发生崩溃的情况下),\n"
" 此方法十分有用。\n"
"* 如果您在 `Cargo.toml` 中设置了 `panic = 'abort'`,此方法不会生效。"
#: src/error-handling/result.md:1
msgid "# Structured Error Handling with `Result`"
msgstr "# 使用 `Result` 进行结构化错误处理"
#: src/error-handling/result.md:3
msgid ""
"We have already seen the `Result` enum. This is used pervasively when errors "
"are\n"
"expected as part of normal operation:"
msgstr ""
"在前面,我们看到了 `Result` 枚举。在遇到正常操作产生的预期错误时,\n"
"我们常会用到此方法:"
#: src/error-handling/result.md:6
msgid ""
"```rust,editable\n"
"use std::fs::File;\n"
"use std::io::Read;\n"
"\n"
"fn main() {\n"
" let file = File::open(\"diary.txt\");\n"
" match file {\n"
" Ok(mut file) => {\n"
" let mut contents = String::new();\n"
" file.read_to_string(&mut contents);\n"
" println!(\"Dear diary: {contents}\");\n"
" },\n"
" Err(err) => {\n"
" println!(\"The diary could not be opened: {err}\");\n"
" }\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/error-handling/result.md:27
msgid ""
" * As with `Option`, the successful value sits inside of `Result`, forcing "
"the developer to\n"
" explicitly extract it. This encourages error checking. In the case where "
"an error should never happen,\n"
" `unwrap()` or `expect()` can be called, and this is a signal of the "
"developer intent too. \n"
" * `Result` documentation is a recommended read. Not during the course, but "
"it is worth mentioning. \n"
" It contains a lot of convenience methods and functions that help "
"functional-style programming. \n"
" "
msgstr ""
" * 与 `Option` 方法相同,成功值位于 `Result` 方法内部,\n"
" 开发者必须显示提取成功值。因此,建议进行错误检查。在绝不应出现错误的情况"
"下,\n"
" 可以调用 `unwrap()` 或 `expect()` 方法,这也是一种开发者意向信号。\n"
" * 我们建议阅读 `Result` 文档。虽然课程中不会涉及该文档,但是有必要提到"
"它。\n"
" 该文档中包含许多便捷的方法和函数,对于函数式编程很有帮助。\n"
" "
#: src/error-handling/try-operator.md:1
msgid "# Propagating Errors with `?`"
msgstr "# 使用 `?` 传播错误"
#: src/error-handling/try-operator.md:3
msgid ""
"The try-operator `?` is used to return errors to the caller. It lets you "
"turn\n"
"the common"
msgstr ""
"try 操作符 `?` 用于将错误返回给调用方。它能把常用命令"
#: src/error-handling/try-operator.md:6
msgid ""
"```rust,ignore\n"
"match some_expression {\n"
" Ok(value) => value,\n"
" Err(err) => return Err(err),\n"
"}\n"
"```"
msgstr ""
"```rust,ignore\n"
"match some_expression {\n"
" Ok(value) => value,\n"
" Err(err) => return Err(err),\n"
"}\n"
"```"
#: src/error-handling/try-operator.md:13
msgid "into the much simpler"
msgstr "转换成更简单的命令"
#: src/error-handling/try-operator.md:15
msgid ""
"```rust,ignore\n"
"some_expression?\n"
"```"
msgstr ""
"```rust,ignore\n"
"some_expression?\n"
"```"
#: src/error-handling/try-operator.md:19
msgid "We can use this to simplify our error handing code:"
msgstr "我们可以用它来简化错误处理代码:"
#: src/error-handling/try-operator.md:21
msgid ""
"```rust,editable\n"
"use std::fs;\n"
"use std::io::{self, Read};\n"
"\n"
"fn read_username(path: &str) -> Result<String, io::Error> {\n"
" let username_file_result = fs::File::open(path);\n"
" let mut username_file = match username_file_result {\n"
" Ok(file) => file,\n"
" Err(err) => return Err(err),\n"
" };\n"
"\n"
" let mut username = String::new();\n"
" match username_file.read_to_string(&mut username) {\n"
" Ok(_) => Ok(username),\n"
" Err(err) => Err(err),\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" //fs::write(\"config.dat\", \"alice\").unwrap();\n"
" let username = read_username(\"config.dat\");\n"
" println!(\"username or error: {username:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/error-handling/try-operator.md:50
#: src/error-handling/converting-error-types-example.md:52
msgid ""
"* The `username` variable can be either `Ok(string)` or `Err(error)`.\n"
"* Use the `fs::write` call to test out the different scenarios: no file, "
"empty file, file with username."
msgstr ""
"* `username` 变量可以是 `Ok(string)` 或 `Err(error)`。\n"
"* 可以使用 `fs::write` 调用来测试不同的场景:没有文件、空文件、包含用户名的文"
"件。"
#: src/error-handling/converting-error-types.md:1
#: src/error-handling/converting-error-types-example.md:1
msgid "# Converting Error Types"
msgstr "# 转换错误类型"
#: src/error-handling/converting-error-types.md:3
msgid ""
"The effective expansion of `?` is a little more complicated than previously "
"indicated:"
msgstr "`?` 的有效展开比前面介绍的内容略微复杂一些:"
#: src/error-handling/converting-error-types.md:5
msgid ""
"```rust,ignore\n"
"expression?\n"
"```"
msgstr ""
"```rust,ignore\n"
"expression?\n"
"```"
#: src/error-handling/converting-error-types.md:9
msgid "works the same as"
msgstr "效果等同于"
#: src/error-handling/converting-error-types.md:11
msgid ""
"```rust,ignore\n"
"match expression {\n"
" Ok(value) => value,\n"
" Err(err) => return Err(From::from(err)),\n"
"}\n"
"```"
msgstr ""
"```rust,ignore\n"
"match expression {\n"
" Ok(value) => value,\n"
" Err(err) => return Err(From::from(err)),\n"
"}\n"
"```"
#: src/error-handling/converting-error-types.md:18
msgid ""
"The `From::from` call here means we attempt to convert the error type to "
"the\n"
"type returned by the function:"
msgstr ""
"此处的 `From::from` 调用表示,我们尝试将错误类型转换为\n"
"函数返回的类型:"
#: src/error-handling/converting-error-types-example.md:3
msgid ""
"```rust,editable\n"
"use std::error::Error;\n"
"use std::fmt::{self, Display, Formatter};\n"
"use std::fs::{self, File};\n"
"use std::io::{self, Read};\n"
"\n"
"#[derive(Debug)]\n"
"enum ReadUsernameError {\n"
" IoError(io::Error),\n"
" EmptyUsername(String),\n"
"}\n"
"\n"
"impl Error for ReadUsernameError {}\n"
"\n"
"impl Display for ReadUsernameError {\n"
" fn fmt(&self, f: &mut Formatter) -> fmt::Result {\n"
" match self {\n"
" Self::IoError(e) => write!(f, \"IO error: {e}\"),\n"
" Self::EmptyUsername(filename) => write!(f, \"Found no username "
"in {filename}\"),\n"
" }\n"
" }\n"
"}\n"
"\n"
"impl From<io::Error> for ReadUsernameError {\n"
" fn from(err: io::Error) -> ReadUsernameError {\n"
" ReadUsernameError::IoError(err)\n"
" }\n"
"}\n"
"\n"
"fn read_username(path: &str) -> Result<String, ReadUsernameError> {\n"
" let mut username = String::with_capacity(100);\n"
" File::open(path)?.read_to_string(&mut username)?;\n"
" if username.is_empty() {\n"
" return Err(ReadUsernameError::EmptyUsername(String::from(path)));\n"
" }\n"
" Ok(username)\n"
"}\n"
"\n"
"fn main() {\n"
" //fs::write(\"config.dat\", \"\").unwrap();\n"
" let username = read_username(\"config.dat\");\n"
" println!(\"username or error: {username:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/error-handling/converting-error-types-example.md:55
msgid ""
"It is good practice for all error types to implement `std::error::Error`, "
"which requires `Debug` and\n"
"`Display`. It's generally helpful for them to implement `Clone` and `Eq` too "
"where possible, to make\n"
"life easier for tests and consumers of your library. In this case we can't "
"easily do so, because\n"
"`io::Error` doesn't implement them."
msgstr ""
"对所有错误类型实现 `std::error::Error` 是一种很好的做法,而这需要结合使用 "
"`Debug` 和 `Display` 方法。\n"
"通常,在可能的情况下实现 `Clone` 和 `Eq` 也十分有益,\n"
"可以让库的测试和使用变得更加简单。在本例中,我们无法轻松做到这一点,\n"
"因为 `io::Error` 不能实现这些方法。"
#: src/error-handling/deriving-error-enums.md:1
msgid "# Deriving Error Enums"
msgstr "# 派生错误枚举"
#: src/error-handling/deriving-error-enums.md:3
msgid ""
"The [thiserror](https://docs.rs/thiserror/) crate is a popular way to create "
"an\n"
"error enum like we did on the previous page:"
msgstr ""
"[thiserror](https://docs.rs/thiserror/) crate 是创建错误枚举的常用方法,\n"
"就像前一页中提供的示例一样:"
#: src/error-handling/deriving-error-enums.md:6
msgid ""
"```rust,editable,compile_fail\n"
"use std::{fs, io};\n"
"use std::io::Read;\n"
"use thiserror::Error;\n"
"\n"
"#[derive(Debug, Error)]\n"
"enum ReadUsernameError {\n"
" #[error(\"Could not read: {0}\")]\n"
" IoError(#[from] io::Error),\n"
" #[error(\"Found no username in {0}\")]\n"
" EmptyUsername(String),\n"
"}\n"
"\n"
"fn read_username(path: &str) -> Result<String, ReadUsernameError> {\n"
" let mut username = String::with_capacity(100);\n"
" fs::File::open(path)?.read_to_string(&mut username)?;\n"
" if username.is_empty() {\n"
" return Err(ReadUsernameError::EmptyUsername(String::from(path)));\n"
" }\n"
" Ok(username)\n"
"}\n"
"\n"
"fn main() {\n"
" //fs::write(\"config.dat\", \"\").unwrap();\n"
" match read_username(\"config.dat\") {\n"
" Ok(username) => println!(\"Username: {username}\"),\n"
" Err(err) => println!(\"Error: {err}\"),\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/error-handling/deriving-error-enums.md:39
msgid ""
"`thiserror`'s derive macro automatically implements `std::error::Error`, and "
"optionally `Display`\n"
"(if the `#[error(...)]` attributes are provided) and `From` (if the "
"`#[from]` attribute is added).\n"
"It also works for structs."
msgstr ""
"`thiserror` 的派生宏会自动实现 `std::error::Error`,并且可以选择性地实现 "
"`Display`\n"
"(如果提供了 `#[error(...)]` 属性)和 `From`(如果添加了 `#[from]` 属性)。\n"
"此规则也适用于结构体。"
#: src/error-handling/deriving-error-enums.md:43
msgid "It doesn't affect your public API, which makes it good for libraries."
msgstr "但是,此规则不会影响公共 API,对于库而言,这非常理想。"
#: src/error-handling/dynamic-errors.md:1
msgid "# Dynamic Error Types"
msgstr "# 动态错误类型"
#: src/error-handling/dynamic-errors.md:3
msgid ""
"Sometimes we want to allow any type of error to be returned without writing "
"our own enum covering\n"
"all the different possibilities. `std::error::Error` makes this easy."
msgstr ""
"有时,我们需要允许返回任意类型的错误,但又不想自己手动编写枚举来涵盖所有不同"
"的可能性。\n"
"`std::error::Error` 可以让我们轻松做到这一点。"
#: src/error-handling/dynamic-errors.md:6
msgid ""
"```rust,editable,compile_fail\n"
"use std::fs::{self, File};\n"
"use std::io::Read;\n"
"use thiserror::Error;\n"
"use std::error::Error;\n"
"\n"
"#[derive(Clone, Debug, Eq, Error, PartialEq)]\n"
"#[error(\"Found no username in {0}\")]\n"
"struct EmptyUsernameError(String);\n"
"\n"
"fn read_username(path: &str) -> Result<String, Box<dyn Error>> {\n"
" let mut username = String::with_capacity(100);\n"
" File::open(path)?.read_to_string(&mut username)?;\n"
" if username.is_empty() {\n"
" return Err(EmptyUsernameError(String::from(path)).into());\n"
" }\n"
" Ok(username)\n"
"}\n"
"\n"
"fn main() {\n"
" //fs::write(\"config.dat\", \"\").unwrap();\n"
" match read_username(\"config.dat\") {\n"
" Ok(username) => println!(\"Username: {username}\"),\n"
" Err(err) => println!(\"Error: {err}\"),\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/error-handling/dynamic-errors.md:36
msgid ""
"This saves on code, but gives up the ability to cleanly handle different "
"error cases differently in\n"
"the program. As such it's generally not a good idea to use `Box<dyn Error>` "
"in the public API of a\n"
"library, but it can be a good option in a program where you just want to "
"display the error message\n"
"somewhere."
msgstr ""
"虽然这可以省却编写代码的麻烦,但也会导致我们无法在程序中以不同的方式正常处理"
"不同的\n"
"错误情况。因此,在库的公共 API 中使用 `Box<dyn Error>` 通常不是一个好主意。\n"
"但是对于您只需要在某处显示错误消息的程序来说,这不失为一个\n"
"很好的选择。"
#: src/error-handling/error-contexts.md:1
msgid "# Adding Context to Errors"
msgstr "# 为错误添加背景信息"
#: src/error-handling/error-contexts.md:3
msgid ""
"The widely used [anyhow](https://docs.rs/anyhow/) crate can help you add\n"
"contextual information to your errors and allows you to have fewer\n"
"custom error types:"
msgstr ""
"广泛使用的 [anyhow](https://docs.rs/anyhow/) crate 可以帮助我们为错误添加\n"
"背景信息,并减少自定义错误类型的\n"
"数量。"
#: src/error-handling/error-contexts.md:7
msgid ""
"```rust,editable,compile_fail\n"
"use std::{fs, io};\n"
"use std::io::Read;\n"
"use anyhow::{Context, Result, bail};\n"
"\n"
"fn read_username(path: &str) -> Result<String> {\n"
" let mut username = String::with_capacity(100);\n"
" fs::File::open(path)\n"
" .with_context(|| format!(\"Failed to open {path}\"))?\n"
" .read_to_string(&mut username)\n"
" .context(\"Failed to read\")?;\n"
" if username.is_empty() {\n"
" bail!(\"Found no username in {path}\");\n"
" }\n"
" Ok(username)\n"
"}\n"
"\n"
"fn main() {\n"
" //fs::write(\"config.dat\", \"\").unwrap();\n"
" match read_username(\"config.dat\") {\n"
" Ok(username) => println!(\"Username: {username}\"),\n"
" Err(err) => println!(\"Error: {err:?}\"),\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/error-handling/error-contexts.md:35
msgid ""
"* `anyhow::Result<V>` is a type alias for `Result<V, anyhow::Error>`.\n"
"* `anyhow::Error` is essentially a wrapper around `Box<dyn Error>`. As such "
"it's again generally not\n"
" a good choice for the public API of a library, but is widely used in "
"applications.\n"
"* Actual error type inside of it can be extracted for examination if "
"necessary.\n"
"* Functionality provided by `anyhow::Result<T>` may be familiar to Go "
"developers, as it provides\n"
" similar usage patterns and ergonomics to `(T, error)` from Go."
msgstr ""
"* “anyhow::Result<V>”是“Result<V, anyhow::Error>”的类型别名。\n"
"* “anyhow::Error”本质上是“Box<dyn Error>”的封装容器。因此,就像前面提到的那"
"样,在库的公共 API 中\n"
" 使用它通常不是一个好主意。但是它广泛用于应用中。\n"
"* 如果需要,可以提取其内部的实际错误类型进行检查。\n"
"* Go 开发者可能会十分熟悉 `anyhow::Result<T>` 提供的功能,\n"
" 因为它的使用模式和工效学设计与 Go 的 `(T, error)` 方法十分相似。"
#: src/testing.md:1
msgid "# Testing"
msgstr "# 测试"
#: src/testing.md:3
msgid "Rust and Cargo come with a simple unit test framework:"
msgstr "Rust 和 Cargo 随附了一个简单的单元测试框架:"
#: src/testing.md:5
msgid ""
"* Unit tests are supported throughout your code.\n"
"\n"
"* Integration tests are supported via the `tests/` directory."
msgstr ""
"* 单元测试在您的整个代码中都受支持。\n"
"\n"
"* 您可以通过 `tests/` 目录来支持集成测试。"
#: src/testing/unit-tests.md:1
msgid "# Unit Tests"
msgstr "# 单元测试"
#: src/testing/unit-tests.md:3
msgid "Mark unit tests with `#[test]`:"
msgstr "使用 `#[test]` 标记单元测试:"
#: src/testing/unit-tests.md:5
msgid ""
"```rust,editable,ignore\n"
"fn first_word(text: &str) -> &str {\n"
" match text.find(' ') {\n"
" Some(idx) => &text[..idx],\n"
" None => &text,\n"
" }\n"
"}\n"
"\n"
"#[test]\n"
"fn test_empty() {\n"
" assert_eq!(first_word(\"\"), \"\");\n"
"}\n"
"\n"
"#[test]\n"
"fn test_single_word() {\n"
" assert_eq!(first_word(\"Hello\"), \"Hello\");\n"
"}\n"
"\n"
"#[test]\n"
"fn test_multiple_words() {\n"
" assert_eq!(first_word(\"Hello World\"), \"Hello\");\n"
"}\n"
"```"
msgstr ""
#: src/testing/unit-tests.md:29
msgid "Use `cargo test` to find and run the unit tests."
msgstr "使用 `cargo test` 查找并运行单元测试。"
#: src/testing/test-modules.md:1
msgid "# Test Modules"
msgstr "# 测试模块"
#: src/testing/test-modules.md:3
msgid ""
"Unit tests are often put in a nested module (run tests on the\n"
"[Playground](https://play.rust-lang.org/)):"
msgstr ""
"单元测试通常会放在嵌套模块中(在 [Playground](https://play.rust-lang.org/) 上"
"运行测试):"
#: src/testing/test-modules.md:6
msgid ""
"```rust,editable\n"
"fn helper(a: &str, b: &str) -> String {\n"
" format!(\"{a} {b}\")\n"
"}\n"
"\n"
"pub fn main() {\n"
" println!(\"{}\", helper(\"Hello\", \"World\"));\n"
"}\n"
"\n"
"#[cfg(test)]\n"
"mod tests {\n"
" use super::*;\n"
"\n"
" #[test]\n"
" fn test_helper() {\n"
" assert_eq!(helper(\"foo\", \"bar\"), \"foo bar\");\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/testing/test-modules.md:26
msgid ""
"* This lets you unit test private helpers.\n"
"* The `#[cfg(test)]` attribute is only active when you run `cargo test`."
msgstr ""
"* 这样一来,您可以对专用帮助程序进行单元测试。\n"
"* 仅当您运行 `cargo test` 时,`#[cfg(test)]` 属性才有效。"
#: src/testing/doc-tests.md:1
msgid "# Documentation Tests"
msgstr "# 文档测试"
#: src/testing/doc-tests.md:3
msgid "Rust has built-in support for documentation tests:"
msgstr "Rust 本身就支持文档测试:"
#: src/testing/doc-tests.md:5
msgid ""
"```rust\n"
"/// Shortens a string to the given length.\n"
"///\n"
"/// ```\n"
"/// use playground::shorten_string;\n"
"/// assert_eq!(shorten_string(\"Hello World\", 5), \"Hello\");\n"
"/// assert_eq!(shorten_string(\"Hello World\", 20), \"Hello World\");\n"
"/// ```\n"
"pub fn shorten_string(s: &str, length: usize) -> &str {\n"
" &s[..std::cmp::min(length, s.len())]\n"
"}\n"
"```"
msgstr ""
#: src/testing/doc-tests.md:18
msgid ""
"* Code blocks in `///` comments are automatically seen as Rust code.\n"
"* The code will be compiled and executed as part of `cargo test`.\n"
"* Test the above code on the [Rust Playground](https://play.rust-lang.org/?"
"version=stable&mode=debug&edition=2021&gist=3ce2ad13ea1302f6572cb15cd96becf0)."
msgstr ""
"* `///` 注释中的代码块会自动被视为 Rust 代码。\n"
"* 代码会作为 `cargo test` 的一部分进行编译和执行。\n"
"* 在 [Rust Playground](https://play.rust-lang.org/?"
"version=stable&mode=debug&edition=2021&gist=3ce2ad13ea1302f6572cb15cd96becf0) "
"上测试上述代码。"
#: src/testing/integration-tests.md:1
msgid "# Integration Tests"
msgstr "# 集成测试"
#: src/testing/integration-tests.md:3
msgid "If you want to test your library as a client, use an integration test."
msgstr "如果您想要以客户的身份测试您的库,请使用集成测试。"
#: src/testing/integration-tests.md:5
msgid "Create a `.rs` file under `tests/`:"
msgstr "在 `tests/` 下方创建一个 `.rs` 文件:"
#: src/testing/integration-tests.md:7
msgid ""
"```rust,ignore\n"
"use my_library::init;\n"
"\n"
"#[test]\n"
"fn test_init() {\n"
" assert!(init().is_ok());\n"
"}\n"
"```"
msgstr ""
#: src/testing/integration-tests.md:16
msgid "These tests only have access to the public API of your crate."
msgstr "这些测试只能使用您的 crate 的公共 API。"
#: src/testing/useful-crates.md:1
msgid "## Useful crates for writing tests"
msgstr "## 用于编写测试的实用 crate"
#: src/testing/useful-crates.md:3
msgid "Rust comes with only basic support for writing tests."
msgstr "Rust 仅为编写测试提供基本支持。"
#: src/testing/useful-crates.md:5
msgid "Here are some additional crates which we recommend for writing tests:"
msgstr "下面列出了我们建议在编写测试时使用的一些其他 crate:"
#: src/testing/useful-crates.md:7
msgid ""
"* [googletest](https://docs.rs/googletest): Comprehensive test assertion "
"library in the tradition of GoogleTest for C++.\n"
"* [proptest](https://docs.rs/proptest): Property-based testing for Rust.\n"
"* [rstest](https://docs.rs/rstest): Support for fixtures and parameterised "
"tests."
msgstr ""
"* [googletest](https://docs.rs/googletest):遵从 GoogleTest for C++ 传统的综"
"合测试断言库。\n"
"* [proptest](https://docs.rs/proptest):基于属性的测试,适用于 Rust。\n"
"* [rstest](https://docs.rs/rstest):支持固件和参数化测试。"
#: src/unsafe.md:1
msgid "# Unsafe Rust"
msgstr "# 不安全 Rust"
#: src/unsafe.md:3
msgid "The Rust language has two parts:"
msgstr "Rust 语言包含两个部分:"
#: src/unsafe.md:5
msgid ""
"* **Safe Rust:** memory safe, no undefined behavior possible.\n"
"* **Unsafe Rust:** can trigger undefined behavior if preconditions are "
"violated."
msgstr ""
"* **安全 Rust:**内存安全,没有潜在的未定义行为。\n"
"* **不安全 Rust:**如果违反了前提条件,可能会触发未定义的行为。"
#: src/unsafe.md:8
msgid ""
"We will be seeing mostly safe Rust in this course, but it's important to "
"know\n"
"what Unsafe Rust is."
msgstr ""
"本课程中出现的大多为“安全 Rust”,但是了解“不安全 Rust”的定义\n"
"非常重要。"
#: src/unsafe.md:11
msgid ""
"Unsafe code is usually small and isolated, and its correctness should be "
"carefully\n"
"documented. It is usually wrapped in a safe abstraction layer."
msgstr ""
"不安全的代码通常内容很少而且与其他代码隔离,\n"
"其正确性也应得到仔细记录。这类代码通常封装在安全的抽象层中。"
#: src/unsafe.md:14
msgid "Unsafe Rust gives you access to five new capabilities:"
msgstr "不安全 Rust 提供了五种新功能:"
#: src/unsafe.md:16
msgid ""
"* Dereference raw pointers.\n"
"* Access or modify mutable static variables.\n"
"* Access `union` fields.\n"
"* Call `unsafe` functions, including `extern` functions.\n"
"* Implement `unsafe` traits."
msgstr ""
"* 解引用原始指针。\n"
"* 访问或修改可变的静态变量。\n"
"* 访问 `union` 字段。\n"
"* 调用 `unsafe` 函数,包括 `extern` 函数。\n"
"* 实现 `unsafe` trait。"
#: src/unsafe.md:22
msgid ""
"We will briefly cover unsafe capabilities next. For full details, please "
"see\n"
"[Chapter 19.1 in the Rust Book](https://doc.rust-lang.org/book/ch19-01-"
"unsafe-rust.html)\n"
"and the [Rustonomicon](https://doc.rust-lang.org/nomicon/)."
msgstr ""
"下面,我们将简要介绍这些不安全功能。如需了解完整详情,请参阅\n"
"[《Rust 手册》第 19.1 章](https://doc.rust-lang.org/book/ch19-01-unsafe-rust."
"html)\n"
"和 [Rustonomicon](https://doc.rust-lang.org/nomicon/)。"
#: src/unsafe.md:28
msgid ""
"Unsafe Rust does not mean the code is incorrect. It means that developers "
"have\n"
"turned off the compiler safety features and have to write correct code by\n"
"themselves. It means the compiler no longer enforces Rust's memory-safety "
"rules."
msgstr ""
"不安全 Rust 并不意味着代码不正确,而是这意味着开发者已停用\n"
"编译器的安全功能,必须自行编写正确的\n"
"代码。也就是说,编译器不再强制执行 Rust 的内存安全规则。"
#: src/unsafe/raw-pointers.md:1
msgid "# Dereferencing Raw Pointers"
msgstr "# 解引用裸指针"
#: src/unsafe/raw-pointers.md:3
msgid "Creating pointers is safe, but dereferencing them requires `unsafe`:"
msgstr "创建指针是安全的操作,但解引用指针需要使用 `unsafe` 方法:"
#: src/unsafe/raw-pointers.md:5
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let mut num = 5;\n"
"\n"
" let r1 = &mut num as *mut i32;\n"
" let r2 = r1 as *const i32;\n"
"\n"
" // Safe because r1 and r2 were obtained from references and so are\n"
" // guaranteed to be non-null and properly aligned, the objects "
"underlying\n"
" // the references from which they were obtained are live throughout the\n"
" // whole unsafe block, and they are not accessed either through the\n"
" // references or concurrently through any other pointers.\n"
" unsafe {\n"
" println!(\"r1 is: {}\", *r1);\n"
" *r1 = 10;\n"
" println!(\"r2 is: {}\", *r2);\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/unsafe/raw-pointers.md:27
msgid ""
"It is good practice (and required by the Android Rust style guide) to write "
"a comment for each\n"
"`unsafe` block explaining how the code inside it satisfies the safety "
"requirements of the unsafe\n"
"operations it is doing."
msgstr ""
"我们建议(而且 Android Rust 样式指南要求)为每个 `unsafe` 代码块编写一条注"
"释,\n"
"说明该代码块中的代码如何满足其所执行的不安全操作的\n"
"安全要求。"
#: src/unsafe/raw-pointers.md:31
msgid ""
"In the case of pointer dereferences, this means that the pointers must be\n"
"[_valid_](https://doc.rust-lang.org/std/ptr/index.html#safety), i.e.:"
msgstr ""
"对于指针解除引用,这意味着指针必须为\n"
"[_valid_](https://doc.rust-lang.org/std/ptr/index.html#safety),即:"
#: src/unsafe/raw-pointers.md:34
msgid ""
" * The pointer must be non-null.\n"
" * The pointer must be _dereferenceable_ (within the bounds of a single "
"allocated object).\n"
" * The object must not have been deallocated.\n"
" * There must not be concurrent accesses to the same location.\n"
" * If the pointer was obtained by casting a reference, the underlying object "
"must be live and no\n"
" reference may be used to access the memory."
msgstr ""
" * 指针必须为非 null。\n"
" * 指针必须是 _dereferenceable_(在单个已分配对象的边界内)。\n"
" * 对象不得已取消分配。\n"
" * 不得并发访问相同位置。\n"
" * 如果通过转换引用类型来获取指针,则底层对象必须处于活跃状态,\n"
"而且不得使用任何引用来访问内存。"
#: src/unsafe/raw-pointers.md:41
msgid "In most cases the pointer must also be properly aligned."
msgstr "在大多数情况下,指针还必须正确对齐。"
#: src/unsafe/mutable-static-variables.md:1
msgid "# Mutable Static Variables"
msgstr "# 可变的静态变量"
#: src/unsafe/mutable-static-variables.md:3
msgid "It is safe to read an immutable static variable:"
msgstr "读取不可变的静态变量是安全的操作:"
#: src/unsafe/mutable-static-variables.md:5
msgid ""
"```rust,editable\n"
"static HELLO_WORLD: &str = \"Hello, world!\";\n"
"\n"
"fn main() {\n"
" println!(\"HELLO_WORLD: {HELLO_WORLD}\");\n"
"}\n"
"```"
msgstr ""
#: src/unsafe/mutable-static-variables.md:13
msgid ""
"However, since data races can occur, it is unsafe to read and write mutable\n"
"static variables:"
msgstr ""
"但是,读取和写入可变的静态变量是不安全的,因为这可能会\n"
"造成数据争用:"
#: src/unsafe/mutable-static-variables.md:16
msgid ""
"```rust,editable\n"
"static mut COUNTER: u32 = 0;\n"
"\n"
"fn add_to_counter(inc: u32) {\n"
" unsafe { COUNTER += inc; } // Potential data race!\n"
"}\n"
"\n"
"fn main() {\n"
" add_to_counter(42);\n"
"\n"
" unsafe { println!(\"COUNTER: {COUNTER}\"); } // Potential data race!\n"
"}\n"
"```"
msgstr ""
#: src/unsafe/mutable-static-variables.md:32
msgid ""
"Using a mutable static is generally a bad idea, but there are some cases "
"where it might make sense\n"
"in low-level `no_std` code, such as implementing a heap allocator or working "
"with some C APIs."
msgstr ""
"通常,我们不建议使用可变的静态变量,但在某些情况下,在低层级 `no_std` 代码中"
"可能需要这样做,\n"
"例如实现堆分配器或使用某些 C API。"
#: src/unsafe/unions.md:1
msgid "# Unions"
msgstr "# 联合体"
#: src/unsafe/unions.md:3
msgid "Unions are like enums, but you need to track the active field yourself:"
msgstr "联合体与枚举类似,但您需要自行跟踪活跃字段:"
#: src/unsafe/unions.md:5
msgid ""
"```rust,editable\n"
"#[repr(C)]\n"
"union MyUnion {\n"
" i: u8,\n"
" b: bool,\n"
"}\n"
"\n"
"fn main() {\n"
" let u = MyUnion { i: 42 };\n"
" println!(\"int: {}\", unsafe { u.i });\n"
" println!(\"bool: {}\", unsafe { u.b }); // Undefined behavior!\n"
"}\n"
"```"
msgstr ""
#: src/unsafe/unions.md:21
msgid ""
"Unions are very rarely needed in Rust as you can usually use an enum. They "
"are occasionally needed\n"
"for interacting with C library APIs."
msgstr ""
"在 Rust 中很少需要用到联合体,因为您通常可以使用枚举。联合体只是偶尔用于\n"
"与 C 库 API 进行交互。"
#: src/unsafe/unions.md:24
msgid ""
"If you just want to reinterpret bytes as a different type, you probably "
"want\n"
"[`std::mem::transmute`](https://doc.rust-lang.org/stable/std/mem/fn."
"transmute.html) or a safe\n"
"wrapper such as the [`zerocopy`](https://crates.io/crates/zerocopy) crate."
msgstr ""
"如果您只是想将字节重新解释为其他类型,则可能需要使用\n"
"[`std::mem::transmute`](https://doc.rust-lang.org/stable/std/mem/fn."
"transmute.html) 或\n"
"安全的封装容器,例如 [`zerocopy`](https://crates.io/crates/zerocopy) crate。"
#: src/unsafe/calling-unsafe-functions.md:1
msgid "# Calling Unsafe Functions"
msgstr "# 调用 Unsafe 函数"
#: src/unsafe/calling-unsafe-functions.md:3
msgid ""
"A function or method can be marked `unsafe` if it has extra preconditions "
"you\n"
"must uphold to avoid undefined behaviour:"
msgstr ""
"如果函数或方法具有额外的前提条件,您必须遵守这些前提条件来避免未定义的行"
"为,\n"
"则可以将该函数或方法标记为 `unsafe`:"
#: src/unsafe/calling-unsafe-functions.md:6
msgid ""
"```rust,editable\n"
"fn main() {\n"
" let emojis = \"🗻∈🌏\";\n"
"\n"
" // Safe because the indices are in the correct order, within the bounds "
"of\n"
" // the string slice, and lie on UTF-8 sequence boundaries.\n"
" unsafe {\n"
" println!(\"emoji: {}\", emojis.get_unchecked(0..4));\n"
" println!(\"emoji: {}\", emojis.get_unchecked(4..7));\n"
" println!(\"emoji: {}\", emojis.get_unchecked(7..11));\n"
" }\n"
"\n"
" println!(\"char count: {}\", count_chars(unsafe { emojis."
"get_unchecked(0..7) }));\n"
"\n"
" // Not upholding the UTF-8 encoding requirement breaks memory safety!\n"
" // println!(\"emoji: {}\", unsafe { emojis.get_unchecked(0..3) });\n"
" // println!(\"char count: {}\", count_chars(unsafe { emojis."
"get_unchecked(0..3) }));\n"
"}\n"
"\n"
"fn count_chars(s: &str) -> usize {\n"
" s.chars().map(|_| 1).sum()\n"
"}\n"
"```"
msgstr ""
#: src/unsafe/writing-unsafe-functions.md:1
msgid "# Writing Unsafe Functions"
msgstr "# 编写 Unsafe 函数"
#: src/unsafe/writing-unsafe-functions.md:3
msgid ""
"You can mark your own functions as `unsafe` if they require particular "
"conditions to avoid undefined\n"
"behaviour."
msgstr ""
"如果您自己编写的函数需要满足特定条件以避免未定义的行为,\n"
"您可以将这些函数标记为 `unsafe`。"
#: src/unsafe/writing-unsafe-functions.md:6
msgid ""
"```rust,editable\n"
"/// Swaps the values pointed to by the given pointers.\n"
"///\n"
"/// # Safety\n"
"///\n"
"/// The pointers must be valid and properly aligned.\n"
"unsafe fn swap(a: *mut u8, b: *mut u8) {\n"
" let temp = *a;\n"
" *a = *b;\n"
" *b = temp;\n"
"}\n"
"\n"
"fn main() {\n"
" let mut a = 42;\n"
" let mut b = 66;\n"
"\n"
" // Safe because ...\n"
" unsafe {\n"
" swap(&mut a, &mut b);\n"
" }\n"
"\n"
" println!(\"a = {}, b = {}\", a, b);\n"
"}\n"
"```"
msgstr ""
#: src/unsafe/writing-unsafe-functions.md:33
msgid ""
"We wouldn't actually use pointers for this because it can be done safely "
"with references."
msgstr "实际上,我们不会这样使用指针,因为使用引用可以安全地达到相同的目的。"
#: src/unsafe/writing-unsafe-functions.md:35
msgid ""
"Note that unsafe code is allowed within an unsafe function without an "
"`unsafe` block. We can\n"
"prohibit this with `#[deny(unsafe_op_in_unsafe_fn)]`. Try adding it and see "
"what happens."
msgstr ""
"请注意,在不安全函数中,可以在没有 `unsafe` 代码块的情况下使用不安全代码。我"
"们可以\n"
"使用 `#[deny(unsafe_op_in_unsafe_fn)]` 来禁止此行为。请尝试添加该命令,看看会"
"出现什么情况。"
#: src/unsafe/extern-functions.md:1
msgid "# Calling External Code"
msgstr "# 调用外部代码"
#: src/unsafe/extern-functions.md:3
msgid ""
"Functions from other languages might violate the guarantees of Rust. "
"Calling\n"
"them is thus unsafe:"
msgstr ""
"基于其他语言的函数可能会违反 Rust 的保证。因此,\n"
"调用这类函数是不安全的:"
#: src/unsafe/extern-functions.md:6
msgid ""
"```rust,editable\n"
"extern \"C\" {\n"
" fn abs(input: i32) -> i32;\n"
"}\n"
"\n"
"fn main() {\n"
" unsafe {\n"
" // Undefined behavior if abs misbehaves.\n"
" println!(\"Absolute value of -3 according to C: {}\", abs(-3));\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/unsafe/extern-functions.md:21
msgid ""
"This is usually only a problem for extern functions which do things with "
"pointers which might\n"
"violate Rust's memory model, but in general any C function might have "
"undefined behaviour under any\n"
"arbitrary circumstances."
msgstr ""
"这个问题通常仅存在于使用指针执行违反 Rust 内存模型的操作的外部函数中。\n"
"但一般而言,任何 C 函数都有可能在任意情况下出现未定义行为。"
#: src/unsafe/extern-functions.md:25
msgid ""
"The `\"C\"` in this example is the ABI;\n"
"[other ABIs are available too](https://doc.rust-lang.org/reference/items/"
"external-blocks.html)."
msgstr ""
#: src/unsafe/unsafe-traits.md:1
msgid "# Implementing Unsafe Traits"
msgstr "# 实现 Unsafe Trait"
#: src/unsafe/unsafe-traits.md:3
msgid ""
"Like with functions, you can mark a trait as `unsafe` if the implementation "
"must guarantee\n"
"particular conditions to avoid undefined behaviour."
msgstr ""
"与函数一样,如果您在实现某个 trait 时必须保证特定条件来避免未定义的行为,\n"
"您也可以将该 trait 标记为 `unsafe`。"
#: src/unsafe/unsafe-traits.md:6
msgid ""
"For example, the `zerocopy` crate has an unsafe trait that looks\n"
"[something like this](https://docs.rs/zerocopy/latest/zerocopy/trait.AsBytes."
"html):"
msgstr ""
"例如,`zerocopy` crate 包含一个不安全的 trait,\n"
"[大致内容是这样的](https://docs.rs/zerocopy/latest/zerocopy/trait.AsBytes."
"html):"
#: src/unsafe/unsafe-traits.md:9
msgid ""
"```rust,editable\n"
"use std::mem::size_of_val;\n"
"use std::slice;\n"
"\n"
"/// ...\n"
"/// # Safety\n"
"/// The type must have a defined representation and no padding.\n"
"pub unsafe trait AsBytes {\n"
" fn as_bytes(&self) -> &[u8] {\n"
" unsafe {\n"
" slice::from_raw_parts(self as *const Self as *const u8, "
"size_of_val(self))\n"
" }\n"
" }\n"
"}\n"
"\n"
"// Safe because u32 has a defined representation and no padding.\n"
"unsafe impl AsBytes for u32 {}\n"
"```"
msgstr ""
#: src/unsafe/unsafe-traits.md:30
msgid ""
"There should be a `# Safety` section on the Rustdoc for the trait explaining "
"the requirements for\n"
"the trait to be safely implemented."
msgstr ""
"在 Rustdoc 中有关 trait 的章节下,有一个标题为 `# 安全` 的部分介绍了\n"
"安全实现 trait 的要求。"
#: src/unsafe/unsafe-traits.md:33
msgid ""
"The actual safety section for `AsBytes` is rather longer and more "
"complicated."
msgstr "实际上,与 `AsBytes` 相关的安全说明远比这里展示的更详尽、更复杂。"
#: src/unsafe/unsafe-traits.md:35
msgid "The built-in `Send` and `Sync` traits are unsafe."
msgstr "内置的 `Send` 和 `Sync` trait 都是不安全的。"
#: src/exercises/day-3/afternoon.md:1
msgid "# Day 3: Afternoon Exercises"
msgstr ""
#: src/exercises/day-3/afternoon.md:3
msgid "Let us build a safe wrapper for reading directory content!"
msgstr ""
#: src/exercises/day-3/afternoon.md:7
msgid "After looking at the exercise, you can look at the [solution] provided."
msgstr ""
#: src/exercises/day-3/safe-ffi-wrapper.md:1
msgid "# Safe FFI Wrapper"
msgstr ""
#: src/exercises/day-3/safe-ffi-wrapper.md:3
msgid ""
"Rust has great support for calling functions through a _foreign function\n"
"interface_ (FFI). We will use this to build a safe wrapper for the `libc`\n"
"functions you would use from C to read the filenames of a directory."
msgstr ""
#: src/exercises/day-3/safe-ffi-wrapper.md:7
msgid "You will want to consult the manual pages:"
msgstr ""
#: src/exercises/day-3/safe-ffi-wrapper.md:9
msgid ""
"* [`opendir(3)`](https://man7.org/linux/man-pages/man3/opendir.3.html)\n"
"* [`readdir(3)`](https://man7.org/linux/man-pages/man3/readdir.3.html)\n"
"* [`closedir(3)`](https://man7.org/linux/man-pages/man3/closedir.3.html)"
msgstr ""
#: src/exercises/day-3/safe-ffi-wrapper.md:13
msgid ""
"You will also want to browse the [`std::ffi`] module. There you find a "
"number of\n"
"string types which you need for the exercise:"
msgstr ""
#: src/exercises/day-3/safe-ffi-wrapper.md:16
msgid ""
"| Types | Encoding | "
"Use |\n"
"|----------------------------|----------------|--------------------------------|\n"
"| [`str`] and [`String`] | UTF-8 | Text processing in "
"Rust |\n"
"| [`CStr`] and [`CString`] | NUL-terminated | Communicating with C "
"functions |\n"
"| [`OsStr`] and [`OsString`] | OS-specific | Communicating with the "
"OS |"
msgstr ""
#: src/exercises/day-3/safe-ffi-wrapper.md:22
msgid "You will convert between all these types:"
msgstr ""
#: src/exercises/day-3/safe-ffi-wrapper.md:24
msgid ""
"- `&str` to `CString`: you need to allocate space for a trailing `\\0` "
"character,\n"
"- `CString` to `*const i8`: you need a pointer to call C functions,\n"
"- `*const i8` to `&CStr`: you need something which can find the trailing "
"`\\0` character,\n"
"- `&CStr` to `&[u8]`: a slice of bytes is the universal interface for \"some "
"unknow data\",\n"
"- `&[u8]` to `&OsStr`: `&OsStr` is a step towards `OsString`, use\n"
" [`OsStrExt`](https://doc.rust-lang.org/std/os/unix/ffi/trait.OsStrExt."
"html)\n"
" to create it,\n"
"- `&OsStr` to `OsString`: you need to clone the data in `&OsStr` to be able "
"to return it and call\n"
" `readdir` again."
msgstr ""
#: src/exercises/day-3/safe-ffi-wrapper.md:34
msgid "The [Nomicon] also has a very useful chapter about FFI."
msgstr ""
#: src/exercises/day-3/safe-ffi-wrapper.md:45
msgid ""
"Copy the code below to <https://play.rust-lang.org/> and fill in the "
"missing\n"
"functions and methods:"
msgstr ""
#: src/exercises/day-3/safe-ffi-wrapper.md:48
msgid ""
"```rust,should_panic\n"
"// TODO: remove this when you're done with your implementation.\n"
"#![allow(unused_imports, unused_variables, dead_code)]\n"
"\n"
"mod ffi {\n"
" use std::os::raw::{c_char, c_int};\n"
" #[cfg(not(target_os = \"macos\"))]\n"
" use std::os::raw::{c_long, c_ulong, c_ushort};\n"
"\n"
" // Opaque type. See https://doc.rust-lang.org/nomicon/ffi.html.\n"
" #[repr(C)]\n"
" pub struct DIR {\n"
" _data: [u8; 0],\n"
" _marker: core::marker::PhantomData<(*mut u8, core::marker::"
"PhantomPinned)>,\n"
" }\n"
"\n"
" // Layout as per readdir(3) and definitions in /usr/include/x86_64-linux-"
"gnu.\n"
" #[cfg(not(target_os = \"macos\"))]\n"
" #[repr(C)]\n"
" pub struct dirent {\n"
" pub d_ino: c_long,\n"
" pub d_off: c_ulong,\n"
" pub d_reclen: c_ushort,\n"
" pub d_type: c_char,\n"
" pub d_name: [c_char; 256],\n"
" }\n"
"\n"
" // Layout as per man entry for dirent\n"
" #[cfg(target_os = \"macos\")]\n"
" #[repr(C)]\n"
" pub struct dirent {\n"
" pub d_ino: u64,\n"
" pub d_seekoff: u64,\n"
" pub d_reclen: u16,\n"
" pub d_namlen: u16,\n"
" pub d_type: u8,\n"
" pub d_name: [c_char; 1024],\n"
" }\n"
"\n"
" extern \"C\" {\n"
" pub fn opendir(s: *const c_char) -> *mut DIR;\n"
" pub fn readdir(s: *mut DIR) -> *const dirent;\n"
" pub fn closedir(s: *mut DIR) -> c_int;\n"
" }\n"
"}\n"
"\n"
"use std::ffi::{CStr, CString, OsStr, OsString};\n"
"use std::os::unix::ffi::OsStrExt;\n"
"\n"
"#[derive(Debug)]\n"
"struct DirectoryIterator {\n"
" path: CString,\n"
" dir: *mut ffi::DIR,\n"
"}\n"
"\n"
"impl DirectoryIterator {\n"
" fn new(path: &str) -> Result<DirectoryIterator, String> {\n"
" // Call opendir and return a Ok value if that worked,\n"
" // otherwise return Err with a message.\n"
" unimplemented!()\n"
" }\n"
"}\n"
"\n"
"impl Iterator for DirectoryIterator {\n"
" type Item = OsString;\n"
" fn next(&mut self) -> Option<OsString> {\n"
" // Keep calling readdir until we get a NULL pointer back.\n"
" unimplemented!()\n"
" }\n"
"}\n"
"\n"
"impl Drop for DirectoryIterator {\n"
" fn drop(&mut self) {\n"
" // Call closedir as needed.\n"
" unimplemented!()\n"
" }\n"
"}\n"
"\n"
"fn main() -> Result<(), String> {\n"
" let iter = DirectoryIterator::new(\".\")?;\n"
" println!(\"files: {:#?}\", iter.collect::<Vec<_>>());\n"
" Ok(())\n"
"}\n"
"```"
msgstr ""
#: src/android.md:1
msgid "# Welcome to Rust in Android"
msgstr "# 欢迎来到Android 中的Rust"
#: src/android.md:3
msgid ""
"Rust is supported for native platform development on Android. This means that\n"
"you can write new operating system services in Rust, as well as extending\n"
"existing services."
msgstr "Rust 支持Android 的原生平台开发。这意味着您可以在Rust 中编写新的操作系统服务,以及扩展现有服务。"
#: src/android.md:7
msgid ""
"> We will attempt to call Rust from one of your own projects today. So try to\n"
"> find a little corner of your code base where we can move some lines of code to\n"
"> Rust. The fewer dependencies and \"exotic\" types the better. Something that\n"
"> parses some raw bytes would be ideal."
msgstr ""
"> 今天我们会尝试在你自己的项目中调用Rust。\n"
"> 所以试着在你的代码中找一小段来改成Rust。\n"
"> 代码中越少依赖(dependencies),越少“独特”的类型,越好。比如\n"
"> 一段解析原始字符的代码就很理想。"
#: src/android/setup.md:1
msgid "# Setup"
msgstr "# 设置"
#: src/android/setup.md:3
msgid ""
"We will be using an Android Virtual Device to test our code. Make sure you have\n"
"access to one or create a new one with:"
msgstr ""
"我们将会使用Android 虚拟设备(Android Virtual Device)来测试我们的代码。\n"
"确保你有权限访问一个,或者用以下命令创建一个新的:"
#: src/android/setup.md:6
msgid ""
"```shell\n"
"$ source build/envsetup.sh\n"
"$ lunch aosp_cf_x86_64_phone-userdebug\n"
"$ acloud create\n"
"```"
msgstr ""
"```shell\n"
"$ source build/envsetup.sh\n"
"$ lunch aosp_cf_x86_64_phone-userdebug\n"
"$ acloud create\n"
"```"
#: src/android/setup.md:12
msgid ""
"Please see the [Android Developer\n"
"Codelab](https://source.android.com/docs/setup/start) for details."
msgstr "更多细节请参考 [Android Developer Codelab](https://source.android.com/docs/setup/start)."
#: src/android/build-rules.md:1
msgid "# Build Rules"
msgstr "# 构建规则"
#: src/android/build-rules.md:3
msgid "The Android build system (Soong) supports Rust via a number of modules:"
msgstr "Android 构建系统(Soong)通过一系列模块来支持Rust:"
#: src/android/build-rules.md:5
msgid ""
"| Module Type | Description "
"|\n"
"|-------------------|----------------------------------------------------------------------------------------------------|\n"
"| `rust_binary` | Produces a Rust binary. |\n"
"| `rust_library` | Produces a Rust library, and provides both `rlib` and `dylib` variants. |\n"
"| `rust_ffi` | Produces a Rust C library usable by `cc` modules, and provides both static and shared variants.|\n"
"| `rust_proc_macro` | Produces a `proc-macro` Rust library. These are analogous to compiler plugins. |\n"
"| `rust_test` | Produces a Rust test binary that uses the standard Rust test harness. |\n"
"| `rust_fuzz` | Produces a Rust fuzz binary leveraging `libfuzzer`. |\n"
"| `rust_protobuf` | Generates source and produces a Rust library that provides an interface for a particular protobuf. |\n"
"| `rust_bindgen` | Generates source and produces a Rust library containing Rust bindings to C libraries. "
"|"
msgstr ""
"| 模块类型 | 描述 |\n"
"|—————————|——————————————————————————————————————————————————|\n"
"| `rust_binary` | Rust 二进制文件。 |\n"
"| `rust_library` | 生成Rust 库,并且提供 `rlib` 和 `dylib` 变体。 |\n"
"| `rust_ffi` | 生成可由 cc 模块使用的 Rust C 库,并提供静态和共享变体。 |\n"
"| `rust_proc_macro` | 生成 proc-macro Rust 库。 这些宏与编译器插件类似。 |\n"
"| `rust_test` | 生成使用标准 Rust 自动化测试框架的 Rust 测试二进制文件。 |\n"
"| `rust_fuzz` | 生成使用 libfuzzer 的 Rust 模糊测试二进制文件。 |\n"
"| `rust_protobuf` | 生成源代码,并生成为特定 protobuf 提供接口的 Rust 库。|\n"
"| `rust_bindgen` | 生成源代码,并生成包含与 C 库的 Rust 绑定的 Rust 库。|"
#: src/android/build-rules.md:16
msgid "We will look at `rust_binary` and `rust_library` next."
msgstr "下面我们来看看`rust_binary` 和 `rust_library`。"
#: src/android/build-rules/binary.md:1
msgid "# Rust Binaries"
msgstr "# Rust 二进制文件"
#: src/android/build-rules/binary.md:3
msgid ""
"Let us start with a simple application. At the root of an AOSP checkout, "
"create\n"
"the following files:"
msgstr "让我们从一个简单的应用程序开始。在 AOSP 签出的根目录下,创建以下文件:"
#: src/android/build-rules/binary.md:6 src/android/build-rules/library.md:13
msgid "_hello_rust/Android.bp_:"
msgstr "_hello_rust/Android.bp_:"
#: src/android/build-rules/binary.md:8
msgid ""
"```javascript\n"
"rust_binary {\n"
" name: \"hello_rust\",\n"
" crate_name: \"hello_rust\",\n"
" srcs: [\"src/main.rs\"],\n"
"}\n"
"```"
msgstr ""
"```javascript\n"
"rust_binary {\n"
" name: \"hello_rust\",\n"
" crate_name: \"hello_rust\",\n"
" srcs: [\"src/main.rs\"],\n"
"}\n"
"```"
#: src/android/build-rules/binary.md:16 src/android/build-rules/library.md:34
msgid "_hello_rust/src/main.rs_:"
msgstr "_hello_rust/src/main.rs_:"
#: src/android/build-rules/binary.md:18
msgid ""
"```rust\n"
"//! Rust demo.\n"
"\n"
"/// Prints a greeting to standard output.\n"
"fn main() {\n"
" println!(\"Hello from Rust!\");\n"
"}\n"
"```"
msgstr ""
"```rust\n"
"//! Rust demo.\n"
"\n"
"/// Prints a greeting to standard output.\n"
"fn main() {\n"
" println!(\"Hello from Rust!\");\n"
"}\n"
"```"
#: src/android/build-rules/binary.md:27
msgid "You can now build, push, and run the binary:"
msgstr "你现在可以构建、推送和运行二进制文件:"
#: src/android/build-rules/binary.md:29
msgid ""
"```shell\n"
"$ m hello_rust\n"
"$ adb push $ANDROID_PRODUCT_OUT/system/bin/hello_rust /data/local/tmp\n"
"$ adb shell /data/local/tmp/hello_rust\n"
"Hello from Rust!\n"
"```"
msgstr ""
"```shell\n"
"$ m hello_rust\n"
"$ adb push $ANDROID_PRODUCT_OUT/system/bin/hello_rust /data/local/tmp\n"
"$ adb shell /data/local/tmp/hello_rust\n"
"Hello from Rust!\n"
"```"
#: src/android/build-rules/library.md:1
msgid "# Rust Libraries"
msgstr "# Rust 库"
#: src/android/build-rules/library.md:3
msgid "You use `rust_library` to create a new Rust library for Android."
msgstr "您可以使用 `rust_library` 为 Android 创建一个新的 Rust 库。"
#: src/android/build-rules/library.md:5
msgid "Here we declare a dependency on two libraries:"
msgstr "在这里,我们声明了对两个库的依赖:"
#: src/android/build-rules/library.md:7
msgid ""
"* `libgreeting`, which we define below,\n"
"* `libtextwrap`, which is a crate already vendored in\n"
" [`external/rust/crates/`][crates]."
msgstr ""
"* `libgreeting`, 我们在下面进行了定义,\n"
"* `libtextwrap`, 一个已经在\n"
" [`external/rust/crates/`][crates]\n"
"中提供的 crate。"
#: src/android/build-rules/library.md:15
msgid ""
"```javascript\n"
"rust_binary {\n"
" name: \"hello_rust_with_dep\",\n"
" crate_name: \"hello_rust_with_dep\",\n"
" srcs: [\"src/main.rs\"],\n"
" rustlibs: [\n"
" \"libgreetings\",\n"
" \"libtextwrap\",\n"
" ],\n"
" prefer_rlib: true,\n"
"}\n"
"\n"
"rust_library {\n"
" name: \"libgreetings\",\n"
" crate_name: \"greetings\",\n"
" srcs: [\"src/lib.rs\"],\n"
"}\n"
"```"
msgstr ""
"```javascript\n"
"rust_binary {\n"
" name: \"hello_rust_with_dep\",\n"
" crate_name: \"hello_rust_with_dep\",\n"
" srcs: [\"src/main.rs\"],\n"
" rustlibs: [\n"
" \"libgreetings\",\n"
" \"libtextwrap\",\n"
" ],\n"
" prefer_rlib: true,\n"
"}\n"
"\n"
"rust_library {\n"
" name: \"libgreetings\",\n"
" crate_name: \"greetings\",\n"
" srcs: [\"src/lib.rs\"],\n"
"}\n"
"```"
#: src/android/build-rules/library.md:36
msgid ""
"```rust,ignore\n"
"//! Rust demo.\n"
"\n"
"use greetings::greeting;\n"
"use textwrap::fill;\n"
"\n"
"/// Prints a greeting to standard output.\n"
"fn main() {\n"
" println!(\"{}\", fill(&greeting(\"Bob\"), 24));\n"
"}\n"
"```"
msgstr ""
"```rust,ignore\n"
"//! Rust demo.\n"
"\n"
"use greetings::greeting;\n"
"use textwrap::fill;\n"
"\n"
"/// Prints a greeting to standard output.\n"
"fn main() {\n"
" println!(\"{}\", fill(&greeting(\"Bob\"), 24));\n"
"}\n"
"```"
#: src/android/build-rules/library.md:48
msgid "_hello_rust/src/lib.rs_:"
msgstr "_hello_rust/src/lib.rs_:"
#: src/android/build-rules/library.md:50
msgid ""
"```rust,ignore\n"
"//! Greeting library.\n"
"\n"
"/// Greet `name`.\n"
"pub fn greeting(name: &str) -> String {\n"
" format!(\"Hello {name}, it is very nice to meet you!\")\n"
"}\n"
"```"
msgstr ""
"```rust,ignore\n"
"//! Greeting library.\n"
"\n"
"/// Greet `name`.\n"
"pub fn greeting(name: &str) -> String {\n"
" format!(\"Hello {name}, it is very nice to meet you!\")\n"
"}\n"
"```"
#: src/android/build-rules/library.md:59
msgid "You build, push, and run the binary like before:"
msgstr "您可以像之前一样构建、推送和运行二进制文件:"
#: src/android/build-rules/library.md:61
msgid ""
"```shell\n"
"$ m hello_rust_with_dep\n"
"$ adb push $ANDROID_PRODUCT_OUT/system/bin/hello_rust_with_dep /data/local/"
"tmp\n"
"$ adb shell /data/local/tmp/hello_rust_with_dep\n"
"Hello Bob, it is very\n"
"nice to meet you!\n"
"```"
msgstr ""
"```shell\n"
"$ m hello_rust_with_dep\n"
"$ adb push $ANDROID_PRODUCT_OUT/system/bin/hello_rust_with_dep /data/local/"
"tmp\n"
"$ adb shell /data/local/tmp/hello_rust_with_dep\n"
"Hello Bob, it is very\n"
"nice to meet you!\n"
"```"
#: src/android/aidl.md:1
msgid "# AIDL"
msgstr ""
#: src/android/aidl.md:3
msgid ""
"The [Android Interface Definition Language\n"
"(AIDL)](https://developer.android.com/guide/components/aidl) is supported in "
"Rust:"
msgstr ""
#: src/android/aidl.md:6
msgid ""
"* Rust code can call existing AIDL servers,\n"
"* You can create new AIDL servers in Rust."
msgstr ""
#: src/android/aidl/interface.md:1
msgid "# AIDL Interfaces"
msgstr "# AIDL 接口"
#: src/android/aidl/interface.md:3
msgid "You declare the API of your service using an AIDL interface:"
msgstr "您可以使用 AIDL 接口声明您的服务的 API:"
#: src/android/aidl/interface.md:5
msgid ""
"*birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl*:"
msgstr ""
"*birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl*:"
#: src/android/aidl/interface.md:7
msgid ""
"```java\n"
"package com.example.birthdayservice;\n"
"\n"
"/** Birthday service interface. */\n"
"interface IBirthdayService {\n"
" /** Generate a Happy Birthday message. */\n"
" String wishHappyBirthday(String name, int years);\n"
"}\n"
"```"
msgstr ""
"```java\n"
"package com.example.birthdayservice;\n"
"\n"
"/** 生日服务接口。 */\n"
"interface IBirthdayService {\n"
" /** 生成一条生日快乐的祝福信息。 */\n"
" String wishHappyBirthday(String name, int years);\n"
"}\n"
"```"
#: src/android/aidl/interface.md:17
msgid "*birthday_service/aidl/Android.bp*:"
msgstr "*birthday_service/aidl/Android.bp*:"
#: src/android/aidl/interface.md:19
msgid ""
"```javascript\n"
"aidl_interface {\n"
" name: \"com.example.birthdayservice\",\n"
" srcs: [\"com/example/birthdayservice/*.aidl\"],\n"
" unstable: true,\n"
" backend: {\n"
" rust: { // Rust is not enabled by default\n"
" enabled: true,\n"
" },\n"
" },\n"
"}\n"
"```"
msgstr ""
"```javascript\n"
"aidl_interface {\n"
" name: \"com.example.birthdayservice\",\n"
" srcs: [\"com/example/birthdayservice/*.aidl\"],\n"
" unstable: true,\n"
" backend: {\n"
" rust: { // 默认情况下不启用 Rust \n"
" enabled: true,\n"
" },\n"
" },\n"
"}\n"
"```"
#: src/android/aidl/interface.md:32
msgid ""
"Add `vendor_available: true` if your AIDL file is used by a binary in the "
"vendor\n"
"partition."
msgstr ""
"如果供应商分区中的二进制文件使用了您的 AIDL 文件,请添加 `vendor_available: "
"true`。"
#: src/android/aidl/implementation.md:1
msgid "# Service Implementation"
msgstr ""
#: src/android/aidl/implementation.md:3
msgid "We can now implement the AIDL service:"
msgstr ""
#: src/android/aidl/implementation.md:5
msgid "*birthday_service/src/lib.rs*:"
msgstr ""
#: src/android/aidl/implementation.md:7
msgid ""
"```rust,ignore\n"
"//! Implementation of the `IBirthdayService` AIDL interface.\n"
"use com_example_birthdayservice::aidl::com::example::birthdayservice::"
"IBirthdayService::IBirthdayService;\n"
"use com_example_birthdayservice::binder;\n"
"\n"
"/// The `IBirthdayService` implementation.\n"
"pub struct BirthdayService;\n"
"\n"
"impl binder::Interface for BirthdayService {}\n"
"\n"
"impl IBirthdayService for BirthdayService {\n"
" fn wishHappyBirthday(&self, name: &str, years: i32) -> binder::"
"Result<String> {\n"
" Ok(format!(\n"
" \"Happy Birthday {name}, congratulations with the {years} years!"
"\"\n"
" ))\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/android/aidl/implementation.md:26 src/android/aidl/server.md:28
#: src/android/aidl/client.md:37
msgid "*birthday_service/Android.bp*:"
msgstr ""
#: src/android/aidl/implementation.md:28
msgid ""
"```javascript\n"
"rust_library {\n"
" name: \"libbirthdayservice\",\n"
" srcs: [\"src/lib.rs\"],\n"
" crate_name: \"birthdayservice\",\n"
" rustlibs: [\n"
" \"com.example.birthdayservice-rust\",\n"
" \"libbinder_rs\",\n"
" ],\n"
"}\n"
"```"
msgstr ""
#: src/android/aidl/server.md:1
msgid "# AIDL Server"
msgstr "# AIDL 服务器"
#: src/android/aidl/server.md:3
msgid "Finally, we can create a server which exposes the service:"
msgstr "最后,我们可以创建一个暴露服务的服务器:"
#: src/android/aidl/server.md:5
msgid "*birthday_service/src/server.rs*:"
msgstr "*birthday_service/src/server.rs*:"
#: src/android/aidl/server.md:7
msgid ""
"```rust,ignore\n"
"//! Birthday service.\n"
"use birthdayservice::BirthdayService;\n"
"use com_example_birthdayservice::aidl::com::example::birthdayservice::"
"IBirthdayService::BnBirthdayService;\n"
"use com_example_birthdayservice::binder;\n"
"\n"
"const SERVICE_IDENTIFIER: &str = \"birthdayservice\";\n"
"\n"
"/// Entry point for birthday service.\n"
"fn main() {\n"
" let birthday_service = BirthdayService;\n"
" let birthday_service_binder = BnBirthdayService::new_binder(\n"
" birthday_service,\n"
" binder::BinderFeatures::default(),\n"
" );\n"
" binder::add_service(SERVICE_IDENTIFIER, birthday_service_binder."
"as_binder())\n"
" .expect(\"Failed to register service\");\n"
" binder::ProcessState::join_thread_pool()\n"
"}\n"
"```"
msgstr ""
"```rust,ignore\n"
"//! 生日服务。\n"
"use birthdayservice::BirthdayService;\n"
"use com_example_birthdayservice::aidl::com::example::birthdayservice::"
"IBirthdayService::BnBirthdayService;\n"
"use com_example_birthdayservice::binder;\n"
"\n"
"const SERVICE_IDENTIFIER: &str = \"birthdayservice\";\n"
"\n"
"/// 生日服务的入口。\n"
"fn main() {\n"
" let birthday_service = BirthdayService;\n"
" let birthday_service_binder = BnBirthdayService::new_binder(\n"
" birthday_service,\n"
" binder::BinderFeatures::default(),\n"
" );\n"
" binder::add_service(SERVICE_IDENTIFIER, birthday_service_binder."
"as_binder())\n"
" .expect(\"Failed to register service\");\n"
" binder::ProcessState::join_thread_pool()\n"
"}\n"
"```"
#: src/android/aidl/server.md:30
msgid ""
"```javascript\n"
"rust_binary {\n"
" name: \"birthday_server\",\n"
" crate_name: \"birthday_server\",\n"
" srcs: [\"src/server.rs\"],\n"
" rustlibs: [\n"
" \"com.example.birthdayservice-rust\",\n"
" \"libbinder_rs\",\n"
" \"libbirthdayservice\",\n"
" ],\n"
" prefer_rlib: true,\n"
"}\n"
"```"
msgstr ""
"```javascript\n"
"rust_binary {\n"
" name: \"birthday_server\",\n"
" crate_name: \"birthday_server\",\n"
" srcs: [\"src/server.rs\"],\n"
" rustlibs: [\n"
" \"com.example.birthdayservice-rust\",\n"
" \"libbinder_rs\",\n"
" \"libbirthdayservice\",\n"
" ],\n"
" prefer_rlib: true,\n"
"}\n"
"```"
#: src/android/aidl/deploy.md:1
msgid "# Deploy"
msgstr "# 部署"
#: src/android/aidl/deploy.md:3
msgid "We can now build, push, and start the service:"
msgstr "我们现在可以构建、推送和启动服务:"
#: src/android/aidl/deploy.md:5
msgid ""
"```shell\n"
"$ m birthday_server\n"
"$ adb push $ANDROID_PRODUCT_OUT/system/bin/birthday_server /data/local/tmp\n"
"$ adb shell /data/local/tmp/birthday_server\n"
"```"
msgstr ""
"```shell\n"
"$ m birthday_server\n"
"$ adb push $ANDROID_PRODUCT_OUT/system/bin/birthday_server /data/local/tmp\n"
"$ adb shell /data/local/tmp/birthday_server\n"
"```"
#: src/android/aidl/deploy.md:11
msgid "In another terminal, check that the service runs:"
msgstr "在另一个终端中,检查该服务是否正在运行:"
#: src/android/aidl/deploy.md:13
msgid ""
"```shell\n"
"$ adb shell service check birthdayservice\n"
"Service birthdayservice: found\n"
"```"
msgstr ""
"```shell\n"
"$ adb shell service check birthdayservice\n"
"Service birthdayservice: found\n"
"```"
#: src/android/aidl/deploy.md:18
msgid "You can also call the service with `service call`:"
msgstr "您还可以使用 `service call` 命令调用该服务:"
#: src/android/aidl/deploy.md:20
msgid ""
"```shell\n"
"$ $ adb shell service call birthdayservice 1 s16 Bob i32 24\n"
"Result: Parcel(\n"
" 0x00000000: 00000000 00000036 00610048 00700070 '....6...H.a.p.p.'\n"
" 0x00000010: 00200079 00690042 00740072 00640068 'y. .B.i.r.t.h.d.'\n"
" 0x00000020: 00790061 00420020 0062006f 0020002c 'a.y. .B.o.b.,. .'\n"
" 0x00000030: 006f0063 0067006e 00610072 00750074 'c.o.n.g.r.a.t.u.'\n"
" 0x00000040: 0061006c 00690074 006e006f 00200073 'l.a.t.i.o.n.s. .'\n"
" 0x00000050: 00690077 00680074 00740020 00650068 'w.i.t.h. .t.h.e.'\n"
" 0x00000060: 00320020 00200034 00650079 00720061 ' .2.4. .y.e.a.r.'\n"
" 0x00000070: 00210073 00000000 's.!..... ')\n"
"```"
msgstr ""
"```shell\n"
"$ $ adb shell service call birthdayservice 1 s16 Bob i32 24\n"
"Result: Parcel(\n"
" 0x00000000: 00000000 00000036 00610048 00700070 '....6...H.a.p.p.'\n"
" 0x00000010: 00200079 00690042 00740072 00640068 'y. .B.i.r.t.h.d.'\n"
" 0x00000020: 00790061 00420020 0062006f 0020002c 'a.y. .B.o.b.,. .'\n"
" 0x00000030: 006f0063 0067006e 00610072 00750074 'c.o.n.g.r.a.t.u.'\n"
" 0x00000040: 0061006c 00690074 006e006f 00200073 'l.a.t.i.o.n.s. .'\n"
" 0x00000050: 00690077 00680074 00740020 00650068 'w.i.t.h. .t.h.e.'\n"
" 0x00000060: 00320020 00200034 00650079 00720061 ' .2.4. .y.e.a.r.'\n"
" 0x00000070: 00210073 00000000 's.!..... ')\n"
"```"
#: src/android/aidl/client.md:1
msgid "# AIDL Client"
msgstr ""
#: src/android/aidl/client.md:3
msgid "Finally, we can create a Rust client for our new service."
msgstr ""
#: src/android/aidl/client.md:5
msgid "*birthday_service/src/client.rs*:"
msgstr ""
#: src/android/aidl/client.md:7
msgid ""
"```rust,ignore\n"
"//! Birthday service.\n"
"use com_example_birthdayservice::aidl::com::example::birthdayservice::"
"IBirthdayService::IBirthdayService;\n"
"use com_example_birthdayservice::binder;\n"
"\n"
"const SERVICE_IDENTIFIER: &str = \"birthdayservice\";\n"
"\n"
"/// Connect to the BirthdayService.\n"
"pub fn connect() -> Result<binder::Strong<dyn IBirthdayService>, binder::"
"StatusCode> {\n"
" binder::get_interface(SERVICE_IDENTIFIER)\n"
"}\n"
"\n"
"/// Call the birthday service.\n"
"fn main() -> Result<(), binder::Status> {\n"
" let name = std::env::args()\n"
" .nth(1)\n"
" .unwrap_or_else(|| String::from(\"Bob\"));\n"
" let years = std::env::args()\n"
" .nth(2)\n"
" .and_then(|arg| arg.parse::<i32>().ok())\n"
" .unwrap_or(42);\n"
"\n"
" binder::ProcessState::start_thread_pool();\n"
" let service = connect().expect(\"Failed to connect to "
"BirthdayService\");\n"
" let msg = service.wishHappyBirthday(&name, years)?;\n"
" println!(\"{msg}\");\n"
" Ok(())\n"
"}\n"
"```"
msgstr ""
#: src/android/aidl/client.md:39
msgid ""
"```javascript\n"
"rust_binary {\n"
" name: \"birthday_client\",\n"
" crate_name: \"birthday_client\",\n"
" srcs: [\"src/client.rs\"],\n"
" rustlibs: [\n"
" \"com.example.birthdayservice-rust\",\n"
" \"libbinder_rs\",\n"
" ],\n"
" prefer_rlib: true,\n"
"}\n"
"```"
msgstr ""
#: src/android/aidl/client.md:52
msgid "Notice that the client does not depend on `libbirthdayservice`."
msgstr ""
#: src/android/aidl/client.md:54
msgid "Build, push, and run the client on your device:"
msgstr ""
#: src/android/aidl/client.md:56
msgid ""
"```shell\n"
"$ m birthday_client\n"
"$ adb push $ANDROID_PRODUCT_OUT/system/bin/birthday_client /data/local/tmp\n"
"$ adb shell /data/local/tmp/birthday_client Charlie 60\n"
"Happy Birthday Charlie, congratulations with the 60 years!\n"
"```"
msgstr ""
#: src/android/aidl/changing.md:1
msgid "# Changing API"
msgstr ""
#: src/android/aidl/changing.md:3
msgid ""
"Let us extend the API with more functionality: we want to let clients "
"specify a\n"
"list of lines for the birthday card:"
msgstr ""
#: src/android/aidl/changing.md:6
msgid ""
"```java\n"
"package com.example.birthdayservice;\n"
"\n"
"/** Birthday service interface. */\n"
"interface IBirthdayService {\n"
" /** Generate a Happy Birthday message. */\n"
" String wishHappyBirthday(String name, int years, in String[] text);\n"
"}\n"
"```"
msgstr ""
#: src/android/logging.md:1 src/bare-metal/aps/logging.md:1
msgid "# Logging"
msgstr ""
#: src/android/logging.md:3
msgid ""
"You should use the `log` crate to automatically log to `logcat` (on-device) "
"or\n"
"`stdout` (on-host):"
msgstr ""
#: src/android/logging.md:6
msgid "_hello_rust_logs/Android.bp_:"
msgstr ""
#: src/android/logging.md:8
msgid ""
"```javascript\n"
"rust_binary {\n"
" name: \"hello_rust_logs\",\n"
" crate_name: \"hello_rust_logs\",\n"
" srcs: [\"src/main.rs\"],\n"
" rustlibs: [\n"
" \"liblog_rust\",\n"
" \"liblogger\",\n"
" ],\n"
" prefer_rlib: true,\n"
" host_supported: true,\n"
"}\n"
"```"
msgstr ""
#: src/android/logging.md:22
msgid "_hello_rust_logs/src/main.rs_:"
msgstr ""
#: src/android/logging.md:24
msgid ""
"```rust,ignore\n"
"//! Rust logging demo.\n"
"\n"
"use log::{debug, error, info};\n"
"\n"
"/// Logs a greeting.\n"
"fn main() {\n"
" logger::init(\n"
" logger::Config::default()\n"
" .with_tag_on_device(\"rust\")\n"
" .with_min_level(log::Level::Trace),\n"
" );\n"
" debug!(\"Starting program.\");\n"
" info!(\"Things are going fine.\");\n"
" error!(\"Something went wrong!\");\n"
"}\n"
"```"
msgstr ""
#: src/android/logging.md:42 src/android/interoperability/with-c/bindgen.md:98
#: src/android/interoperability/with-c/rust.md:73
msgid "Build, push, and run the binary on your device:"
msgstr ""
#: src/android/logging.md:44
msgid ""
"```shell\n"
"$ m hello_rust_logs\n"
"$ adb push $ANDROID_PRODUCT_OUT/system/bin/hello_rust_logs /data/local/tmp\n"
"$ adb shell /data/local/tmp/hello_rust_logs\n"
"```"
msgstr ""
#: src/android/logging.md:50
msgid "The logs show up in `adb logcat`:"
msgstr ""
#: src/android/logging.md:52
msgid ""
"```shell\n"
"$ adb logcat -s rust\n"
"09-08 08:38:32.454 2420 2420 D rust: hello_rust_logs: Starting program.\n"
"09-08 08:38:32.454 2420 2420 I rust: hello_rust_logs: Things are going "
"fine.\n"
"09-08 08:38:32.454 2420 2420 E rust: hello_rust_logs: Something went "
"wrong!\n"
"```"
msgstr ""
#: src/android/interoperability.md:1
msgid "# Interoperability"
msgstr ""
#: src/android/interoperability.md:3
msgid ""
"Rust has excellent support for interoperability with other languages. This "
"means\n"
"that you can:"
msgstr ""
#: src/android/interoperability.md:6
msgid ""
"* Call Rust functions from other languages.\n"
"* Call functions written in other languages from Rust."
msgstr ""
#: src/android/interoperability.md:9
msgid ""
"When you call functions in a foreign language we say that you're using a\n"
"_foreign function interface_, also known as FFI."
msgstr ""
#: src/android/interoperability/with-c.md:1
msgid "# Interoperability with C"
msgstr ""
#: src/android/interoperability/with-c.md:3
msgid ""
"Rust has full support for linking object files with a C calling convention.\n"
"Similarly, you can export Rust functions and call them from C."
msgstr ""
#: src/android/interoperability/with-c.md:6
msgid "You can do it by hand if you want:"
msgstr ""
#: src/android/interoperability/with-c.md:8
msgid ""
"```rust\n"
"extern \"C\" {\n"
" fn abs(x: i32) -> i32;\n"
"}\n"
"\n"
"fn main() {\n"
" let x = -42;\n"
" let abs_x = unsafe { abs(x) };\n"
" println!(\"{x}, {abs_x}\");\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/with-c.md:20
msgid ""
"We already saw this in the [Safe FFI Wrapper\n"
"exercise](../../exercises/day-3/safe-ffi-wrapper.md)."
msgstr ""
#: src/android/interoperability/with-c.md:23
msgid ""
"> This assumes full knowledge of the target platform. Not recommended for\n"
"> production."
msgstr ""
#: src/android/interoperability/with-c.md:26
msgid "We will look at better options next."
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:1
msgid "# Using Bindgen"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:3
msgid ""
"The [bindgen](https://rust-lang.github.io/rust-bindgen/introduction.html) "
"tool\n"
"can auto-generate bindings from a C header file."
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:6
msgid "First create a small C library:"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:8
msgid "_interoperability/bindgen/libbirthday.h_:"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:10
msgid ""
"```c\n"
"typedef struct card {\n"
" const char* name;\n"
" int years;\n"
"} card;\n"
"\n"
"void print_card(const card* card);\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:19
msgid "_interoperability/bindgen/libbirthday.c_:"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:21
msgid ""
"```c\n"
"#include <stdio.h>\n"
"#include \"libbirthday.h\"\n"
"\n"
"void print_card(const card* card) {\n"
" printf(\"+--------------\\n\");\n"
" printf(\"| Happy Birthday %s!\\n\", card->name);\n"
" printf(\"| Congratulations with the %i years!\\n\", card->years);\n"
" printf(\"+--------------\\n\");\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:33
msgid "Add this to your `Android.bp` file:"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:35
#: src/android/interoperability/with-c/bindgen.md:55
#: src/android/interoperability/with-c/bindgen.md:69
#: src/android/interoperability/with-c/bindgen.md:108
msgid "_interoperability/bindgen/Android.bp_:"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:37
msgid ""
"```javascript\n"
"cc_library {\n"
" name: \"libbirthday\",\n"
" srcs: [\"libbirthday.c\"],\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:44
msgid ""
"Create a wrapper header file for the library (not strictly needed in this\n"
"example):"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:47
msgid "_interoperability/bindgen/libbirthday_wrapper.h_:"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:49
msgid ""
"```c\n"
"#include \"libbirthday.h\"\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:53
msgid "You can now auto-generate the bindings:"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:57
msgid ""
"```javascript\n"
"rust_bindgen {\n"
" name: \"libbirthday_bindgen\",\n"
" crate_name: \"birthday_bindgen\",\n"
" wrapper_src: \"libbirthday_wrapper.h\",\n"
" source_stem: \"bindings\",\n"
" static_libs: [\"libbirthday\"],\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:67
msgid "Finally, we can use the bindings in our Rust program:"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:71
msgid ""
"```javascript\n"
"rust_binary {\n"
" name: \"print_birthday_card\",\n"
" srcs: [\"main.rs\"],\n"
" rustlibs: [\"libbirthday_bindgen\"],\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:79
msgid "_interoperability/bindgen/main.rs_:"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:81
msgid ""
"```rust,compile_fail\n"
"//! Bindgen demo.\n"
"\n"
"use birthday_bindgen::{card, print_card};\n"
"\n"
"fn main() {\n"
" let name = std::ffi::CString::new(\"Peter\").unwrap();\n"
" let card = card {\n"
" name: name.as_ptr(),\n"
" years: 42,\n"
" };\n"
" unsafe {\n"
" print_card(&card as *const card);\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:100
msgid ""
"```shell\n"
"$ m print_birthday_card\n"
"$ adb push $ANDROID_PRODUCT_OUT/system/bin/print_birthday_card /data/local/"
"tmp\n"
"$ adb shell /data/local/tmp/print_birthday_card\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:106
msgid "Finally, we can run auto-generated tests to ensure the bindings work:"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:110
msgid ""
"```javascript\n"
"rust_test {\n"
" name: \"libbirthday_bindgen_test\",\n"
" srcs: [\":libbirthday_bindgen\"],\n"
" crate_name: \"libbirthday_bindgen_test\",\n"
" test_suites: [\"general-tests\"],\n"
" auto_gen_config: true,\n"
" clippy_lints: \"none\", // Generated file, skip linting\n"
" lints: \"none\",\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/bindgen.md:122
msgid ""
"```shell\n"
"$ atest libbirthday_bindgen_test\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/rust.md:1
msgid "# Calling Rust"
msgstr ""
#: src/android/interoperability/with-c/rust.md:3
msgid "Exporting Rust functions and types to C is easy:"
msgstr ""
#: src/android/interoperability/with-c/rust.md:5
msgid "_interoperability/rust/libanalyze/analyze.rs_"
msgstr ""
#: src/android/interoperability/with-c/rust.md:7
msgid ""
"```rust,editable\n"
"//! Rust FFI demo.\n"
"#![deny(improper_ctypes_definitions)]\n"
"\n"
"use std::os::raw::c_int;\n"
"\n"
"/// Analyze the numbers.\n"
"#[no_mangle]\n"
"pub extern \"C\" fn analyze_numbers(x: c_int, y: c_int) {\n"
" if x < y {\n"
" println!(\"x ({x}) is smallest!\");\n"
" } else {\n"
" println!(\"y ({y}) is probably larger than x ({x})\");\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/rust.md:24
msgid "_interoperability/rust/libanalyze/analyze.h_"
msgstr ""
#: src/android/interoperability/with-c/rust.md:26
msgid ""
"```c\n"
"#ifndef ANALYSE_H\n"
"#define ANALYSE_H\n"
"\n"
"extern \"C\" {\n"
"void analyze_numbers(int x, int y);\n"
"}\n"
"\n"
"#endif\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/rust.md:37
msgid "_interoperability/rust/libanalyze/Android.bp_"
msgstr ""
#: src/android/interoperability/with-c/rust.md:39
msgid ""
"```javascript\n"
"rust_ffi {\n"
" name: \"libanalyze_ffi\",\n"
" crate_name: \"analyze_ffi\",\n"
" srcs: [\"analyze.rs\"],\n"
" include_dirs: [\".\"],\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/rust.md:48
msgid "We can now call this from a C binary:"
msgstr ""
#: src/android/interoperability/with-c/rust.md:50
msgid "_interoperability/rust/analyze/main.c_"
msgstr ""
#: src/android/interoperability/with-c/rust.md:52
msgid ""
"```c\n"
"#include \"analyze.h\"\n"
"\n"
"int main() {\n"
" analyze_numbers(10, 20);\n"
" analyze_numbers(123, 123);\n"
" return 0;\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/rust.md:62
msgid "_interoperability/rust/analyze/Android.bp_"
msgstr ""
#: src/android/interoperability/with-c/rust.md:64
msgid ""
"```javascript\n"
"cc_binary {\n"
" name: \"analyze_numbers\",\n"
" srcs: [\"main.c\"],\n"
" static_libs: [\"libanalyze_ffi\"],\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/rust.md:75
msgid ""
"```shell\n"
"$ m analyze_numbers\n"
"$ adb push $ANDROID_PRODUCT_OUT/system/bin/analyze_numbers /data/local/tmp\n"
"$ adb shell /data/local/tmp/analyze_numbers\n"
"```"
msgstr ""
#: src/android/interoperability/with-c/rust.md:83
msgid ""
"`#[no_mangle]` disables Rust's usual name mangling, so the exported symbol "
"will just be the name of\n"
"the function. You can also use `#[export_name = \"some_name\"]` to specify "
"whatever name you want."
msgstr ""
#: src/android/interoperability/cpp.md:1
msgid "# With C++"
msgstr ""
#: src/android/interoperability/cpp.md:3
msgid ""
"The [CXX crate][1] makes it possible to do safe interoperability between "
"Rust\n"
"and C++."
msgstr ""
#: src/android/interoperability/cpp.md:6
msgid "The overall approach looks like this:"
msgstr ""
#: src/android/interoperability/cpp.md:8
msgid "<img src=\"cpp/overview.svg\">"
msgstr ""
#: src/android/interoperability/cpp.md:10
msgid "See the [CXX tutorial][2] for an full example of using this."
msgstr ""
#: src/android/interoperability/java.md:1
msgid "# Interoperability with Java"
msgstr ""
#: src/android/interoperability/java.md:3
msgid ""
"Java can load shared objects via [Java Native Interface\n"
"(JNI)](https://en.wikipedia.org/wiki/Java_Native_Interface). The [`jni`\n"
"crate](https://docs.rs/jni/) allows you to create a compatible library."
msgstr ""
#: src/android/interoperability/java.md:7
msgid "First, we create a Rust function to export to Java:"
msgstr ""
#: src/android/interoperability/java.md:9
msgid "_interoperability/java/src/lib.rs_:"
msgstr ""
#: src/android/interoperability/java.md:11
msgid ""
"```rust,compile_fail\n"
"//! Rust <-> Java FFI demo.\n"
"\n"
"use jni::objects::{JClass, JString};\n"
"use jni::sys::jstring;\n"
"use jni::JNIEnv;\n"
"\n"
"/// HelloWorld::hello method implementation.\n"
"#[no_mangle]\n"
"pub extern \"system\" fn Java_HelloWorld_hello(\n"
" env: JNIEnv,\n"
" _class: JClass,\n"
" name: JString,\n"
") -> jstring {\n"
" let input: String = env.get_string(name).unwrap().into();\n"
" let greeting = format!(\"Hello, {input}!\");\n"
" let output = env.new_string(greeting).unwrap();\n"
" output.into_inner()\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/java.md:32
#: src/android/interoperability/java.md:62
msgid "_interoperability/java/Android.bp_:"
msgstr ""
#: src/android/interoperability/java.md:34
msgid ""
"```javascript\n"
"rust_ffi_shared {\n"
" name: \"libhello_jni\",\n"
" crate_name: \"hello_jni\",\n"
" srcs: [\"src/lib.rs\"],\n"
" rustlibs: [\"libjni\"],\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/java.md:43
msgid "Finally, we can call this function from Java:"
msgstr ""
#: src/android/interoperability/java.md:45
msgid "_interoperability/java/HelloWorld.java_:"
msgstr ""
#: src/android/interoperability/java.md:47
msgid ""
"```java\n"
"class HelloWorld {\n"
" private static native String hello(String name);\n"
"\n"
" static {\n"
" System.loadLibrary(\"hello_jni\");\n"
" }\n"
"\n"
" public static void main(String[] args) {\n"
" String output = HelloWorld.hello(\"Alice\");\n"
" System.out.println(output);\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/java.md:64
msgid ""
"```javascript\n"
"java_binary {\n"
" name: \"helloworld_jni\",\n"
" srcs: [\"HelloWorld.java\"],\n"
" main_class: \"HelloWorld\",\n"
" required: [\"libhello_jni\"],\n"
"}\n"
"```"
msgstr ""
#: src/android/interoperability/java.md:73
msgid "Finally, you can build, sync, and run the binary:"
msgstr ""
#: src/android/interoperability/java.md:75
msgid ""
"```shell\n"
"$ m helloworld_jni\n"
"$ adb sync # requires adb root && adb remount\n"
"$ adb shell /system/bin/helloworld_jni\n"
"```"
msgstr ""
#: src/exercises/android/morning.md:1 src/exercises/bare-metal/morning.md:1
#: src/exercises/bare-metal/afternoon.md:1
#: src/exercises/concurrency/morning.md:1
#: src/exercises/concurrency/afternoon.md:1
msgid "# Exercises"
msgstr ""
#: src/exercises/android/morning.md:3
msgid ""
"This is a group exercise: We will look at one of the projects you work with "
"and\n"
"try to integrate some Rust into it. Some suggestions:"
msgstr ""
#: src/exercises/android/morning.md:6
msgid ""
"* Call your AIDL service with a client written in Rust.\n"
"\n"
"* Move a function from your project to Rust and call it."
msgstr ""
#: src/exercises/android/morning.md:12
msgid ""
"No solution is provided here since this is open-ended: it relies on someone "
"in\n"
"the class having a piece of code which you can turn in to Rust on the fly."
msgstr ""
#: src/bare-metal.md:1
msgid "# Welcome to Bare Metal Rust"
msgstr ""
#: src/bare-metal.md:3
msgid ""
"This is a standalone one-day course about bare-metal Rust, aimed at people "
"who are familiar with the\n"
"basics of Rust (perhaps from completing the Comprehensive Rust course), and "
"ideally also have some\n"
"experience with bare-metal programming in some other language such as C."
msgstr ""
#: src/bare-metal.md:7
msgid ""
"Today we will talk about 'bare-metal' Rust: running Rust code without an OS "
"underneath us. This will\n"
"be divided into several parts:"
msgstr ""
#: src/bare-metal.md:10
msgid ""
"- What is `no_std` Rust?\n"
"- Writing firmware for microcontrollers.\n"
"- Writing bootloader / kernel code for application processors.\n"
"- Some useful crates for bare-metal Rust development."
msgstr ""
#: src/bare-metal.md:15
msgid ""
"For the microcontroller part of the course we will use the [BBC micro:bit]"
"(https://microbit.org/) v2\n"
"as an example. It's a [development board](https://tech.microbit.org/"
"hardware/) based on the Nordic\n"
"nRF51822 microcontroller with some LEDs and buttons, an I2C-connected "
"accelerometer and compass, and\n"
"an on-board SWD debugger."
msgstr ""
#: src/bare-metal.md:20
msgid ""
"To get started, install some tools we'll need later. On gLinux or Debian:"
msgstr ""
#: src/bare-metal.md:22
msgid ""
"```bash\n"
"sudo apt install gcc-aarch64-linux-gnu gdb-multiarch libudev-dev picocom pkg-"
"config qemu-system-arm\n"
"rustup update\n"
"rustup target add aarch64-unknown-none thumbv7em-none-eabihf\n"
"rustup component add llvm-tools-preview\n"
"cargo install cargo-binutils cargo-embed\n"
"```"
msgstr ""
#: src/bare-metal.md:30
msgid ""
"And give users in the `plugdev` group access to the micro:bit programmer:"
msgstr ""
#: src/bare-metal.md:32
msgid ""
"```bash\n"
"echo 'SUBSYSTEM==\"usb\", ATTR{idVendor}==\"0d28\", MODE=\"0664\", "
"GROUP=\"plugdev\"' |\\\n"
" sudo tee /etc/udev/rules.d/50-microbit.rules\n"
"sudo udevadm control --reload-rules\n"
"```"
msgstr ""
#: src/bare-metal.md:38
msgid "On MacOS:"
msgstr ""
#: src/bare-metal.md:40
msgid ""
"```bash\n"
"xcode-select --install\n"
"brew install gdb picocom qemu\n"
"brew install --cask gcc-aarch64-embedded\n"
"rustup update\n"
"rustup target add aarch64-unknown-none thumbv7em-none-eabihf\n"
"rustup component add llvm-tools-preview\n"
"cargo install cargo-binutils cargo-embed\n"
"```"
msgstr ""
#: src/bare-metal/no_std.md:1
msgid "# `no_std`"
msgstr ""
#: src/bare-metal/no_std.md:3
msgid ""
"<table>\n"
"<tr>\n"
"<th>"
msgstr ""
#: src/bare-metal/no_std.md:7
msgid "`core`"
msgstr ""
#: src/bare-metal/no_std.md:9 src/bare-metal/no_std.md:14
msgid ""
"</th>\n"
"<th>"
msgstr ""
#: src/bare-metal/no_std.md:12
msgid "`alloc`"
msgstr ""
#: src/bare-metal/no_std.md:17
msgid "`std`"
msgstr ""
#: src/bare-metal/no_std.md:19
msgid ""
"</th>\n"
"</tr>\n"
"<tr valign=\"top\">\n"
"<td>"
msgstr ""
#: src/bare-metal/no_std.md:24
msgid ""
"* Slices, `&str`, `CStr`\n"
"* `NonZeroU8`...\n"
"* `Option`, `Result`\n"
"* `Display`, `Debug`, `write!`...\n"
"* `Iterator`\n"
"* `panic!`, `assert_eq!`...\n"
"* `NonNull` and all the usual pointer-related functions\n"
"* `Future` and `async`/`await`\n"
"* `fence`, `AtomicBool`, `AtomicPtr`, `AtomicU32`...\n"
"* `Duration`"
msgstr ""
#: src/bare-metal/no_std.md:35 src/bare-metal/no_std.md:42
msgid ""
"</td>\n"
"<td>"
msgstr ""
#: src/bare-metal/no_std.md:38
msgid ""
"* `Box`, `Cow`, `Arc`, `Rc`\n"
"* `Vec`, `BinaryHeap`, `BtreeMap`, `LinkedList`, `VecDeque`\n"
"* `String`, `CString`, `format!`"
msgstr ""
#: src/bare-metal/no_std.md:45
msgid ""
"* `Error`\n"
"* `HashMap`\n"
"* `Mutex`, `Condvar`, `Barrier`, `Once`, `RwLock`, `mpsc`\n"
"* `File` and the rest of `fs`\n"
"* `println!`, `Read`, `Write`, `Stdin`, `Stdout` and the rest of `io`\n"
"* `Path`, `OsString`\n"
"* `net`\n"
"* `Command`, `Child`, `ExitCode`\n"
"* `spawn`, `sleep` and the rest of `thread`\n"
"* `SystemTime`, `Instant`"
msgstr ""
#: src/bare-metal/no_std.md:56
msgid ""
"</td>\n"
"</tr>\n"
"</table>\n"
"\n"
"<details>"
msgstr ""
#: src/bare-metal/no_std.md:62
msgid ""
"* `HashMap` depends on RNG.\n"
"* `std` re-exports the contents of both `core` and `alloc`."
msgstr ""
#: src/bare-metal/minimal.md:1
msgid "# A minimal `no_std` program"
msgstr ""
#: src/bare-metal/minimal.md:3
msgid ""
"```rust,editable,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"use core::panic::PanicInfo;\n"
"\n"
"#[panic_handler]\n"
"fn panic(_panic: &PanicInfo) -> ! {\n"
" loop {}\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/minimal.md:17
msgid ""
"* This will compile to an empty binary.\n"
"* `std` provides a panic handler; without it we must provide our own.\n"
"* It can also be provided by another crate, such as `panic-halt`.\n"
"* Depending on the target, you may need to compile with `panic = \"abort\"` "
"to avoid an error about\n"
" `eh_personality`.\n"
"* Note that there is no `main` or any other entry point; it's up to you to "
"define your own entry\n"
" point. This will typically involve a linker script and some assembly code "
"to set things up ready\n"
" for Rust code to run."
msgstr ""
#: src/bare-metal/alloc.md:1
msgid "# `alloc`"
msgstr ""
#: src/bare-metal/alloc.md:3
msgid ""
"To use `alloc` you must implement a\n"
"[global (heap) allocator](https://doc.rust-lang.org/stable/std/alloc/trait."
"GlobalAlloc.html)."
msgstr ""
#: src/bare-metal/alloc.md:6
msgid ""
"```rust,editable,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"extern crate alloc;\n"
"extern crate panic_halt as _;\n"
"\n"
"use alloc::string::ToString;\n"
"use alloc::vec::Vec;\n"
"use buddy_system_allocator::LockedHeap;\n"
"\n"
"#[global_allocator]\n"
"static HEAP_ALLOCATOR: LockedHeap<32> = LockedHeap::<32>::new();\n"
"\n"
"static mut HEAP: [u8; 65536] = [0; 65536];\n"
"\n"
"pub fn entry() {\n"
" // Safe because `HEAP` is only used here and `entry` is only called "
"once.\n"
" unsafe {\n"
" // Give the allocator some memory to allocate.\n"
" HEAP_ALLOCATOR\n"
" .lock()\n"
" .init(HEAP.as_mut_ptr() as usize, HEAP.len());\n"
" }\n"
"\n"
" // Now we can do things that require heap allocation.\n"
" let mut v = Vec::new();\n"
" v.push(\"A string\".to_string());\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/alloc.md:39
msgid ""
"* `buddy_system_allocator` is a third-party crate implementing a basic buddy "
"system allocator. Other\n"
" crates are available, or you can write your own or hook into your existing "
"allocator.\n"
"* The const parameter of `LockedHeap` is the max order of the allocator; i."
"e. in this case it can\n"
" allocate regions of up to 2**32 bytes.\n"
"* If any crate in your dependency tree depends on `alloc` then you must have "
"exactly one global\n"
" allocator defined in your binary. Usually this is done in the top-level "
"binary crate.\n"
"* `extern crate panic_halt as _` is necessary to ensure that the "
"`panic_halt` crate is linked in so\n"
" we get its panic handler.\n"
"* This example will build but not run, as it doesn't have an entry point."
msgstr ""
#: src/bare-metal/microcontrollers.md:1
msgid "# Microcontrollers"
msgstr ""
#: src/bare-metal/microcontrollers.md:3
msgid ""
"The `cortex_m_rt` crate provides (among other things) a reset handler for "
"Cortex M microcontrollers."
msgstr ""
#: src/bare-metal/microcontrollers.md:5
msgid ""
"```rust,editable,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"extern crate panic_halt as _;\n"
"\n"
"mod interrupts;\n"
"\n"
"use cortex_m_rt::entry;\n"
"\n"
"#[entry]\n"
"fn main() -> ! {\n"
" loop {}\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers.md:21
msgid ""
"Next we'll look at how to access peripherals, with increasing levels of "
"abstraction."
msgstr ""
#: src/bare-metal/microcontrollers.md:25
msgid ""
"* The `cortex_m_rt::entry` macro requires that the function have type `fn() -"
"> !`, because returning\n"
" to the reset handler doesn't make sense.\n"
"* Run the example with `cargo embed --bin minimal`"
msgstr ""
#: src/bare-metal/microcontrollers/mmio.md:1
msgid "# Raw MMIO"
msgstr ""
#: src/bare-metal/microcontrollers/mmio.md:3
msgid ""
"Most microcontrollers access peripherals via memory-mapped IO. Let's try "
"turning on an LED on our\n"
"micro:bit:"
msgstr ""
#: src/bare-metal/microcontrollers/mmio.md:6
msgid ""
"```rust,editable,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"extern crate panic_halt as _;\n"
"\n"
"mod interrupts;\n"
"\n"
"use core::mem::size_of;\n"
"use cortex_m_rt::entry;\n"
"\n"
"/// GPIO port 0 peripheral address\n"
"const GPIO_P0: usize = 0x5000_0000;\n"
"\n"
"// GPIO peripheral offsets\n"
"const PIN_CNF: usize = 0x700;\n"
"const OUTSET: usize = 0x508;\n"
"const OUTCLR: usize = 0x50c;\n"
"\n"
"// PIN_CNF fields\n"
"const DIR_OUTPUT: u32 = 0x1;\n"
"const INPUT_DISCONNECT: u32 = 0x1 << 1;\n"
"const PULL_DISABLED: u32 = 0x0 << 2;\n"
"const DRIVE_S0S1: u32 = 0x0 << 8;\n"
"const SENSE_DISABLED: u32 = 0x0 << 16;\n"
"\n"
"#[entry]\n"
"fn main() -> ! {\n"
" // Configure GPIO 0 pins 21 and 28 as push-pull outputs.\n"
" let pin_cnf_21 = (GPIO_P0 + PIN_CNF + 21 * size_of::<u32>()) as *mut "
"u32;\n"
" let pin_cnf_28 = (GPIO_P0 + PIN_CNF + 28 * size_of::<u32>()) as *mut "
"u32;\n"
" // Safe because the pointers are to valid peripheral control registers, "
"and\n"
" // no aliases exist.\n"
" unsafe {\n"
" pin_cnf_21.write_volatile(\n"
" DIR_OUTPUT | INPUT_DISCONNECT | PULL_DISABLED | DRIVE_S0S1 | "
"SENSE_DISABLED,\n"
" );\n"
" pin_cnf_28.write_volatile(\n"
" DIR_OUTPUT | INPUT_DISCONNECT | PULL_DISABLED | DRIVE_S0S1 | "
"SENSE_DISABLED,\n"
" );\n"
" }\n"
"\n"
" // Set pin 28 low and pin 21 high to turn the LED on.\n"
" let gpio0_outset = (GPIO_P0 + OUTSET) as *mut u32;\n"
" let gpio0_outclr = (GPIO_P0 + OUTCLR) as *mut u32;\n"
" // Safe because the pointers are to valid peripheral control registers, "
"and\n"
" // no aliases exist.\n"
" unsafe {\n"
" gpio0_outclr.write_volatile(1 << 28);\n"
" gpio0_outset.write_volatile(1 << 21);\n"
" }\n"
"\n"
" loop {}\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/mmio.md:64
msgid ""
"* GPIO 0 pin 21 is connected to the first column of the LED matrix, and pin "
"28 to the first row."
msgstr ""
#: src/bare-metal/microcontrollers/mmio.md:66
#: src/bare-metal/microcontrollers/pacs.md:59
#: src/bare-metal/microcontrollers/hals.md:43
#: src/bare-metal/microcontrollers/board-support.md:34
msgid "Run the example with:"
msgstr ""
#: src/bare-metal/microcontrollers/mmio.md:68
msgid ""
"```sh\n"
"cargo embed --bin mmio\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/pacs.md:1
msgid "# Peripheral Access Crates"
msgstr ""
#: src/bare-metal/microcontrollers/pacs.md:3
msgid ""
"[`svd2rust`](https://crates.io/crates/svd2rust) generates mostly-safe Rust "
"wrappers for\n"
"memory-mapped peripherals from [CMSIS-SVD](https://www.keil.com/pack/doc/"
"CMSIS/SVD/html/index.html)\n"
"files."
msgstr ""
#: src/bare-metal/microcontrollers/pacs.md:7
msgid ""
"```rust,editable,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"extern crate panic_halt as _;\n"
"\n"
"use cortex_m_rt::entry;\n"
"use nrf52833_pac::Peripherals;\n"
"\n"
"#[entry]\n"
"fn main() -> ! {\n"
" let p = Peripherals::take().unwrap();\n"
" let gpio0 = p.P0;\n"
"\n"
" // Configure GPIO 0 pins 21 and 28 as push-pull outputs.\n"
" gpio0.pin_cnf[21].write(|w| {\n"
" w.dir().output();\n"
" w.input().disconnect();\n"
" w.pull().disabled();\n"
" w.drive().s0s1();\n"
" w.sense().disabled();\n"
" w\n"
" });\n"
" gpio0.pin_cnf[28].write(|w| {\n"
" w.dir().output();\n"
" w.input().disconnect();\n"
" w.pull().disabled();\n"
" w.drive().s0s1();\n"
" w.sense().disabled();\n"
" w\n"
" });\n"
"\n"
" // Set pin 28 low and pin 21 high to turn the LED on.\n"
" gpio0.outclr.write(|w| w.pin28().clear());\n"
" gpio0.outset.write(|w| w.pin21().set());\n"
"\n"
" loop {}\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/pacs.md:49
msgid ""
"* SVD (System View Description) files are XML files typically provided by "
"silicon vendors which\n"
" describe the memory map of the device.\n"
" * They are organised by peripheral, register, field and value, with names, "
"descriptions, addresses\n"
" and so on.\n"
" * SVD files are often buggy and incomplete, so there are various projects "
"which patch the\n"
" mistakes, add missing details, and publish the generated crates.\n"
"* `cortex-m-rt` provides the vector table, among other things.\n"
"* If you `cargo install cargo-binutils` then you can run\n"
" `cargo objdump --bin pac -- -d --no-show-raw-insn` to see the resulting "
"binary."
msgstr ""
#: src/bare-metal/microcontrollers/pacs.md:61
msgid ""
"```sh\n"
"cargo embed --bin pac\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/hals.md:1
msgid "# HAL crates"
msgstr ""
#: src/bare-metal/microcontrollers/hals.md:3
msgid ""
"[HAL crates](https://github.com/rust-embedded/awesome-embedded-rust#hal-"
"implementation-crates) for\n"
"many microcontrollers provide wrappers around various peripherals. These "
"generally implement traits\n"
"from [`embedded-hal`](https://crates.io/crates/embedded-hal)."
msgstr ""
#: src/bare-metal/microcontrollers/hals.md:7
msgid ""
"```rust,editable,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"extern crate panic_halt as _;\n"
"\n"
"use cortex_m_rt::entry;\n"
"use nrf52833_hal::gpio::{p0, Level};\n"
"use nrf52833_hal::pac::Peripherals;\n"
"use nrf52833_hal::prelude::*;\n"
"\n"
"#[entry]\n"
"fn main() -> ! {\n"
" let p = Peripherals::take().unwrap();\n"
"\n"
" // Create HAL wrapper for GPIO port 0.\n"
" let gpio0 = p0::Parts::new(p.P0);\n"
"\n"
" // Configure GPIO 0 pins 21 and 28 as push-pull outputs.\n"
" let mut col1 = gpio0.p0_28.into_push_pull_output(Level::High);\n"
" let mut row1 = gpio0.p0_21.into_push_pull_output(Level::Low);\n"
"\n"
" // Set pin 28 low and pin 21 high to turn the LED on.\n"
" col1.set_low().unwrap();\n"
" row1.set_high().unwrap();\n"
"\n"
" loop {}\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/hals.md:39
msgid ""
" * `set_low` and `set_high` are methods on the `embedded_hal` `OutputPin` "
"trait.\n"
" * HAL crates exist for many Cortex-M and RISC-V devices, including various "
"STM32, GD32, nRF, NXP,\n"
" MSP430, AVR and PIC microcontrollers."
msgstr ""
#: src/bare-metal/microcontrollers/hals.md:45
msgid ""
"```sh\n"
"cargo embed --bin hal\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/board-support.md:1
msgid "# Board support crates"
msgstr ""
#: src/bare-metal/microcontrollers/board-support.md:3
msgid ""
"Board support crates provide a further level of wrapping for a specific "
"board for convenience."
msgstr ""
#: src/bare-metal/microcontrollers/board-support.md:5
msgid ""
"```rust,editable,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"extern crate panic_halt as _;\n"
"\n"
"use cortex_m_rt::entry;\n"
"use microbit::hal::prelude::*;\n"
"use microbit::Board;\n"
"\n"
"#[entry]\n"
"fn main() -> ! {\n"
" let mut board = Board::take().unwrap();\n"
"\n"
" board.display_pins.col1.set_low().unwrap();\n"
" board.display_pins.row1.set_high().unwrap();\n"
"\n"
" loop {}\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/board-support.md:28
msgid ""
" * In this case the board support crate is just providing more useful names, "
"and a bit of\n"
" initialisation.\n"
" * The crate may also include drivers for some on-board devices outside of "
"the microcontroller\n"
" itself.\n"
" * `microbit-v2` includes a simple driver for the LED matrix."
msgstr ""
#: src/bare-metal/microcontrollers/board-support.md:36
msgid ""
"```sh\n"
"cargo embed --bin board_support\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/type-state.md:1
msgid "# The type state pattern"
msgstr ""
#: src/bare-metal/microcontrollers/type-state.md:3
msgid ""
"```rust,editable,compile_fail\n"
"#[entry]\n"
"fn main() -> ! {\n"
" let p = Peripherals::take().unwrap();\n"
" let gpio0 = p0::Parts::new(p.P0);\n"
"\n"
" let pin: P0_01<Disconnected> = gpio0.p0_01;\n"
"\n"
" // let gpio0_01_again = gpio0.p0_01; // Error, moved.\n"
" let pin_input: P0_01<Input<Floating>> = pin.into_floating_input();\n"
" if pin_input.is_high().unwrap() {\n"
" // ...\n"
" }\n"
" let mut pin_output: P0_01<Output<OpenDrain>> = pin_input\n"
" .into_open_drain_output(OpenDrainConfig::Disconnect0Standard1, "
"Level::Low);\n"
" pin_output.set_high().unwrap();\n"
" // pin_input.is_high(); // Error, moved.\n"
"\n"
" let _pin2: P0_02<Output<OpenDrain>> = gpio0\n"
" .p0_02\n"
" .into_open_drain_output(OpenDrainConfig::Disconnect0Standard1, "
"Level::Low);\n"
" let _pin3: P0_03<Output<PushPull>> = gpio0.p0_03."
"into_push_pull_output(Level::Low);\n"
"\n"
" loop {}\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/type-state.md:32
msgid ""
" * Pins don't implement `Copy` or `Clone`, so only one instance of each can "
"exist. Once a pin is\n"
" moved out of the port struct nobody else can take it.\n"
" * Changing the configuration of a pin consumes the old pin instance, so you "
"can’t keep use the old\n"
" instance afterwards.\n"
" * The type of a value indicates the state that it is in: e.g. in this case, "
"the configuration state\n"
" of a GPIO pin. This encodes the state machine into the type system, and "
"ensures that you don't\n"
" try to use a pin in a certain way without properly configuring it first. "
"Illegal state\n"
" transitions are caught at compile time.\n"
" * You can call `is_high` on an input pin and `set_high` on an output pin, "
"but not vice-versa.\n"
" * Many HAL crates follow this pattern."
msgstr ""
#: src/bare-metal/microcontrollers/embedded-hal.md:1
msgid "# `embedded-hal`"
msgstr ""
#: src/bare-metal/microcontrollers/embedded-hal.md:3
msgid ""
"The [`embedded-hal`](https://crates.io/crates/embedded-hal) crate provides a "
"number of traits\n"
"covering common microcontroller peripherals."
msgstr ""
#: src/bare-metal/microcontrollers/embedded-hal.md:6
msgid ""
" * GPIO\n"
" * ADC\n"
" * I2C, SPI, UART, CAN\n"
" * RNG\n"
" * Timers\n"
" * Watchdogs"
msgstr ""
#: src/bare-metal/microcontrollers/embedded-hal.md:13
msgid ""
"Other crates then implement\n"
"[drivers](https://github.com/rust-embedded/awesome-embedded-rust#driver-"
"crates) in terms of these\n"
"traits, e.g. an accelerometer driver might need an I2C or SPI bus "
"implementation."
msgstr ""
#: src/bare-metal/microcontrollers/embedded-hal.md:19
msgid ""
" * There are implementations for many microcontrollers, as well as other "
"platforms such as Linux on\n"
"Raspberry Pi.\n"
" * There is work in progress on an `async` version of `embedded-hal`, but it "
"isn't stable yet."
msgstr ""
#: src/bare-metal/microcontrollers/probe-rs.md:1
msgid "# `probe-rs`, `cargo-embed`"
msgstr ""
#: src/bare-metal/microcontrollers/probe-rs.md:3
msgid ""
"[probe-rs](https://probe.rs/) is a handy toolset for embedded debugging, "
"like OpenOCD but better\n"
"integrated."
msgstr ""
#: src/bare-metal/microcontrollers/probe-rs.md:6
msgid ""
"* <abbr title=\"Serial Wire Debug\">SWD</abbr> and JTAG via CMSIS-DAP, ST-"
"Link and J-Link probes\n"
"* GDB stub and Microsoft <abbr title=\"Debug Adapter Protocol\">DAP</abbr> "
"server\n"
"* Cargo integration"
msgstr ""
#: src/bare-metal/microcontrollers/probe-rs.md:10
msgid ""
"`cargo-embed` is a cargo subcommand to build and flash binaries, log\n"
"<abbr title=\"Real Time Transfers\">RTT</abbr> output and connect GDB. It's "
"configured by an\n"
"`Embed.toml` file in your project directory."
msgstr ""
#: src/bare-metal/microcontrollers/probe-rs.md:16
msgid ""
"* [CMSIS-DAP](https://arm-software.github.io/CMSIS_5/DAP/html/index.html) is "
"an Arm standard\n"
" protocol over USB for an in-circuit debugger to access the CoreSight Debug "
"Access Port of various\n"
" Arm Cortex processors. It's what the on-board debugger on the BBC micro:"
"bit uses.\n"
"* ST-Link is a range of in-circuit debuggers from ST Microelectronics, J-"
"Link is a range from\n"
" SEGGER.\n"
"* The Debug Access Port is usually either a 5-pin JTAG interface or 2-pin "
"Serial Wire Debug.\n"
"* probe-rs is a library which you can integrate into your own tools if you "
"want to.\n"
"* The [Microsoft Debug Adapter Protocol](https://microsoft.github.io/debug-"
"adapter-protocol/) lets\n"
" VSCode and other IDEs debug code running on any supported "
"microcontroller.\n"
"* cargo-embed is a binary built using the probe-rs library.\n"
"* RTT (Real Time Transfers) is a mechanism to transfer data between the "
"debug host and the target\n"
" through a number of ringbuffers."
msgstr ""
#: src/bare-metal/microcontrollers/debugging.md:1
msgid "# Debugging"
msgstr ""
#: src/bare-metal/microcontrollers/debugging.md:3
msgid "Embed.toml:"
msgstr ""
#: src/bare-metal/microcontrollers/debugging.md:5
msgid ""
"```toml\n"
"[default.general]\n"
"chip = \"nrf52833_xxAA\"\n"
"\n"
"[debug.gdb]\n"
"enabled = true\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/debugging.md:13
msgid "In one terminal under `src/bare-metal/microcontrollers/examples/`:"
msgstr ""
#: src/bare-metal/microcontrollers/debugging.md:15
msgid ""
"```sh\n"
"cargo embed --bin board_support debug\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/debugging.md:19
msgid "In another terminal in the same directory:"
msgstr ""
#: src/bare-metal/microcontrollers/debugging.md:21
msgid ""
"```sh\n"
"gdb-multiarch target/thumbv7em-none-eabihf/debug/board_support --eval-"
"command=\"target remote :1337\"\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/debugging.md:27
msgid "In GDB, try running:"
msgstr ""
#: src/bare-metal/microcontrollers/debugging.md:29
msgid ""
"```gdb\n"
"b src/bin/board_support.rs:29\n"
"b src/bin/board_support.rs:30\n"
"b src/bin/board_support.rs:32\n"
"c\n"
"c\n"
"c\n"
"```"
msgstr ""
#: src/bare-metal/microcontrollers/other-projects.md:1
#: src/bare-metal/aps/other-projects.md:1
msgid "# Other projects"
msgstr ""
#: src/bare-metal/microcontrollers/other-projects.md:3
msgid ""
" * [RTIC](https://rtic.rs/)\n"
" * \"Real-Time Interrupt-driven Concurrency\"\n"
" * Shared resource management, message passing, task scheduling, timer "
"queue\n"
" * [Embassy](https://embassy.dev/)\n"
" * `async` executors with priorities, timers, networking, USB\n"
" * [TockOS](https://www.tockos.org/documentation/getting-started)\n"
" * Security-focused RTOS with preemptive scheduling and Memory Protection "
"Unit support\n"
" * [Hubris](https://hubris.oxide.computer/)\n"
" * Microkernel RTOS from Oxide Computer Company with memory protection, "
"unprivileged drivers, IPC\n"
" * [Bindings for FreeRTOS](https://github.com/lobaro/FreeRTOS-rust)\n"
" * Some platforms have `std` implementations, e.g.\n"
" [esp-idf](https://esp-rs.github.io/book/overview/using-the-standard-"
"library.html)."
msgstr ""
#: src/bare-metal/microcontrollers/other-projects.md:18
msgid ""
" * RTIC can be considered either an RTOS or a concurrency framework.\n"
" * It doesn't include any HALs.\n"
" * It uses the Cortex-M NVIC (Nested Virtual Interrupt Controller) for "
"scheduling rather than a\n"
" proper kernel.\n"
" * Cortex-M only.\n"
" * Google uses TockOS on the Haven microcontroller for Titan security keys.\n"
" * FreeRTOS is mostly written in C, but there are Rust bindings for writing "
"applications."
msgstr ""
#: src/exercises/bare-metal/morning.md:3
msgid ""
"We will read the direction from an I2C compass, and log the readings to a "
"serial port."
msgstr ""
#: src/exercises/bare-metal/compass.md:1
msgid "# Compass"
msgstr ""
#: src/exercises/bare-metal/compass.md:3
msgid ""
"We will read the direction from an I2C compass, and log the readings to a "
"serial port. If you have\n"
"time, try displaying it on the LEDs somehow too, or use the buttons somehow."
msgstr ""
#: src/exercises/bare-metal/compass.md:6
msgid "Hints:"
msgstr ""
#: src/exercises/bare-metal/compass.md:8
msgid ""
"- Check the documentation for the [`lsm303agr`](https://docs.rs/lsm303agr/"
"latest/lsm303agr/) and\n"
" [`microbit-v2`](https://docs.rs/microbit-v2/latest/microbit/) crates, as "
"well as the\n"
" [micro:bit hardware](https://tech.microbit.org/hardware/).\n"
"- The LSM303AGR Inertial Measurement Unit is connected to the internal I2C "
"bus.\n"
"- TWI is another name for I2C, so the I2C master peripheral is called TWIM.\n"
"- The LSM303AGR driver needs something implementing the `embedded_hal::"
"blocking::i2c::WriteRead`\n"
" trait. The\n"
" [`microbit::hal::Twim`](https://docs.rs/microbit-v2/latest/microbit/hal/"
"struct.Twim.html) struct\n"
" implements this.\n"
"- You have a [`microbit::Board`](https://docs.rs/microbit-v2/latest/microbit/"
"struct.Board.html)\n"
" struct with fields for the various pins and peripherals.\n"
"- You can also look at the\n"
" [nRF52833 datasheet](https://infocenter.nordicsemi.com/pdf/"
"nRF52833_PS_v1.5.pdf) if you want, but\n"
" it shouldn't be necessary for this exercise."
msgstr ""
#: src/exercises/bare-metal/compass.md:23
msgid ""
"Download the [exercise template](../../comprehensive-rust-exercises.zip) and "
"look in the `compass`\n"
"directory for the following files."
msgstr ""
#: src/exercises/bare-metal/compass.md:26 src/exercises/bare-metal/rtc.md:19
msgid "`src/main.rs`:"
msgstr ""
#: src/exercises/bare-metal/compass.md:28 src/exercises/bare-metal/rtc.md:21
#: src/exercises/concurrency/dining-philosophers.md:17
#: src/exercises/concurrency/link-checker.md:55
#: src/exercises/concurrency/dining-philosophers-async.md:11
msgid "<!-- File src/main.rs -->"
msgstr ""
#: src/exercises/bare-metal/compass.md:30
msgid ""
"```rust,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"extern crate panic_halt as _;\n"
"\n"
"use core::fmt::Write;\n"
"use cortex_m_rt::entry;\n"
"use microbit::{hal::uarte::{Baudrate, Parity, Uarte}, Board};\n"
"\n"
"#[entry]\n"
"fn main() -> ! {\n"
" let board = Board::take().unwrap();\n"
"\n"
" // Configure serial port.\n"
" let mut serial = Uarte::new(\n"
" board.UARTE0,\n"
" board.uart.into(),\n"
" Parity::EXCLUDED,\n"
" Baudrate::BAUD115200,\n"
" );\n"
"\n"
" // Set up the I2C controller and Inertial Measurement Unit.\n"
" // TODO\n"
"\n"
" writeln!(serial, \"Ready.\").unwrap();\n"
"\n"
" loop {\n"
" // Read compass data and log it to the serial port.\n"
" // TODO\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/exercises/bare-metal/compass.md:64 src/exercises/bare-metal/rtc.md:385
msgid "`Cargo.toml` (you shouldn't need to change this):"
msgstr ""
#: src/exercises/bare-metal/compass.md:66 src/exercises/bare-metal/rtc.md:387
#: src/exercises/concurrency/dining-philosophers.md:63
#: src/exercises/concurrency/link-checker.md:35
#: src/exercises/concurrency/dining-philosophers-async.md:60
#: src/exercises/concurrency/chat-app.md:17
msgid "<!-- File Cargo.toml -->"
msgstr ""
#: src/exercises/bare-metal/compass.md:68
msgid ""
"```toml\n"
"[workspace]\n"
"\n"
"[package]\n"
"name = \"compass\"\n"
"version = \"0.1.0\"\n"
"edition = \"2021\"\n"
"publish = false\n"
"\n"
"[dependencies]\n"
"cortex-m-rt = \"0.7.3\"\n"
"embedded-hal = \"0.2.6\"\n"
"lsm303agr = \"0.2.2\"\n"
"microbit-v2 = \"0.13.0\"\n"
"panic-halt = \"0.2.0\"\n"
"```"
msgstr ""
#: src/exercises/bare-metal/compass.md:85
msgid "`Embed.toml` (you shouldn't need to change this):"
msgstr ""
#: src/exercises/bare-metal/compass.md:87
msgid "<!-- File Embed.toml -->"
msgstr ""
#: src/exercises/bare-metal/compass.md:89
msgid ""
"```toml\n"
"[default.general]\n"
"chip = \"nrf52833_xxAA\"\n"
"\n"
"[debug.gdb]\n"
"enabled = true\n"
"\n"
"[debug.reset]\n"
"halt_afterwards = true\n"
"```"
msgstr ""
#: src/exercises/bare-metal/compass.md:100 src/exercises/bare-metal/rtc.md:985
msgid "`.cargo/config.toml` (you shouldn't need to change this):"
msgstr ""
#: src/exercises/bare-metal/compass.md:102 src/exercises/bare-metal/rtc.md:987
msgid "<!-- File .cargo/config.toml -->"
msgstr ""
#: src/exercises/bare-metal/compass.md:104
msgid ""
"```toml\n"
"[build]\n"
"target = \"thumbv7em-none-eabihf\" # Cortex-M4F\n"
"\n"
"[target.'cfg(all(target_arch = \"arm\", target_os = \"none\"))']\n"
"rustflags = [\"-C\", \"link-arg=-Tlink.x\"]\n"
"```"
msgstr ""
#: src/exercises/bare-metal/compass.md:112
msgid "See the serial output on Linux with:"
msgstr ""
#: src/exercises/bare-metal/compass.md:114
msgid ""
"```sh\n"
"picocom --baud 115200 --imap lfcrlf /dev/ttyACM0\n"
"```"
msgstr ""
#: src/exercises/bare-metal/compass.md:118
msgid ""
"Or on Mac OS something like (the device name may be slightly different):"
msgstr ""
#: src/exercises/bare-metal/compass.md:120
msgid ""
"```sh\n"
"picocom --baud 115200 --imap lfcrlf /dev/tty.usbmodem14502\n"
"```"
msgstr ""
#: src/exercises/bare-metal/compass.md:124
msgid "Use Ctrl+A Ctrl+Q to quit picocom."
msgstr ""
#: src/bare-metal/aps.md:1
msgid "# Application processors"
msgstr ""
#: src/bare-metal/aps.md:3
msgid ""
"So far we've talked about microcontrollers, such as the Arm Cortex-M series. "
"Now let's try writing\n"
"something for Cortex-A. For simplicity we'll just work with QEMU's aarch64\n"
"['virt'](https://qemu-project.gitlab.io/qemu/system/arm/virt.html) board."
msgstr ""
#: src/bare-metal/aps.md:9
msgid ""
"* Broadly speaking, microcontrollers don't have an MMU or multiple levels of "
"privilege (exception\n"
" levels on Arm CPUs, rings on x86), while application processors do.\n"
"* QEMU supports emulating various different machines or board models for "
"each architecture. The\n"
" 'virt' board doesn't correspond to any particular real hardware, but is "
"designed purely for\n"
" virtual machines."
msgstr ""
#: src/bare-metal/aps/inline-assembly.md:1
msgid "# Inline assembly"
msgstr ""
#: src/bare-metal/aps/inline-assembly.md:3
msgid ""
"Sometimes we need to use assembly to do things that aren't possible with "
"Rust code. For example,\n"
"to make an <abbr title=\"hypervisor call\">HVC</abbr> to tell the firmware "
"to power off the system:"
msgstr ""
#: src/bare-metal/aps/inline-assembly.md:6
msgid ""
"```rust,editable,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"use core::arch::asm;\n"
"use core::panic::PanicInfo;\n"
"\n"
"mod exceptions;\n"
"\n"
"const PSCI_SYSTEM_OFF: u32 = 0x84000008;\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn main(_x0: u64, _x1: u64, _x2: u64, _x3: u64) {\n"
" // Safe because this only uses the declared registers and doesn't do\n"
" // anything with memory.\n"
" unsafe {\n"
" asm!(\"hvc #0\",\n"
" inout(\"w0\") PSCI_SYSTEM_OFF => _,\n"
" inout(\"w1\") 0 => _,\n"
" inout(\"w2\") 0 => _,\n"
" inout(\"w3\") 0 => _,\n"
" inout(\"w4\") 0 => _,\n"
" inout(\"w5\") 0 => _,\n"
" inout(\"w6\") 0 => _,\n"
" inout(\"w7\") 0 => _,\n"
" options(nomem, nostack)\n"
" );\n"
" }\n"
"\n"
" loop {}\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/aps/inline-assembly.md:39
msgid ""
"(If you actually want to do this, use the [`smccc`][1] crate which has "
"wrappers for all these functions.)"
msgstr ""
#: src/bare-metal/aps/inline-assembly.md:43
msgid ""
"* PSCI is the Arm Power State Coordination Interface, a standard set of "
"functions to manage system\n"
" and CPU power states, among other things. It is implemented by EL3 "
"firmware and hypervisors on\n"
" many systems.\n"
"* The `0 => _` syntax means initialise the register to 0 before running the "
"inline assembly code,\n"
" and ignore its contents afterwards. We need to use `inout` rather than "
"`in` because the call could\n"
" potentially clobber the contents of the registers.\n"
"* This `main` function needs to be `#[no_mangle]` and `extern \"C\"` because "
"it is called from our\n"
" entry point in `entry.S`.\n"
"* `_x0`–`_x3` are the values of registers `x0`–`x3`, which are "
"conventionally used by the bootloader\n"
" to pass things like a pointer to the device tree. According to the "
"standard aarch64 calling\n"
" convention (which is what `extern \"C\"` specifies to use), registers `x0`–"
"`x7` are used for the\n"
" first 8 arguments passed to a function, so `entry.S` doesn't need to do "
"anything special except\n"
" make sure it doesn't change these registers.\n"
"* Run the example in QEMU with `make qemu_psci` under `src/bare-metal/aps/"
"examples`."
msgstr ""
#: src/bare-metal/aps/mmio.md:1
msgid "# Volatile memory access for MMIO"
msgstr ""
#: src/bare-metal/aps/mmio.md:3
msgid ""
" * Use `pointer::read_volatile` and `pointer::write_volatile`.\n"
" * Never hold a reference.\n"
" * `addr_of!` lets you get fields of structs without creating an "
"intermediate reference."
msgstr ""
#: src/bare-metal/aps/mmio.md:9
msgid ""
" * Volatile access: read or write operations may have side-effects, so "
"prevent the compiler or\n"
" hardware from reordering, duplicating or eliding them.\n"
" * Usually if you write and then read, e.g. via a mutable reference, the "
"compiler may assume that\n"
" the value read is the same as the value just written, and not bother "
"actually reading memory.\n"
" * Some existing crates for volatile access to hardware do hold references, "
"but this is unsound.\n"
" Whenever a reference exist, the compiler may choose to dereference it.\n"
" * Use the `addr_of!` macro to get struct field pointers from a pointer to "
"the struct."
msgstr ""
#: src/bare-metal/aps/uart.md:1
msgid "# Let's write a UART driver"
msgstr ""
#: src/bare-metal/aps/uart.md:3
msgid ""
"The QEMU 'virt' machine has a [PL011][1] UART, so let's write a driver for "
"that."
msgstr ""
#: src/bare-metal/aps/uart.md:5
msgid ""
"```rust,editable\n"
"const FLAG_REGISTER_OFFSET: usize = 0x18;\n"
"const FR_BUSY: u8 = 1 << 3;\n"
"const FR_TXFF: u8 = 1 << 5;\n"
"\n"
"/// Minimal driver for a PL011 UART.\n"
"#[derive(Debug)]\n"
"pub struct Uart {\n"
" base_address: *mut u8,\n"
"}\n"
"\n"
"impl Uart {\n"
" /// Constructs a new instance of the UART driver for a PL011 device at "
"the\n"
" /// given base address.\n"
" ///\n"
" /// # Safety\n"
" ///\n"
" /// The given base address must point to the 8 MMIO control registers of "
"a\n"
" /// PL011 device, which must be mapped into the address space of the "
"process\n"
" /// as device memory and not have any other aliases.\n"
" pub unsafe fn new(base_address: *mut u8) -> Self {\n"
" Self { base_address }\n"
" }\n"
"\n"
" /// Writes a single byte to the UART.\n"
" pub fn write_byte(&self, byte: u8) {\n"
" // Wait until there is room in the TX buffer.\n"
" while self.read_flag_register() & FR_TXFF != 0 {}\n"
"\n"
" // Safe because we know that the base address points to the control\n"
" // registers of a PL011 device which is appropriately mapped.\n"
" unsafe {\n"
" // Write to the TX buffer.\n"
" self.base_address.write_volatile(byte);\n"
" }\n"
"\n"
" // Wait until the UART is no longer busy.\n"
" while self.read_flag_register() & FR_BUSY != 0 {}\n"
" }\n"
"\n"
" fn read_flag_register(&self) -> u8 {\n"
" // Safe because we know that the base address points to the control\n"
" // registers of a PL011 device which is appropriately mapped.\n"
" unsafe { self.base_address.add(FLAG_REGISTER_OFFSET)."
"read_volatile() }\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/aps/uart.md:55
msgid ""
"* Note that `Uart::new` is unsafe while the other methods are safe. This is "
"because as long as the\n"
" caller of `Uart::new` guarantees that its safety requirements are met (i."
"e. that there is only\n"
" ever one instance of the driver for a given UART, and nothing else "
"aliasing its address space),\n"
" then it is always safe to call `write_byte` later because we can assume "
"the necessary\n"
" preconditions.\n"
"* We could have done it the other way around (making `new` safe but "
"`write_byte` unsafe), but that\n"
" would be much less convenient to use as every place that calls "
"`write_byte` would need to reason\n"
" about the safety\n"
"* This is a common pattern for writing safe wrappers of unsafe code: moving "
"the burden of proof for\n"
" soundness from a large number of places to a smaller number of places."
msgstr ""
#: src/bare-metal/aps/uart.md:66
msgid "</detais>"
msgstr ""
#: src/bare-metal/aps/uart/traits.md:1
msgid "# More traits"
msgstr ""
#: src/bare-metal/aps/uart/traits.md:3
msgid ""
"We derived the `Debug` trait. It would be useful to implement a few more "
"traits too."
msgstr ""
#: src/bare-metal/aps/uart/traits.md:5
msgid ""
"```rust,editable,compile_fail\n"
"use core::fmt::{self, Write};\n"
"\n"
"impl Write for Uart {\n"
" fn write_str(&mut self, s: &str) -> fmt::Result {\n"
" for c in s.as_bytes() {\n"
" self.write_byte(*c);\n"
" }\n"
" Ok(())\n"
" }\n"
"}\n"
"\n"
"// Safe because it just contains a pointer to device memory, which can be\n"
"// accessed from any context.\n"
"unsafe impl Send for Uart {}\n"
"```"
msgstr ""
#: src/bare-metal/aps/uart/traits.md:24
msgid ""
"* Implementing `Write` lets us use the `write!` and `writeln!` macros with "
"our `Uart` type.\n"
"* Run the example in QEMU with `make qemu_minimal` under `src/bare-metal/aps/"
"examples`."
msgstr ""
#: src/bare-metal/aps/better-uart.md:1
msgid "# A better UART driver"
msgstr ""
#: src/bare-metal/aps/better-uart.md:3
msgid ""
"The PL011 actually has [a bunch more registers][1], and adding offsets to "
"construct pointers to access\n"
"them is error-prone and hard to read. Plus, some of them are bit fields "
"which would be nice to\n"
"access in a structured way."
msgstr ""
#: src/bare-metal/aps/better-uart.md:7
msgid ""
"| Offset | Register name | Width |\n"
"| ------ | ------------- | ----- |\n"
"| 0x00 | DR | 12 |\n"
"| 0x04 | RSR | 4 |\n"
"| 0x18 | FR | 9 |\n"
"| 0x20 | ILPR | 8 |\n"
"| 0x24 | IBRD | 16 |\n"
"| 0x28 | FBRD | 6 |\n"
"| 0x2c | LCR_H | 8 |\n"
"| 0x30 | CR | 16 |\n"
"| 0x34 | IFLS | 6 |\n"
"| 0x38 | IMSC | 11 |\n"
"| 0x3c | RIS | 11 |\n"
"| 0x40 | MIS | 11 |\n"
"| 0x44 | ICR | 11 |\n"
"| 0x48 | DMACR | 3 |"
msgstr ""
#: src/bare-metal/aps/better-uart.md:26
msgid "- There are also some ID registers which have been omitted for brevity."
msgstr ""
#: src/bare-metal/aps/better-uart/bitflags.md:1
msgid "# Bitflags"
msgstr ""
#: src/bare-metal/aps/better-uart/bitflags.md:3
msgid ""
"The [`bitflags`](https://crates.io/crates/bitflags) crate is useful for "
"working with bitflags."
msgstr ""
#: src/bare-metal/aps/better-uart/bitflags.md:5
msgid ""
"```rust,editable,compile_fail\n"
"use bitflags::bitflags;\n"
"\n"
"bitflags! {\n"
" /// Flags from the UART flag register.\n"
" #[repr(transparent)]\n"
" #[derive(Copy, Clone, Debug, Eq, PartialEq)]\n"
" struct Flags: u16 {\n"
" /// Clear to send.\n"
" const CTS = 1 << 0;\n"
" /// Data set ready.\n"
" const DSR = 1 << 1;\n"
" /// Data carrier detect.\n"
" const DCD = 1 << 2;\n"
" /// UART busy transmitting data.\n"
" const BUSY = 1 << 3;\n"
" /// Receive FIFO is empty.\n"
" const RXFE = 1 << 4;\n"
" /// Transmit FIFO is full.\n"
" const TXFF = 1 << 5;\n"
" /// Receive FIFO is full.\n"
" const RXFF = 1 << 6;\n"
" /// Transmit FIFO is empty.\n"
" const TXFE = 1 << 7;\n"
" /// Ring indicator.\n"
" const RI = 1 << 8;\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/aps/better-uart/bitflags.md:37
msgid ""
"* The `bitflags!` macro creates a newtype something like `Flags(u16)`, along "
"with a bunch of method\n"
" implementations to get and set flags."
msgstr ""
#: src/bare-metal/aps/better-uart/registers.md:1
msgid "# Multiple registers"
msgstr ""
#: src/bare-metal/aps/better-uart/registers.md:3
msgid ""
"We can use a struct to represent the memory layout of the UART's registers."
msgstr ""
#: src/bare-metal/aps/better-uart/registers.md:5
msgid ""
"```rust,editable,compile_fail\n"
"#[repr(C, align(4))]\n"
"struct Registers {\n"
" dr: u16,\n"
" _reserved0: [u8; 2],\n"
" rsr: ReceiveStatus,\n"
" _reserved1: [u8; 19],\n"
" fr: Flags,\n"
" _reserved2: [u8; 6],\n"
" ilpr: u8,\n"
" _reserved3: [u8; 3],\n"
" ibrd: u16,\n"
" _reserved4: [u8; 2],\n"
" fbrd: u8,\n"
" _reserved5: [u8; 3],\n"
" lcr_h: u8,\n"
" _reserved6: [u8; 3],\n"
" cr: u16,\n"
" _reserved7: [u8; 3],\n"
" ifls: u8,\n"
" _reserved8: [u8; 3],\n"
" imsc: u16,\n"
" _reserved9: [u8; 2],\n"
" ris: u16,\n"
" _reserved10: [u8; 2],\n"
" mis: u16,\n"
" _reserved11: [u8; 2],\n"
" icr: u16,\n"
" _reserved12: [u8; 2],\n"
" dmacr: u8,\n"
" _reserved13: [u8; 3],\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/aps/better-uart/registers.md:41
msgid ""
"* [`#[repr(C)]`](https://doc.rust-lang.org/reference/type-layout.html#the-c-"
"representation) tells\n"
" the compiler to lay the struct fields out in order, following the same "
"rules as C. This is\n"
" necessary for our struct to have a predictable layout, as default Rust "
"representation allows the\n"
" compiler to (among other things) reorder fields however it sees fit."
msgstr ""
#: src/bare-metal/aps/better-uart/driver.md:1
msgid "# Driver"
msgstr ""
#: src/bare-metal/aps/better-uart/driver.md:3
msgid "Now let's use the new `Registers` struct in our driver."
msgstr ""
#: src/bare-metal/aps/better-uart/driver.md:5
msgid ""
"```rust,editable,compile_fail\n"
"/// Driver for a PL011 UART.\n"
"#[derive(Debug)]\n"
"pub struct Uart {\n"
" registers: *mut Registers,\n"
"}\n"
"\n"
"impl Uart {\n"
" /// Constructs a new instance of the UART driver for a PL011 device at "
"the\n"
" /// given base address.\n"
" ///\n"
" /// # Safety\n"
" ///\n"
" /// The given base address must point to the 8 MMIO control registers of "
"a\n"
" /// PL011 device, which must be mapped into the address space of the "
"process\n"
" /// as device memory and not have any other aliases.\n"
" pub unsafe fn new(base_address: *mut u32) -> Self {\n"
" Self {\n"
" registers: base_address as *mut Registers,\n"
" }\n"
" }\n"
"\n"
" /// Writes a single byte to the UART.\n"
" pub fn write_byte(&self, byte: u8) {\n"
" // Wait until there is room in the TX buffer.\n"
" while self.read_flag_register().contains(Flags::TXFF) {}\n"
"\n"
" // Safe because we know that self.registers points to the control\n"
" // registers of a PL011 device which is appropriately mapped.\n"
" unsafe {\n"
" // Write to the TX buffer.\n"
" addr_of_mut!((*self.registers).dr).write_volatile(byte.into());\n"
" }\n"
"\n"
" // Wait until the UART is no longer busy.\n"
" while self.read_flag_register().contains(Flags::BUSY) {}\n"
" }\n"
"\n"
" /// Reads and returns a pending byte, or `None` if nothing has been "
"received.\n"
" pub fn read_byte(&self) -> Option<u8> {\n"
" if self.read_flag_register().contains(Flags::RXFE) {\n"
" None\n"
" } else {\n"
" let data = unsafe { addr_of!((*self.registers).dr)."
"read_volatile() };\n"
" // TODO: Check for error conditions in bits 8-11.\n"
" Some(data as u8)\n"
" }\n"
" }\n"
"\n"
" fn read_flag_register(&self) -> Flags {\n"
" // Safe because we know that self.registers points to the control\n"
" // registers of a PL011 device which is appropriately mapped.\n"
" unsafe { addr_of!((*self.registers).fr).read_volatile() }\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/aps/better-uart/driver.md:64
msgid ""
"* Note the use of `addr_of!` / `addr_of_mut!` to get pointers to individual "
"fields without creating\n"
" an intermediate reference, which would be unsound."
msgstr ""
#: src/bare-metal/aps/better-uart/using.md:1
#: src/bare-metal/aps/logging/using.md:1
msgid "# Using it"
msgstr ""
#: src/bare-metal/aps/better-uart/using.md:3
msgid ""
"Let's write a small program using our driver to write to the serial console, "
"and echo incoming\n"
"bytes."
msgstr ""
#: src/bare-metal/aps/better-uart/using.md:6
msgid ""
"```rust,editable,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"mod exceptions;\n"
"mod pl011;\n"
"\n"
"use crate::pl011::Uart;\n"
"use core::fmt::Write;\n"
"use core::panic::PanicInfo;\n"
"use log::error;\n"
"use smccc::psci::system_off;\n"
"use smccc::Hvc;\n"
"\n"
"/// Base address of the primary PL011 UART.\n"
"const PL011_BASE_ADDRESS: *mut u32 = 0x900_0000 as _;\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {\n"
" // Safe because `PL011_BASE_ADDRESS` is the base address of a PL011 "
"device,\n"
" // and nothing else accesses that address range.\n"
" let mut uart = unsafe { Uart::new(PL011_BASE_ADDRESS) };\n"
"\n"
" writeln!(uart, \"main({x0:#x}, {x1:#x}, {x2:#x}, {x3:#x})\").unwrap();\n"
"\n"
" loop {\n"
" if let Some(b) = uart.read_byte() {\n"
" uart.write_byte(b);\n"
" match b {\n"
" b'\\r' => {\n"
" uart.write_byte(b'\\n');\n"
" }\n"
" b'q' => break,\n"
" _ => {}\n"
" }\n"
" }\n"
" }\n"
"\n"
" writeln!(uart, \"Bye!\").unwrap();\n"
" system_off::<Hvc>().unwrap();\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/aps/better-uart/using.md:51
msgid ""
"* As in the [inline assembly](../inline-assembly.md) example, this `main` "
"function is called from our\n"
" entry point code in `entry.S`. See the speaker notes there for details.\n"
"* Run the example in QEMU with `make qemu` under `src/bare-metal/aps/"
"examples`."
msgstr ""
#: src/bare-metal/aps/logging.md:3
msgid ""
"It would be nice to be able to use the logging macros from the [`log`][1] "
"crate. We can do this by\n"
"implementing the `Log` trait."
msgstr ""
#: src/bare-metal/aps/logging.md:6
msgid ""
"```rust,editable,compile_fail\n"
"use crate::pl011::Uart;\n"
"use core::fmt::Write;\n"
"use log::{LevelFilter, Log, Metadata, Record, SetLoggerError};\n"
"use spin::mutex::SpinMutex;\n"
"\n"
"static LOGGER: Logger = Logger {\n"
" uart: SpinMutex::new(None),\n"
"};\n"
"\n"
"struct Logger {\n"
" uart: SpinMutex<Option<Uart>>,\n"
"}\n"
"\n"
"impl Log for Logger {\n"
" fn enabled(&self, _metadata: &Metadata) -> bool {\n"
" true\n"
" }\n"
"\n"
" fn log(&self, record: &Record) {\n"
" writeln!(\n"
" self.uart.lock().as_mut().unwrap(),\n"
" \"[{}] {}\",\n"
" record.level(),\n"
" record.args()\n"
" )\n"
" .unwrap();\n"
" }\n"
"\n"
" fn flush(&self) {}\n"
"}\n"
"\n"
"/// Initialises UART logger.\n"
"pub fn init(uart: Uart, max_level: LevelFilter) -> Result<(), "
"SetLoggerError> {\n"
" LOGGER.uart.lock().replace(uart);\n"
"\n"
" log::set_logger(&LOGGER)?;\n"
" log::set_max_level(max_level);\n"
" Ok(())\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/aps/logging.md:50
msgid ""
"* The unwrap in `log` is safe because we initialise `LOGGER` before calling "
"`set_logger`."
msgstr ""
#: src/bare-metal/aps/logging/using.md:3
msgid "We need to initialise the logger before we use it."
msgstr ""
#: src/bare-metal/aps/logging/using.md:5
msgid ""
"```rust,editable,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"mod exceptions;\n"
"mod logger;\n"
"mod pl011;\n"
"\n"
"use crate::pl011::Uart;\n"
"use core::panic::PanicInfo;\n"
"use log::{error, info, LevelFilter};\n"
"use smccc::psci::system_off;\n"
"use smccc::Hvc;\n"
"\n"
"/// Base address of the primary PL011 UART.\n"
"const PL011_BASE_ADDRESS: *mut u32 = 0x900_0000 as _;\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {\n"
" // Safe because `PL011_BASE_ADDRESS` is the base address of a PL011 "
"device,\n"
" // and nothing else accesses that address range.\n"
" let uart = unsafe { Uart::new(PL011_BASE_ADDRESS) };\n"
" logger::init(uart, LevelFilter::Trace).unwrap();\n"
"\n"
" info!(\"main({x0:#x}, {x1:#x}, {x2:#x}, {x3:#x})\");\n"
"\n"
" assert_eq!(x1, 42);\n"
"\n"
" system_off::<Hvc>().unwrap();\n"
"}\n"
"\n"
"#[panic_handler]\n"
"fn panic(info: &PanicInfo) -> ! {\n"
" error!(\"{info}\");\n"
" system_off::<Hvc>().unwrap();\n"
" loop {}\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/aps/logging/using.md:46
msgid ""
"* Note that our panic handler can now log details of panics.\n"
"* Run the example in QEMU with `make qemu_logger` under `src/bare-metal/aps/"
"examples`."
msgstr ""
#: src/bare-metal/aps/other-projects.md:3
msgid ""
" * [oreboot](https://github.com/oreboot/oreboot)\n"
" * \"coreboot without the C\"\n"
" * Supports x86, aarch64 and RISC-V.\n"
" * Relies on LinuxBoot rather than having many drivers itself.\n"
" * [Rust RaspberryPi OS tutorial](https://github.com/rust-embedded/rust-"
"raspberrypi-OS-tutorials)\n"
" * Initialisation, UART driver, simple bootloader, JTAG, exception levels, "
"exception handling, page tables\n"
" * Not all very well written, so beware.\n"
" * [`cargo-call-stack`](https://crates.io/crates/cargo-call-stack)\n"
" * Static analysis to determine maximum stack usage."
msgstr ""
#: src/bare-metal/useful-crates.md:1
msgid "# Useful crates"
msgstr ""
#: src/bare-metal/useful-crates.md:3
msgid ""
"We'll go over a few crates which solve some common problems in bare-metal "
"programming."
msgstr ""
#: src/bare-metal/useful-crates/zerocopy.md:1
msgid "# `zerocopy`"
msgstr ""
#: src/bare-metal/useful-crates/zerocopy.md:3
msgid ""
"The [`zerocopy`][1] crate (from Fuchsia) provides traits and macros for "
"safely converting between\n"
"byte sequences and other types."
msgstr ""
#: src/bare-metal/useful-crates/zerocopy.md:6
msgid ""
"```rust,editable,compile_fail\n"
"use zerocopy::AsBytes;\n"
"\n"
"#[repr(u32)]\n"
"#[derive(AsBytes, Debug, Default)]\n"
"enum RequestType {\n"
" #[default]\n"
" In = 0,\n"
" Out = 1,\n"
" Flush = 4,\n"
"}\n"
"\n"
"#[repr(C)]\n"
"#[derive(AsBytes, Debug, Default)]\n"
"struct VirtioBlockRequest {\n"
" request_type: RequestType,\n"
" reserved: u32,\n"
" sector: u64,\n"
"}\n"
"\n"
"fn main() {\n"
" let request = VirtioBlockRequest {\n"
" request_type: RequestType::Flush,\n"
" sector: 42,\n"
" ..Default::default()\n"
" };\n"
"\n"
" assert_eq!(\n"
" request.as_bytes(),\n"
" &[4, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0]\n"
" );\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/useful-crates/zerocopy.md:40
msgid ""
"This is not suitable for MMIO (as it doesn't use volatile reads and writes), "
"but can be useful for\n"
"working with structures shared with hardware e.g. by DMA, or sent over some "
"external interface."
msgstr ""
#: src/bare-metal/useful-crates/zerocopy.md:45
msgid ""
"* `FromBytes` can be implemented for types for which any byte pattern is "
"valid, and so can safely be\n"
" converted from an untrusted sequence of bytes.\n"
"* Attempting to derive `FromBytes` for these types would fail, because "
"`RequestType` doesn't use all\n"
" possible u32 values as discriminants, so not all byte patterns are valid.\n"
"* `zerocopy::byteorder` has types for byte-order aware numeric primitives.\n"
"* Run the example with `cargo run` under `src/bare-metal/useful-crates/"
"zerocopy-example/`. (It won't\n"
" run in the Playground because of the crate dependency.)"
msgstr ""
#: src/bare-metal/useful-crates/aarch64-paging.md:1
msgid "# `aarch64-paging`"
msgstr ""
#: src/bare-metal/useful-crates/aarch64-paging.md:3
msgid ""
"The [`aarch64-paging`][1] crate lets you create page tables according to the "
"AArch64 Virtual Memory\n"
"System Architecture."
msgstr ""
#: src/bare-metal/useful-crates/aarch64-paging.md:6
msgid ""
"```rust,editable,compile_fail\n"
"use aarch64_paging::{\n"
" idmap::IdMap,\n"
" paging::{Attributes, MemoryRegion},\n"
"};\n"
"\n"
"const ASID: usize = 1;\n"
"const ROOT_LEVEL: usize = 1;\n"
"\n"
"// Create a new page table with identity mapping.\n"
"let mut idmap = IdMap::new(ASID, ROOT_LEVEL);\n"
"// Map a 2 MiB region of memory as read-only.\n"
"idmap.map_range(\n"
" &MemoryRegion::new(0x80200000, 0x80400000),\n"
" Attributes::NORMAL | Attributes::NON_GLOBAL | Attributes::READ_ONLY,\n"
").unwrap();\n"
"// Set `TTBR0_EL1` to activate the page table.\n"
"idmap.activate();\n"
"```"
msgstr ""
#: src/bare-metal/useful-crates/aarch64-paging.md:28
msgid ""
"* For now it only supports EL1, but support for other exception levels "
"should be straightforward to\n"
" add.\n"
"* This is used in Android for the [Protected VM Firmware][2].\n"
"* There's no easy way to run this example, as it needs to run on real "
"hardware or under QEMU."
msgstr ""
#: src/bare-metal/useful-crates/buddy_system_allocator.md:1
msgid "# `buddy_system_allocator`"
msgstr ""
#: src/bare-metal/useful-crates/buddy_system_allocator.md:3
msgid ""
"[`buddy_system_allocator`][1] is a third-party crate implementing a basic "
"buddy system allocator.\n"
"It can be used both for [`LockedHeap`][2] implementing [`GlobalAlloc`][3] so "
"you can use the\n"
"standard `alloc` crate (as we saw [before][4]), or for allocating other "
"address space. For example,\n"
"we might want to allocate MMIO space for PCI BARs:"
msgstr ""
#: src/bare-metal/useful-crates/buddy_system_allocator.md:8
msgid ""
"```rust,editable,compile_fail\n"
"use buddy_system_allocator::FrameAllocator;\n"
"use core::alloc::Layout;\n"
"\n"
"fn main() {\n"
" let mut allocator = FrameAllocator::<32>::new();\n"
" allocator.add_frame(0x200_0000, 0x400_0000);\n"
"\n"
" let layout = Layout::from_size_align(0x100, 0x100).unwrap();\n"
" let bar = allocator\n"
" .alloc_aligned(layout)\n"
" .expect(\"Failed to allocate 0x100 byte MMIO region\");\n"
" println!(\"Allocated 0x100 byte MMIO region at {:#x}\", bar);\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/useful-crates/buddy_system_allocator.md:26
msgid ""
"* PCI BARs always have alignment equal to their size.\n"
"* Run the example with `cargo run` under `src/bare-metal/useful-crates/"
"allocator-example/`. (It won't\n"
" run in the Playground because of the crate dependency.)"
msgstr ""
#: src/bare-metal/useful-crates/tinyvec.md:1
msgid "# `tinyvec`"
msgstr ""
#: src/bare-metal/useful-crates/tinyvec.md:3
msgid ""
"Sometimes you want something which can be resized like a `Vec`, but without "
"heap allocation.\n"
"[`tinyvec`][1] provides this: a vector backed by an array or slice, which "
"could be statically\n"
"allocated or on the stack, which keeps track of how many elements are used "
"and panics if you try to\n"
"use more than are allocated."
msgstr ""
#: src/bare-metal/useful-crates/tinyvec.md:8
msgid ""
"```rust,editable,compile_fail\n"
"use tinyvec::{array_vec, ArrayVec};\n"
"\n"
"fn main() {\n"
" let mut numbers: ArrayVec<[u32; 5]> = array_vec!(42, 66);\n"
" println!(\"{numbers:?}\");\n"
" numbers.push(7);\n"
" println!(\"{numbers:?}\");\n"
" numbers.remove(1);\n"
" println!(\"{numbers:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/useful-crates/tinyvec.md:23
msgid ""
"* `tinyvec` requires that the element type implement `Default` for "
"initialisation.\n"
"* The Rust Playground includes `tinyvec`, so this example will run fine "
"inline."
msgstr ""
#: src/bare-metal/useful-crates/spin.md:1
msgid "# `spin`"
msgstr ""
#: src/bare-metal/useful-crates/spin.md:3
msgid ""
"`std::sync::Mutex` and the other synchronisation primitives from `std::sync` "
"are not available in\n"
"`core` or `alloc`. How can we manage synchronisation or interior mutability, "
"such as for sharing\n"
"state between different CPUs?"
msgstr ""
#: src/bare-metal/useful-crates/spin.md:7
msgid ""
"The [`spin`][1] crate provides spinlock-based equivalents of many of these "
"primitives."
msgstr ""
#: src/bare-metal/useful-crates/spin.md:9
msgid ""
"```rust,editable,compile_fail\n"
"use spin::mutex::SpinMutex;\n"
"\n"
"static counter: SpinMutex<u32> = SpinMutex::new(0);\n"
"\n"
"fn main() {\n"
" println!(\"count: {}\", counter.lock());\n"
" *counter.lock() += 2;\n"
" println!(\"count: {}\", counter.lock());\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/useful-crates/spin.md:23
msgid ""
"* Be careful to avoid deadlock if you take locks in interrupt handlers.\n"
"* `spin` also has a ticket lock mutex implementation; equivalents of "
"`RwLock`, `Barrier` and `Once`\n"
" from `std::sync`; and `Lazy` for lazy initialisation.\n"
"* The [`once_cell`][2] crate also has some useful types for late "
"initialisation with a slightly\n"
" different approach to `spin::once::Once`.\n"
"* The Rust Playground includes `spin`, so this example will run fine inline."
msgstr ""
#: src/bare-metal/android.md:1
msgid "# Android"
msgstr ""
#: src/bare-metal/android.md:3
msgid ""
"To build a bare-metal Rust binary in AOSP, you need to use a "
"`rust_ffi_static` Soong rule to build\n"
"your Rust code, then a `cc_binary` with a linker script to produce the "
"binary itself, and then a\n"
"`raw_binary` to convert the ELF to a raw binary ready to be run."
msgstr ""
#: src/bare-metal/android.md:7
msgid ""
"```soong\n"
"rust_ffi_static {\n"
" name: \"libvmbase_example\",\n"
" defaults: [\"vmbase_ffi_defaults\"],\n"
" crate_name: \"vmbase_example\",\n"
" srcs: [\"src/main.rs\"],\n"
" rustlibs: [\n"
" \"libvmbase\",\n"
" ],\n"
"}\n"
"\n"
"cc_binary {\n"
" name: \"vmbase_example\",\n"
" defaults: [\"vmbase_elf_defaults\"],\n"
" srcs: [\n"
" \"idmap.S\",\n"
" ],\n"
" static_libs: [\n"
" \"libvmbase_example\",\n"
" ],\n"
" linker_scripts: [\n"
" \"image.ld\",\n"
" \":vmbase_sections\",\n"
" ],\n"
"}\n"
"\n"
"raw_binary {\n"
" name: \"vmbase_example_bin\",\n"
" stem: \"vmbase_example.bin\",\n"
" src: \":vmbase_example\",\n"
" enabled: false,\n"
" target: {\n"
" android_arm64: {\n"
" enabled: true,\n"
" },\n"
" },\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/android/vmbase.md:1
msgid "# vmbase"
msgstr ""
#: src/bare-metal/android/vmbase.md:3
msgid ""
"For VMs running under crosvm on aarch64, the [vmbase][1] library provides a "
"linker script and useful\n"
"defaults for the build rules, along with an entry point, UART console "
"logging and more."
msgstr ""
#: src/bare-metal/android/vmbase.md:6
msgid ""
"```rust,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"use vmbase::{main, println};\n"
"\n"
"main!(main);\n"
"\n"
"pub fn main(arg0: u64, arg1: u64, arg2: u64, arg3: u64) {\n"
" println!(\"Hello world\");\n"
"}\n"
"```"
msgstr ""
#: src/bare-metal/android/vmbase.md:21
msgid ""
"* The `main!` macro marks your main function, to be called from the `vmbase` "
"entry point.\n"
"* The `vmbase` entry point handles console initialisation, and issues a "
"PSCI_SYSTEM_OFF to shutdown\n"
" the VM if your main function returns."
msgstr ""
#: src/exercises/bare-metal/afternoon.md:3
msgid "We will write a driver for the PL031 real-time clock device."
msgstr ""
#: src/exercises/bare-metal/rtc.md:1
msgid "# RTC driver"
msgstr ""
#: src/exercises/bare-metal/rtc.md:3
msgid ""
"The QEMU aarch64 virt machine has a [PL031][1] real-time clock at 0x9010000. "
"For this exercise, you\n"
"should write a driver for it."
msgstr ""
#: src/exercises/bare-metal/rtc.md:6
msgid ""
"1. Use it to print the current time to the serial console. You can use the "
"[`chrono`][2] crate for\n"
" date/time formatting.\n"
"2. Use the match register and raw interrupt status to busy-wait until a "
"given time, e.g. 3 seconds\n"
" in the future. (Call [`core::hint::spin_loop`][3] inside the loop.)\n"
"3. _Extension if you have time:_ Enable and handle the interrupt generated "
"by the RTC match. You can\n"
" use the driver provided in the [`arm-gic`][4] crate to configure the Arm "
"Generic Interrupt Controller.\n"
" - Use the RTC interrupt, which is wired to the GIC as `IntId::spi(2)`.\n"
" - Once the interrupt is enabled, you can put the core to sleep via "
"`arm_gic::wfi()`, which will cause the core to sleep until it receives an "
"interrupt.\n"
" "
msgstr ""
#: src/exercises/bare-metal/rtc.md:16
msgid ""
"Download the [exercise template](../../comprehensive-rust-exercises.zip) and "
"look in the `rtc`\n"
"directory for the following files."
msgstr ""
#: src/exercises/bare-metal/rtc.md:23
msgid ""
"```rust,compile_fail\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"mod exceptions;\n"
"mod logger;\n"
"mod pl011;\n"
"\n"
"use crate::pl011::Uart;\n"
"use arm_gic::gicv3::GicV3;\n"
"use core::panic::PanicInfo;\n"
"use log::{error, info, trace, LevelFilter};\n"
"use smccc::psci::system_off;\n"
"use smccc::Hvc;\n"
"\n"
"/// Base addresses of the GICv3.\n"
"const GICD_BASE_ADDRESS: *mut u64 = 0x800_0000 as _;\n"
"const GICR_BASE_ADDRESS: *mut u64 = 0x80A_0000 as _;\n"
"\n"
"/// Base address of the primary PL011 UART.\n"
"const PL011_BASE_ADDRESS: *mut u32 = 0x900_0000 as _;\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {\n"
" // Safe because `PL011_BASE_ADDRESS` is the base address of a PL011 "
"device,\n"
" // and nothing else accesses that address range.\n"
" let uart = unsafe { Uart::new(PL011_BASE_ADDRESS) };\n"
" logger::init(uart, LevelFilter::Trace).unwrap();\n"
"\n"
" info!(\"main({:#x}, {:#x}, {:#x}, {:#x})\", x0, x1, x2, x3);\n"
"\n"
" // Safe because `GICD_BASE_ADDRESS` and `GICR_BASE_ADDRESS` are the "
"base\n"
" // addresses of a GICv3 distributor and redistributor respectively, and\n"
" // nothing else accesses those address ranges.\n"
" let mut gic = unsafe { GicV3::new(GICD_BASE_ADDRESS, "
"GICR_BASE_ADDRESS) };\n"
" gic.setup();\n"
"\n"
" // TODO: Create instance of RTC driver and print current time.\n"
"\n"
" // TODO: Wait for 3 seconds.\n"
"\n"
" system_off::<Hvc>().unwrap();\n"
"}\n"
"\n"
"#[panic_handler]\n"
"fn panic(info: &PanicInfo) -> ! {\n"
" error!(\"{info}\");\n"
" system_off::<Hvc>().unwrap();\n"
" loop {}\n"
"}\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:75
msgid ""
"`src/exceptions.rs` (you should only need to change this for the 3rd part of "
"the exercise):"
msgstr ""
#: src/exercises/bare-metal/rtc.md:77
msgid "<!-- File src/exceptions.rs -->"
msgstr ""
#: src/exercises/bare-metal/rtc.md:79
msgid ""
"```rust,compile_fail\n"
"// Copyright 2023 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"use arm_gic::gicv3::GicV3;\n"
"use log::{error, info, trace};\n"
"use smccc::psci::system_off;\n"
"use smccc::Hvc;\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn sync_exception_current(_elr: u64, _spsr: u64) {\n"
" error!(\"sync_exception_current\");\n"
" system_off::<Hvc>().unwrap();\n"
"}\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn irq_current(_elr: u64, _spsr: u64) {\n"
" trace!(\"irq_current\");\n"
" let intid = GicV3::get_and_acknowledge_interrupt().expect(\"No pending "
"interrupt\");\n"
" info!(\"IRQ {intid:?}\");\n"
"}\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn fiq_current(_elr: u64, _spsr: u64) {\n"
" error!(\"fiq_current\");\n"
" system_off::<Hvc>().unwrap();\n"
"}\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn serr_current(_elr: u64, _spsr: u64) {\n"
" error!(\"serr_current\");\n"
" system_off::<Hvc>().unwrap();\n"
"}\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn sync_lower(_elr: u64, _spsr: u64) {\n"
" error!(\"sync_lower\");\n"
" system_off::<Hvc>().unwrap();\n"
"}\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn irq_lower(_elr: u64, _spsr: u64) {\n"
" error!(\"irq_lower\");\n"
" system_off::<Hvc>().unwrap();\n"
"}\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn fiq_lower(_elr: u64, _spsr: u64) {\n"
" error!(\"fiq_lower\");\n"
" system_off::<Hvc>().unwrap();\n"
"}\n"
"\n"
"#[no_mangle]\n"
"extern \"C\" fn serr_lower(_elr: u64, _spsr: u64) {\n"
" error!(\"serr_lower\");\n"
" system_off::<Hvc>().unwrap();\n"
"}\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:149
msgid "`src/logger.rs` (you shouldn't need to change this):"
msgstr ""
#: src/exercises/bare-metal/rtc.md:151
msgid "<!-- File src/logger.rs -->"
msgstr ""
#: src/exercises/bare-metal/rtc.md:153
msgid ""
"```rust,compile_fail\n"
"// Copyright 2023 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: main\n"
"use crate::pl011::Uart;\n"
"use core::fmt::Write;\n"
"use log::{LevelFilter, Log, Metadata, Record, SetLoggerError};\n"
"use spin::mutex::SpinMutex;\n"
"\n"
"static LOGGER: Logger = Logger {\n"
" uart: SpinMutex::new(None),\n"
"};\n"
"\n"
"struct Logger {\n"
" uart: SpinMutex<Option<Uart>>,\n"
"}\n"
"\n"
"impl Log for Logger {\n"
" fn enabled(&self, _metadata: &Metadata) -> bool {\n"
" true\n"
" }\n"
"\n"
" fn log(&self, record: &Record) {\n"
" writeln!(\n"
" self.uart.lock().as_mut().unwrap(),\n"
" \"[{}] {}\",\n"
" record.level(),\n"
" record.args()\n"
" )\n"
" .unwrap();\n"
" }\n"
"\n"
" fn flush(&self) {}\n"
"}\n"
"\n"
"/// Initialises UART logger.\n"
"pub fn init(uart: Uart, max_level: LevelFilter) -> Result<(), "
"SetLoggerError> {\n"
" LOGGER.uart.lock().replace(uart);\n"
"\n"
" log::set_logger(&LOGGER)?;\n"
" log::set_max_level(max_level);\n"
" Ok(())\n"
"}\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:210
msgid "`src/pl011.rs` (you shouldn't need to change this):"
msgstr ""
#: src/exercises/bare-metal/rtc.md:212
msgid "<!-- File src/pl011.rs -->"
msgstr ""
#: src/exercises/bare-metal/rtc.md:214
msgid ""
"```rust,compile_fail\n"
"// Copyright 2023 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"#![allow(unused)]\n"
"\n"
"use core::fmt::{self, Write};\n"
"use core::ptr::{addr_of, addr_of_mut};\n"
"\n"
"// ANCHOR: Flags\n"
"use bitflags::bitflags;\n"
"\n"
"bitflags! {\n"
" /// Flags from the UART flag register.\n"
" #[repr(transparent)]\n"
" #[derive(Copy, Clone, Debug, Eq, PartialEq)]\n"
" struct Flags: u16 {\n"
" /// Clear to send.\n"
" const CTS = 1 << 0;\n"
" /// Data set ready.\n"
" const DSR = 1 << 1;\n"
" /// Data carrier detect.\n"
" const DCD = 1 << 2;\n"
" /// UART busy transmitting data.\n"
" const BUSY = 1 << 3;\n"
" /// Receive FIFO is empty.\n"
" const RXFE = 1 << 4;\n"
" /// Transmit FIFO is full.\n"
" const TXFF = 1 << 5;\n"
" /// Receive FIFO is full.\n"
" const RXFF = 1 << 6;\n"
" /// Transmit FIFO is empty.\n"
" const TXFE = 1 << 7;\n"
" /// Ring indicator.\n"
" const RI = 1 << 8;\n"
" }\n"
"}\n"
"// ANCHOR_END: Flags\n"
"\n"
"bitflags! {\n"
" /// Flags from the UART Receive Status Register / Error Clear Register.\n"
" #[repr(transparent)]\n"
" #[derive(Copy, Clone, Debug, Eq, PartialEq)]\n"
" struct ReceiveStatus: u16 {\n"
" /// Framing error.\n"
" const FE = 1 << 0;\n"
" /// Parity error.\n"
" const PE = 1 << 1;\n"
" /// Break error.\n"
" const BE = 1 << 2;\n"
" /// Overrun error.\n"
" const OE = 1 << 3;\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: Registers\n"
"#[repr(C, align(4))]\n"
"struct Registers {\n"
" dr: u16,\n"
" _reserved0: [u8; 2],\n"
" rsr: ReceiveStatus,\n"
" _reserved1: [u8; 19],\n"
" fr: Flags,\n"
" _reserved2: [u8; 6],\n"
" ilpr: u8,\n"
" _reserved3: [u8; 3],\n"
" ibrd: u16,\n"
" _reserved4: [u8; 2],\n"
" fbrd: u8,\n"
" _reserved5: [u8; 3],\n"
" lcr_h: u8,\n"
" _reserved6: [u8; 3],\n"
" cr: u16,\n"
" _reserved7: [u8; 3],\n"
" ifls: u8,\n"
" _reserved8: [u8; 3],\n"
" imsc: u16,\n"
" _reserved9: [u8; 2],\n"
" ris: u16,\n"
" _reserved10: [u8; 2],\n"
" mis: u16,\n"
" _reserved11: [u8; 2],\n"
" icr: u16,\n"
" _reserved12: [u8; 2],\n"
" dmacr: u8,\n"
" _reserved13: [u8; 3],\n"
"}\n"
"// ANCHOR_END: Registers\n"
"\n"
"// ANCHOR: Uart\n"
"/// Driver for a PL011 UART.\n"
"#[derive(Debug)]\n"
"pub struct Uart {\n"
" registers: *mut Registers,\n"
"}\n"
"\n"
"impl Uart {\n"
" /// Constructs a new instance of the UART driver for a PL011 device at "
"the\n"
" /// given base address.\n"
" ///\n"
" /// # Safety\n"
" ///\n"
" /// The given base address must point to the MMIO control registers of "
"a\n"
" /// PL011 device, which must be mapped into the address space of the "
"process\n"
" /// as device memory and not have any other aliases.\n"
" pub unsafe fn new(base_address: *mut u32) -> Self {\n"
" Self {\n"
" registers: base_address as *mut Registers,\n"
" }\n"
" }\n"
"\n"
" /// Writes a single byte to the UART.\n"
" pub fn write_byte(&self, byte: u8) {\n"
" // Wait until there is room in the TX buffer.\n"
" while self.read_flag_register().contains(Flags::TXFF) {}\n"
"\n"
" // Safe because we know that self.registers points to the control\n"
" // registers of a PL011 device which is appropriately mapped.\n"
" unsafe {\n"
" // Write to the TX buffer.\n"
" addr_of_mut!((*self.registers).dr).write_volatile(byte.into());\n"
" }\n"
"\n"
" // Wait until the UART is no longer busy.\n"
" while self.read_flag_register().contains(Flags::BUSY) {}\n"
" }\n"
"\n"
" /// Reads and returns a pending byte, or `None` if nothing has been "
"received.\n"
" pub fn read_byte(&self) -> Option<u8> {\n"
" if self.read_flag_register().contains(Flags::RXFE) {\n"
" None\n"
" } else {\n"
" let data = unsafe { addr_of!((*self.registers).dr)."
"read_volatile() };\n"
" // TODO: Check for error conditions in bits 8-11.\n"
" Some(data as u8)\n"
" }\n"
" }\n"
"\n"
" fn read_flag_register(&self) -> Flags {\n"
" // Safe because we know that self.registers points to the control\n"
" // registers of a PL011 device which is appropriately mapped.\n"
" unsafe { addr_of!((*self.registers).fr).read_volatile() }\n"
" }\n"
"}\n"
"// ANCHOR_END: Uart\n"
"\n"
"impl Write for Uart {\n"
" fn write_str(&mut self, s: &str) -> fmt::Result {\n"
" for c in s.as_bytes() {\n"
" self.write_byte(*c);\n"
" }\n"
" Ok(())\n"
" }\n"
"}\n"
"\n"
"// Safe because it just contains a pointer to device memory, which can be\n"
"// accessed from any context.\n"
"unsafe impl Send for Uart {}\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:389
msgid ""
"```toml\n"
"[workspace]\n"
"\n"
"[package]\n"
"name = \"rtc\"\n"
"version = \"0.1.0\"\n"
"edition = \"2021\"\n"
"publish = false\n"
"\n"
"[dependencies]\n"
"arm-gic = \"0.1.0\"\n"
"bitflags = \"2.0.0\"\n"
"chrono = { version = \"0.4.24\", default-features = false }\n"
"log = \"0.4.17\"\n"
"smccc = \"0.1.1\"\n"
"spin = \"0.9.8\"\n"
"\n"
"[build-dependencies]\n"
"cc = \"1.0.73\"\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:410
msgid "`build.rs` (you shouldn't need to change this):"
msgstr ""
#: src/exercises/bare-metal/rtc.md:412
msgid "<!-- File build.rs -->"
msgstr ""
#: src/exercises/bare-metal/rtc.md:414
msgid ""
"```rust,compile_fail\n"
"// Copyright 2023 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"use cc::Build;\n"
"use std::env;\n"
"\n"
"fn main() {\n"
" #[cfg(target_os = \"linux\")]\n"
" env::set_var(\"CROSS_COMPILE\", \"aarch64-linux-gnu\");\n"
" #[cfg(not(target_os = \"linux\"))]\n"
" env::set_var(\"CROSS_COMPILE\", \"aarch64-none-elf\");\n"
"\n"
" Build::new()\n"
" .file(\"entry.S\")\n"
" .file(\"exceptions.S\")\n"
" .file(\"idmap.S\")\n"
" .compile(\"empty\")\n"
"}\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:446
msgid "`entry.S` (you shouldn't need to change this):"
msgstr ""
#: src/exercises/bare-metal/rtc.md:448
msgid "<!-- File entry.S -->"
msgstr ""
#: src/exercises/bare-metal/rtc.md:450
msgid ""
"```armasm\n"
"/*\n"
" * Copyright 2023 Google LLC\n"
" *\n"
" * Licensed under the Apache License, Version 2.0 (the \"License\");\n"
" * you may not use this file except in compliance with the License.\n"
" * You may obtain a copy of the License at\n"
" *\n"
" * https://www.apache.org/licenses/LICENSE-2.0\n"
" *\n"
" * Unless required by applicable law or agreed to in writing, software\n"
" * distributed under the License is distributed on an \"AS IS\" BASIS,\n"
" * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
" * See the License for the specific language governing permissions and\n"
" * limitations under the License.\n"
" */\n"
"\n"
".macro adr_l, reg:req, sym:req\n"
"\tadrp \\reg, \\sym\n"
"\tadd \\reg, \\reg, :lo12:\\sym\n"
".endm\n"
"\n"
".macro mov_i, reg:req, imm:req\n"
"\tmovz \\reg, :abs_g3:\\imm\n"
"\tmovk \\reg, :abs_g2_nc:\\imm\n"
"\tmovk \\reg, :abs_g1_nc:\\imm\n"
"\tmovk \\reg, :abs_g0_nc:\\imm\n"
".endm\n"
"\n"
".set .L_MAIR_DEV_nGnRE,\t0x04\n"
".set .L_MAIR_MEM_WBWA,\t0xff\n"
".set .Lmairval, .L_MAIR_DEV_nGnRE | (.L_MAIR_MEM_WBWA << 8)\n"
"\n"
"/* 4 KiB granule size for TTBR0_EL1. */\n"
".set .L_TCR_TG0_4KB, 0x0 << 14\n"
"/* 4 KiB granule size for TTBR1_EL1. */\n"
".set .L_TCR_TG1_4KB, 0x2 << 30\n"
"/* Disable translation table walk for TTBR1_EL1, generating a translation "
"fault instead. */\n"
".set .L_TCR_EPD1, 0x1 << 23\n"
"/* Translation table walks for TTBR0_EL1 are inner sharable. */\n"
".set .L_TCR_SH_INNER, 0x3 << 12\n"
"/*\n"
" * Translation table walks for TTBR0_EL1 are outer write-back read-allocate "
"write-allocate\n"
" * cacheable.\n"
" */\n"
".set .L_TCR_RGN_OWB, 0x1 << 10\n"
"/*\n"
" * Translation table walks for TTBR0_EL1 are inner write-back read-allocate "
"write-allocate\n"
" * cacheable.\n"
" */\n"
".set .L_TCR_RGN_IWB, 0x1 << 8\n"
"/* Size offset for TTBR0_EL1 is 2**39 bytes (512 GiB). */\n"
".set .L_TCR_T0SZ_512, 64 - 39\n"
".set .Ltcrval, .L_TCR_TG0_4KB | .L_TCR_TG1_4KB | .L_TCR_EPD1 | ."
"L_TCR_RGN_OWB\n"
".set .Ltcrval, .Ltcrval | .L_TCR_RGN_IWB | .L_TCR_SH_INNER | ."
"L_TCR_T0SZ_512\n"
"\n"
"/* Stage 1 instruction access cacheability is unaffected. */\n"
".set .L_SCTLR_ELx_I, 0x1 << 12\n"
"/* SP alignment fault if SP is not aligned to a 16 byte boundary. */\n"
".set .L_SCTLR_ELx_SA, 0x1 << 3\n"
"/* Stage 1 data access cacheability is unaffected. */\n"
".set .L_SCTLR_ELx_C, 0x1 << 2\n"
"/* EL0 and EL1 stage 1 MMU enabled. */\n"
".set .L_SCTLR_ELx_M, 0x1 << 0\n"
"/* Privileged Access Never is unchanged on taking an exception to EL1. */\n"
".set .L_SCTLR_EL1_SPAN, 0x1 << 23\n"
"/* SETEND instruction disabled at EL0 in aarch32 mode. */\n"
".set .L_SCTLR_EL1_SED, 0x1 << 8\n"
"/* Various IT instructions are disabled at EL0 in aarch32 mode. */\n"
".set .L_SCTLR_EL1_ITD, 0x1 << 7\n"
".set .L_SCTLR_EL1_RES1, (0x1 << 11) | (0x1 << 20) | (0x1 << 22) | (0x1 << "
"28) | (0x1 << 29)\n"
".set .Lsctlrval, .L_SCTLR_ELx_M | .L_SCTLR_ELx_C | .L_SCTLR_ELx_SA | ."
"L_SCTLR_EL1_ITD | .L_SCTLR_EL1_SED\n"
".set .Lsctlrval, .Lsctlrval | .L_SCTLR_ELx_I | .L_SCTLR_EL1_SPAN | ."
"L_SCTLR_EL1_RES1\n"
"\n"
"/**\n"
" * This is a generic entry point for an image. It carries out the operations "
"required to prepare the\n"
" * loaded image to be run. Specifically, it zeroes the bss section using "
"registers x25 and above,\n"
" * prepares the stack, enables floating point, and sets up the exception "
"vector. It preserves x0-x3\n"
" * for the Rust entry point, as these may contain boot parameters.\n"
" */\n"
".section .init.entry, \"ax\"\n"
".global entry\n"
"entry:\n"
"\t/* Load and apply the memory management configuration, ready to enable MMU "
"and caches. */\n"
"\tadrp x30, idmap\n"
"\tmsr ttbr0_el1, x30\n"
"\n"
"\tmov_i x30, .Lmairval\n"
"\tmsr mair_el1, x30\n"
"\n"
"\tmov_i x30, .Ltcrval\n"
"\t/* Copy the supported PA range into TCR_EL1.IPS. */\n"
"\tmrs x29, id_aa64mmfr0_el1\n"
"\tbfi x30, x29, #32, #4\n"
"\n"
"\tmsr tcr_el1, x30\n"
"\n"
"\tmov_i x30, .Lsctlrval\n"
"\n"
"\t/*\n"
"\t * Ensure everything before this point has completed, then invalidate any "
"potentially stale\n"
"\t * local TLB entries before they start being used.\n"
"\t */\n"
"\tisb\n"
"\ttlbi vmalle1\n"
"\tic iallu\n"
"\tdsb nsh\n"
"\tisb\n"
"\n"
"\t/*\n"
"\t * Configure sctlr_el1 to enable MMU and cache and don't proceed until "
"this has completed.\n"
"\t */\n"
"\tmsr sctlr_el1, x30\n"
"\tisb\n"
"\n"
"\t/* Disable trapping floating point access in EL1. */\n"
"\tmrs x30, cpacr_el1\n"
"\torr x30, x30, #(0x3 << 20)\n"
"\tmsr cpacr_el1, x30\n"
"\tisb\n"
"\n"
"\t/* Zero out the bss section. */\n"
"\tadr_l x29, bss_begin\n"
"\tadr_l x30, bss_end\n"
"0:\tcmp x29, x30\n"
"\tb.hs 1f\n"
"\tstp xzr, xzr, [x29], #16\n"
"\tb 0b\n"
"\n"
"1:\t/* Prepare the stack. */\n"
"\tadr_l x30, boot_stack_end\n"
"\tmov sp, x30\n"
"\n"
"\t/* Set up exception vector. */\n"
"\tadr x30, vector_table_el1\n"
"\tmsr vbar_el1, x30\n"
"\n"
"\t/* Call into Rust code. */\n"
"\tbl main\n"
"\n"
"\t/* Loop forever waiting for interrupts. */\n"
"2:\twfi\n"
"\tb 2b\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:595
msgid "`exceptions.S` (you shouldn't need to change this):"
msgstr ""
#: src/exercises/bare-metal/rtc.md:597
msgid "<!-- File exceptions.S -->"
msgstr ""
#: src/exercises/bare-metal/rtc.md:599
msgid ""
"```armasm\n"
"/*\n"
" * Copyright 2023 Google LLC\n"
" *\n"
" * Licensed under the Apache License, Version 2.0 (the \"License\");\n"
" * you may not use this file except in compliance with the License.\n"
" * You may obtain a copy of the License at\n"
" *\n"
" * https://www.apache.org/licenses/LICENSE-2.0\n"
" *\n"
" * Unless required by applicable law or agreed to in writing, software\n"
" * distributed under the License is distributed on an \"AS IS\" BASIS,\n"
" * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
" * See the License for the specific language governing permissions and\n"
" * limitations under the License.\n"
" */\n"
"\n"
"/**\n"
" * Saves the volatile registers onto the stack. This currently takes 14\n"
" * instructions, so it can be used in exception handlers with 18 "
"instructions\n"
" * left.\n"
" *\n"
" * On return, x0 and x1 are initialised to elr_el2 and spsr_el2 "
"respectively,\n"
" * which can be used as the first and second arguments of a subsequent "
"call.\n"
" */\n"
".macro save_volatile_to_stack\n"
"\t/* Reserve stack space and save registers x0-x18, x29 & x30. */\n"
"\tstp x0, x1, [sp, #-(8 * 24)]!\n"
"\tstp x2, x3, [sp, #8 * 2]\n"
"\tstp x4, x5, [sp, #8 * 4]\n"
"\tstp x6, x7, [sp, #8 * 6]\n"
"\tstp x8, x9, [sp, #8 * 8]\n"
"\tstp x10, x11, [sp, #8 * 10]\n"
"\tstp x12, x13, [sp, #8 * 12]\n"
"\tstp x14, x15, [sp, #8 * 14]\n"
"\tstp x16, x17, [sp, #8 * 16]\n"
"\tstr x18, [sp, #8 * 18]\n"
"\tstp x29, x30, [sp, #8 * 20]\n"
"\n"
"\t/*\n"
"\t * Save elr_el1 & spsr_el1. This such that we can take nested exception\n"
"\t * and still be able to unwind.\n"
"\t */\n"
"\tmrs x0, elr_el1\n"
"\tmrs x1, spsr_el1\n"
"\tstp x0, x1, [sp, #8 * 22]\n"
".endm\n"
"\n"
"/**\n"
" * Restores the volatile registers from the stack. This currently takes 14\n"
" * instructions, so it can be used in exception handlers while still leaving "
"18\n"
" * instructions left; if paired with save_volatile_to_stack, there are 4\n"
" * instructions to spare.\n"
" */\n"
".macro restore_volatile_from_stack\n"
"\t/* Restore registers x2-x18, x29 & x30. */\n"
"\tldp x2, x3, [sp, #8 * 2]\n"
"\tldp x4, x5, [sp, #8 * 4]\n"
"\tldp x6, x7, [sp, #8 * 6]\n"
"\tldp x8, x9, [sp, #8 * 8]\n"
"\tldp x10, x11, [sp, #8 * 10]\n"
"\tldp x12, x13, [sp, #8 * 12]\n"
"\tldp x14, x15, [sp, #8 * 14]\n"
"\tldp x16, x17, [sp, #8 * 16]\n"
"\tldr x18, [sp, #8 * 18]\n"
"\tldp x29, x30, [sp, #8 * 20]\n"
"\n"
"\t/* Restore registers elr_el1 & spsr_el1, using x0 & x1 as scratch. */\n"
"\tldp x0, x1, [sp, #8 * 22]\n"
"\tmsr elr_el1, x0\n"
"\tmsr spsr_el1, x1\n"
"\n"
"\t/* Restore x0 & x1, and release stack space. */\n"
"\tldp x0, x1, [sp], #8 * 24\n"
".endm\n"
"\n"
"/**\n"
" * This is a generic handler for exceptions taken at the current EL while "
"using\n"
" * SP0. It behaves similarly to the SPx case by first switching to SPx, "
"doing\n"
" * the work, then switching back to SP0 before returning.\n"
" *\n"
" * Switching to SPx and calling the Rust handler takes 16 instructions. To\n"
" * restore and return we need an additional 16 instructions, so we can "
"implement\n"
" * the whole handler within the allotted 32 instructions.\n"
" */\n"
".macro current_exception_sp0 handler:req\n"
"\tmsr spsel, #1\n"
"\tsave_volatile_to_stack\n"
"\tbl \\handler\n"
"\trestore_volatile_from_stack\n"
"\tmsr spsel, #0\n"
"\teret\n"
".endm\n"
"\n"
"/**\n"
" * This is a generic handler for exceptions taken at the current EL while "
"using\n"
" * SPx. It saves volatile registers, calls the Rust handler, restores "
"volatile\n"
" * registers, then returns.\n"
" *\n"
" * This also works for exceptions taken from EL0, if we don't care about\n"
" * non-volatile registers.\n"
" *\n"
" * Saving state and jumping to the Rust handler takes 15 instructions, and\n"
" * restoring and returning also takes 15 instructions, so we can fit the "
"whole\n"
" * handler in 30 instructions, under the limit of 32.\n"
" */\n"
".macro current_exception_spx handler:req\n"
"\tsave_volatile_to_stack\n"
"\tbl \\handler\n"
"\trestore_volatile_from_stack\n"
"\teret\n"
".endm\n"
"\n"
".section .text.vector_table_el1, \"ax\"\n"
".global vector_table_el1\n"
".balign 0x800\n"
"vector_table_el1:\n"
"sync_cur_sp0:\n"
"\tcurrent_exception_sp0 sync_exception_current\n"
"\n"
".balign 0x80\n"
"irq_cur_sp0:\n"
"\tcurrent_exception_sp0 irq_current\n"
"\n"
".balign 0x80\n"
"fiq_cur_sp0:\n"
"\tcurrent_exception_sp0 fiq_current\n"
"\n"
".balign 0x80\n"
"serr_cur_sp0:\n"
"\tcurrent_exception_sp0 serr_current\n"
"\n"
".balign 0x80\n"
"sync_cur_spx:\n"
"\tcurrent_exception_spx sync_exception_current\n"
"\n"
".balign 0x80\n"
"irq_cur_spx:\n"
"\tcurrent_exception_spx irq_current\n"
"\n"
".balign 0x80\n"
"fiq_cur_spx:\n"
"\tcurrent_exception_spx fiq_current\n"
"\n"
".balign 0x80\n"
"serr_cur_spx:\n"
"\tcurrent_exception_spx serr_current\n"
"\n"
".balign 0x80\n"
"sync_lower_64:\n"
"\tcurrent_exception_spx sync_lower\n"
"\n"
".balign 0x80\n"
"irq_lower_64:\n"
"\tcurrent_exception_spx irq_lower\n"
"\n"
".balign 0x80\n"
"fiq_lower_64:\n"
"\tcurrent_exception_spx fiq_lower\n"
"\n"
".balign 0x80\n"
"serr_lower_64:\n"
"\tcurrent_exception_spx serr_lower\n"
"\n"
".balign 0x80\n"
"sync_lower_32:\n"
"\tcurrent_exception_spx sync_lower\n"
"\n"
".balign 0x80\n"
"irq_lower_32:\n"
"\tcurrent_exception_spx irq_lower\n"
"\n"
".balign 0x80\n"
"fiq_lower_32:\n"
"\tcurrent_exception_spx fiq_lower\n"
"\n"
".balign 0x80\n"
"serr_lower_32:\n"
"\tcurrent_exception_spx serr_lower\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:780
msgid "`idmap.S` (you shouldn't need to change this):"
msgstr ""
#: src/exercises/bare-metal/rtc.md:782
msgid "<!-- File idmap.S -->"
msgstr ""
#: src/exercises/bare-metal/rtc.md:784
msgid ""
"```armasm\n"
"/*\n"
" * Copyright 2023 Google LLC\n"
" *\n"
" * Licensed under the Apache License, Version 2.0 (the \"License\");\n"
" * you may not use this file except in compliance with the License.\n"
" * You may obtain a copy of the License at\n"
" *\n"
" * https://www.apache.org/licenses/LICENSE-2.0\n"
" *\n"
" * Unless required by applicable law or agreed to in writing, software\n"
" * distributed under the License is distributed on an \"AS IS\" BASIS,\n"
" * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
" * See the License for the specific language governing permissions and\n"
" * limitations under the License.\n"
" */\n"
"\n"
".set .L_TT_TYPE_BLOCK, 0x1\n"
".set .L_TT_TYPE_PAGE, 0x3\n"
".set .L_TT_TYPE_TABLE, 0x3\n"
"\n"
"/* Access flag. */\n"
".set .L_TT_AF, 0x1 << 10\n"
"/* Not global. */\n"
".set .L_TT_NG, 0x1 << 11\n"
".set .L_TT_XN, 0x3 << 53\n"
"\n"
".set .L_TT_MT_DEV, 0x0 << 2\t\t\t// MAIR #0 (DEV_nGnRE)\n"
".set .L_TT_MT_MEM, (0x1 << 2) | (0x3 << 8)\t// MAIR #1 (MEM_WBWA), inner "
"shareable\n"
"\n"
".set .L_BLOCK_DEV, .L_TT_TYPE_BLOCK | .L_TT_MT_DEV | .L_TT_AF | .L_TT_XN\n"
".set .L_BLOCK_MEM, .L_TT_TYPE_BLOCK | .L_TT_MT_MEM | .L_TT_AF | .L_TT_NG\n"
"\n"
".section \".rodata.idmap\", \"a\", %progbits\n"
".global idmap\n"
".align 12\n"
"idmap:\n"
"\t/* level 1 */\n"
"\t.quad\t\t.L_BLOCK_DEV | 0x0\t\t // 1 GiB of device mappings\n"
"\t.quad\t\t.L_BLOCK_MEM | 0x40000000\t// 1 GiB of DRAM\n"
"\t.fill\t\t254, 8, 0x0\t\t\t// 254 GiB of unmapped VA space\n"
"\t.quad\t\t.L_BLOCK_DEV | 0x4000000000 // 1 GiB of device mappings\n"
"\t.fill\t\t255, 8, 0x0\t\t\t// 255 GiB of remaining VA space\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:829
msgid "`image.ld` (you shouldn't need to change this):"
msgstr ""
#: src/exercises/bare-metal/rtc.md:831
msgid "<!-- File image.ld -->"
msgstr ""
#: src/exercises/bare-metal/rtc.md:833
msgid ""
"```ld\n"
"/*\n"
" * Copyright 2023 Google LLC\n"
" *\n"
" * Licensed under the Apache License, Version 2.0 (the \"License\");\n"
" * you may not use this file except in compliance with the License.\n"
" * You may obtain a copy of the License at\n"
" *\n"
" * https://www.apache.org/licenses/LICENSE-2.0\n"
" *\n"
" * Unless required by applicable law or agreed to in writing, software\n"
" * distributed under the License is distributed on an \"AS IS\" BASIS,\n"
" * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
" * See the License for the specific language governing permissions and\n"
" * limitations under the License.\n"
" */\n"
"\n"
"/*\n"
" * Code will start running at this symbol which is placed at the start of "
"the\n"
" * image.\n"
" */\n"
"ENTRY(entry)\n"
"\n"
"MEMORY\n"
"{\n"
"\timage : ORIGIN = 0x40080000, LENGTH = 2M\n"
"}\n"
"\n"
"SECTIONS\n"
"{\n"
"\t/*\n"
"\t * Collect together the code.\n"
"\t */\n"
"\t.init : ALIGN(4096) {\n"
"\t\ttext_begin = .;\n"
"\t\t*(.init.entry)\n"
"\t\t*(.init.*)\n"
"\t} >image\n"
"\t.text : {\n"
"\t\t*(.text.*)\n"
"\t} >image\n"
"\ttext_end = .;\n"
"\n"
"\t/*\n"
"\t * Collect together read-only data.\n"
"\t */\n"
"\t.rodata : ALIGN(4096) {\n"
"\t\trodata_begin = .;\n"
"\t\t*(.rodata.*)\n"
"\t} >image\n"
"\t.got : {\n"
"\t\t*(.got)\n"
"\t} >image\n"
"\trodata_end = .;\n"
"\n"
"\t/*\n"
"\t * Collect together the read-write data including .bss at the end which\n"
"\t * will be zero'd by the entry code.\n"
"\t */\n"
"\t.data : ALIGN(4096) {\n"
"\t\tdata_begin = .;\n"
"\t\t*(.data.*)\n"
"\t\t/*\n"
"\t\t * The entry point code assumes that .data is a multiple of 32\n"
"\t\t * bytes long.\n"
"\t\t */\n"
"\t\t. = ALIGN(32);\n"
"\t\tdata_end = .;\n"
"\t} >image\n"
"\n"
"\t/* Everything beyond this point will not be included in the binary. */\n"
"\tbin_end = .;\n"
"\n"
"\t/* The entry point code assumes that .bss is 16-byte aligned. */\n"
"\t.bss : ALIGN(16) {\n"
"\t\tbss_begin = .;\n"
"\t\t*(.bss.*)\n"
"\t\t*(COMMON)\n"
"\t\t. = ALIGN(16);\n"
"\t\tbss_end = .;\n"
"\t} >image\n"
"\n"
"\t.stack (NOLOAD) : ALIGN(4096) {\n"
"\t\tboot_stack_begin = .;\n"
"\t\t. += 40 * 4096;\n"
"\t\t. = ALIGN(4096);\n"
"\t\tboot_stack_end = .;\n"
"\t} >image\n"
"\n"
"\t. = ALIGN(4K);\n"
"\tPROVIDE(dma_region = .);\n"
"\n"
"\t/*\n"
"\t * Remove unused sections from the image.\n"
"\t */\n"
"\t/DISCARD/ : {\n"
"\t\t/* The image loads itself so doesn't need these sections. */\n"
"\t\t*(.gnu.hash)\n"
"\t\t*(.hash)\n"
"\t\t*(.interp)\n"
"\t\t*(.eh_frame_hdr)\n"
"\t\t*(.eh_frame)\n"
"\t\t*(.note.gnu.build-id)\n"
"\t}\n"
"}\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:940
msgid "`Makefile` (you shouldn't need to change this):"
msgstr ""
#: src/exercises/bare-metal/rtc.md:942
msgid "<!-- File Makefile -->"
msgstr ""
#: src/exercises/bare-metal/rtc.md:944
msgid ""
"```makefile\n"
"# Copyright 2023 Google LLC\n"
"#\n"
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"# you may not use this file except in compliance with the License.\n"
"# You may obtain a copy of the License at\n"
"#\n"
"# http://www.apache.org/licenses/LICENSE-2.0\n"
"#\n"
"# Unless required by applicable law or agreed to in writing, software\n"
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"# See the License for the specific language governing permissions and\n"
"# limitations under the License.\n"
"\n"
"UNAME := $(shell uname -s)\n"
"ifeq ($(UNAME),Linux)\n"
"\tTARGET = aarch64-linux-gnu\n"
"else\n"
"\tTARGET = aarch64-none-elf\n"
"endif\n"
"OBJCOPY = $(TARGET)-objcopy\n"
"\n"
".PHONY: build qemu_minimal qemu qemu_logger\n"
"\n"
"all: rtc.bin\n"
"\n"
"build:\n"
"\tcargo build\n"
"\n"
"rtc.bin: build\n"
"\t$(OBJCOPY) -O binary target/aarch64-unknown-none/debug/rtc $@\n"
"\n"
"qemu: rtc.bin\n"
"\tqemu-system-aarch64 -machine virt,gic-version=3 -cpu max -serial mon:stdio "
"-display none -kernel $< -s\n"
"\n"
"clean:\n"
"\tcargo clean\n"
"\trm -f *.bin\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:989
msgid ""
"```toml\n"
"[build]\n"
"target = \"aarch64-unknown-none\"\n"
"rustflags = [\"-C\", \"link-arg=-Timage.ld\"]\n"
"```"
msgstr ""
#: src/exercises/bare-metal/rtc.md:995
msgid "Run the code in QEMU with `make qemu`."
msgstr ""
#: src/concurrency.md:1
msgid "# Welcome to Concurrency in Rust"
msgstr "# 欢迎了解 Rust 中的并发"
#: src/concurrency.md:3
msgid ""
"Rust has full support for concurrency using OS threads with mutexes and\n"
"channels."
msgstr ""
"Rust 完全支持使用带有互斥锁和通道的操作系统线程进行并发。"
#: src/concurrency.md:6
msgid ""
"The Rust type system plays an important role in making many concurrency "
"bugs\n"
"compile time bugs. This is often referred to as _fearless concurrency_ since "
"you\n"
"can rely on the compiler to ensure correctness at runtime."
msgstr ""
"Rust 类型系统能帮助我们把许多并发bug转换为编译期bug\n"
"发挥着重要作用。这通常称为“无畏并发”,因为你可以依靠编译器来确保\n"
"运行时的正确性。"
#: src/concurrency/threads.md:1
msgid "# Threads"
msgstr "# 线程"
#: src/concurrency/threads.md:3
msgid "Rust threads work similarly to threads in other languages:"
msgstr "Rust 线程的运作方式与其他语言中的线程类似:"
#: src/concurrency/threads.md:5
msgid ""
"```rust,editable\n"
"use std::thread;\n"
"use std::time::Duration;\n"
"\n"
"fn main() {\n"
" thread::spawn(|| {\n"
" for i in 1..10 {\n"
" println!(\"Count in thread: {i}!\");\n"
" thread::sleep(Duration::from_millis(5));\n"
" }\n"
" });\n"
"\n"
" for i in 1..5 {\n"
" println!(\"Main thread: {i}\");\n"
" thread::sleep(Duration::from_millis(5));\n"
" }\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"use std::thread;\n"
"use std::time::Duration;\n"
"\n"
"fn main() {\n"
" thread::spawn(|| {\n"
" for i in 1..10 {\n"
" println!(\"Count in thread: {i}!\");\n"
" thread::sleep(Duration::from_millis(5));\n"
" }\n"
" });\n"
"\n"
" for i in 1..5 {\n"
" println!(\"Main thread: {i}\");\n"
" thread::sleep(Duration::from_millis(5));\n"
" }\n"
"}\n"
"```"
#: src/concurrency/threads.md:24
msgid ""
"* Threads are all daemon threads, the main thread does not wait for them.\n"
"* Thread panics are independent of each other.\n"
" * Panics can carry a payload, which can be unpacked with `downcast_ref`."
msgstr ""
"* 线程均为守护程序线程,主线程不会等待这些线程。\n"
"* 线程紧急警报 (panic) 是彼此独立的。\n"
"* 紧急警报可以携带载荷,并可以使用 `downcast_ref` 对载荷进行解压缩。"
#: src/concurrency/threads.md:32
msgid ""
"* Notice that the thread is stopped before it reaches 10 — the main thread "
"is\n"
" not waiting.\n"
"\n"
"* Use `let handle = thread::spawn(...)` and later `handle.join()` to wait "
"for\n"
" the thread to finish.\n"
"\n"
"* Trigger a panic in the thread, notice how this doesn't affect `main`.\n"
"\n"
"* Use the `Result` return value from `handle.join()` to get access to the "
"panic\n"
" payload. This is a good time to talk about [`Any`]."
msgstr ""
"* 请注意,线程在达到 10 之前就停止了,而主线程并\n"
"没有等待。\n"
"\n"
"* 使用 `let handle = thread::spawn(...)` 和后面的 `handle.join()` 等待\n"
"线程完成。\n"
"\n"
"* 在线程中触发紧急警报,并注意这为何不会影响到 `main`。\n"
"\n"
"* 使用 `handle.join()` 的 `Result` 返回值来获取对紧急警报\n"
"载荷的访问权限。现在有必要介绍一下 [`Any`] 了。"
#: src/concurrency/scoped-threads.md:1
msgid "# Scoped Threads"
msgstr "# 范围线程"
#: src/concurrency/scoped-threads.md:3
msgid "Normal threads cannot borrow from their environment:"
msgstr "常规线程不能从它们所处的环境中借用:"
#: src/concurrency/scoped-threads.md:5
msgid ""
"```rust,editable,compile_fail\n"
"use std::thread;\n"
"\n"
"fn main() {\n"
" let s = String::from(\"Hello\");\n"
"\n"
" thread::spawn(|| {\n"
" println!(\"Length: {}\", s.len());\n"
" });\n"
"}\n"
"```"
msgstr ""
"```rust,editable,compile_fail\n"
"use std::thread;\n"
"\n"
"fn main() {\n"
" let s = String::from(\"Hello\");\n"
"\n"
" thread::spawn(|| {\n"
" println!(\"Length: {}\", s.len());\n"
" });\n"
"}\n"
"```"
#: src/concurrency/scoped-threads.md:17
msgid "However, you can use a [scoped thread][1] for this:"
msgstr "不过,你可以使用[范围线程][1]来实现此目的:"
#: src/concurrency/scoped-threads.md:19
msgid ""
"```rust,editable\n"
"use std::thread;\n"
"\n"
"fn main() {\n"
" let s = String::from(\"Hello\");\n"
"\n"
" thread::scope(|scope| {\n"
" scope.spawn(|| {\n"
" println!(\"Length: {}\", s.len());\n"
" });\n"
" });\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"use std::thread;\n"
"\n"
"fn main() {\n"
" let s = String::from(\"Hello\");\n"
"\n"
" thread::scope(|scope| {\n"
" scope.spawn(|| {\n"
" println!(\"Length: {}\", s.len());\n"
" });\n"
" });\n"
"}\n"
"```"
#: src/concurrency/scoped-threads.md:37
msgid ""
"* The reason for that is that when the `thread::scope` function completes, "
"all the threads are guaranteed to be joined, so they can return borrowed "
"data.\n"
"* Normal Rust borrowing rules apply: you can either borrow mutably by one "
"thread, or immutably by any number of threads.\n"
" "
msgstr ""
"* 其原因在于,在 `thread::scope` 函数完成后,可保证所有线程都已联结在一起,使"
"得线程能够返回借用的数据。\n"
"* 此时须遵守常规 Rust 借用规则:你可以通过一个线程以可变的方式借用,也可以通"
"过任意数量的线程以不可变的方式借用。\n"
" "
#: src/concurrency/channels.md:1
msgid "# Channels"
msgstr "# 通道"
#: src/concurrency/channels.md:3
msgid ""
"Rust channels have two parts: a `Sender<T>` and a `Receiver<T>`. The two "
"parts\n"
"are connected via the channel, but you only see the end-points."
msgstr ""
"Rust 通道(Channel)包含两个部分:`Sender<T>` 和 `Receiver<T>`。这两个部分\n"
"通过通道进行连接,但你只能看到端点。"
#: src/concurrency/channels.md:6
msgid ""
"```rust,editable\n"
"use std::sync::mpsc;\n"
"use std::thread;\n"
"\n"
"fn main() {\n"
" let (tx, rx) = mpsc::channel();\n"
"\n"
" tx.send(10).unwrap();\n"
" tx.send(20).unwrap();\n"
"\n"
" println!(\"Received: {:?}\", rx.recv());\n"
" println!(\"Received: {:?}\", rx.recv());\n"
"\n"
" let tx2 = tx.clone();\n"
" tx2.send(30).unwrap();\n"
" println!(\"Received: {:?}\", rx.recv());\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"use std::sync::mpsc;\n"
"use std::thread;\n"
"\n"
"fn main() {\n"
" let (tx, rx) = mpsc::channel();\n"
"\n"
" tx.send(10).unwrap();\n"
" tx.send(20).unwrap();\n"
"\n"
" println!(\"Received: {:?}\", rx.recv());\n"
" println!(\"Received: {:?}\", rx.recv());\n"
"\n"
" let tx2 = tx.clone();\n"
" tx2.send(30).unwrap();\n"
" println!(\"Received: {:?}\", rx.recv());\n"
"}\n"
"```"
#: src/concurrency/channels.md:27
msgid ""
"* `mpsc` stands for Multi-Producer, Single-Consumer. `Sender` and "
"`SyncSender` implement `Clone` (so\n"
" you can make multiple producers) but `Receiver` does not.\n"
"* `send()` and `recv()` return `Result`. If they return `Err`, it means the "
"counterpart `Sender` or\n"
" `Receiver` is dropped and the channel is closed."
msgstr ""
"* `mpsc` 代表多个生产方,单个使用方。`Sender` 和 `SyncSender` 会实现 `Clone`"
"(因此,\n"
"你可以设置多个生产方),但 `Receiver` 不会实现。\n"
"* `send()` 和 `recv()` 会返回 `Result`。如果它们返回 `Err`,则表示对应的 "
"`Sender` 或 `Receiver`\n"
"已被丢弃,且通道已关闭。"
#: src/concurrency/channels/unbounded.md:1
msgid "# Unbounded Channels"
msgstr "# 无界通道"
#: src/concurrency/channels/unbounded.md:3
msgid "You get an unbounded and asynchronous channel with `mpsc::channel()`:"
msgstr "你可以使用 `mpsc::channel()` 获得无边界的异步通道:"
#: src/concurrency/channels/unbounded.md:5
msgid ""
"```rust,editable\n"
"use std::sync::mpsc;\n"
"use std::thread;\n"
"use std::time::Duration;\n"
"\n"
"fn main() {\n"
" let (tx, rx) = mpsc::channel();\n"
"\n"
" thread::spawn(move || {\n"
" let thread_id = thread::current().id();\n"
" for i in 1..10 {\n"
" tx.send(format!(\"Message {i}\")).unwrap();\n"
" println!(\"{thread_id:?}: sent Message {i}\");\n"
" }\n"
" println!(\"{thread_id:?}: done\");\n"
" });\n"
" thread::sleep(Duration::from_millis(100));\n"
"\n"
" for msg in rx.iter() {\n"
" println!(\"Main: got {msg}\");\n"
" }\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"use std::sync::mpsc;\n"
"use std::thread;\n"
"use std::time::Duration;\n"
"\n"
"fn main() {\n"
" let (tx, rx) = mpsc::channel();\n"
"\n"
" thread::spawn(move || {\n"
" let thread_id = thread::current().id();\n"
" for i in 1..10 {\n"
" tx.send(format!(\"Message {i}\")).unwrap();\n"
" println!(\"{thread_id:?}: sent Message {i}\");\n"
" }\n"
" println!(\"{thread_id:?}: done\");\n"
" });\n"
" thread::sleep(Duration::from_millis(100));\n"
"\n"
" for msg in rx.iter() {\n"
" println!(\"Main: got {msg}\");\n"
" }\n"
"}\n"
"```"
#: src/concurrency/channels/bounded.md:1
msgid "# Bounded Channels"
msgstr "# 有界通道"
#: src/concurrency/channels/bounded.md:3
msgid "Bounded and synchronous channels make `send` block the current thread:"
msgstr "有边界的同步通道会使 `send` 阻塞当前线程:"
#: src/concurrency/channels/bounded.md:5
msgid ""
"```rust,editable\n"
"use std::sync::mpsc;\n"
"use std::thread;\n"
"use std::time::Duration;\n"
"\n"
"fn main() {\n"
" let (tx, rx) = mpsc::sync_channel(3);\n"
"\n"
" thread::spawn(move || {\n"
" let thread_id = thread::current().id();\n"
" for i in 1..10 {\n"
" tx.send(format!(\"Message {i}\")).unwrap();\n"
" println!(\"{thread_id:?}: sent Message {i}\");\n"
" }\n"
" println!(\"{thread_id:?}: done\");\n"
" });\n"
" thread::sleep(Duration::from_millis(100));\n"
"\n"
" for msg in rx.iter() {\n"
" println!(\"Main: got {msg}\");\n"
" }\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"use std::sync::mpsc;\n"
"use std::thread;\n"
"use std::time::Duration;\n"
"\n"
"fn main() {\n"
" let (tx, rx) = mpsc::sync_channel(3);\n"
"\n"
" thread::spawn(move || {\n"
" let thread_id = thread::current().id();\n"
" for i in 1..10 {\n"
" tx.send(format!(\"Message {i}\")).unwrap();\n"
" println!(\"{thread_id:?}: sent Message {i}\");\n"
" }\n"
" println!(\"{thread_id:?}: done\");\n"
" });\n"
" thread::sleep(Duration::from_millis(100));\n"
"\n"
" for msg in rx.iter() {\n"
" println!(\"Main: got {msg}\");\n"
" }\n"
"}\n"
"```"
#: src/concurrency/send-sync.md:1
msgid "# `Send` and `Sync`"
msgstr "# `Send` 和 `Sync`"
#: src/concurrency/send-sync.md:3
msgid ""
"How does Rust know to forbid shared access across thread? The answer is in "
"two traits:"
msgstr "Rust 如何知道要禁止跨线程共享访问?答案在于 Rust 的两个特征:"
#: src/concurrency/send-sync.md:5
msgid ""
"* [`Send`][1]: a type `T` is `Send` if it is safe to move a `T` across a "
"thread\n"
" boundary.\n"
"* [`Sync`][2]: a type `T` is `Sync` if it is safe to move a `&T` across a "
"thread\n"
" boundary."
msgstr ""
"* [`Send`][1]:如果跨线程边界移动 `T` 是安全的,则类型 `T`\n"
"为 `Send`。\n"
"* [`Sync`][2]:如果跨线程边界移动 `&T` 是安全的,则类型 `T`\n"
"为 `Sync`。"
#: src/concurrency/send-sync.md:10
msgid ""
"`Send` and `Sync` are [unsafe traits][3]. The compiler will automatically "
"derive them for your types\n"
"as long as they only contain `Send` and `Sync` types. You can also implement "
"them manually when you\n"
"know it is valid."
msgstr ""
"`Send` 和 `Sync` 均为[不安全特征][3]。只要类型仅包含 `Send` 和 `Sync` 类型,"
"编译器就会自动为类型派生\n"
"这两种特征。你也可以手动实现它们(如果你确定这样\n"
"有效的话)。"
#: src/concurrency/send-sync.md:20
msgid ""
"* One can think of these traits as markers that the type has certain thread-"
"safety properties.\n"
"* They can be used in the generic constraints as normal traits.\n"
" "
msgstr ""
"* 不妨将这些特征视为类型包含某些线程安全属性的标记。\n"
"* 它们可以在泛型约束中作为常规特征使用。\n"
" "
#: src/concurrency/send-sync/send.md:1
msgid "# `Send`"
msgstr "# `Send`"
#: src/concurrency/send-sync/send.md:3
msgid ""
"> A type `T` is [`Send`][1] if it is safe to move a `T` value to another "
"thread."
msgstr "> 如果将 `T` 值移动到另一个线程是安全的,则类型 `T` 为 [`Send`][1]。"
#: src/concurrency/send-sync/send.md:5
msgid ""
"The effect of moving ownership to another thread is that _destructors_ will "
"run\n"
"in that thread. So the question is when you can allocate a value in one "
"thread\n"
"and deallocate it in another."
msgstr ""
"将所有权转移到另一个线程的影响是,“析构函数”将在相应线程中\n"
"运行。因此,问题在于你何时可以在一个线程中分配某个值,然后在\n"
"另一个线程中取消分配该值。"
#: src/concurrency/send-sync/send.md:13
msgid ""
"As an example, a connection to the SQLite library must only be accessed from "
"a\n"
"single thread."
msgstr ""
"例如,与 SQLite 库的连接只能通过\n"
"单个线程访问。"
#: src/concurrency/send-sync/sync.md:1
msgid "# `Sync`"
msgstr "# `Sync`"
#: src/concurrency/send-sync/sync.md:3
msgid ""
"> A type `T` is [`Sync`][1] if it is safe to access a `T` value from "
"multiple\n"
"> threads at the same time."
msgstr ""
"> 如果同时从多个线程访问 `T` 值是安全的,则类型 `T`\n"
">为 [`Sync`][1]。"
#: src/concurrency/send-sync/sync.md:6
msgid "More precisely, the definition is:"
msgstr "更准确地说,定义是:"
#: src/concurrency/send-sync/sync.md:8
msgid "> `T` is `Sync` if and only if `&T` is `Send`"
msgstr "> 当且仅当 `&T` 为 `Send` 时,`T` 为 `Sync`"
#: src/concurrency/send-sync/sync.md:14
msgid ""
"This statement is essentially a shorthand way of saying that if a type is "
"thread-safe for shared use, it is also thread-safe to pass references of it "
"across threads."
msgstr ""
"该语句实质上是一种简写形式,表示如果某个类型对于共享使用是线程安全的,那么跨"
"线程传递对该类型的引用也是线程安全的。"
#: src/concurrency/send-sync/sync.md:16
msgid ""
"This is because if a type is Sync it means that it can be shared across "
"multiple threads without the risk of data races or other synchronization "
"issues, so it is safe to move it to another thread. A reference to the type "
"is also safe to move to another thread, because the data it references can "
"be accessed from any thread safely."
msgstr ""
"这是因为如果某个类型为 Sync,则意味着它可以在多个线程之间共享,而不存在数据争"
"用或其他同步问题的风险,因此将其移动到另一个线程是安全的。对该类型的引用同样"
"可以安全地移动到另一个线程,因为它引用的数据可以从任何线程安全地访问。"
#: src/concurrency/send-sync/examples.md:1
msgid "# Examples"
msgstr "# 示例"
#: src/concurrency/send-sync/examples.md:3
msgid "## `Send + Sync`"
msgstr "## `Send + Sync`"
#: src/concurrency/send-sync/examples.md:5
msgid "Most types you come across are `Send + Sync`:"
msgstr "你遇到的类型大都属于 `Send + Sync`:"
#: src/concurrency/send-sync/examples.md:7
msgid ""
"* `i8`, `f32`, `bool`, `char`, `&str`, ...\n"
"* `(T1, T2)`, `[T; N]`, `&[T]`, `struct { x: T }`, ...\n"
"* `String`, `Option<T>`, `Vec<T>`, `Box<T>`, ...\n"
"* `Arc<T>`: Explicitly thread-safe via atomic reference count.\n"
"* `Mutex<T>`: Explicitly thread-safe via internal locking.\n"
"* `AtomicBool`, `AtomicU8`, ...: Uses special atomic instructions."
msgstr ""
"* `i8`、`f32`、`bool`、`char`、`&str`…\n"
"* `(T1, T2)`、`[T; N]`、`&[T]`、`struct { x: T }`…\n"
"* `String`、`Option<T>`、`Vec<T>`、`Box<T>`…\n"
"* `Arc<T>`:明确通过原子引用计数实现线程安全。\n"
"* `Mutex<T>`:明确通过内部锁定实现线程安全。\n"
"* `AtomicBool`、`AtomicU8`…:使用特殊的原子指令。"
#: src/concurrency/send-sync/examples.md:14
msgid ""
"The generic types are typically `Send + Sync` when the type parameters are\n"
"`Send + Sync`."
msgstr ""
"当类型参数为 `Send + Sync` 时,泛型类型通常\n"
"为 `Send + Sync`。"
#: src/concurrency/send-sync/examples.md:17
msgid "## `Send + !Sync`"
msgstr "## `Send + !Sync`"
#: src/concurrency/send-sync/examples.md:19
msgid ""
"These types can be moved to other threads, but they're not thread-safe.\n"
"Typically because of interior mutability:"
msgstr ""
"这些类型可以移动到其他线程,但它们不是线程安全的。\n"
"这通常是由内部可变性造成的:"
#: src/concurrency/send-sync/examples.md:22
msgid ""
"* `mpsc::Sender<T>`\n"
"* `mpsc::Receiver<T>`\n"
"* `Cell<T>`\n"
"* `RefCell<T>`"
msgstr ""
"* `mpsc::Sender<T>`\n"
"* `mpsc::Receiver<T>`\n"
"* `Cell<T>`\n"
"* `RefCell<T>`"
#: src/concurrency/send-sync/examples.md:27
msgid "## `!Send + Sync`"
msgstr "## `!Send + Sync`"
#: src/concurrency/send-sync/examples.md:29
msgid ""
"These types are thread-safe, but they cannot be moved to another thread:"
msgstr "这些类型是线程安全的,但它们不能移动到另一个线程:"
#: src/concurrency/send-sync/examples.md:31
msgid ""
"* `MutexGuard<T>`: Uses OS level primitives which must be deallocated on "
"the\n"
" thread which created them."
msgstr ""
"* `MutexGuard<T>`:使用操作系统级别的原语(必须在创建这些原语的线程上\n"
"取消分配)。"
#: src/concurrency/send-sync/examples.md:34
msgid "## `!Send + !Sync`"
msgstr "## `!Send + !Sync`"
#: src/concurrency/send-sync/examples.md:36
msgid "These types are not thread-safe and cannot be moved to other threads:"
msgstr "这些类型不是线程安全的,不能移动到其他线程:"
#: src/concurrency/send-sync/examples.md:38
msgid ""
"* `Rc<T>`: each `Rc<T>` has a reference to an `RcBox<T>`, which contains a\n"
" non-atomic reference count.\n"
"* `*const T`, `*mut T`: Rust assumes raw pointers may have special\n"
" concurrency considerations."
msgstr ""
"* `Rc<T>`:每个 `Rc<T>` 都具有对 `RcBox<T>` 的引用,其中包含\n"
"非原子引用计数。\n"
"* `*const T`、`*mut T`:Rust 会假定原始指针可能\n"
"在并发方面有特殊的注意事项。"
#: src/concurrency/shared_state.md:1
msgid "# Shared State"
msgstr "# 共享状态"
#: src/concurrency/shared_state.md:3
msgid ""
"Rust uses the type system to enforce synchronization of shared data. This "
"is\n"
"primarily done via two types:"
msgstr ""
"Rust 使用类型系统来强制同步共享数据。这主要\n"
"通过两种类型实现:"
#: src/concurrency/shared_state.md:6
msgid ""
"* [`Arc<T>`][1], atomic reference counted `T`: handles sharing between "
"threads and\n"
" takes care to deallocate `T` when the last reference is dropped,\n"
"* [`Mutex<T>`][2]: ensures mutually exclusive access to the `T` value."
msgstr ""
"* [`Arc<T>`][1],对 `T` 进行原子计数:用于处理线程之间的共享,并负责\n"
"在最后一个引用被丢弃时取消分配 `T`。\n"
"* [`Mutex<T>`][2]:确保对 `T` 值的互斥访问。"
#: src/concurrency/shared_state/arc.md:1
msgid "# `Arc`"
msgstr "# `Arc`"
#: src/concurrency/shared_state/arc.md:3
msgid "[`Arc<T>`][1] allows shared read-only access via `Arc::clone`:"
msgstr "[`Arc<T>`][1] 允许通过 `Arc::clone` 实现共享只读权限:"
#: src/concurrency/shared_state/arc.md:5
msgid ""
"```rust,editable\n"
"use std::thread;\n"
"use std::sync::Arc;\n"
"\n"
"fn main() {\n"
" let v = Arc::new(vec![10, 20, 30]);\n"
" let mut handles = Vec::new();\n"
" for _ in 1..5 {\n"
" let v = Arc::clone(&v);\n"
" handles.push(thread::spawn(move || {\n"
" let thread_id = thread::current().id();\n"
" println!(\"{thread_id:?}: {v:?}\");\n"
" }));\n"
" }\n"
"\n"
" handles.into_iter().for_each(|h| h.join().unwrap());\n"
" println!(\"v: {v:?}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"use std::thread;\n"
"use std::sync::Arc;\n"
"\n"
"fn main() {\n"
" let v = Arc::new(vec![10, 20, 30]);\n"
" let mut handles = Vec::new();\n"
" for _ in 1..5 {\n"
" let v = Arc::clone(&v);\n"
" handles.push(thread::spawn(move || {\n"
" let thread_id = thread::current().id();\n"
" println!(\"{thread_id:?}: {v:?}\");\n"
" }));\n"
" }\n"
"\n"
" handles.into_iter().for_each(|h| h.join().unwrap());\n"
" println!(\"v: {v:?}\");\n"
"}\n"
"```"
#: src/concurrency/shared_state/arc.md:29
msgid ""
"* `Arc` stands for \"Atomic Reference Counted\", a thread safe version of "
"`Rc` that uses atomic\n"
" operations.\n"
"* `Arc<T>` implements `Clone` whether or not `T` does. It implements `Send` "
"and `Sync` iff `T`\n"
" implements them both.\n"
"* `Arc::clone()` has the cost of atomic operations that get executed, but "
"after that the use of the\n"
" `T` is free.\n"
"* Beware of reference cycles, `Arc` does not use a garbage collector to "
"detect them.\n"
" * `std::sync::Weak` can help."
msgstr ""
"* `Arc` 代表“原子引用计数”,它是使用原子操作的 `Rc` 的\n"
"线程安全版本。\n"
"* 无论 `T` 是否实现 `Clone`,`Arc<T>` 都会实现 `Clone`。如果 `T` 实现了 "
"`Send` 和 `Sync`,`Arc<T>` 便会\n"
"实现二者。\n"
"* `Arc::clone()` 在执行原子操作方面有开销,但在此之后,`T` 便可\n"
"随意使用,而没有任何开销。\n"
"* 请警惕引用循环,`Arc` 不会使用垃圾回收器检测引用循环。\n"
"* `std::sync::Weak` 对此有所帮助。"
#: src/concurrency/shared_state/mutex.md:1
msgid "# `Mutex`"
msgstr "# `互斥器 (Mutex)`"
#: src/concurrency/shared_state/mutex.md:3
msgid ""
"[`Mutex<T>`][1] ensures mutual exclusion _and_ allows mutable access to `T`\n"
"behind a read-only interface:"
msgstr ""
"[`Mutex<T>`][1] 能够确保互斥,并允许对只读接口\n"
"后面的 `T` 进行可变访问:"
#: src/concurrency/shared_state/mutex.md:6
msgid ""
"```rust,editable\n"
"use std::sync::Mutex;\n"
"\n"
"fn main() {\n"
" let v = Mutex::new(vec![10, 20, 30]);\n"
" println!(\"v: {:?}\", v.lock().unwrap());\n"
"\n"
" {\n"
" let mut guard = v.lock().unwrap();\n"
" guard.push(40);\n"
" }\n"
"\n"
" println!(\"v: {:?}\", v.lock().unwrap());\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"use std::sync::Mutex;\n"
"\n"
"fn main() {\n"
" let v = Mutex::new(vec![10, 20, 30]);\n"
" println!(\"v: {:?}\", v.lock().unwrap());\n"
"\n"
" {\n"
" let mut guard = v.lock().unwrap();\n"
" guard.push(40);\n"
" }\n"
"\n"
" println!(\"v: {:?}\", v.lock().unwrap());\n"
"}\n"
"```"
#: src/concurrency/shared_state/mutex.md:22
msgid ""
"Notice how we have a [`impl<T: Send> Sync for Mutex<T>`][2] blanket\n"
"implementation."
msgstr ""
"请注意我们如何设置 [`impl<T: Send> Sync for Mutex<T>`][2] 通用\n"
"实现。"
#: src/concurrency/shared_state/mutex.md:31
msgid ""
"* `Mutex` in Rust looks like a collection with just one element - the "
"protected data.\n"
" * It is not possible to forget to acquire the mutex before accessing the "
"protected data.\n"
"* You can get an `&mut T` from an `&Mutex<T>` by taking the lock. The "
"`MutexGuard` ensures that the\n"
" `&mut T` doesn't outlive the lock being held.\n"
"* `Mutex<T>` implements both `Send` and `Sync` iff `T` implements `Send`.\n"
"* A read-write lock counterpart - `RwLock`.\n"
"* Why does `lock()` return a `Result`? \n"
" * If the thread that held the `Mutex` panicked, the `Mutex` becomes "
"\"poisoned\" to signal that\n"
" the data it protected might be in an inconsistent state. Calling "
"`lock()` on a poisoned mutex\n"
" fails with a [`PoisonError`]. You can call `into_inner()` on the error "
"to recover the data\n"
" regardless."
msgstr ""
"* Rust 中的互斥器看起来就像只包含一个元素的集合,其中的元素就是受保护的数"
"据。\n"
"* 在访问受保护的数据之前不可能忘记获取互斥量。\n"
"* 你可以通过获取锁,从 `&Mutex<T>` 中获取 `&mut T`。`MutexGuard` 能够确保 "
"`&mut T`\n"
"存在的时间不会比持有锁的时间更长。\n"
"* 如果 `T` 实现了 `Send`,`Mutex<T>` 便会实现 `Send` 和 `Sync`。\n"
"* 读写锁版本 - `RwLock`。\n"
"* 为什么 `lock()` 会返回 `Result`?\n"
"* 如果持有 `Mutex` 的线程发生panic,`Mutex` 便会“中毒”并发出信号,\n"
"表明其所保护的数据可能处于不一致状态。对中毒的互斥量调用 `lock()` 将会失"
"败,\n"
"并将显示 [`PoisonError`]。无论如何,你可以对该错误调用 `into_inner()` 来\n"
"恢复数据。"
#: src/concurrency/shared_state/example.md:3
msgid "Let us see `Arc` and `Mutex` in action:"
msgstr "让我们看看 `Arc` 和 `Mutex` 的实际效果:"
#: src/concurrency/shared_state/example.md:5
msgid ""
"```rust,editable,compile_fail\n"
"use std::thread;\n"
"// use std::sync::{Arc, Mutex};\n"
"\n"
"fn main() {\n"
" let v = vec![10, 20, 30];\n"
" let handle = thread::spawn(|| {\n"
" v.push(10);\n"
" });\n"
" v.push(1000);\n"
"\n"
" handle.join().unwrap();\n"
" println!(\"v: {v:?}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable,compile_fail\n"
"use std::thread;\n"
"// use std::sync::{Arc, Mutex};\n"
"\n"
"fn main() {\n"
" let v = vec![10, 20, 30];\n"
" let handle = thread::spawn(|| {\n"
" v.push(10);\n"
" });\n"
" v.push(1000);\n"
"\n"
" handle.join().unwrap();\n"
" println!(\"v: {v:?}\");\n"
"}\n"
"```"
#: src/concurrency/shared_state/example.md:23
msgid "Possible solution:"
msgstr "可能有用的解决方案:"
#: src/concurrency/shared_state/example.md:25
msgid ""
"```rust,editable\n"
"use std::sync::{Arc, Mutex};\n"
"use std::thread;\n"
"\n"
"fn main() {\n"
" let v = Arc::new(Mutex::new(vec![10, 20, 30]));\n"
"\n"
" let v2 = Arc::clone(&v);\n"
" let handle = thread::spawn(move || {\n"
" let mut v2 = v2.lock().unwrap();\n"
" v2.push(10);\n"
" });\n"
"\n"
" {\n"
" let mut v = v.lock().unwrap();\n"
" v.push(1000);\n"
" }\n"
"\n"
" handle.join().unwrap();\n"
"\n"
" println!(\"v: {v:?}\");\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"use std::sync::{Arc, Mutex};\n"
"use std::thread;\n"
"\n"
"fn main() {\n"
" let v = Arc::new(Mutex::new(vec![10, 20, 30]));\n"
"\n"
" let v2 = Arc::clone(&v);\n"
" let handle = thread::spawn(move || {\n"
" let mut v2 = v2.lock().unwrap();\n"
" v2.push(10);\n"
" });\n"
"\n"
" {\n"
" let mut v = v.lock().unwrap();\n"
" v.push(1000);\n"
" }\n"
"\n"
" handle.join().unwrap();\n"
"\n"
" println!(\"v: {v:?}\");\n"
"}\n"
"```"
#: src/concurrency/shared_state/example.md:49
msgid "Notable parts:"
msgstr "值得注意的部分:"
#: src/concurrency/shared_state/example.md:51
msgid ""
"* `v` is wrapped in both `Arc` and `Mutex`, because their concerns are "
"orthogonal.\n"
" * Wrapping a `Mutex` in an `Arc` is a common pattern to share mutable "
"state between threads.\n"
"* `v: Arc<_>` needs to be cloned as `v2` before it can be moved into another "
"thread. Note `move` was added to the lambda signature.\n"
"* Blocks are introduced to narrow the scope of the `LockGuard` as much as "
"possible."
msgstr ""
"* `Arc` 和 `Mutex` 中都封装了 `v`,因为它们的关注点是正交的。\n"
"* 将 `Mutex` 封装在 `Arc` 中是一种在线程之间共享可变状态的常见模式。\n"
"* `v: Arc<_>` 必须先克隆为 `v2`,然后才能移动到另一个线程中。请注意,lambda "
"签名中添加了 `move`。\n"
"* 我们引入了块,以尽可能缩小 `LockGuard` 的作用域。"
#: src/exercises/concurrency/morning.md:3
msgid "Let us practice our new concurrency skills with"
msgstr ""
#: src/exercises/concurrency/morning.md:5
msgid ""
"* Dining philosophers: a classic problem in concurrency.\n"
"\n"
"* Multi-threaded link checker: a larger project where you'll use Cargo to\n"
" download dependencies and then check links in parallel."
msgstr ""
#: src/exercises/concurrency/dining-philosophers.md:1
msgid "# Dining Philosophers"
msgstr ""
#: src/exercises/concurrency/dining-philosophers.md:3
msgid "The dining philosophers problem is a classic problem in concurrency:"
msgstr ""
#: src/exercises/concurrency/dining-philosophers.md:5
msgid ""
"> Five philosophers dine together at the same table. Each philosopher has "
"their\n"
"> own place at the table. There is a fork between each plate. The dish "
"served is\n"
"> a kind of spaghetti which has to be eaten with two forks. Each philosopher "
"can\n"
"> only alternately think and eat. Moreover, a philosopher can only eat "
"their\n"
"> spaghetti when they have both a left and right fork. Thus two forks will "
"only\n"
"> be available when their two nearest neighbors are thinking, not eating. "
"After\n"
"> an individual philosopher finishes eating, they will put down both forks."
msgstr ""
#: src/exercises/concurrency/dining-philosophers.md:13
msgid ""
"You will need a local [Cargo installation](../../cargo/running-locally.md) "
"for\n"
"this exercise. Copy the code below to a file called `src/main.rs`, fill out "
"the\n"
"blanks, and test that `cargo run` does not deadlock:"
msgstr ""
#: src/exercises/concurrency/dining-philosophers.md:19
msgid ""
"```rust,compile_fail\n"
"use std::sync::{mpsc, Arc, Mutex};\n"
"use std::thread;\n"
"use std::time::Duration;\n"
"\n"
"struct Fork;\n"
"\n"
"struct Philosopher {\n"
" name: String,\n"
" // left_fork: ...\n"
" // right_fork: ...\n"
" // thoughts: ...\n"
"}\n"
"\n"
"impl Philosopher {\n"
" fn think(&self) {\n"
" self.thoughts\n"
" .send(format!(\"Eureka! {} has a new idea!\", &self.name))\n"
" .unwrap();\n"
" }\n"
"\n"
" fn eat(&self) {\n"
" // Pick up forks...\n"
" println!(\"{} is eating...\", &self.name);\n"
" thread::sleep(Duration::from_millis(10));\n"
" }\n"
"}\n"
"\n"
"static PHILOSOPHERS: &[&str] =\n"
" &[\"Socrates\", \"Plato\", \"Aristotle\", \"Thales\", \"Pythagoras\"];\n"
"\n"
"fn main() {\n"
" // Create forks\n"
"\n"
" // Create philosophers\n"
"\n"
" // Make them think and eat\n"
"\n"
" // Output their thoughts\n"
"}\n"
"```"
msgstr ""
#: src/exercises/concurrency/dining-philosophers.md:61
msgid "You can use the following `Cargo.toml`:"
msgstr ""
#: src/exercises/concurrency/dining-philosophers.md:65
msgid ""
"```toml\n"
"[package]\n"
"name = \"dining-philosophers\"\n"
"version = \"0.1.0\"\n"
"edition = \"2021\"\n"
"```"
msgstr ""
#: src/exercises/concurrency/link-checker.md:1
msgid "# Multi-threaded Link Checker"
msgstr ""
#: src/exercises/concurrency/link-checker.md:3
msgid ""
"Let us use our new knowledge to create a multi-threaded link checker. It "
"should\n"
"start at a webpage and check that links on the page are valid. It should\n"
"recursively check other pages on the same domain and keep doing this until "
"all\n"
"pages have been validated."
msgstr ""
#: src/exercises/concurrency/link-checker.md:8
msgid ""
"For this, you will need an HTTP client such as [`reqwest`][1]. Create a new\n"
"Cargo project and `reqwest` it as a dependency with:"
msgstr ""
#: src/exercises/concurrency/link-checker.md:11
msgid ""
"```shell\n"
"$ cargo new link-checker\n"
"$ cd link-checker\n"
"$ cargo add --features blocking,rustls-tls reqwest\n"
"```"
msgstr ""
#: src/exercises/concurrency/link-checker.md:17
msgid ""
"> If `cargo add` fails with `error: no such subcommand`, then please edit "
"the\n"
"> `Cargo.toml` file by hand. Add the dependencies listed below."
msgstr ""
#: src/exercises/concurrency/link-checker.md:20
msgid ""
"You will also need a way to find links. We can use [`scraper`][2] for that:"
msgstr ""
#: src/exercises/concurrency/link-checker.md:22
msgid ""
"```shell\n"
"$ cargo add scraper\n"
"```"
msgstr ""
#: src/exercises/concurrency/link-checker.md:26
msgid ""
"Finally, we'll need some way of handling errors. We use [`thiserror`][3] "
"for\n"
"that:"
msgstr ""
#: src/exercises/concurrency/link-checker.md:29
msgid ""
"```shell\n"
"$ cargo add thiserror\n"
"```"
msgstr ""
#: src/exercises/concurrency/link-checker.md:33
msgid ""
"The `cargo add` calls will update the `Cargo.toml` file to look like this:"
msgstr ""
#: src/exercises/concurrency/link-checker.md:37
msgid ""
"```toml\n"
"[package]\n"
"name = \"link-checker\"\n"
"version = \"0.1.0\"\n"
"edition = \"2021\"\n"
"publish = false\n"
"\n"
"[dependencies]\n"
"reqwest = { version = \"0.11.12\", features = [\"blocking\", \"rustls-"
"tls\"] }\n"
"scraper = \"0.13.0\"\n"
"thiserror = \"1.0.37\"\n"
"```"
msgstr ""
#: src/exercises/concurrency/link-checker.md:50
msgid ""
"You can now download the start page. Try with a small site such as\n"
"`https://www.google.org/`."
msgstr ""
#: src/exercises/concurrency/link-checker.md:53
msgid "Your `src/main.rs` file should look something like this:"
msgstr ""
#: src/exercises/concurrency/link-checker.md:57
msgid ""
"```rust,compile_fail\n"
"use reqwest::blocking::{get, Response};\n"
"use reqwest::Url;\n"
"use scraper::{Html, Selector};\n"
"use thiserror::Error;\n"
"\n"
"#[derive(Error, Debug)]\n"
"enum Error {\n"
" #[error(\"request error: {0}\")]\n"
" ReqwestError(#[from] reqwest::Error),\n"
"}\n"
"\n"
"fn extract_links(response: Response) -> Result<Vec<Url>, Error> {\n"
" let base_url = response.url().to_owned();\n"
" let document = response.text()?;\n"
" let html = Html::parse_document(&document);\n"
" let selector = Selector::parse(\"a\").unwrap();\n"
"\n"
" let mut valid_urls = Vec::new();\n"
" for element in html.select(&selector) {\n"
" if let Some(href) = element.value().attr(\"href\") {\n"
" match base_url.join(href) {\n"
" Ok(url) => valid_urls.push(url),\n"
" Err(err) => {\n"
" println!(\"On {base_url}: could not parse {href:?}: "
"{err} (ignored)\",);\n"
" }\n"
" }\n"
" }\n"
" }\n"
"\n"
" Ok(valid_urls)\n"
"}\n"
"\n"
"fn main() {\n"
" let start_url = Url::parse(\"https://www.google.org\").unwrap();\n"
" let response = get(start_url).unwrap();\n"
" match extract_links(response) {\n"
" Ok(links) => println!(\"Links: {links:#?}\"),\n"
" Err(err) => println!(\"Could not extract links: {err:#}\"),\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/exercises/concurrency/link-checker.md:100
msgid "Run the code in `src/main.rs` with"
msgstr ""
#: src/exercises/concurrency/link-checker.md:102
msgid ""
"```shell\n"
"$ cargo run\n"
"```"
msgstr ""
#: src/exercises/concurrency/link-checker.md:106
#: src/exercises/concurrency/chat-app.md:140
msgid "## Tasks"
msgstr ""
#: src/exercises/concurrency/link-checker.md:108
msgid ""
"* Use threads to check the links in parallel: send the URLs to be checked to "
"a\n"
" channel and let a few threads check the URLs in parallel.\n"
"* Extend this to recursively extract links from all pages on the\n"
" `www.google.org` domain. Put an upper limit of 100 pages or so so that "
"you\n"
" don't end up being blocked by the site."
msgstr ""
#: src/async.md:1
msgid "# Async Rust"
msgstr ""
#: src/async.md:3
msgid ""
"\"Async\" is a concurrency model where multiple tasks are executed "
"concurrently by\n"
"executing each task until it would block, then switching to another task "
"that is\n"
"ready to make progress. The model allows running a larger number of tasks on "
"a\n"
"limited number of threads. This is because the per-task overhead is "
"typically\n"
"very low and operating systems provide primitives for efficiently "
"identifying\n"
"I/O that is able to proceed."
msgstr ""
#: src/async.md:10
msgid ""
"Rust's asynchronous operation is based on \"futures\", which represent work "
"that\n"
"may be completed in the future. Futures are \"polled\" until they signal "
"that\n"
"they are complete."
msgstr ""
#: src/async.md:14
msgid ""
"Futures are polled by an async runtime, and several different runtimes are\n"
"available."
msgstr ""
#: src/async.md:17
msgid "## Comparisons"
msgstr ""
#: src/async.md:19
msgid ""
" * Python has a similar model in its `asyncio`. However, its `Future` type "
"is\n"
" callback-based, and not polled. Async Python programs require a "
"\"loop\",\n"
" similar to a runtime in Rust.\n"
"\n"
" * JavaScript's `Promise` is similar, but again callback-based. The "
"language\n"
" runtime implements the event loop, so many of the details of Promise\n"
" resolution are hidden."
msgstr ""
#: src/async/async-await.md:1
msgid "# `async`/`await`"
msgstr ""
#: src/async/async-await.md:3
msgid ""
"At a high level, async Rust code looks very much like \"normal\" sequential "
"code:"
msgstr "从高层次上看,异步 Rust 代码与“正常”的顺序代码非常类似:"
#: src/async/async-await.md:5
msgid ""
"```rust,editable,compile_fail\n"
"use futures::executor::block_on;\n"
"\n"
"async fn count_to(count: i32) {\n"
" for i in 1..=count {\n"
" println!(\"Count is: {i}!\");\n"
" }\n"
"}\n"
"\n"
"async fn async_main(count: i32) {\n"
" count_to(count).await;\n"
"}\n"
"\n"
"fn main() {\n"
" block_on(async_main(10));\n"
"}\n"
"```"
msgstr ""
#: src/async/async-await.md:27
msgid ""
"* Note that this is a simplified example to show the syntax. There is no "
"long\n"
" running operation or any real concurrency in it!\n"
"\n"
"* What is the return type of an async call?\n"
" * Use `let future: () = async_main(10);` in `main` to see the type.\n"
"\n"
"* The \"async\" keyword is syntactic sugar. The compiler replaces the return "
"type\n"
" with a future. \n"
"\n"
"* You cannot make `main` async, without additional instructions to the "
"compiler\n"
" on how to use the returned future.\n"
"\n"
"* You need an executor to run async code. `block_on` blocks the current "
"thread\n"
" until the provided future has run to completion. \n"
"\n"
"* `.await` asynchronously waits for the completion of another operation. "
"Unlike\n"
" `block_on`, `.await` doesn't block the current thread.\n"
"\n"
"* `.await` can only be used inside an `async` function (or block; these are\n"
" introduced later). "
msgstr ""
"* 请注意,这只是一个简单的示例,用于展示语法。其中没有长时间运行的操作或任何真正的并发!\n"
"\n"
"* 异步调用的返回类型是什么?\n"
" * 在 `main` 中使用 `let future: () = async_main(10);` 来查看类型。\n"
"\n"
"* \"async\" 关键字是语法糖。编译器会将返回类型替换为 future。\n"
"\n"
"* 你不能将 `main` 声明为异步函数,除非在编译器中加入额外的指令来告诉它如何使用返回的 future。\n"
"\n"
"* 你需要一个执行器来运行异步代码。`block_on`会阻塞当前线程,直到提供的future完成为止。 \n"
"\n"
"* `.await` 会异步地等待另一个操作的完成。与 `block_on` 不同,`.await` 不会阻塞当前线程。\n"
"\n"
"* `.await` 只能在 `async` 函数(或块,这些稍后会介绍)中使用。 "
#: src/async/futures.md:1
msgid "# Futures"
msgstr ""
#: src/async/futures.md:3
msgid ""
"[`Future`](https://doc.rust-lang.org/std/future/trait.Future.html)\n"
"is a trait, implemented by objects that represent an operation that may not "
"be\n"
"complete yet. A future can be polled, and `poll` returns a\n"
"[`Poll`](https://doc.rust-lang.org/std/task/enum.Poll.html)."
msgstr ""
#: src/async/futures.md:8
msgid ""
"```rust\n"
"use std::pin::Pin;\n"
"use std::task::Context;\n"
"\n"
"pub trait Future {\n"
" type Output;\n"
" fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::"
"Output>;\n"
"}\n"
"\n"
"pub enum Poll<T> {\n"
" Ready(T),\n"
" Pending,\n"
"}\n"
"```"
msgstr ""
#: src/async/futures.md:23
msgid ""
"An async function returns an `impl Future`. It's also possible (but "
"uncommon) to\n"
"implement `Future` for your own types. For example, the `JoinHandle` "
"returned\n"
"from `tokio::spawn` implements `Future` to allow joining to it."
msgstr ""
#: src/async/futures.md:27
msgid ""
"The `.await` keyword, applied to a Future, causes the current async function "
"to\n"
"pause until that Future is ready, and then evaluates to its output."
msgstr ""
#: src/async/futures.md:32
msgid ""
"* The `Future` and `Poll` types are implemented exactly as shown; click the\n"
" links to show the implementations in the docs.\n"
"\n"
"* We will not get to `Pin` and `Context`, as we will focus on writing async\n"
" code, rather than building new async primitives. Briefly:\n"
"\n"
" * `Context` allows a Future to schedule itself to be polled again when an\n"
" event occurs.\n"
"\n"
" * `Pin` ensures that the Future isn't moved in memory, so that pointers "
"into\n"
" that future remain valid. This is required to allow references to "
"remain\n"
" valid after an `.await`."
msgstr ""
#: src/async/runtimes.md:1
msgid "# Runtimes"
msgstr ""
#: src/async/runtimes.md:3
msgid ""
"A *runtime* provides support for performing operations asynchronously (a\n"
"*reactor*) and is responsible for executing futures (an *executor*). Rust "
"does not have a\n"
"\"built-in\" runtime, but several options are available:"
msgstr ""
#: src/async/runtimes.md:7
msgid ""
" * [Tokio](https://tokio.rs/) - performant, with a well-developed ecosystem "
"of\n"
" functionality like [Hyper](https://hyper.rs/) for HTTP or\n"
" [Tonic](https://github.com/hyperium/tonic) for gRPC.\n"
" * [async-std](https://async.rs/) - aims to be a \"std for async\", and "
"includes a\n"
" basic runtime in `async::task`.\n"
" * [smol](https://docs.rs/smol/latest/smol/) - simple and lightweight"
msgstr ""
#: src/async/runtimes.md:14
msgid ""
"Several larger applications have their own runtimes. For example,\n"
"[Fuchsia](https://fuchsia.googlesource.com/fuchsia/+/refs/heads/main/src/lib/"
"fuchsia-async/src/lib.rs)\n"
"already has one."
msgstr ""
#: src/async/runtimes.md:20
msgid ""
"* Note that of the listed runtimes, only Tokio is supported in the Rust\n"
" playground. The playground also does not permit any I/O, so most "
"interesting\n"
" async things can't run in the playground.\n"
"\n"
"* Futures are \"inert\" in that they do not do anything (not even start an I/"
"O\n"
" operation) unless there is an executor polling them. This differs from JS\n"
" Promises, for example, which will run to completion even if they are "
"never\n"
" used."
msgstr ""
#: src/async/runtimes/tokio.md:1
msgid "# Tokio"
msgstr ""
#: src/async/runtimes/tokio.md:4
msgid "Tokio provides: "
msgstr ""
#: src/async/runtimes/tokio.md:6
msgid ""
"* A multi-threaded runtime for executing asynchronous code.\n"
"* An asynchronous version of the standard library.\n"
"* A large ecosystem of libraries."
msgstr ""
#: src/async/runtimes/tokio.md:10
msgid ""
"```rust,editable,compile_fail\n"
"use tokio::time;\n"
"\n"
"async fn count_to(count: i32) {\n"
" for i in 1..=count {\n"
" println!(\"Count in task: {i}!\");\n"
" time::sleep(time::Duration::from_millis(5)).await;\n"
" }\n"
"}\n"
"\n"
"#[tokio::main]\n"
"async fn main() {\n"
" tokio::spawn(count_to(10));\n"
"\n"
" for i in 1..5 {\n"
" println!(\"Main task: {i}\");\n"
" time::sleep(time::Duration::from_millis(5)).await;\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/async/runtimes/tokio.md:33
msgid ""
"* With the `tokio::main` macro we can now make `main` async.\n"
"\n"
"* The `spawn` function creates a new, concurrent \"task\".\n"
"\n"
"* Note: `spawn` takes a `Future`, you don't call `.await` on `count_to`."
msgstr ""
#: src/async/runtimes/tokio.md:39
msgid "**Further exploration:**"
msgstr ""
#: src/async/runtimes/tokio.md:41
msgid ""
"* Why does `count_to` not (usually) get to 10? This is an example of async\n"
" cancellation. `tokio::spawn` returns a handle which can be awaited to "
"wait\n"
" until it finishes.\n"
"\n"
"* Try `count_to(10).await` instead of spawning.\n"
"\n"
"* Try awaiting the task returned from `tokio::spawn`."
msgstr ""
#: src/async/tasks.md:1
msgid "# Tasks"
msgstr ""
#: src/async/tasks.md:3
msgid ""
"Runtimes have the concept of a \"task\", similar to a thread but much\n"
"less resource-intensive."
msgstr ""
#: src/async/tasks.md:6
msgid ""
"A task has a single top-level future which the executor polls to make "
"progress.\n"
"That future may have one or more nested futures that its `poll` method "
"polls,\n"
"corresponding loosely to a call stack. Concurrency within a task is possible "
"by\n"
"polling multiple child futures, such as racing a timer and an I/O operation."
msgstr ""
#: src/async/tasks.md:11
msgid ""
"```rust,compile_fail\n"
"use tokio::io::{self, AsyncReadExt, AsyncWriteExt};\n"
"use tokio::net::TcpListener;\n"
"\n"
"#[tokio::main]\n"
"async fn main() -> io::Result<()> {\n"
" let listener = TcpListener::bind(\"127.0.0.1:6142\").await?;\n"
"\tprintln!(\"listening on port 6142\");\n"
"\n"
" loop {\n"
" let (mut socket, addr) = listener.accept().await?;\n"
"\n"
" println!(\"connection from {addr:?}\");\n"
"\n"
" tokio::spawn(async move {\n"
" if let Err(e) = socket.write_all(b\"Who are you?\\n\").await {\n"
" println!(\"socket error: {e:?}\");\n"
" return;\n"
" }\n"
"\n"
" let mut buf = vec![0; 1024];\n"
" let reply = match socket.read(&mut buf).await {\n"
" Ok(n) => {\n"
" let name = std::str::from_utf8(&buf[..n]).unwrap()."
"trim();\n"
" format!(\"Thanks for dialing in, {name}!\\n\")\n"
" }\n"
" Err(e) => {\n"
" println!(\"socket error: {e:?}\");\n"
" return;\n"
" }\n"
" };\n"
"\n"
" if let Err(e) = socket.write_all(reply.as_bytes()).await {\n"
" println!(\"socket error: {e:?}\");\n"
" }\n"
" });\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/async/tasks.md:53 src/async/control-flow/join.md:36
msgid ""
"Copy this example into your prepared `src/main.rs` and run it from there."
msgstr ""
#: src/async/tasks.md:55
msgid ""
"* Ask students to visualize what the state of the example server would be "
"with a\n"
" few connected clients. What tasks exist? What are their Futures?\n"
"\n"
"* This is the first time we've seen an `async` block. This is similar to a\n"
" closure, but does not take any arguments. Its return value is a Future,\n"
" similar to an `async fn`. \n"
"\n"
"* Refactor the async block into a function, and improve the error handling "
"using `?`."
msgstr ""
#: src/async/channels.md:1
msgid "# Async Channels"
msgstr ""
#: src/async/channels.md:3
msgid ""
"Several crates have support for `async`/`await`. For instance `tokio` "
"channels:"
msgstr ""
#: src/async/channels.md:5
msgid ""
"```rust,editable,compile_fail\n"
"use tokio::sync::mpsc::{self, Receiver};\n"
"\n"
"async fn ping_handler(mut input: Receiver<()>) {\n"
" let mut count: usize = 0;\n"
"\n"
" while let Some(_) = input.recv().await {\n"
" count += 1;\n"
" println!(\"Received {count} pings so far.\");\n"
" }\n"
"\n"
" println!(\"ping_handler complete\");\n"
"}\n"
"\n"
"#[tokio::main]\n"
"async fn main() {\n"
" let (sender, receiver) = mpsc::channel(32);\n"
" let ping_handler_task = tokio::spawn(ping_handler(receiver));\n"
" for i in 0..10 {\n"
" sender.send(()).await.expect(\"Failed to send ping.\");\n"
" println!(\"Sent {} pings so far.\", i + 1);\n"
" }\n"
"\n"
" std::mem::drop(sender);\n"
" ping_handler_task.await.expect(\"Something went wrong in ping handler "
"task.\");\n"
"}\n"
"```"
msgstr ""
#: src/async/channels.md:35
msgid ""
"* Change the channel size to `3` and see how it affects the execution.\n"
"\n"
"* Overall, the interface is similar to the `sync` channels as seen in the\n"
" [morning class](concurrency/channels.md).\n"
"\n"
"* Try removing the `std::mem::drop` call. What happens? Why?\n"
"\n"
"* The [Flume](https://docs.rs/flume/latest/flume/) crate has channels that\n"
" implement both `sync` and `async` `send` and `recv`. This can be "
"convenient\n"
" for complex applications with both IO and heavy CPU processing tasks.\n"
"\n"
"* What makes working with `async` channels preferable is the ability to "
"combine\n"
" them with other `future`s to combine them and create complex control flow."
msgstr ""
#: src/async/control-flow.md:1
msgid "# Futures Control Flow"
msgstr ""
#: src/async/control-flow.md:3
msgid ""
"Futures can be combined together to produce concurrent compute flow graphs. "
"We\n"
"have already seen tasks, that function as independent threads of execution."
msgstr ""
#: src/async/control-flow.md:6
msgid ""
"- [Join](control-flow/join.md)\n"
"- [Select](control-flow/select.md)"
msgstr ""
#: src/async/control-flow/join.md:1
msgid "# Join"
msgstr ""
#: src/async/control-flow/join.md:3
msgid ""
"A join operation waits until all of a set of futures are ready, and\n"
"returns a collection of their results. This is similar to `Promise.all` in\n"
"JavaScript or `asyncio.gather` in Python."
msgstr ""
#: src/async/control-flow/join.md:7
msgid ""
"```rust,editable,compile_fail\n"
"use anyhow::Result;\n"
"use futures::future;\n"
"use reqwest;\n"
"use std::collections::HashMap;\n"
"\n"
"async fn size_of_page(url: &str) -> Result<usize> {\n"
" let resp = reqwest::get(url).await?;\n"
" Ok(resp.text().await?.len())\n"
"}\n"
"\n"
"#[tokio::main]\n"
"async fn main() {\n"
" let urls: [&str; 4] = [\n"
" \"https://google.com\",\n"
" \"https://httpbin.org/ip\",\n"
" \"https://play.rust-lang.org/\",\n"
" \"BAD_URL\",\n"
" ];\n"
" let futures_iter = urls.into_iter().map(size_of_page);\n"
" let results = future::join_all(futures_iter).await;\n"
" let page_sizes_dict: HashMap<&str, Result<usize>> =\n"
" urls.into_iter().zip(results.into_iter()).collect();\n"
" println!(\"{:?}\", page_sizes_dict);\n"
"}\n"
"```"
msgstr ""
#: src/async/control-flow/join.md:38
msgid ""
"* For multiple futures of disjoint types, you can use `std::future::join!` "
"but\n"
" you must know how many futures you will have at compile time. This is\n"
" currently in the `futures` crate, soon to be stabilised in `std::future`.\n"
"\n"
"* The risk of `join` is that one of the futures may never resolve, this "
"would\n"
" cause your program to stall. \n"
"\n"
"* You can also combine `join_all` with `join!` for instance to join all "
"requests\n"
" to an http service as well as a database query. Try adding a\n"
" `tokio::time::sleep` to the future, using `futures::join!`. This is not a\n"
" timeout (that requires `select!`, explained in the next chapter), but "
"demonstrates `join!`."
msgstr ""
#: src/async/control-flow/select.md:1
msgid "# Select"
msgstr ""
#: src/async/control-flow/select.md:3
msgid ""
"A select operation waits until any of a set of futures is ready, and "
"responds to\n"
"that future's result. In JavaScript, this is similar to `Promise.race`. In\n"
"Python, it compares to `asyncio.wait(task_set,\n"
"return_when=asyncio.FIRST_COMPLETED)`."
msgstr ""
#: src/async/control-flow/select.md:8
msgid ""
"This is usually a macro, similar to match, with each arm of the form "
"`pattern =\n"
"future => statement`. When the future is ready, the statement is executed "
"with the\n"
"variable bound to the future's result."
msgstr ""
#: src/async/control-flow/select.md:12
msgid ""
"```rust,editable,compile_fail\n"
"use tokio::sync::mpsc::{self, Receiver};\n"
"use tokio::time::{sleep, Duration};\n"
"\n"
"#[derive(Debug, PartialEq)]\n"
"enum Animal {\n"
" Cat { name: String },\n"
" Dog { name: String },\n"
"}\n"
"\n"
"async fn first_animal_to_finish_race(\n"
" mut cat_rcv: Receiver<String>,\n"
" mut dog_rcv: Receiver<String>,\n"
") -> Option<Animal> {\n"
" tokio::select! {\n"
" cat_name = cat_rcv.recv() => Some(Animal::Cat { name: cat_name? }),\n"
" dog_name = dog_rcv.recv() => Some(Animal::Dog { name: dog_name? })\n"
" }\n"
"}\n"
"\n"
"#[tokio::main]\n"
"async fn main() {\n"
" let (cat_sender, cat_receiver) = mpsc::channel(32);\n"
" let (dog_sender, dog_receiver) = mpsc::channel(32);\n"
" tokio::spawn(async move {\n"
" sleep(Duration::from_millis(500)).await;\n"
" cat_sender\n"
" .send(String::from(\"Felix\"))\n"
" .await\n"
" .expect(\"Failed to send cat.\");\n"
" });\n"
" tokio::spawn(async move {\n"
" sleep(Duration::from_millis(50)).await;\n"
" dog_sender\n"
" .send(String::from(\"Rex\"))\n"
" .await\n"
" .expect(\"Failed to send dog.\");\n"
" });\n"
"\n"
" let winner = first_animal_to_finish_race(cat_receiver, dog_receiver)\n"
" .await\n"
" .expect(\"Failed to receive winner\");\n"
"\n"
" println!(\"Winner is {winner:?}\");\n"
"}\n"
"```"
msgstr ""
#: src/async/control-flow/select.md:61
msgid ""
"* In this example, we have a race between a cat and a dog.\n"
" `first_animal_to_finish_race` listens to both channels and will pick "
"whichever\n"
" arrives first. Since the dog takes 50ms, it wins against the cat that\n"
" take 500ms seconds.\n"
"\n"
"* You can use `oneshot` channels in this example as the channels are "
"supposed to\n"
" receive only one `send`.\n"
"\n"
"* Try adding a deadline to the race, demonstrating selecting different sorts "
"of\n"
" futures.\n"
"\n"
"* Note that `select!` moves the values it is given. It is easiest to use\n"
" when every execution of `select!` creates new futures. An alternative is "
"to\n"
" pass `&mut future` instead of the future itself, but this can lead to\n"
" issues, further discussed in the pinning slide."
msgstr ""
#: src/async/pitfalls.md:1
msgid "# Pitfalls of async/await"
msgstr ""
#: src/async/pitfalls.md:3
msgid ""
"Async / await provides convenient and efficient abstraction for concurrent "
"asynchronous programming. However, the async/await model in Rust also comes "
"with its share of pitfalls and footguns. We illustrate some of them in this "
"chapter:"
msgstr ""
#: src/async/pitfalls.md:5
msgid ""
"- [Blocking the Executor](pitfalls/blocking-executor.md)\n"
"- [Pin](pitfalls/pin.md)\n"
"- [Async Traits](pitfall/async-traits.md)"
msgstr ""
#: src/async/pitfalls/blocking-executor.md:1
msgid "# Blocking the executor"
msgstr ""
#: src/async/pitfalls/blocking-executor.md:3
msgid ""
"Most async runtimes only allow IO tasks to run concurrently.\n"
"This means that CPU blocking tasks will block the executor and prevent other "
"tasks from being executed.\n"
"An easy workaround is to use async equivalent methods where possible."
msgstr ""
#: src/async/pitfalls/blocking-executor.md:7
msgid ""
"```rust,editable,compile_fail\n"
"use futures::future::join_all;\n"
"use std::time::Instant;\n"
"\n"
"async fn sleep_ms(start: &Instant, id: u64, duration_ms: u64) {\n"
" std::thread::sleep(std::time::Duration::from_millis(duration_ms));\n"
" println!(\n"
" \"future {id} slept for {duration_ms}ms, finished after {}ms\",\n"
" start.elapsed().as_millis()\n"
" );\n"
"}\n"
"\n"
"#[tokio::main(flavor = \"current_thread\")]\n"
"async fn main() {\n"
" let start = Instant::now();\n"
" let sleep_futures = (1..=10).map(|t| sleep_ms(&start, t, t * 10));\n"
" join_all(sleep_futures).await;\n"
"}\n"
"```"
msgstr ""
#: src/async/pitfalls/blocking-executor.md:29
msgid ""
"* Run the code and see that the sleeps happen consecutively rather than\n"
" concurrently.\n"
"\n"
"* The `\"current_thread\"` flavor puts all tasks on a single thread. This "
"makes the\n"
" effect more obvious, but the bug is still present in the multi-threaded\n"
" flavor.\n"
"\n"
"* Switch the `std::thread::sleep` to `tokio::time::sleep` and await its "
"result.\n"
"\n"
"* Another fix would be to `tokio::task::spawn_blocking` which spawns an "
"actual\n"
" thread and transforms its handle into a future without blocking the "
"executor.\n"
"\n"
"* You should not think of tasks as OS threads. They do not map 1 to 1 and "
"most\n"
" executors will allow many tasks to run on a single OS thread. This is\n"
" particularly problematic when interacting with other libraries via FFI, "
"where\n"
" that library might depend on thread-local storage or map to specific OS\n"
" threads (e.g., CUDA). Prefer `tokio::task::spawn_blocking` in such "
"situations.\n"
"\n"
"* Use sync mutexes with care. Holding a mutex over an `.await` may cause "
"another\n"
" task to block, and that task may be running on the same thread."
msgstr ""
#: src/async/pitfalls/pin.md:1
msgid "# Pin"
msgstr ""
#: src/async/pitfalls/pin.md:3
msgid ""
"When you await a future, all local variables (that would ordinarily be "
"stored on\n"
"a stack frame) are instead stored in the Future for the current async block. "
"If your\n"
"future has pointers to data on the stack, those pointers might get "
"invalidated.\n"
"This is unsafe."
msgstr ""
#: src/async/pitfalls/pin.md:8
msgid ""
"Therefore, you must guarantee that the addresses your future points to "
"don't\n"
"change. That is why we need to `pin` futures. Using the same future "
"repeatedly\n"
"in a `select!` often leads to issues with pinned values."
msgstr ""
#: src/async/pitfalls/pin.md:12
msgid ""
"```rust,editable,compile_fail\n"
"use tokio::sync::{mpsc, oneshot};\n"
"use tokio::task::spawn;\n"
"use tokio::time::{sleep, Duration};\n"
"\n"
"// A work item. In this case, just sleep for the given time and respond\n"
"// with a message on the `respond_on` channel.\n"
"#[derive(Debug)]\n"
"struct Work {\n"
" input: u32,\n"
" respond_on: oneshot::Sender<u32>,\n"
"}\n"
"\n"
"// A worker which listens for work on a queue and performs it.\n"
"async fn worker(mut work_queue: mpsc::Receiver<Work>) {\n"
" let mut iterations = 0;\n"
" loop {\n"
" tokio::select! {\n"
" Some(work) = work_queue.recv() => {\n"
" sleep(Duration::from_millis(10)).await; // Pretend to work.\n"
" work.respond_on\n"
" .send(work.input * 1000)\n"
" .expect(\"failed to send response\");\n"
" iterations += 1;\n"
" }\n"
" // TODO: report number of iterations every 100ms\n"
" }\n"
" }\n"
"}\n"
"\n"
"// A requester which requests work and waits for it to complete.\n"
"async fn do_work(work_queue: &mpsc::Sender<Work>, input: u32) -> u32 {\n"
" let (tx, rx) = oneshot::channel();\n"
" work_queue\n"
" .send(Work {\n"
" input,\n"
" respond_on: tx,\n"
" })\n"
" .await\n"
" .expect(\"failed to send on work queue\");\n"
" rx.await.expect(\"failed waiting for response\")\n"
"}\n"
"\n"
"#[tokio::main]\n"
"async fn main() {\n"
" let (tx, rx) = mpsc::channel(10);\n"
" spawn(worker(rx));\n"
" for i in 0..100 {\n"
" let resp = do_work(&tx, i).await;\n"
" println!(\"work result for iteration {i}: {resp}\");\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/async/pitfalls/pin.md:68
msgid ""
"* You may recognize this as an example of the actor pattern. Actors\n"
" typically call `select!` in a loop.\n"
"\n"
"* This serves as a summation of a few of the previous lessons, so take your "
"time\n"
" with it.\n"
"\n"
" * Naively add a `_ = sleep(Duration::from_millis(100)) => { println!"
"(..) }`\n"
" to the `select!`. This will never execute. Why?\n"
"\n"
" * Instead, add a `timeout_fut` containing that future outside of the "
"`loop`:\n"
"\n"
" ```rust,compile_fail\n"
" let mut timeout_fut = sleep(Duration::from_millis(100));\n"
" loop {\n"
" select! {\n"
" ..,\n"
" _ = timeout_fut => { println!(..); },\n"
" }\n"
" }\n"
" ```\n"
" * This still doesn't work. Follow the compiler errors, adding `&mut` to "
"the\n"
" `timeout_fut` in the `select!` to work around the move, then using\n"
" `Box::pin`:\n"
"\n"
" ```rust,compile_fail\n"
" let mut timeout_fut = Box::pin(sleep(Duration::from_millis(100)));\n"
" loop {\n"
" select! {\n"
" ..,\n"
" _ = &mut timeout_fut => { println!(..); },\n"
" }\n"
" }\n"
" ```\n"
"\n"
" * This compiles, but once the timeout expires it is `Poll::Ready` on "
"every\n"
" iteration (a fused future would help with this). Update to reset\n"
" `timeout_fut` every time it expires.\n"
"\n"
"* Box allocates on the heap. In some cases, `std::pin::pin!` (only recently\n"
" stabilized, with older code often using `tokio::pin!`) is also an option, "
"but\n"
" that is difficult to use for a future that is reassigned.\n"
"\n"
"* Another alternative is to not use `pin` at all but spawn another task that "
"will send to a `oneshot` channel every 100ms."
msgstr ""
#: src/async/pitfalls/async-traits.md:1
msgid "# Async Traits"
msgstr ""
#: src/async/pitfalls/async-traits.md:3
msgid ""
"Async methods in traits are not yet supported in the stable channel ([An "
"experimental feature exists in nightly and should be stabilized in the mid "
"term.](https://blog.rust-lang.org/inside-rust/2022/11/17/async-fn-in-trait-"
"nightly.html))"
msgstr ""
#: src/async/pitfalls/async-traits.md:5
msgid ""
"The crate [async_trait](https://docs.rs/async-trait/latest/async_trait/) "
"provides a workaround through a macro:"
msgstr ""
#: src/async/pitfalls/async-traits.md:7
msgid ""
"```rust,editable,compile_fail\n"
"use async_trait::async_trait;\n"
"use std::time::Instant;\n"
"use tokio::time::{sleep, Duration};\n"
"\n"
"#[async_trait]\n"
"trait Sleeper {\n"
" async fn sleep(&self);\n"
"}\n"
"\n"
"struct FixedSleeper {\n"
" sleep_ms: u64,\n"
"}\n"
"\n"
"#[async_trait]\n"
"impl Sleeper for FixedSleeper {\n"
" async fn sleep(&self) {\n"
" sleep(Duration::from_millis(self.sleep_ms)).await;\n"
" }\n"
"}\n"
"\n"
"async fn run_all_sleepers_multiple_times(sleepers: Vec<Box<dyn Sleeper>>, "
"n_times: usize) {\n"
" for _ in 0..n_times {\n"
" println!(\"running all sleepers..\");\n"
" for sleeper in &sleepers {\n"
" let start = Instant::now();\n"
" sleeper.sleep().await;\n"
" println!(\"slept for {}ms\", start.elapsed().as_millis());\n"
" }\n"
" }\n"
"}\n"
"\n"
"#[tokio::main]\n"
"async fn main() {\n"
" let sleepers: Vec<Box<dyn Sleeper>> = vec![\n"
" Box::new(FixedSleeper { sleep_ms: 50 }),\n"
" Box::new(FixedSleeper { sleep_ms: 100 }),\n"
" ];\n"
" run_all_sleepers_multiple_times(sleepers, 5).await;\n"
"}\n"
"```"
msgstr ""
#: src/async/pitfalls/async-traits.md:49
msgid "<details> "
msgstr ""
#: src/async/pitfalls/async-traits.md:51
msgid ""
"* `async_trait` is easy to use, but note that it's using heap allocations "
"to\n"
" achieve this. This heap allocation has performance overhead.\n"
"\n"
"* The challenges in language support for `async trait` are deep Rust and\n"
" probably not worth describing in-depth. Niko Matsakis did a good job of\n"
" explaining them in [this\n"
" post](https://smallcultfollowing.com/babysteps/blog/2019/10/26/async-fn-in-"
"traits-are-hard/)\n"
" if you are interested in digging deeper.\n"
"\n"
"* Try creating a new sleeper struct that will sleep for a random amount of "
"time\n"
" and adding it to the Vec."
msgstr ""
#: src/exercises/concurrency/afternoon.md:3
msgid ""
"To practice your Async Rust skills, we have again two exercises for you:"
msgstr ""
#: src/exercises/concurrency/afternoon.md:5
msgid ""
"* Dining philosophers: we already saw this problem in the morning. This "
"time\n"
" you are going to implement it with Async Rust.\n"
"\n"
"* A Broadcast Chat Application: this is a larger project that allows you\n"
" experiment with more advanced Async Rust features."
msgstr ""
#: src/exercises/concurrency/dining-philosophers-async.md:1
msgid "# Dining Philosophers - Async"
msgstr ""
#: src/exercises/concurrency/dining-philosophers-async.md:3
msgid ""
"See [dining philosophers](dining-philosophers.md) for a description of the\n"
"problem."
msgstr ""
#: src/exercises/concurrency/dining-philosophers-async.md:6
msgid ""
"As before, you will need a local\n"
"[Cargo installation](../../cargo/running-locally.md) for this exercise. "
"Copy\n"
"the code below to a file called `src/main.rs`, fill out the blanks, and "
"test\n"
"that `cargo run` does not deadlock:"
msgstr ""
#: src/exercises/concurrency/dining-philosophers-async.md:13
msgid ""
"```rust,compile_fail\n"
"use std::sync::Arc;\n"
"use tokio::time;\n"
"use tokio::sync::mpsc::{self, Sender};\n"
"use tokio::sync::Mutex;\n"
"\n"
"struct Fork;\n"
"\n"
"struct Philosopher {\n"
" name: String,\n"
" // left_fork: ...\n"
" // right_fork: ...\n"
" // thoughts: ...\n"
"}\n"
"\n"
"impl Philosopher {\n"
" async fn think(&self) {\n"
" self.thoughts\n"
" .send(format!(\"Eureka! {} has a new idea!\", &self.name))."
"await\n"
" .unwrap();\n"
" }\n"
"\n"
" async fn eat(&self) {\n"
" // Pick up forks...\n"
" println!(\"{} is eating...\", &self.name);\n"
" time::sleep(time::Duration::from_millis(5)).await;\n"
" }\n"
"}\n"
"\n"
"static PHILOSOPHERS: &[&str] =\n"
" &[\"Socrates\", \"Plato\", \"Aristotle\", \"Thales\", \"Pythagoras\"];\n"
"\n"
"#[tokio::main]\n"
"async fn main() {\n"
" // Create forks\n"
"\n"
" // Create philosophers\n"
"\n"
" // Make them think and eat\n"
"\n"
" // Output their thoughts\n"
"}\n"
"```"
msgstr ""
#: src/exercises/concurrency/dining-philosophers-async.md:57
msgid ""
"Since this time you are using Async Rust, you'll need a `tokio` dependency.\n"
"You can use the following `Cargo.toml`:"
msgstr ""
#: src/exercises/concurrency/dining-philosophers-async.md:62
msgid ""
"```toml\n"
"[package]\n"
"name = \"dining-philosophers-async-dine\"\n"
"version = \"0.1.0\"\n"
"edition = \"2021\"\n"
"\n"
"[dependencies]\n"
"tokio = {version = \"1.26.0\", features = [\"sync\", \"time\", \"macros\", "
"\"rt-multi-thread\"]}\n"
"```"
msgstr ""
#: src/exercises/concurrency/dining-philosophers-async.md:72
msgid ""
"Also note that this time you have to use the `Mutex` and the `mpsc` module\n"
"from the `tokio` crate."
msgstr ""
#: src/exercises/concurrency/dining-philosophers-async.md:77
msgid "* Can you make your implementation single-threaded? "
msgstr ""
#: src/exercises/concurrency/chat-app.md:1
msgid "# Broadcast Chat Application"
msgstr ""
#: src/exercises/concurrency/chat-app.md:3
msgid ""
"In this exercise, we want to use our new knowledge to implement a broadcast\n"
"chat application. We have a chat server that the clients connect to and "
"publish\n"
"their messages. The client reads user messages from the standard input, and\n"
"sends them to the server. The chat server broadcasts each message that it\n"
"receives to all the clients."
msgstr ""
#: src/exercises/concurrency/chat-app.md:9
msgid ""
"For this, we use [a broadcast channel][1] on the server, and\n"
"[`tokio_websockets`][2] for the communication between the client and the\n"
"server."
msgstr ""
#: src/exercises/concurrency/chat-app.md:13
msgid "Create a new Cargo project and add the following dependencies:"
msgstr ""
#: src/exercises/concurrency/chat-app.md:15
msgid "`Cargo.toml`:"
msgstr ""
#: src/exercises/concurrency/chat-app.md:19
msgid ""
"```toml\n"
"[package]\n"
"name = \"chat-async\"\n"
"version = \"0.1.0\"\n"
"edition = \"2021\"\n"
"\n"
"[dependencies]\n"
"futures-util = \"0.3.28\"\n"
"http = \"0.2.9\"\n"
"tokio = { version = \"1.28.1\", features = [\"full\"] }\n"
"tokio-websockets = \"0.3.2\"\n"
"```"
msgstr ""
#: src/exercises/concurrency/chat-app.md:32
msgid "## The required APIs"
msgstr ""
#: src/exercises/concurrency/chat-app.md:33
msgid ""
"You are going to need the following functions from `tokio` and\n"
"[`tokio_websockets`][2]. Spend a few minutes to familiarize yourself with "
"the\n"
"API. "
msgstr ""
#: src/exercises/concurrency/chat-app.md:37
msgid ""
"- [WebsocketStream::next()][3]: for asynchronously reading messages from a\n"
" Websocket Stream.\n"
"- [SinkExt::send()][4] implemented by `WebsocketStream`: for asynchronously\n"
" sending messages on a Websocket Stream.\n"
"- [BufReader::read_line()][5]: for asynchronously reading user messages\n"
" from the standard input.\n"
"- [Sender::subscribe()][6]: for subscribing to a broadcast channel."
msgstr ""
#: src/exercises/concurrency/chat-app.md:46
msgid "## Two binaries"
msgstr ""
#: src/exercises/concurrency/chat-app.md:48
msgid ""
"Normally in a Cargo project, you can have only one binary, and one\n"
"`src/main.rs` file. In this project, we need two binaries. One for the "
"client,\n"
"and one for the server. You could potentially make them two separate Cargo\n"
"projects, but we are going to put them in a single Cargo project with two\n"
"binaries. For this to work, the client and the server code should go under\n"
"`src/bin` (see the [documentation][7]). "
msgstr ""
#: src/exercises/concurrency/chat-app.md:55
msgid ""
"Copy the following server and client code into `src/bin/server.rs` and\n"
"`src/bin/client.rs`, respectively. Your task is to complete these files as\n"
"described below. "
msgstr ""
#: src/exercises/concurrency/chat-app.md:59
#: src/exercises/concurrency/solutions-afternoon.md:117
msgid "`src/bin/server.rs`:"
msgstr ""
#: src/exercises/concurrency/chat-app.md:61
msgid "<!-- File src/bin/server.rs -->"
msgstr ""
#: src/exercises/concurrency/chat-app.md:63
msgid ""
"```rust,compile_fail\n"
"use futures_util::sink::SinkExt;\n"
"use std::error::Error;\n"
"use std::net::SocketAddr;\n"
"use tokio::net::{TcpListener, TcpStream};\n"
"use tokio::sync::broadcast::{channel, Sender};\n"
"use tokio_websockets::{Message, ServerBuilder, WebsocketStream};\n"
"\n"
"async fn handle_connection(\n"
" addr: SocketAddr,\n"
" mut ws_stream: WebsocketStream<TcpStream>,\n"
" bcast_tx: Sender<String>,\n"
") -> Result<(), Box<dyn Error + Send + Sync>> {\n"
"\n"
" // TODO: For a hint, see the description of the task below.\n"
"\n"
"}\n"
"\n"
"#[tokio::main]\n"
"async fn main() -> Result<(), Box<dyn Error + Send + Sync>> {\n"
" let (bcast_tx, _) = channel(16);\n"
"\n"
" let listener = TcpListener::bind(\"127.0.0.1:2000\").await?;\n"
" println!(\"listening on port 2000\");\n"
"\n"
" loop {\n"
" let (socket, addr) = listener.accept().await?;\n"
" println!(\"New connection from {addr:?}\");\n"
" let bcast_tx = bcast_tx.clone();\n"
" tokio::spawn(async move {\n"
" // Wrap the raw TCP stream into a websocket.\n"
" let ws_stream = ServerBuilder::new().accept(socket).await?;\n"
"\n"
" handle_connection(addr, ws_stream, bcast_tx).await\n"
" });\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/exercises/concurrency/chat-app.md:102
#: src/exercises/concurrency/solutions-afternoon.md:202
msgid "`src/bin/client.rs`:"
msgstr ""
#: src/exercises/concurrency/chat-app.md:104
msgid "<!-- File src/bin/client.rs -->"
msgstr ""
#: src/exercises/concurrency/chat-app.md:106
msgid ""
"```rust,compile_fail\n"
"use futures_util::SinkExt;\n"
"use http::Uri;\n"
"use tokio::io::{AsyncBufReadExt, BufReader};\n"
"use tokio_websockets::{ClientBuilder, Message};\n"
"\n"
"#[tokio::main]\n"
"async fn main() -> Result<(), tokio_websockets::Error> {\n"
" let mut ws_stream = ClientBuilder::from_uri(Uri::"
"from_static(\"ws://127.0.0.1:2000\"))\n"
" .connect()\n"
" .await?;\n"
"\n"
" let stdin = tokio::io::stdin();\n"
" let mut stdin = BufReader::new(stdin);\n"
"\n"
"\n"
" // TODO: For a hint, see the description of the task below.\n"
"\n"
"}\n"
"```"
msgstr ""
#: src/exercises/concurrency/chat-app.md:127
msgid "## Running the binaries"
msgstr ""
#: src/exercises/concurrency/chat-app.md:128
msgid "Run the server with:"
msgstr ""
#: src/exercises/concurrency/chat-app.md:130
msgid ""
"```shell\n"
"$ cargo run --bin server\n"
"```"
msgstr ""
#: src/exercises/concurrency/chat-app.md:134
msgid "and the client with:"
msgstr ""
#: src/exercises/concurrency/chat-app.md:136
msgid ""
"```shell\n"
"$ cargo run --bin client\n"
"```"
msgstr ""
#: src/exercises/concurrency/chat-app.md:142
msgid ""
"* Implement the `handle_connection` function in `src/bin/server.rs`.\n"
" * Hint: Use `tokio::select!` for concurrently performing two tasks in a\n"
" continuous loop. One task receives messages from the client and "
"broadcasts\n"
" them. The other sends messages received by the server to the client.\n"
"* Complete the main function in `src/bin/client.rs`.\n"
" * Hint: As before, use `tokio::select!` in a continuous loop for "
"concurrently\n"
" performing two tasks: (1) reading user messages from standard input and\n"
" sending them to the server, and (2) receiving messages from the server, "
"and\n"
" displaying them for the user.\n"
"* Optional: Once you are done, change the code to broadcast messages to all\n"
" clients, but the sender of the message."
msgstr ""
#: src/thanks.md:1
msgid "# Thanks!"
msgstr ""
#: src/thanks.md:3
msgid ""
"_Thank you for taking Comprehensive Rust 🦀!_ We hope you enjoyed it and "
"that it\n"
"was useful."
msgstr ""
#: src/thanks.md:6
msgid ""
"We've had a lot of fun putting the course together. The course is not "
"perfect,\n"
"so if you spotted any mistakes or have ideas for improvements, please get "
"in\n"
"[contact with us on\n"
"GitHub](https://github.com/google/comprehensive-rust/discussions). We would "
"love\n"
"to hear from you."
msgstr ""
#: src/other-resources.md:1
msgid "# Other Rust Resources"
msgstr ""
#: src/other-resources.md:3
msgid ""
"The Rust community has created a wealth of high-quality and free resources\n"
"online."
msgstr ""
#: src/other-resources.md:6
msgid "## Official Documentation"
msgstr ""
#: src/other-resources.md:8
msgid "The Rust project hosts many resources. These cover Rust in general:"
msgstr ""
#: src/other-resources.md:10
msgid ""
"* [The Rust Programming Language](https://doc.rust-lang.org/book/): the\n"
" canonical free book about Rust. Covers the language in detail and includes "
"a\n"
" few projects for people to build.\n"
"* [Rust By Example](https://doc.rust-lang.org/rust-by-example/): covers the "
"Rust\n"
" syntax via a series of examples which showcase different constructs. "
"Sometimes\n"
" includes small exercises where you are asked to expand on the code in the\n"
" examples.\n"
"* [Rust Standard Library](https://doc.rust-lang.org/std/): full "
"documentation of\n"
" the standard library for Rust.\n"
"* [The Rust Reference](https://doc.rust-lang.org/reference/): an incomplete "
"book\n"
" which describes the Rust grammar and memory model."
msgstr ""
#: src/other-resources.md:22
msgid "More specialized guides hosted on the official Rust site:"
msgstr ""
#: src/other-resources.md:24
msgid ""
"* [The Rustonomicon](https://doc.rust-lang.org/nomicon/): covers unsafe "
"Rust,\n"
" including working with raw pointers and interfacing with other languages\n"
" (FFI).\n"
"* [Asynchronous Programming in Rust](https://rust-lang.github.io/async-"
"book/):\n"
" covers the new asynchronous programming model which was introduced after "
"the\n"
" Rust Book was written.\n"
"* [The Embedded Rust Book](https://doc.rust-lang.org/stable/embedded-book/): "
"an\n"
" introduction to using Rust on embedded devices without an operating system."
msgstr ""
#: src/other-resources.md:33
msgid "## Unofficial Learning Material"
msgstr ""
#: src/other-resources.md:35
msgid "A small selection of other guides and tutorial for Rust:"
msgstr ""
#: src/other-resources.md:37
msgid ""
"* [Learn Rust the Dangerous Way](http://cliffle.com/p/dangerust/): covers "
"Rust\n"
" from the perspective of low-level C programmers.\n"
"* [Rust for Embedded C\n"
" Programmers](https://docs.opentitan.org/doc/ug/rust_for_c/): covers Rust "
"from\n"
" the perspective of developers who write firmware in C.\n"
"* [Rust for professionals](https://overexact.com/rust-for-professionals/):\n"
" covers the syntax of Rust using side-by-side comparisons with other "
"languages\n"
" such as C, C++, Java, JavaScript, and Python.\n"
"* [Rust on Exercism](https://exercism.org/tracks/rust): 100+ exercises to "
"help\n"
" you learn Rust.\n"
"* [Ferrous Teaching\n"
" Material](https://ferrous-systems.github.io/teaching-material/index.html): "
"a\n"
" series of small presentations covering both basic and advanced part of "
"the\n"
" Rust language. Other topics such as WebAssembly, and async/await are also\n"
" covered.\n"
"* [Beginner's Series to\n"
" Rust](https://docs.microsoft.com/en-us/shows/beginners-series-to-rust/) "
"and\n"
" [Take your first steps with\n"
" Rust](https://docs.microsoft.com/en-us/learn/paths/rust-first-steps/): "
"two\n"
" Rust guides aimed at new developers. The first is a set of 35 videos and "
"the\n"
" second is a set of 11 modules which covers Rust syntax and basic "
"constructs.\n"
"* [Learn Rust With Entirely Too Many Linked\n"
" Lists](https://rust-unofficial.github.io/too-many-lists/): in-depth\n"
" exploration of Rust's memory management rules, through implementing a few\n"
" different types of list structures."
msgstr ""
#: src/other-resources.md:63
msgid ""
"Please see the [Little Book of Rust Books](https://lborb.github.io/book/) "
"for\n"
"even more Rust books."
msgstr ""
#: src/credits.md:1
msgid "# Credits"
msgstr "# 鸣谢"
#: src/credits.md:3
msgid ""
"The material here builds on top of the many great sources of Rust "
"documentation.\n"
"See the page on [other resources](other-resources.md) for a full list of "
"useful\n"
"resources."
msgstr ""
"本课中的资料以众多优秀的 Rust 文档资源为基础。\n"
"如需查看实用资源的完整列表,\n"
"请参阅关于[其他资源](other-resources.md)的页面。"
#: src/credits.md:7
msgid ""
"The material of Comprehensive Rust is licensed under the terms of the Apache "
"2.0\n"
"license, please see [`LICENSE`](../LICENSE) for details."
msgstr ""
"我们根据 Apache 2.0 许可条款\n"
"授权你使用“全面了解 Rust”(Comprehensive Rust) 的资料。如需了解详情,请参阅[`"
"许可`](../LICENSE)。"
#: src/credits.md:10
msgid "## Rust by Example"
msgstr "## Rust by Example"
#: src/credits.md:12
msgid ""
"Some examples and exercises have been copied and adapted from [Rust by\n"
"Example](https://doc.rust-lang.org/rust-by-example/). Please see the\n"
"`third_party/rust-by-example/` directory for details, including the license\n"
"terms."
msgstr ""
"部分示例和练习复制并\n"
"改编自[Rust by Example](https://doc.rust-lang.org/rust-by-example/)。如需了解"
"详情(包括许可\n"
"条款),请参阅\n"
"`third_party/rust-by-example/` 目录。"
#: src/credits.md:17
msgid "## Rust on Exercism"
msgstr "## Rust on Exercism"
#: src/credits.md:19
msgid ""
"Some exercises have been copied and adapted from [Rust on\n"
"Exercism](https://exercism.org/tracks/rust). Please see the\n"
"`third_party/rust-on-exercism/` directory for details, including the "
"license\n"
"terms."
msgstr ""
"部分练习复制并\n"
"改编自 [Rust on Exercism](https://exercism.org/tracks/rust)。如需了解详情(包"
"括许可\n"
"条款),请参阅\n"
"`third_party/rust-on-exercism/` 目录。"
#: src/credits.md:24
msgid "## CXX"
msgstr "## CXX"
#: src/credits.md:26
msgid ""
"The [Interoperability with C++](android/interoperability/cpp.md) section "
"uses an\n"
"image from [CXX](https://cxx.rs/). Please see the `third_party/cxx/` "
"directory\n"
"for details, including the license terms."
msgstr ""
"“[与 C++ 的互操作性](android/interoperability/cpp.md)”部分引用了一张\n"
"来自 [CXX](https://cxx.rs/) 的图片。如需了解详情(包括许可条款),\n"
"请参阅 `third_party/cxx/` 目录。"
#: src/exercises/solutions.md:1
msgid "# Solutions"
msgstr ""
#: src/exercises/solutions.md:3
msgid "You will find solutions to the exercises on the following pages."
msgstr ""
#: src/exercises/solutions.md:5
msgid ""
"Feel free to ask questions about the solutions [on\n"
"GitHub](https://github.com/google/comprehensive-rust/discussions). Let us "
"know\n"
"if you have a different or better solution than what is presented here."
msgstr ""
#: src/exercises/solutions.md:10
msgid ""
"> **Note:** Please ignore the `// ANCHOR: label` and `// ANCHOR_END: label`\n"
"> comments you see in the solutions. They are there to make it possible to\n"
"> re-use parts of the solutions as the exercises."
msgstr ""
#: src/exercises/day-1/solutions-morning.md:1
msgid "# Day 1 Morning Exercises"
msgstr ""
#: src/exercises/day-1/solutions-morning.md:3
msgid "## Arrays and `for` Loops"
msgstr ""
#: src/exercises/day-1/solutions-morning.md:5
msgid "([back to exercise](for-loops.md))"
msgstr ""
#: src/exercises/day-1/solutions-morning.md:7
msgid ""
"```rust\n"
"// Copyright 2022 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: transpose\n"
"fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {\n"
" // ANCHOR_END: transpose\n"
" let mut result = [[0; 3]; 3];\n"
" for i in 0..3 {\n"
" for j in 0..3 {\n"
" result[j][i] = matrix[i][j];\n"
" }\n"
" }\n"
" return result;\n"
"}\n"
"\n"
"// ANCHOR: pretty_print\n"
"fn pretty_print(matrix: &[[i32; 3]; 3]) {\n"
" // ANCHOR_END: pretty_print\n"
" for row in matrix {\n"
" println!(\"{row:?}\");\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: tests\n"
"#[test]\n"
"fn test_transpose() {\n"
" let matrix = [\n"
" [101, 102, 103], //\n"
" [201, 202, 203],\n"
" [301, 302, 303],\n"
" ];\n"
" let transposed = transpose(matrix);\n"
" assert_eq!(\n"
" transposed,\n"
" [\n"
" [101, 201, 301], //\n"
" [102, 202, 302],\n"
" [103, 203, 303],\n"
" ]\n"
" );\n"
"}\n"
"// ANCHOR_END: tests\n"
"\n"
"// ANCHOR: main\n"
"fn main() {\n"
" let matrix = [\n"
" [101, 102, 103], // <-- the comment makes rustfmt add a newline\n"
" [201, 202, 203],\n"
" [301, 302, 303],\n"
" ];\n"
"\n"
" println!(\"matrix:\");\n"
" pretty_print(&matrix);\n"
"\n"
" let transposed = transpose(matrix);\n"
" println!(\"transposed:\");\n"
" pretty_print(&transposed);\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-1/solutions-morning.md:78
msgid "### Bonus question"
msgstr ""
#: src/exercises/day-1/solutions-morning.md:80
msgid ""
"It requires more advanced concepts. It might seem that we could use a slice-"
"of-slices (`&[&[i32]]`) as the input type to transpose and thus make our "
"function handle any size of matrix. However, this quickly breaks down: the "
"return type cannot be `&[&[i32]]` since it needs to own the data you return."
msgstr ""
#: src/exercises/day-1/solutions-morning.md:82
msgid ""
"You can attempt to use something like `Vec<Vec<i32>>`, but this doesn't work "
"out-of-the-box either: it's hard to convert from `Vec<Vec<i32>>` to "
"`&[&[i32]]` so now you cannot easily use `pretty_print` either."
msgstr ""
#: src/exercises/day-1/solutions-morning.md:84
msgid ""
"Once we get to traits and generics, we'll be able to use the [`std::convert::"
"AsRef`][1] trait to abstract over anything that can be referenced as a slice."
msgstr ""
#: src/exercises/day-1/solutions-morning.md:86
msgid ""
"```rust\n"
"use std::convert::AsRef;\n"
"use std::fmt::Debug;\n"
"\n"
"fn pretty_print<T, Line, Matrix>(matrix: Matrix)\n"
"where\n"
" T: Debug,\n"
" // A line references a slice of items\n"
" Line: AsRef<[T]>,\n"
" // A matrix references a slice of lines\n"
" Matrix: AsRef<[Line]>\n"
"{\n"
" for row in matrix.as_ref() {\n"
" println!(\"{:?}\", row.as_ref());\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" // &[&[i32]]\n"
" pretty_print(&[&[1, 2, 3], &[4, 5, 6], &[7, 8, 9]]);\n"
" // [[&str; 2]; 2]\n"
" pretty_print([[\"a\", \"b\"], [\"c\", \"d\"]]);\n"
" // Vec<Vec<i32>>\n"
" pretty_print(vec![vec![1, 2], vec![3, 4]]);\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-1/solutions-morning.md:113
msgid ""
"In addition, the type itself would not enforce that the child slices are of "
"the same length, so such variable could contain an invalid matrix."
msgstr ""
#: src/exercises/day-1/solutions-afternoon.md:1
msgid "# Day 1 Afternoon Exercises"
msgstr ""
#: src/exercises/day-1/solutions-afternoon.md:3
msgid "## Designing a Library"
msgstr ""
#: src/exercises/day-1/solutions-afternoon.md:5
msgid "([back to exercise](book-library.md))"
msgstr ""
#: src/exercises/day-1/solutions-afternoon.md:7
msgid ""
"```rust\n"
"// Copyright 2022 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: setup\n"
"struct Library {\n"
" books: Vec<Book>,\n"
"}\n"
"\n"
"struct Book {\n"
" title: String,\n"
" year: u16,\n"
"}\n"
"\n"
"impl Book {\n"
" // This is a constructor, used below.\n"
" fn new(title: &str, year: u16) -> Book {\n"
" Book {\n"
" title: String::from(title),\n"
" year,\n"
" }\n"
" }\n"
"}\n"
"\n"
"// Implement the methods below. Update the `self` parameter to\n"
"// indicate the method's required level of ownership over the object:\n"
"//\n"
"// - `&self` for shared read-only access,\n"
"// - `&mut self` for unique and mutable access,\n"
"// - `self` for unique access by value.\n"
"impl Library {\n"
" // ANCHOR_END: setup\n"
"\n"
" // ANCHOR: Library_new\n"
" fn new() -> Library {\n"
" // ANCHOR_END: Library_new\n"
" Library { books: Vec::new() }\n"
" }\n"
"\n"
" // ANCHOR: Library_len\n"
" //fn len(self) -> usize {\n"
" // todo!(\"Return the length of `self.books`\")\n"
" //}\n"
" // ANCHOR_END: Library_len\n"
" fn len(&self) -> usize {\n"
" self.books.len()\n"
" }\n"
"\n"
" // ANCHOR: Library_is_empty\n"
" //fn is_empty(self) -> bool {\n"
" // todo!(\"Return `true` if `self.books` is empty\")\n"
" //}\n"
" // ANCHOR_END: Library_is_empty\n"
" fn is_empty(&self) -> bool {\n"
" self.books.is_empty()\n"
" }\n"
"\n"
" // ANCHOR: Library_add_book\n"
" //fn add_book(self, book: Book) {\n"
" // todo!(\"Add a new book to `self.books`\")\n"
" //}\n"
" // ANCHOR_END: Library_add_book\n"
" fn add_book(&mut self, book: Book) {\n"
" self.books.push(book)\n"
" }\n"
"\n"
" // ANCHOR: Library_print_books\n"
" //fn print_books(self) {\n"
" // todo!(\"Iterate over `self.books` and each book's title and "
"year\")\n"
" //}\n"
" // ANCHOR_END: Library_print_books\n"
" fn print_books(&self) {\n"
" for book in &self.books {\n"
" println!(\"{}, published in {}\", book.title, book.year);\n"
" }\n"
" }\n"
"\n"
" // ANCHOR: Library_oldest_book\n"
" //fn oldest_book(self) -> Option<&Book> {\n"
" // todo!(\"Return a reference to the oldest book (if any)\")\n"
" //}\n"
" // ANCHOR_END: Library_oldest_book\n"
" fn oldest_book(&self) -> Option<&Book> {\n"
" // Using a closure and a built-in method:\n"
" // self.books.iter().min_by_key(|book| book.year)\n"
"\n"
" // Longer hand-written solution:\n"
" let mut oldest: Option<&Book> = None;\n"
" for book in self.books.iter() {\n"
" if oldest.is_none() || book.year < oldest.unwrap().year {\n"
" oldest = Some(book);\n"
" }\n"
" }\n"
"\n"
" oldest\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: main\n"
"// This shows the desired behavior. Uncomment the code below and\n"
"// implement the missing methods. You will need to update the\n"
"// method signatures, including the \"self\" parameter! You may\n"
"// also need to update the variable bindings within main.\n"
"fn main() {\n"
" let library = Library::new();\n"
"\n"
" //println!(\"The library is empty: {}\", library.is_empty());\n"
" //\n"
" //library.add_book(Book::new(\"Lord of the Rings\", 1954));\n"
" //library.add_book(Book::new(\"Alice's Adventures in Wonderland\", "
"1865));\n"
" //\n"
" //println!(\"The library is no longer empty: {}\", library.is_empty());\n"
" //\n"
" //\n"
" //library.print_books();\n"
" //\n"
" //match library.oldest_book() {\n"
" // Some(book) => println!(\"The oldest book is {}\", book.title),\n"
" // None => println!(\"The library is empty!\"),\n"
" //}\n"
" //\n"
" //println!(\"The library has {} books\", library.len());\n"
" //library.print_books();\n"
"}\n"
"// ANCHOR_END: main\n"
"\n"
"#[test]\n"
"fn test_library_len() {\n"
" let mut library = Library::new();\n"
" assert_eq!(library.len(), 0);\n"
" assert!(library.is_empty());\n"
"\n"
" library.add_book(Book::new(\"Lord of the Rings\", 1954));\n"
" library.add_book(Book::new(\"Alice's Adventures in Wonderland\", "
"1865));\n"
" assert_eq!(library.len(), 2);\n"
" assert!(!library.is_empty());\n"
"}\n"
"\n"
"#[test]\n"
"fn test_library_is_empty() {\n"
" let mut library = Library::new();\n"
" assert!(library.is_empty());\n"
"\n"
" library.add_book(Book::new(\"Lord of the Rings\", 1954));\n"
" assert!(!library.is_empty());\n"
"}\n"
"\n"
"#[test]\n"
"fn test_library_print_books() {\n"
" let mut library = Library::new();\n"
" library.add_book(Book::new(\"Lord of the Rings\", 1954));\n"
" library.add_book(Book::new(\"Alice's Adventures in Wonderland\", "
"1865));\n"
" // We could try and capture stdout, but let us just call the\n"
" // method to start with.\n"
" library.print_books();\n"
"}\n"
"\n"
"#[test]\n"
"fn test_library_oldest_book() {\n"
" let mut library = Library::new();\n"
" assert!(library.oldest_book().is_none());\n"
"\n"
" library.add_book(Book::new(\"Lord of the Rings\", 1954));\n"
" assert_eq!(\n"
" library.oldest_book().map(|b| b.title.as_str()),\n"
" Some(\"Lord of the Rings\")\n"
" );\n"
"\n"
" library.add_book(Book::new(\"Alice's Adventures in Wonderland\", "
"1865));\n"
" assert_eq!(\n"
" library.oldest_book().map(|b| b.title.as_str()),\n"
" Some(\"Alice's Adventures in Wonderland\")\n"
" );\n"
"}\n"
"```"
msgstr ""
#: src/exercises/day-2/solutions-morning.md:1
msgid "# Day 2 Morning Exercises"
msgstr ""
#: src/exercises/day-2/solutions-morning.md:3
msgid "## Points and Polygons"
msgstr ""
#: src/exercises/day-2/solutions-morning.md:5
msgid "([back to exercise](points-polygons.md))"
msgstr ""
#: src/exercises/day-2/solutions-morning.md:7
msgid ""
"```rust\n"
"// Copyright 2022 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"#[derive(Debug, Copy, Clone, PartialEq, Eq)]\n"
"// ANCHOR: Point\n"
"pub struct Point {\n"
" // ANCHOR_END: Point\n"
" x: i32,\n"
" y: i32,\n"
"}\n"
"\n"
"// ANCHOR: Point-impl\n"
"impl Point {\n"
" // ANCHOR_END: Point-impl\n"
" pub fn new(x: i32, y: i32) -> Point {\n"
" Point { x, y }\n"
" }\n"
"\n"
" pub fn magnitude(self) -> f64 {\n"
" f64::from(self.x.pow(2) + self.y.pow(2)).sqrt()\n"
" }\n"
"\n"
" pub fn dist(self, other: Point) -> f64 {\n"
" (self - other).magnitude()\n"
" }\n"
"}\n"
"\n"
"impl std::ops::Add for Point {\n"
" type Output = Self;\n"
"\n"
" fn add(self, other: Self) -> Self::Output {\n"
" Self {\n"
" x: self.x + other.x,\n"
" y: self.y + other.y,\n"
" }\n"
" }\n"
"}\n"
"\n"
"impl std::ops::Sub for Point {\n"
" type Output = Self;\n"
"\n"
" fn sub(self, other: Self) -> Self::Output {\n"
" Self {\n"
" x: self.x - other.x,\n"
" y: self.y - other.y,\n"
" }\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: Polygon\n"
"pub struct Polygon {\n"
" // ANCHOR_END: Polygon\n"
" points: Vec<Point>,\n"
"}\n"
"\n"
"// ANCHOR: Polygon-impl\n"
"impl Polygon {\n"
" // ANCHOR_END: Polygon-impl\n"
" pub fn new() -> Polygon {\n"
" Polygon { points: Vec::new() }\n"
" }\n"
"\n"
" pub fn add_point(&mut self, point: Point) {\n"
" self.points.push(point);\n"
" }\n"
"\n"
" pub fn left_most_point(&self) -> Option<Point> {\n"
" self.points.iter().min_by_key(|p| p.x).copied()\n"
" }\n"
"\n"
" pub fn iter(&self) -> impl Iterator<Item = &Point> {\n"
" self.points.iter()\n"
" }\n"
"\n"
" pub fn length(&self) -> f64 {\n"
" if self.points.is_empty() {\n"
" return 0.0;\n"
" }\n"
"\n"
" let mut result = 0.0;\n"
" let mut last_point = self.points[0];\n"
" for point in &self.points[1..] {\n"
" result += last_point.dist(*point);\n"
" last_point = *point;\n"
" }\n"
" result += last_point.dist(self.points[0]);\n"
" result\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: Circle\n"
"pub struct Circle {\n"
" // ANCHOR_END: Circle\n"
" center: Point,\n"
" radius: i32,\n"
"}\n"
"\n"
"// ANCHOR: Circle-impl\n"
"impl Circle {\n"
" // ANCHOR_END: Circle-impl\n"
" pub fn new(center: Point, radius: i32) -> Circle {\n"
" Circle { center, radius }\n"
" }\n"
"\n"
" pub fn circumference(&self) -> f64 {\n"
" 2.0 * std::f64::consts::PI * f64::from(self.radius)\n"
" }\n"
"\n"
" pub fn dist(&self, other: &Self) -> f64 {\n"
" self.center.dist(other.center)\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: Shape\n"
"pub enum Shape {\n"
" Polygon(Polygon),\n"
" Circle(Circle),\n"
"}\n"
"// ANCHOR_END: Shape\n"
"\n"
"impl From<Polygon> for Shape {\n"
" fn from(poly: Polygon) -> Self {\n"
" Shape::Polygon(poly)\n"
" }\n"
"}\n"
"\n"
"impl From<Circle> for Shape {\n"
" fn from(circle: Circle) -> Self {\n"
" Shape::Circle(circle)\n"
" }\n"
"}\n"
"\n"
"impl Shape {\n"
" pub fn perimeter(&self) -> f64 {\n"
" match self {\n"
" Shape::Polygon(poly) => poly.length(),\n"
" Shape::Circle(circle) => circle.circumference(),\n"
" }\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: unit-tests\n"
"#[cfg(test)]\n"
"mod tests {\n"
" use super::*;\n"
"\n"
" fn round_two_digits(x: f64) -> f64 {\n"
" (x * 100.0).round() / 100.0\n"
" }\n"
"\n"
" #[test]\n"
" fn test_point_magnitude() {\n"
" let p1 = Point::new(12, 13);\n"
" assert_eq!(round_two_digits(p1.magnitude()), 17.69);\n"
" }\n"
"\n"
" #[test]\n"
" fn test_point_dist() {\n"
" let p1 = Point::new(10, 10);\n"
" let p2 = Point::new(14, 13);\n"
" assert_eq!(round_two_digits(p1.dist(p2)), 5.00);\n"
" }\n"
"\n"
" #[test]\n"
" fn test_point_add() {\n"
" let p1 = Point::new(16, 16);\n"
" let p2 = p1 + Point::new(-4, 3);\n"
" assert_eq!(p2, Point::new(12, 19));\n"
" }\n"
"\n"
" #[test]\n"
" fn test_polygon_left_most_point() {\n"
" let p1 = Point::new(12, 13);\n"
" let p2 = Point::new(16, 16);\n"
"\n"
" let mut poly = Polygon::new();\n"
" poly.add_point(p1);\n"
" poly.add_point(p2);\n"
" assert_eq!(poly.left_most_point(), Some(p1));\n"
" }\n"
"\n"
" #[test]\n"
" fn test_polygon_iter() {\n"
" let p1 = Point::new(12, 13);\n"
" let p2 = Point::new(16, 16);\n"
"\n"
" let mut poly = Polygon::new();\n"
" poly.add_point(p1);\n"
" poly.add_point(p2);\n"
"\n"
" let points = poly.iter().cloned().collect::<Vec<_>>();\n"
" assert_eq!(points, vec![Point::new(12, 13), Point::new(16, 16)]);\n"
" }\n"
"\n"
" #[test]\n"
" fn test_shape_perimeters() {\n"
" let mut poly = Polygon::new();\n"
" poly.add_point(Point::new(12, 13));\n"
" poly.add_point(Point::new(17, 11));\n"
" poly.add_point(Point::new(16, 16));\n"
" let shapes = vec![\n"
" Shape::from(poly),\n"
" Shape::from(Circle::new(Point::new(10, 20), 5)),\n"
" ];\n"
" let perimeters = shapes\n"
" .iter()\n"
" .map(Shape::perimeter)\n"
" .map(round_two_digits)\n"
" .collect::<Vec<_>>();\n"
" assert_eq!(perimeters, vec![15.48, 31.42]);\n"
" }\n"
"}\n"
"// ANCHOR_END: unit-tests\n"
"\n"
"fn main() {}\n"
"```"
msgstr ""
#: src/exercises/day-2/solutions-afternoon.md:1
msgid "# Day 2 Afternoon Exercises"
msgstr ""
#: src/exercises/day-2/solutions-afternoon.md:3
msgid "## Luhn Algorithm"
msgstr ""
#: src/exercises/day-2/solutions-afternoon.md:5
msgid "([back to exercise](luhn.md))"
msgstr ""
#: src/exercises/day-2/solutions-afternoon.md:7
msgid ""
"```rust\n"
"// Copyright 2022 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: luhn\n"
"pub fn luhn(cc_number: &str) -> bool {\n"
" // ANCHOR_END: luhn\n"
" let mut digits_seen = 0;\n"
" let mut sum = 0;\n"
" for (i, ch) in cc_number.chars().rev().filter(|&ch| ch != ' ')."
"enumerate() {\n"
" match ch.to_digit(10) {\n"
" Some(d) => {\n"
" sum += if i % 2 == 1 {\n"
" let dd = d * 2;\n"
" dd / 10 + dd % 10\n"
" } else {\n"
" d\n"
" };\n"
" digits_seen += 1;\n"
" }\n"
" None => return false,\n"
" }\n"
" }\n"
"\n"
" if digits_seen < 2 {\n"
" return false;\n"
" }\n"
"\n"
" sum % 10 == 0\n"
"}\n"
"\n"
"fn main() {\n"
" let cc_number = \"1234 5678 1234 5670\";\n"
" println!(\n"
" \"Is {cc_number} a valid credit card number? {}\",\n"
" if luhn(cc_number) { \"yes\" } else { \"no\" }\n"
" );\n"
"}\n"
"\n"
"// ANCHOR: unit-tests\n"
"#[test]\n"
"fn test_non_digit_cc_number() {\n"
" assert!(!luhn(\"foo\"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_empty_cc_number() {\n"
" assert!(!luhn(\"\"));\n"
" assert!(!luhn(\" \"));\n"
" assert!(!luhn(\" \"));\n"
" assert!(!luhn(\" \"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_single_digit_cc_number() {\n"
" assert!(!luhn(\"0\"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_two_digit_cc_number() {\n"
" assert!(luhn(\" 0 0 \"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_valid_cc_number() {\n"
" assert!(luhn(\"4263 9826 4026 9299\"));\n"
" assert!(luhn(\"4539 3195 0343 6467\"));\n"
" assert!(luhn(\"7992 7398 713\"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_invalid_cc_number() {\n"
" assert!(!luhn(\"4223 9826 4026 9299\"));\n"
" assert!(!luhn(\"4539 3195 0343 6476\"));\n"
" assert!(!luhn(\"8273 1232 7352 0569\"));\n"
"}\n"
"// ANCHOR_END: unit-tests\n"
"```"
msgstr ""
#: src/exercises/day-2/solutions-afternoon.md:97
msgid "## Strings and Iterators"
msgstr ""
#: src/exercises/day-2/solutions-afternoon.md:99
msgid "([back to exercise](strings-iterators.md))"
msgstr ""
#: src/exercises/day-2/solutions-afternoon.md:101
msgid ""
"```rust\n"
"// Copyright 2022 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: prefix_matches\n"
"pub fn prefix_matches(prefix: &str, request_path: &str) -> bool {\n"
" // ANCHOR_END: prefix_matches\n"
" let prefixes = prefix.split('/');\n"
" let request_paths = request_path\n"
" .split('/')\n"
" .map(|p| Some(p))\n"
" .chain(std::iter::once(None));\n"
"\n"
" for (prefix, request_path) in prefixes.zip(request_paths) {\n"
" match request_path {\n"
" Some(request_path) => {\n"
" if (prefix != \"*\") && (prefix != request_path) {\n"
" return false;\n"
" }\n"
" }\n"
" None => return false,\n"
" }\n"
" }\n"
" true\n"
"}\n"
"\n"
"// ANCHOR: unit-tests\n"
"#[test]\n"
"fn test_matches_without_wildcard() {\n"
" assert!(prefix_matches(\"/v1/publishers\", \"/v1/publishers\"));\n"
" assert!(prefix_matches(\"/v1/publishers\", \"/v1/publishers/"
"abc-123\"));\n"
" assert!(prefix_matches(\"/v1/publishers\", \"/v1/publishers/abc/"
"books\"));\n"
"\n"
" assert!(!prefix_matches(\"/v1/publishers\", \"/v1\"));\n"
" assert!(!prefix_matches(\"/v1/publishers\", \"/v1/publishersBooks\"));\n"
" assert!(!prefix_matches(\"/v1/publishers\", \"/v1/parent/"
"publishers\"));\n"
"}\n"
"\n"
"#[test]\n"
"fn test_matches_with_wildcard() {\n"
" assert!(prefix_matches(\n"
" \"/v1/publishers/*/books\",\n"
" \"/v1/publishers/foo/books\"\n"
" ));\n"
" assert!(prefix_matches(\n"
" \"/v1/publishers/*/books\",\n"
" \"/v1/publishers/bar/books\"\n"
" ));\n"
" assert!(prefix_matches(\n"
" \"/v1/publishers/*/books\",\n"
" \"/v1/publishers/foo/books/book1\"\n"
" ));\n"
"\n"
" assert!(!prefix_matches(\"/v1/publishers/*/books\", \"/v1/"
"publishers\"));\n"
" assert!(!prefix_matches(\n"
" \"/v1/publishers/*/books\",\n"
" \"/v1/publishers/foo/booksByAuthor\"\n"
" ));\n"
"}\n"
"// ANCHOR_END: unit-tests\n"
"\n"
"fn main() {}\n"
"```"
msgstr ""
#: src/exercises/day-3/solutions-morning.md:1
msgid "# Day 3 Morning Exercise"
msgstr ""
#: src/exercises/day-3/solutions-morning.md:3
msgid "## A Simple GUI Library"
msgstr ""
#: src/exercises/day-3/solutions-morning.md:5
msgid "([back to exercise](simple-gui.md))"
msgstr ""
#: src/exercises/day-3/solutions-morning.md:7
msgid ""
"```rust\n"
"// Copyright 2022 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: setup\n"
"pub trait Widget {\n"
" /// Natural width of `self`.\n"
" fn width(&self) -> usize;\n"
"\n"
" /// Draw the widget into a buffer.\n"
" fn draw_into(&self, buffer: &mut dyn std::fmt::Write);\n"
"\n"
" /// Draw the widget on standard output.\n"
" fn draw(&self) {\n"
" let mut buffer = String::new();\n"
" self.draw_into(&mut buffer);\n"
" println!(\"{buffer}\");\n"
" }\n"
"}\n"
"\n"
"pub struct Label {\n"
" label: String,\n"
"}\n"
"\n"
"impl Label {\n"
" fn new(label: &str) -> Label {\n"
" Label {\n"
" label: label.to_owned(),\n"
" }\n"
" }\n"
"}\n"
"\n"
"pub struct Button {\n"
" label: Label,\n"
" callback: Box<dyn FnMut()>,\n"
"}\n"
"\n"
"impl Button {\n"
" fn new(label: &str, callback: Box<dyn FnMut()>) -> Button {\n"
" Button {\n"
" label: Label::new(label),\n"
" callback,\n"
" }\n"
" }\n"
"}\n"
"\n"
"pub struct Window {\n"
" title: String,\n"
" widgets: Vec<Box<dyn Widget>>,\n"
"}\n"
"\n"
"impl Window {\n"
" fn new(title: &str) -> Window {\n"
" Window {\n"
" title: title.to_owned(),\n"
" widgets: Vec::new(),\n"
" }\n"
" }\n"
"\n"
" fn add_widget(&mut self, widget: Box<dyn Widget>) {\n"
" self.widgets.push(widget);\n"
" }\n"
"\n"
" fn inner_width(&self) -> usize {\n"
" std::cmp::max(\n"
" self.title.chars().count(),\n"
" self.widgets.iter().map(|w| w.width()).max().unwrap_or(0),\n"
" )\n"
" }\n"
"}\n"
"\n"
"// ANCHOR_END: setup\n"
"\n"
"// ANCHOR: Window-width\n"
"impl Widget for Window {\n"
" fn width(&self) -> usize {\n"
" // ANCHOR_END: Window-width\n"
" // Add 4 paddings for borders\n"
" self.inner_width() + 4\n"
" }\n"
"\n"
" // ANCHOR: Window-draw_into\n"
" fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {\n"
" // ANCHOR_END: Window-draw_into\n"
" let mut inner = String::new();\n"
" for widget in &self.widgets {\n"
" widget.draw_into(&mut inner);\n"
" }\n"
"\n"
" let inner_width = self.inner_width();\n"
"\n"
" // TODO: after learning about error handling, you can change\n"
" // draw_into to return Result<(), std::fmt::Error>. Then use\n"
" // the ?-operator here instead of .unwrap().\n"
" writeln!(buffer, \"+-{:-<inner_width$}-+\", \"\").unwrap();\n"
" writeln!(buffer, \"| {:^inner_width$} |\", &self.title).unwrap();\n"
" writeln!(buffer, \"+={:=<inner_width$}=+\", \"\").unwrap();\n"
" for line in inner.lines() {\n"
" writeln!(buffer, \"| {:inner_width$} |\", line).unwrap();\n"
" }\n"
" writeln!(buffer, \"+-{:-<inner_width$}-+\", \"\").unwrap();\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: Button-width\n"
"impl Widget for Button {\n"
" fn width(&self) -> usize {\n"
" // ANCHOR_END: Button-width\n"
" self.label.width() + 8 // add a bit of padding\n"
" }\n"
"\n"
" // ANCHOR: Button-draw_into\n"
" fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {\n"
" // ANCHOR_END: Button-draw_into\n"
" let width = self.width();\n"
" let mut label = String::new();\n"
" self.label.draw_into(&mut label);\n"
"\n"
" writeln!(buffer, \"+{:-<width$}+\", \"\").unwrap();\n"
" for line in label.lines() {\n"
" writeln!(buffer, \"|{:^width$}|\", &line).unwrap();\n"
" }\n"
" writeln!(buffer, \"+{:-<width$}+\", \"\").unwrap();\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: Label-width\n"
"impl Widget for Label {\n"
" fn width(&self) -> usize {\n"
" // ANCHOR_END: Label-width\n"
" self.label\n"
" .lines()\n"
" .map(|line| line.chars().count())\n"
" .max()\n"
" .unwrap_or(0)\n"
" }\n"
"\n"
" // ANCHOR: Label-draw_into\n"
" fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {\n"
" // ANCHOR_END: Label-draw_into\n"
" writeln!(buffer, \"{}\", &self.label).unwrap();\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: main\n"
"fn main() {\n"
" let mut window = Window::new(\"Rust GUI Demo 1.23\");\n"
" window.add_widget(Box::new(Label::new(\"This is a small text GUI demo."
"\")));\n"
" window.add_widget(Box::new(Button::new(\n"
" \"Click me!\",\n"
" Box::new(|| println!(\"You clicked the button!\")),\n"
" )));\n"
" window.draw();\n"
"}\n"
"// ANCHOR_END: main\n"
"```"
msgstr ""
#: src/exercises/day-3/solutions-afternoon.md:1
msgid "# Day 3 Afternoon Exercises"
msgstr ""
#: src/exercises/day-3/solutions-afternoon.md:3
msgid "## Safe FFI Wrapper"
msgstr ""
#: src/exercises/day-3/solutions-afternoon.md:5
msgid "([back to exercise](safe-ffi-wrapper.md))"
msgstr ""
#: src/exercises/day-3/solutions-afternoon.md:7
msgid ""
"```rust\n"
"// Copyright 2022 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: ffi\n"
"mod ffi {\n"
" use std::os::raw::{c_char, c_int};\n"
" #[cfg(not(target_os = \"macos\"))]\n"
" use std::os::raw::{c_long, c_ulong, c_ushort};\n"
"\n"
" // Opaque type. See https://doc.rust-lang.org/nomicon/ffi.html.\n"
" #[repr(C)]\n"
" pub struct DIR {\n"
" _data: [u8; 0],\n"
" _marker: core::marker::PhantomData<(*mut u8, core::marker::"
"PhantomPinned)>,\n"
" }\n"
"\n"
" // Layout as per readdir(3) and definitions in /usr/include/x86_64-linux-"
"gnu.\n"
" #[cfg(not(target_os = \"macos\"))]\n"
" #[repr(C)]\n"
" pub struct dirent {\n"
" pub d_ino: c_long,\n"
" pub d_off: c_ulong,\n"
" pub d_reclen: c_ushort,\n"
" pub d_type: c_char,\n"
" pub d_name: [c_char; 256],\n"
" }\n"
"\n"
" // Layout as per man entry for dirent\n"
" #[cfg(target_os = \"macos\")]\n"
" #[repr(C)]\n"
" pub struct dirent {\n"
" pub d_ino: u64,\n"
" pub d_seekoff: u64,\n"
" pub d_reclen: u16,\n"
" pub d_namlen: u16,\n"
" pub d_type: u8,\n"
" pub d_name: [c_char; 1024],\n"
" }\n"
"\n"
" extern \"C\" {\n"
" pub fn opendir(s: *const c_char) -> *mut DIR;\n"
" pub fn readdir(s: *mut DIR) -> *const dirent;\n"
" pub fn closedir(s: *mut DIR) -> c_int;\n"
" }\n"
"}\n"
"\n"
"use std::ffi::{CStr, CString, OsStr, OsString};\n"
"use std::os::unix::ffi::OsStrExt;\n"
"\n"
"#[derive(Debug)]\n"
"struct DirectoryIterator {\n"
" path: CString,\n"
" dir: *mut ffi::DIR,\n"
"}\n"
"// ANCHOR_END: ffi\n"
"\n"
"// ANCHOR: DirectoryIterator\n"
"impl DirectoryIterator {\n"
" fn new(path: &str) -> Result<DirectoryIterator, String> {\n"
" // Call opendir and return a Ok value if that worked,\n"
" // otherwise return Err with a message.\n"
" // ANCHOR_END: DirectoryIterator\n"
" let path = CString::new(path).map_err(|err| format!(\"Invalid path: "
"{err}\"))?;\n"
" // SAFETY: path.as_ptr() cannot be NULL.\n"
" let dir = unsafe { ffi::opendir(path.as_ptr()) };\n"
" if dir.is_null() {\n"
" Err(format!(\"Could not open {:?}\", path))\n"
" } else {\n"
" Ok(DirectoryIterator { path, dir })\n"
" }\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: Iterator\n"
"impl Iterator for DirectoryIterator {\n"
" type Item = OsString;\n"
" fn next(&mut self) -> Option<OsString> {\n"
" // Keep calling readdir until we get a NULL pointer back.\n"
" // ANCHOR_END: Iterator\n"
" // SAFETY: self.dir is never NULL.\n"
" let dirent = unsafe { ffi::readdir(self.dir) };\n"
" if dirent.is_null() {\n"
" // We have reached the end of the directory.\n"
" return None;\n"
" }\n"
" // SAFETY: dirent is not NULL and dirent.d_name is NUL\n"
" // terminated.\n"
" let d_name = unsafe { CStr::from_ptr((*dirent).d_name.as_ptr()) };\n"
" let os_str = OsStr::from_bytes(d_name.to_bytes());\n"
" Some(os_str.to_owned())\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: Drop\n"
"impl Drop for DirectoryIterator {\n"
" fn drop(&mut self) {\n"
" // Call closedir as needed.\n"
" // ANCHOR_END: Drop\n"
" if !self.dir.is_null() {\n"
" // SAFETY: self.dir is not NULL.\n"
" if unsafe { ffi::closedir(self.dir) } != 0 {\n"
" panic!(\"Could not close {:?}\", self.path);\n"
" }\n"
" }\n"
" }\n"
"}\n"
"\n"
"// ANCHOR: main\n"
"fn main() -> Result<(), String> {\n"
" let iter = DirectoryIterator::new(\".\")?;\n"
" println!(\"files: {:#?}\", iter.collect::<Vec<_>>());\n"
" Ok(())\n"
"}\n"
"// ANCHOR_END: main\n"
"\n"
"#[cfg(test)]\n"
"mod tests {\n"
" use super::*;\n"
" use std::error::Error;\n"
"\n"
" #[test]\n"
" fn test_nonexisting_directory() {\n"
" let iter = DirectoryIterator::new(\"no-such-directory\");\n"
" assert!(iter.is_err());\n"
" }\n"
"\n"
" #[test]\n"
" fn test_empty_directory() -> Result<(), Box<dyn Error>> {\n"
" let tmp = tempfile::TempDir::new()?;\n"
" let iter = DirectoryIterator::new(\n"
" tmp.path().to_str().ok_or(\"Non UTF-8 character in path\")?,\n"
" )?;\n"
" let mut entries = iter.collect::<Vec<_>>();\n"
" entries.sort();\n"
" assert_eq!(entries, &[\".\", \"..\"]);\n"
" Ok(())\n"
" }\n"
"\n"
" #[test]\n"
" fn test_nonempty_directory() -> Result<(), Box<dyn Error>> {\n"
" let tmp = tempfile::TempDir::new()?;\n"
" std::fs::write(tmp.path().join(\"foo.txt\"), \"The Foo "
"Diaries\\n\")?;\n"
" std::fs::write(tmp.path().join(\"bar.png\"), \"<PNG>\\n\")?;\n"
" std::fs::write(tmp.path().join(\"crab.rs\"), \"//! Crab\\n\")?;\n"
" let iter = DirectoryIterator::new(\n"
" tmp.path().to_str().ok_or(\"Non UTF-8 character in path\")?,\n"
" )?;\n"
" let mut entries = iter.collect::<Vec<_>>();\n"
" entries.sort();\n"
" assert_eq!(entries, &[\".\", \"..\", \"bar.png\", \"crab.rs\", \"foo."
"txt\"]);\n"
" Ok(())\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/exercises/bare-metal/solutions-morning.md:1
msgid "# Bare Metal Rust Morning Exercise"
msgstr ""
#: src/exercises/bare-metal/solutions-morning.md:3
msgid "## Compass"
msgstr ""
#: src/exercises/bare-metal/solutions-morning.md:5
msgid "([back to exercise](compass.md))"
msgstr ""
#: src/exercises/bare-metal/solutions-morning.md:7
msgid ""
"```rust,compile_fail\n"
"// Copyright 2023 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: top\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"extern crate panic_halt as _;\n"
"\n"
"use core::fmt::Write;\n"
"use cortex_m_rt::entry;\n"
"// ANCHOR_END: top\n"
"use core::cmp::{max, min};\n"
"use lsm303agr::{AccelOutputDataRate, Lsm303agr, MagOutputDataRate};\n"
"use microbit::display::blocking::Display;\n"
"use microbit::hal::prelude::*;\n"
"use microbit::hal::twim::Twim;\n"
"use microbit::hal::uarte::{Baudrate, Parity, Uarte};\n"
"use microbit::hal::Timer;\n"
"use microbit::pac::twim0::frequency::FREQUENCY_A;\n"
"use microbit::Board;\n"
"\n"
"const COMPASS_SCALE: i32 = 30000;\n"
"const ACCELEROMETER_SCALE: i32 = 700;\n"
"\n"
"// ANCHOR: main\n"
"#[entry]\n"
"fn main() -> ! {\n"
" let board = Board::take().unwrap();\n"
"\n"
" // Configure serial port.\n"
" let mut serial = Uarte::new(\n"
" board.UARTE0,\n"
" board.uart.into(),\n"
" Parity::EXCLUDED,\n"
" Baudrate::BAUD115200,\n"
" );\n"
"\n"
" // Set up the I2C controller and Inertial Measurement Unit.\n"
" // ANCHOR_END: main\n"
" writeln!(serial, \"Setting up IMU...\").unwrap();\n"
" let i2c = Twim::new(board.TWIM0, board.i2c_internal.into(), FREQUENCY_A::"
"K100);\n"
" let mut imu = Lsm303agr::new_with_i2c(i2c);\n"
" imu.init().unwrap();\n"
" imu.set_mag_odr(MagOutputDataRate::Hz50).unwrap();\n"
" imu.set_accel_odr(AccelOutputDataRate::Hz50).unwrap();\n"
" let mut imu = imu.into_mag_continuous().ok().unwrap();\n"
"\n"
" // Set up display and timer.\n"
" let mut timer = Timer::new(board.TIMER0);\n"
" let mut display = Display::new(board.display_pins);\n"
"\n"
" let mut mode = Mode::Compass;\n"
" let mut button_pressed = false;\n"
"\n"
" // ANCHOR: loop\n"
" writeln!(serial, \"Ready.\").unwrap();\n"
"\n"
" loop {\n"
" // Read compass data and log it to the serial port.\n"
" // ANCHOR_END: loop\n"
" while !(imu.mag_status().unwrap().xyz_new_data\n"
" && imu.accel_status().unwrap().xyz_new_data)\n"
" {}\n"
" let compass_reading = imu.mag_data().unwrap();\n"
" let accelerometer_reading = imu.accel_data().unwrap();\n"
" writeln!(\n"
" serial,\n"
" \"{},{},{}\\t{},{},{}\",\n"
" compass_reading.x,\n"
" compass_reading.y,\n"
" compass_reading.z,\n"
" accelerometer_reading.x,\n"
" accelerometer_reading.y,\n"
" accelerometer_reading.z,\n"
" )\n"
" .unwrap();\n"
"\n"
" let mut image = [[0; 5]; 5];\n"
" let (x, y) = match mode {\n"
" Mode::Compass => (\n"
" scale(-compass_reading.x, -COMPASS_SCALE, COMPASS_SCALE, 0, "
"4) as usize,\n"
" scale(compass_reading.y, -COMPASS_SCALE, COMPASS_SCALE, 0, "
"4) as usize,\n"
" ),\n"
" Mode::Accelerometer => (\n"
" scale(\n"
" accelerometer_reading.x,\n"
" -ACCELEROMETER_SCALE,\n"
" ACCELEROMETER_SCALE,\n"
" 0,\n"
" 4,\n"
" ) as usize,\n"
" scale(\n"
" -accelerometer_reading.y,\n"
" -ACCELEROMETER_SCALE,\n"
" ACCELEROMETER_SCALE,\n"
" 0,\n"
" 4,\n"
" ) as usize,\n"
" ),\n"
" };\n"
" image[y][x] = 255;\n"
" display.show(&mut timer, image, 100);\n"
"\n"
" // If button A is pressed, switch to the next mode and briefly blink "
"all LEDs on.\n"
" if board.buttons.button_a.is_low().unwrap() {\n"
" if !button_pressed {\n"
" mode = mode.next();\n"
" display.show(&mut timer, [[255; 5]; 5], 200);\n"
" }\n"
" button_pressed = true;\n"
" } else {\n"
" button_pressed = false;\n"
" }\n"
" }\n"
"}\n"
"\n"
"#[derive(Copy, Clone, Debug, Eq, PartialEq)]\n"
"enum Mode {\n"
" Compass,\n"
" Accelerometer,\n"
"}\n"
"\n"
"impl Mode {\n"
" fn next(self) -> Self {\n"
" match self {\n"
" Self::Compass => Self::Accelerometer,\n"
" Self::Accelerometer => Self::Compass,\n"
" }\n"
" }\n"
"}\n"
"\n"
"fn scale(value: i32, min_in: i32, max_in: i32, min_out: i32, max_out: i32) -"
"> i32 {\n"
" let range_in = max_in - min_in;\n"
" let range_out = max_out - min_out;\n"
" cap(\n"
" min_out + range_out * (value - min_in) / range_in,\n"
" min_out,\n"
" max_out,\n"
" )\n"
"}\n"
"\n"
"fn cap(value: i32, min_value: i32, max_value: i32) -> i32 {\n"
" max(min_value, min(value, max_value))\n"
"}\n"
"```"
msgstr ""
#: src/exercises/bare-metal/solutions-afternoon.md:1
msgid "# Bare Metal Rust Afternoon"
msgstr ""
#: src/exercises/bare-metal/solutions-afternoon.md:3
msgid "## RTC driver"
msgstr ""
#: src/exercises/bare-metal/solutions-afternoon.md:5
msgid "([back to exercise](rtc.md))"
msgstr ""
#: src/exercises/bare-metal/solutions-afternoon.md:7
msgid "`main.rs`:"
msgstr ""
#: src/exercises/bare-metal/solutions-afternoon.md:9
msgid ""
"```rust,compile_fail\n"
"// Copyright 2023 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: top\n"
"#![no_main]\n"
"#![no_std]\n"
"\n"
"mod exceptions;\n"
"mod logger;\n"
"mod pl011;\n"
"// ANCHOR_END: top\n"
"mod pl031;\n"
"\n"
"use crate::pl031::Rtc;\n"
"use arm_gic::gicv3::{IntId, Trigger};\n"
"use arm_gic::{irq_enable, wfi};\n"
"use chrono::{TimeZone, Utc};\n"
"use core::hint::spin_loop;\n"
"// ANCHOR: imports\n"
"use crate::pl011::Uart;\n"
"use arm_gic::gicv3::GicV3;\n"
"use core::panic::PanicInfo;\n"
"use log::{error, info, trace, LevelFilter};\n"
"use smccc::psci::system_off;\n"
"use smccc::Hvc;\n"
"\n"
"/// Base addresses of the GICv3.\n"
"const GICD_BASE_ADDRESS: *mut u64 = 0x800_0000 as _;\n"
"const GICR_BASE_ADDRESS: *mut u64 = 0x80A_0000 as _;\n"
"\n"
"/// Base address of the primary PL011 UART.\n"
"const PL011_BASE_ADDRESS: *mut u32 = 0x900_0000 as _;\n"
"// ANCHOR_END: imports\n"
"\n"
"/// Base address of the PL031 RTC.\n"
"const PL031_BASE_ADDRESS: *mut u32 = 0x901_0000 as _;\n"
"/// The IRQ used by the PL031 RTC.\n"
"const PL031_IRQ: IntId = IntId::spi(2);\n"
"\n"
"// ANCHOR: main\n"
"#[no_mangle]\n"
"extern \"C\" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {\n"
" // Safe because `PL011_BASE_ADDRESS` is the base address of a PL011 "
"device,\n"
" // and nothing else accesses that address range.\n"
" let uart = unsafe { Uart::new(PL011_BASE_ADDRESS) };\n"
" logger::init(uart, LevelFilter::Trace).unwrap();\n"
"\n"
" info!(\"main({:#x}, {:#x}, {:#x}, {:#x})\", x0, x1, x2, x3);\n"
"\n"
" // Safe because `GICD_BASE_ADDRESS` and `GICR_BASE_ADDRESS` are the "
"base\n"
" // addresses of a GICv3 distributor and redistributor respectively, and\n"
" // nothing else accesses those address ranges.\n"
" let mut gic = unsafe { GicV3::new(GICD_BASE_ADDRESS, "
"GICR_BASE_ADDRESS) };\n"
" gic.setup();\n"
" // ANCHOR_END: main\n"
"\n"
" // Safe because `PL031_BASE_ADDRESS` is the base address of a PL031 "
"device,\n"
" // and nothing else accesses that address range.\n"
" let mut rtc = unsafe { Rtc::new(PL031_BASE_ADDRESS) };\n"
" let timestamp = rtc.read();\n"
" let time = Utc.timestamp_opt(timestamp.into(), 0).unwrap();\n"
" info!(\"RTC: {time}\");\n"
"\n"
" GicV3::set_priority_mask(0xff);\n"
" gic.set_interrupt_priority(PL031_IRQ, 0x80);\n"
" gic.set_trigger(PL031_IRQ, Trigger::Level);\n"
" irq_enable();\n"
" gic.enable_interrupt(PL031_IRQ, true);\n"
"\n"
" // Wait for 3 seconds, without interrupts.\n"
" let target = timestamp + 3;\n"
" rtc.set_match(target);\n"
" info!(\n"
" \"Waiting for {}\",\n"
" Utc.timestamp_opt(target.into(), 0).unwrap()\n"
" );\n"
" trace!(\n"
" \"matched={}, interrupt_pending={}\",\n"
" rtc.matched(),\n"
" rtc.interrupt_pending()\n"
" );\n"
" while !rtc.matched() {\n"
" spin_loop();\n"
" }\n"
" trace!(\n"
" \"matched={}, interrupt_pending={}\",\n"
" rtc.matched(),\n"
" rtc.interrupt_pending()\n"
" );\n"
" info!(\"Finished waiting\");\n"
"\n"
" // Wait another 3 seconds for an interrupt.\n"
" let target = timestamp + 6;\n"
" info!(\n"
" \"Waiting for {}\",\n"
" Utc.timestamp_opt(target.into(), 0).unwrap()\n"
" );\n"
" rtc.set_match(target);\n"
" rtc.clear_interrupt();\n"
" rtc.enable_interrupt(true);\n"
" trace!(\n"
" \"matched={}, interrupt_pending={}\",\n"
" rtc.matched(),\n"
" rtc.interrupt_pending()\n"
" );\n"
" while !rtc.interrupt_pending() {\n"
" wfi();\n"
" }\n"
" trace!(\n"
" \"matched={}, interrupt_pending={}\",\n"
" rtc.matched(),\n"
" rtc.interrupt_pending()\n"
" );\n"
" info!(\"Finished waiting\");\n"
"\n"
" // ANCHOR: main_end\n"
" system_off::<Hvc>().unwrap();\n"
"}\n"
"\n"
"#[panic_handler]\n"
"fn panic(info: &PanicInfo) -> ! {\n"
" error!(\"{info}\");\n"
" system_off::<Hvc>().unwrap();\n"
" loop {}\n"
"}\n"
"// ANCHOR_END: main_end\n"
"```"
msgstr ""
#: src/exercises/bare-metal/solutions-afternoon.md:149
msgid "`pl031.rs`:"
msgstr ""
#: src/exercises/bare-metal/solutions-afternoon.md:151
msgid ""
"```rust\n"
"// Copyright 2023 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"use core::ptr::{addr_of, addr_of_mut};\n"
"\n"
"#[repr(C, align(4))]\n"
"struct Registers {\n"
" /// Data register\n"
" dr: u32,\n"
" /// Match register\n"
" mr: u32,\n"
" /// Load register\n"
" lr: u32,\n"
" /// Control register\n"
" cr: u8,\n"
" _reserved0: [u8; 3],\n"
" /// Interrupt Mask Set or Clear register\n"
" imsc: u8,\n"
" _reserved1: [u8; 3],\n"
" /// Raw Interrupt Status\n"
" ris: u8,\n"
" _reserved2: [u8; 3],\n"
" /// Masked Interrupt Status\n"
" mis: u8,\n"
" _reserved3: [u8; 3],\n"
" /// Interrupt Clear Register\n"
" icr: u8,\n"
" _reserved4: [u8; 3],\n"
"}\n"
"\n"
"/// Driver for a PL031 real-time clock.\n"
"#[derive(Debug)]\n"
"pub struct Rtc {\n"
" registers: *mut Registers,\n"
"}\n"
"\n"
"impl Rtc {\n"
" /// Constructs a new instance of the RTC driver for a PL031 device at "
"the\n"
" /// given base address.\n"
" ///\n"
" /// # Safety\n"
" ///\n"
" /// The given base address must point to the MMIO control registers of "
"a\n"
" /// PL031 device, which must be mapped into the address space of the "
"process\n"
" /// as device memory and not have any other aliases.\n"
" pub unsafe fn new(base_address: *mut u32) -> Self {\n"
" Self {\n"
" registers: base_address as *mut Registers,\n"
" }\n"
" }\n"
"\n"
" /// Reads the current RTC value.\n"
" pub fn read(&self) -> u32 {\n"
" // Safe because we know that self.registers points to the control\n"
" // registers of a PL031 device which is appropriately mapped.\n"
" unsafe { addr_of!((*self.registers).dr).read_volatile() }\n"
" }\n"
"\n"
" /// Writes a match value. When the RTC value matches this then an "
"interrupt\n"
" /// will be generated (if it is enabled).\n"
" pub fn set_match(&mut self, value: u32) {\n"
" // Safe because we know that self.registers points to the control\n"
" // registers of a PL031 device which is appropriately mapped.\n"
" unsafe { addr_of_mut!((*self.registers).mr).write_volatile(value) }\n"
" }\n"
"\n"
" /// Returns whether the match register matches the RTC value, whether or "
"not\n"
" /// the interrupt is enabled.\n"
" pub fn matched(&self) -> bool {\n"
" // Safe because we know that self.registers points to the control\n"
" // registers of a PL031 device which is appropriately mapped.\n"
" let ris = unsafe { addr_of!((*self.registers).ris)."
"read_volatile() };\n"
" (ris & 0x01) != 0\n"
" }\n"
"\n"
" /// Returns whether there is currently an interrupt pending.\n"
" ///\n"
" /// This should be true iff `matched` returns true and the interrupt is\n"
" /// masked.\n"
" pub fn interrupt_pending(&self) -> bool {\n"
" // Safe because we know that self.registers points to the control\n"
" // registers of a PL031 device which is appropriately mapped.\n"
" let ris = unsafe { addr_of!((*self.registers).mis)."
"read_volatile() };\n"
" (ris & 0x01) != 0\n"
" }\n"
"\n"
" /// Sets or clears the interrupt mask.\n"
" ///\n"
" /// When the mask is true the interrupt is enabled; when it is false "
"the\n"
" /// interrupt is disabled.\n"
" pub fn enable_interrupt(&mut self, mask: bool) {\n"
" let imsc = if mask { 0x01 } else { 0x00 };\n"
" // Safe because we know that self.registers points to the control\n"
" // registers of a PL031 device which is appropriately mapped.\n"
" unsafe { addr_of_mut!((*self.registers).imsc)."
"write_volatile(imsc) }\n"
" }\n"
"\n"
" /// Clears a pending interrupt, if any.\n"
" pub fn clear_interrupt(&mut self) {\n"
" // Safe because we know that self.registers points to the control\n"
" // registers of a PL031 device which is appropriately mapped.\n"
" unsafe { addr_of_mut!((*self.registers).icr).write_volatile(0x01) }\n"
" }\n"
"}\n"
"\n"
"// Safe because it just contains a pointer to device memory, which can be\n"
"// accessed from any context.\n"
"unsafe impl Send for Rtc {}\n"
"```"
msgstr ""
#: src/exercises/concurrency/solutions-morning.md:1
msgid "# Concurrency Morning Exercise"
msgstr ""
#: src/exercises/concurrency/solutions-morning.md:3
msgid "## Dining Philosophers"
msgstr ""
#: src/exercises/concurrency/solutions-morning.md:5
msgid "([back to exercise](dining-philosophers.md))"
msgstr ""
#: src/exercises/concurrency/solutions-morning.md:7
msgid ""
"```rust\n"
"// Copyright 2022 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: Philosopher\n"
"use std::sync::{mpsc, Arc, Mutex};\n"
"use std::thread;\n"
"use std::time::Duration;\n"
"\n"
"struct Fork;\n"
"\n"
"struct Philosopher {\n"
" name: String,\n"
" // ANCHOR_END: Philosopher\n"
" left_fork: Arc<Mutex<Fork>>,\n"
" right_fork: Arc<Mutex<Fork>>,\n"
" thoughts: mpsc::SyncSender<String>,\n"
"}\n"
"\n"
"// ANCHOR: Philosopher-think\n"
"impl Philosopher {\n"
" fn think(&self) {\n"
" self.thoughts\n"
" .send(format!(\"Eureka! {} has a new idea!\", &self.name))\n"
" .unwrap();\n"
" }\n"
" // ANCHOR_END: Philosopher-think\n"
"\n"
" // ANCHOR: Philosopher-eat\n"
" fn eat(&self) {\n"
" // ANCHOR_END: Philosopher-eat\n"
" println!(\"{} is trying to eat\", &self.name);\n"
" let left = self.left_fork.lock().unwrap();\n"
" let right = self.right_fork.lock().unwrap();\n"
"\n"
" // ANCHOR: Philosopher-eat-end\n"
" println!(\"{} is eating...\", &self.name);\n"
" thread::sleep(Duration::from_millis(10));\n"
" }\n"
"}\n"
"\n"
"static PHILOSOPHERS: &[&str] =\n"
" &[\"Socrates\", \"Plato\", \"Aristotle\", \"Thales\", \"Pythagoras\"];\n"
"\n"
"fn main() {\n"
" // ANCHOR_END: Philosopher-eat-end\n"
" let (tx, rx) = mpsc::sync_channel(10);\n"
"\n"
" let forks = (0..PHILOSOPHERS.len())\n"
" .map(|_| Arc::new(Mutex::new(Fork)))\n"
" .collect::<Vec<_>>();\n"
"\n"
" for i in 0..forks.len() {\n"
" let tx = tx.clone();\n"
" let mut left_fork = forks[i].clone();\n"
" let mut right_fork = forks[(i + 1) % forks.len()].clone();\n"
"\n"
" // To avoid a deadlock, we have to break the symmetry\n"
" // somewhere. This will swap the forks without deinitializing\n"
" // either of them.\n"
" if i == forks.len() - 1 {\n"
" std::mem::swap(&mut left_fork, &mut right_fork);\n"
" }\n"
"\n"
" let philosopher = Philosopher {\n"
" name: PHILOSOPHERS[i].to_string(),\n"
" thoughts: tx,\n"
" left_fork,\n"
" right_fork,\n"
" };\n"
"\n"
" thread::spawn(move || {\n"
" for _ in 0..100 {\n"
" philosopher.eat();\n"
" philosopher.think();\n"
" }\n"
" });\n"
" }\n"
"\n"
" drop(tx);\n"
" for thought in rx {\n"
" println!(\"{thought}\");\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/exercises/concurrency/solutions-afternoon.md:1
msgid "# Concurrency Afternoon Exercise"
msgstr ""
#: src/exercises/concurrency/solutions-afternoon.md:3
msgid "## Dining Philosophers - Async"
msgstr ""
#: src/exercises/concurrency/solutions-afternoon.md:5
msgid "([back to exercise](dining-philosophers-async.md))"
msgstr ""
#: src/exercises/concurrency/solutions-afternoon.md:7
msgid ""
"```rust,compile_fail\n"
"// Copyright 2023 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: Philosopher\n"
"use std::sync::Arc;\n"
"use tokio::time;\n"
"use tokio::sync::mpsc::{self, Sender};\n"
"use tokio::sync::Mutex;\n"
"\n"
"struct Fork;\n"
"\n"
"struct Philosopher {\n"
" name: String,\n"
" // ANCHOR_END: Philosopher\n"
" left_fork: Arc<Mutex<Fork>>,\n"
" right_fork: Arc<Mutex<Fork>>,\n"
" thoughts: Sender<String>,\n"
"}\n"
"\n"
"// ANCHOR: Philosopher-think\n"
"impl Philosopher {\n"
" async fn think(&self) {\n"
" self.thoughts\n"
" .send(format!(\"Eureka! {} has a new idea!\", &self.name))."
"await\n"
" .unwrap();\n"
" }\n"
" // ANCHOR_END: Philosopher-think\n"
"\n"
" // ANCHOR: Philosopher-eat\n"
" async fn eat(&self) {\n"
" // Pick up forks...\n"
" // ANCHOR_END: Philosopher-eat\n"
" let _first_lock = self.left_fork.lock().await;\n"
" // Add a delay before picking the second fork to allow the "
"execution\n"
" // to transfer to another task\n"
" time::sleep(time::Duration::from_millis(1)).await;\n"
" let _second_lock = self.right_fork.lock().await;\n"
"\n"
" // ANCHOR: Philosopher-eat-body\n"
" println!(\"{} is eating...\", &self.name);\n"
" time::sleep(time::Duration::from_millis(5)).await;\n"
" // ANCHOR_END: Philosopher-eat-body\n"
"\n"
" // The locks are dropped here\n"
" // ANCHOR: Philosopher-eat-end\n"
" }\n"
"}\n"
"\n"
"static PHILOSOPHERS: &[&str] =\n"
" &[\"Socrates\", \"Plato\", \"Aristotle\", \"Thales\", \"Pythagoras\"];\n"
"\n"
"#[tokio::main]\n"
"async fn main() {\n"
" // ANCHOR_END: Philosopher-eat-end\n"
" // Create forks\n"
" let mut forks = vec![];\n"
" (0..PHILOSOPHERS.len()).for_each(|_| forks.push(Arc::new(Mutex::"
"new(Fork))));\n"
"\n"
" // Create philosophers\n"
" let (philosophers, mut rx) = {\n"
" let mut philosophers = vec![];\n"
" let (tx, rx) = mpsc::channel(10);\n"
" for (i, name) in PHILOSOPHERS.iter().enumerate() {\n"
" let left_fork = forks[i].clone();\n"
" let right_fork = forks[(i + 1) % PHILOSOPHERS.len()].clone();\n"
" philosophers.push(Philosopher {\n"
" name: name.to_string(),\n"
" left_fork: if i % 2 == 0 { left_fork.clone() } else "
"{ right_fork.clone() },\n"
" right_fork: if i % 2 == 0 { right_fork } else "
"{ left_fork },\n"
" thoughts: tx.clone(),\n"
" });\n"
" }\n"
" (philosophers, rx)\n"
" // tx is dropped here, so we don't need to explicitly drop it later\n"
" };\n"
"\n"
" // Make them think and eat\n"
" for phil in philosophers {\n"
" tokio::spawn(async move {\n"
" for _ in 0..100 {\n"
" phil.think().await;\n"
" phil.eat().await;\n"
" }\n"
" });\n"
"\n"
" }\n"
"\n"
" // Output their thoughts\n"
" while let Some(thought) = rx.recv().await {\n"
" println!(\"Here is a thought: {thought}\");\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/exercises/concurrency/solutions-afternoon.md:113
msgid "## Broadcast Chat Application"
msgstr ""
#: src/exercises/concurrency/solutions-afternoon.md:115
msgid "([back to exercise](chat-app.md))"
msgstr ""
#: src/exercises/concurrency/solutions-afternoon.md:119
msgid ""
"```rust,compile_fail\n"
"// Copyright 2023 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: setup\n"
"use futures_util::sink::SinkExt;\n"
"use std::error::Error;\n"
"use std::net::SocketAddr;\n"
"use tokio::net::{TcpListener, TcpStream};\n"
"use tokio::sync::broadcast::{channel, Sender};\n"
"use tokio_websockets::{Message, ServerBuilder, WebsocketStream};\n"
"// ANCHOR_END: setup\n"
"\n"
"// ANCHOR: handle_connection\n"
"async fn handle_connection(\n"
" addr: SocketAddr,\n"
" mut ws_stream: WebsocketStream<TcpStream>,\n"
" bcast_tx: Sender<String>,\n"
") -> Result<(), Box<dyn Error + Send + Sync>> {\n"
" // ANCHOR_END: handle_connection\n"
"\n"
" ws_stream\n"
" .send(Message::text(\"Welcome to chat! Type a message\".into()))\n"
" .await?;\n"
" let mut bcast_rx = bcast_tx.subscribe();\n"
"\n"
" // A continuous loop for concurrently performing two tasks: (1) "
"receiving\n"
" // messages from `ws_stream` and broadcasting them, and (2) receiving\n"
" // messages on `bcast_rx` and sending them to the client.\n"
" loop {\n"
" tokio::select! {\n"
" incoming = ws_stream.next() => {\n"
" match incoming {\n"
" Some(Ok(msg)) => {\n"
" let msg = msg.as_text()?;\n"
" println!(\"From client {addr:?} {msg:?}\");\n"
" bcast_tx.send(msg.into())?;\n"
" }\n"
" Some(Err(err)) => return Err(err.into()),\n"
" None => return Ok(()),\n"
" }\n"
" }\n"
" msg = bcast_rx.recv() => {\n"
" ws_stream.send(Message::text(msg?)).await?;\n"
" }\n"
" }\n"
" }\n"
" // ANCHOR: main\n"
"}\n"
"\n"
"#[tokio::main]\n"
"async fn main() -> Result<(), Box<dyn Error + Send + Sync>> {\n"
" let (bcast_tx, _) = channel(16);\n"
"\n"
" let listener = TcpListener::bind(\"127.0.0.1:2000\").await?;\n"
" println!(\"listening on port 2000\");\n"
"\n"
" loop {\n"
" let (socket, addr) = listener.accept().await?;\n"
" println!(\"New connection from {addr:?}\");\n"
" let bcast_tx = bcast_tx.clone();\n"
" tokio::spawn(async move {\n"
" // Wrap the raw TCP stream into a websocket.\n"
" let ws_stream = ServerBuilder::new().accept(socket).await?;\n"
"\n"
" handle_connection(addr, ws_stream, bcast_tx).await\n"
" });\n"
" }\n"
"}\n"
"// ANCHOR_END: main\n"
"```"
msgstr ""
#: src/exercises/concurrency/solutions-afternoon.md:204
msgid ""
"```rust,compile_fail\n"
"// Copyright 2023 Google LLC\n"
"//\n"
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n"
"// you may not use this file except in compliance with the License.\n"
"// You may obtain a copy of the License at\n"
"//\n"
"// http://www.apache.org/licenses/LICENSE-2.0\n"
"//\n"
"// Unless required by applicable law or agreed to in writing, software\n"
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n"
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n"
"// See the License for the specific language governing permissions and\n"
"// limitations under the License.\n"
"\n"
"// ANCHOR: setup\n"
"use futures_util::SinkExt;\n"
"use http::Uri;\n"
"use tokio::io::{AsyncBufReadExt, BufReader};\n"
"use tokio_websockets::{ClientBuilder, Message};\n"
"\n"
"#[tokio::main]\n"
"async fn main() -> Result<(), tokio_websockets::Error> {\n"
" let mut ws_stream = ClientBuilder::from_uri(Uri::"
"from_static(\"ws://127.0.0.1:2000\"))\n"
" .connect()\n"
" .await?;\n"
"\n"
" let stdin = tokio::io::stdin();\n"
" let mut stdin = BufReader::new(stdin);\n"
"\n"
" // ANCHOR_END: setup\n"
" // Continuous loop for concurrently sending and receiving messages.\n"
" loop {\n"
" let mut line = String::new();\n"
" tokio::select! {\n"
" incoming = ws_stream.next() => {\n"
" match incoming {\n"
" Some(Ok(msg)) => println!(\"From server: {}\", msg."
"as_text()?),\n"
" Some(Err(err)) => return Err(err.into()),\n"
" None => return Ok(()),\n"
" }\n"
" }\n"
" res = stdin.read_line(&mut line) => {\n"
" match res {\n"
" Ok(0) => return Ok(()),\n"
" Ok(_) => ws_stream.send(Message::text(line.trim_end()."
"to_string())).await?,\n"
" Err(err) => return Err(err.into()),\n"
" }\n"
" }\n"
"\n"
" }\n"
" }\n"
"}\n"
"```"
msgstr ""
#: src/running-the-course/translations.md:11
msgid "## Incomplete Translations"
msgstr "## 未完成的翻译"
#: src/running-the-course/translations.md:13
msgid ""
"There is a large number of in-progress translations. We link to the most\n"
"recently updated translations:"
msgstr ""
"多数语言版本仍在翻译中。我们会提供"
"最近更新的翻译的链接:"
#: src/running-the-course/translations.md:16
msgid ""
"* [French][fr] by [@KookaS] and [@vcaen].\n"
"* [German][de] by [@Throvn] and [@ronaldfw].\n"
"* [Japanese][ja] by [@CoinEZ-JPN] and [@momotaro1105]."
msgstr ""
"* [法语][fr]:[@KookaS] 和 [@vcaen]。\n"
"* [德语][de]:[@Throvn] 和 [@ronaldfw]。\n"
"* [日语][ja]:[@CoinEZ-JPN] 和 [@momotaro1105]。"
#: src/enums.md:6
msgid ""
"```rust,editable\n"
"fn generate_random_number() -> i32 {\n"
" // Implementation based on https://xkcd.com/221/\n"
" 4 // Chosen by fair dice roll. Guaranteed to be random.\n"
"}\n"
"\n"
"#[derive(Debug)]\n"
"enum CoinFlip {\n"
" Heads,\n"
" Tails,\n"
"}\n"
"\n"
"fn flip_coin() -> CoinFlip {\n"
" let random_number = generate_random_number();\n"
" if random_number % 2 == 0 {\n"
" return CoinFlip::Heads;\n"
" } else {\n"
" return CoinFlip::Tails;\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" println!(\"You got: {:?}\", flip_coin());\n"
"}\n"
"```"
msgstr ""
"```rust,editable\n"
"fn generate_random_number() -> i32 {\n"
" // Implementation based on https://xkcd.com/221/\n"
" 4 // Chosen by fair dice roll. Guaranteed to be random.\n"
"}\n"
"\n"
"#[derive(Debug)]\n"
"enum CoinFlip {\n"
" Heads,\n"
" Tails,\n"
"}\n"
"\n"
"fn flip_coin() -> CoinFlip {\n"
" let random_number = generate_random_number();\n"
" if random_number % 2 == 0 {\n"
" return CoinFlip::Heads;\n"
" } else {\n"
" return CoinFlip::Tails;\n"
" }\n"
"}\n"
"\n"
"fn main() {\n"
" println!(\"You got: {:?}\", flip_coin());\n"
"}\n"
"```"
#: src/ownership/lifetimes.md:5
msgid ""
"* The lifetime can be implicit: `add(p1: &Point, p2: &Point) -> Point`.\n"
"* Lifetimes can also be explicit: `&'a Point`, `&'document str`.\n"
"* Read `&'a Point` as \"a borrowed `Point` which is valid for at least the\n"
" lifetime `a`\".\n"
"* Lifetimes are always inferred by the compiler: you cannot assign a "
"lifetime\n"
" yourself.\n"
" * Lifetime annotations create constraints; the compiler verifies that "
"there is\n"
" a valid solution.\n"
"* Lifetimes for function arguments and return values must be fully "
"specified,\n"
" but Rust allows these to be elided in most cases with [a few simple\n"
" rules](https://doc.rust-lang.org/nomicon/lifetime-elision.html)."
msgstr ""
"* 生命周期可以是隐式的:add(p1: &Point, p2: &Point) -> Point`。\n"
"* 生命周期也可以是显式的:`&'a Point`、`&'document str`。\n"
"* 将 `&'a Point` 读取为“一个借用的 `Point`,至少在\n"
"生命周期 `a` 内有效”。\n"
"* 生命周期始终由编译器推断出来:你不能自行\n"
"分配生命周期。\n"
" * 生命周期注释会创建约束条件;编译器会验证\n"
"是否存在有效的解决方案。\n"
"* 必须完全指定函数参数和返回值的生命周期,\n"
"但 Rust 允许在大多数情况下通过[一些简单的\n"
"规则](https://doc.rust-lang.org/nomicon/lifetime-elision.html)来省略此操作。"
#: src/ownership/lifetimes-function-calls.md:31
msgid ""
"* Move the declaration of `p2` and `p3` into a new scope (`{ ... }`), "
"resulting in the following code:\n"
" ```rust,ignore\n"
" #[derive(Debug)]\n"
" struct Point(i32, i32);\n"
"\n"
" fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {\n"
" if p1.0 < p2.0 { p1 } else { p2 }\n"
" }\n"
"\n"
" fn main() {\n"
" let p1: Point = Point(10, 10);\n"
" let p3: &Point;\n"
" {\n"
" let p2: Point = Point(20, 20);\n"
" p3 = left_most(&p1, &p2);\n"
" }\n"
" println!(\"left-most point: {:?}\", p3);\n"
" }\n"
" ```\n"
" Note how this does not compile since `p3` outlives `p2`.\n"
"\n"
"* Reset the workspace and change the function signature to `fn left_most<'a, "
"'b>(p1: &'a Point, p2: &'a Point) -> &'b Point`. This will not compile "
"because the relationship between the lifetimes `'a` and `'b` is unclear.\n"
"* Another way to explain it:\n"
" * Two references to two values are borrowed by a function and the function "
"returns\n"
" another reference.\n"
" * It must have come from one of those two inputs (or from a global "
"variable).\n"
" * Which one is it? The compiler needs to know, so at the call site the "
"returned reference is not used\n"
" for longer than a variable from where the reference came from."
msgstr ""
"* 将 `p2` 和 `p3` 的声明移至新作用域 (`{ ... }`),以产生以下代码:\n"
" ```rust,ignore\n"
" #[derive(Debug)]\n"
" struct Point(i32, i32);\n"
"\n"
" fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {\n"
" if p1.0 < p2.0 { p1 } else { p2 }\n"
" }\n"
"\n"
" fn main() {\n"
" let p1: Point = Point(10, 10);\n"
" let p3: &Point;\n"
" {\n"
" let p2: Point = Point(20, 20);\n"
" p3 = left_most(&p1, &p2);\n"
" }\n"
" println!(\"left-most point: {:?}\", p3);\n"
" }\n"
" ```\n"
" 请注意:由于 `p3` 的生命周期比 `p2` 长,因此无法编译。\n"
"\n"
"* 重置工作区,然后将函数签名更改为 `fn left_most<'a, 'b>(p1: &'a Point, p2: "
"&'a Point) -> &'b Point`。这不会被编译,因为 `'a` 和 `'b` 生命周期之间的关系"
"不明确。\n"
"* 另一种解释方式:\n"
" * 对两个值的两个引用被一个函数借用,该函数返回\n"
"另一个引用。\n"
" * 它必须是来自这两个输入中的一个(或来自一个全局变量)。\n"
" * 是哪一个呢?编译器需要知道这一点,因此在调用点,返回的引用\n"
"的使用时间不会超过引用的来源中的变量。"
#: src/structs/tuple-structs.md:37
msgid ""
"* Newtypes are a great way to encode additional information about the value "
"in a primitive type, for example:\n"
" * The number is measured in some units: `Newtons` in the example above.\n"
" * The value passed some validation when it was created, so you no longer "
"have to validate it again at every use: 'PhoneNumber(String)` or "
"`OddNumber(u32)`.\n"
"* Demonstrate how to add a `f64` value to a `Newtons` type by accessing the "
"single field in the newtype.\n"
" * Rust generally doesn’t like inexplicit things, like automatic "
"unwrapping or for instance using booleans as integers.\n"
" * Operator overloading is discussed on Day 3 (generics).\n"
"* The example is a subtle reference to the [Mars Climate Orbiter](https://en."
"wikipedia.org/wiki/Mars_Climate_Orbiter) failure."
msgstr ""
"* 如需对基元类型中的值的额外信息进行编码,使用 newtype 是一种非常好的方式,例"
"如:\n"
" * 数字会以某些单位来衡量:上方示例中为 `Newtons`。\n"
" * 值在创建时已通过一些验证,因此您不再需要在每次使用时都再次验证它:"
"`PhoneNumber(String)` 或 `OddNumber(u32)`。\n"
"* 展示如何通过访问 newtype 中的单个字段,将 `f64` 值添加到 `Newtons` 类型。\n"
" * Rust 通常不喜欢不明确的内容,例如自动解封或将布尔值用作整数。\n"
" * 运算符过载在第 3 天(泛型)讨论。\n"
"* 此示例巧妙地引用了[火星气候探测者号](https://zh.wikipedia.org/wiki/"
"%E7%81%AB%E6%98%9F%E6%B0%A3%E5%80%99%E6%8E%A2%E6%B8%AC%E8%80%85%E8%99%9F) 的"
"失败事故。"