1
0
mirror of https://github.com/immich-app/immich.git synced 2025-01-03 13:09:27 +02:00
immich/machine-learning/app/schemas.py

59 lines
1.1 KiB
Python
Raw Normal View History

from enum import Enum
from typing import Any, Protocol, TypedDict, TypeGuard
import numpy as np
import numpy.typing as npt
from pydantic import BaseModel
class StrEnum(str, Enum):
value: str
def __str__(self) -> str:
return self.value
class TextResponse(BaseModel):
__root__: str
class MessageResponse(BaseModel):
message: str
class BoundingBox(TypedDict):
x1: int
y1: int
x2: int
y2: int
class ModelType(StrEnum):
CLIP = "clip"
FACIAL_RECOGNITION = "facial-recognition"
class ModelRuntime(StrEnum):
ONNX = "onnx"
ARMNN = "armnn"
class HasProfiling(Protocol):
profiling: dict[str, float]
class Face(TypedDict):
boundingBox: BoundingBox
embedding: npt.NDArray[np.float32]
imageWidth: int
imageHeight: int
score: float
def has_profiling(obj: Any) -> TypeGuard[HasProfiling]:
return hasattr(obj, "profiling") and isinstance(obj.profiling, dict)
def is_ndarray(obj: Any, dtype: "type[np._DTypeScalar_co]") -> "TypeGuard[npt.NDArray[np._DTypeScalar_co]]":
return isinstance(obj, np.ndarray) and obj.dtype == dtype