Otherwise, if we start doing crate releases from the local checkout
(with git tags) and it turns out that origin/master has newer commits,
rebasing local master will then invalidate those tags.
This combines the tips from #1820 and the patch submitted in #1675.
The latter wasn't taken as-is because I didn't agree with some of the
changes, and in particular, it removed the ability to easily test the
release on a branch with a dummy tag name. I've tried to add that back
here with the 'rg_version' output. Overall though, using outputs is
indeed much simpler.
Closes#1675, Closes#1820
In a previous release, I announced that Fish completions were being
removed. But the Fish project decided to remove theirs and have
ripgrep's stay.
Closes#1577
This fixes a bug where PCRE2 look-around could change the result of a
match if it observed a line terminator in the printer. And in
particular, this is precisely how the searcher operates: the line is
considered unto itself *without* the line terminator.
Fixes#1401
This commit hacks in a bug fix for handling look-around across multiple
lines. The main problem is that by the time the matching lines are sent
to the printer, the surrounding context---which some look-behind or
look-ahead might have matched---could have been dropped if it wasn't
part of the set of matching lines. Therefore, when the printer re-runs
the regex engine in some cases (to do replacements, color matches, etc
etc), it won't be guaranteed to see the same matches that the searcher
found.
Overall, this is a giant clusterfuck and suggests that the way I divided
the abstraction boundary between the printer and the searcher is just
wrong. It's likely that the searcher needs to handle more of the work of
matching and pass that info on to the printer. The tricky part is that
this additional work isn't always needed. Ultimately, this means a
serious re-design of the interface between searching and printing. Sigh.
The way this fix works is to smuggle the underlying buffer used by the
searcher through into the printer. Since these bugs only impact
multi-line search (otherwise, searches are only limited to matches
across a single line), and since multi-line search always requires
having the entire file contents in a single contiguous slice (memory
mapped or on the heap), it follows that the buffer we pass through when
we need it is, in fact, the entire haystack. So this commit refactors
the printer's regex searching to use that buffer instead of the intended
bundle of bytes containing just the relevant matching portions of that
same buffer.
There is one last little hiccup: PCRE2 doesn't seem to have a way to
specify an ending position for a search. So when we re-run the search to
find matches, we can't say, "but don't search past here." Since the
buffer is likely to contain the entire file, we really cannot do
anything here other than specify a fixed upper bound on the number of
bytes to search. So if look-ahead goes more than N bytes beyond the
match, this code will break by simply being unable to find the match. In
practice, this is probably pretty rare. I believe that if we did a
better fix for this bug by fixing the interfaces, then we'd probably try
to have PCRE2 find the pertinent matches up front so that it never needs
to re-discover them.
Fixes#1412
This commit fixes a subtle bug in multi-line replacement of line
terminators.
The problem is that even though ripgrep supports multi-line searches, it
is *still* line oriented. It still needs to print line numbers, for
example. For this reason, there are various parts in the printer that
iterate over lines in order to format them into the desired output.
This turns out to be problematic in some cases. #1311 documents one of
those cases (with line numbers enabled to highlight a point later):
$ printf "hello\nworld\n" | rg -n -U "\n" -r "?"
1:hello?
2:world?
But the desired output is this:
$ printf "hello\nworld\n" | rg -n -U "\n" -r "?"
1:hello?world?
At first I had thought that the main problem was that the printer was
taking ownership of writing line terminators, even if the input already
had them. But it's more subtle than that. If we fix that issue, we get
output like this instead:
$ printf "hello\nworld\n" | rg -n -U "\n" -r "?"
1:hello?2:world?
Notice how '2:' is printed before 'world?'. The reason it works this way
is because matches are reported to the printer in a line oriented way.
That is, the printer gets a block of lines. The searcher guarantees that
all matches that start or end in any of those lines also end or start in
another line in that same block. As a result, the printer uses this
assumption: once it has processed a block of lines, the next match will
begin on a new and distinct line. Thus, things like '2:' are printed.
This is generally all fine and good, but an impedance mismatch arises
when replacements are used. Because now, the replacement can be used to
change the "block of lines" approach. Now, in terms of the output, the
subsequent match might actually continue the current line since the
replacement might get rid of the concept of lines altogether.
We can sometimes work around this. For example:
$ printf "hello\nworld\n" | rg -U "\n(.)?" -r '?$1'
hello?world?
Why does this work? It's because the '(.)' after the '\n' causes the
match to overlap between lines. Thus, the searcher guarantees that the
block sent to the printer contains every line.
And there in lay the solution: all we need to do is tweak the multi-line
searcher so that it combines lines with matches that directly adjacent,
instead of requiring at least one byte of overlap. Fixing that solves
the issue above. It does cause some tests to fail:
* The binary3 test in the searcher crate fails because adjacent line
matches are now one part of block, and that block is scanned for
binary data. To preserve the essence of the test, we insert a couple
dummy lines to split up the blocks.
* The JSON CRLF test. It was testing that we didn't output any messages
with an empty 'submatches' array. That is indeed still the case. The
difference is that the messages got combined because of the adjacent
line merging behavior. This is a slight change to the output, but is
still correct.
Fixes#1311
It turns out that the vimgrep format really only wants one line per
match, even when that match spans multiple lines.
We continue to support the previous behavior (print all lines in a
match) in the `grep-printer` crate. We add a new option to enable the
"only print the first line" behavior, and unconditionally enable it in
ripgrep. We can do that because the option has no effect in single-line
mode, since, well, in that case matches are guaranteed to span one line
anyway.
Fixes#1866
These flags permit configuring the bytes used to delimit fields in match
or context lines, where "fields" are things like the file path, line
number, column number and the match/context itself.
Fixes#1842, Closes#1871
Previous, 'foo/**' would match 'foo', but it shouldn't have. In this
case, not matching 'foo' is what is documented and also seems consistent
with other recursive globbing implementations (like that in zsh).
This also updates the prefix extractor to pull 'foo/' out of 'foo/**'.
Closes#1756
This seems like an obvious optimization but becomes critical when
filesystem operations even as simple as stat can result in significant
overheads; an example of this was a bespoke filesystem layer in Windows
that hosted files remotely and would download them on-demand when
particular filesystem operations occurred. Users of this system who
ensured correct file-type fileters were being used could still get
unnecessary file access resulting in large downloads.
Fixes#1657, Closes#1660
In the case where after-context is requested with a match count limit,
we need to be careful not to reset the state tracking the remaining
context lines.
Fixes#1380, Closes#1642
Previously, we were only looking for the UTF-16 BOM for determining
whether to do transcoding or not. But we should also look for the UTF-8
BOM as well.
Fixes#1638, Closes#1697