mirror of
https://github.com/immich-app/immich.git
synced 2024-12-22 01:47:08 +02:00
feat(ml): export clip models to ONNX and host models on Hugging Face (#4700)
* export clip models * export to hf refactored export code * export mclip, general refactoring cleanup * updated conda deps * do transforms with pillow and numpy, add tokenization config to export, general refactoring * moved conda dockerfile, re-added poetry * minor fixes * updated link * updated tests * removed `requirements.txt` from workflow * fixed mimalloc path * removed torchvision * cleaner np typing * review suggestions * update default model name * update test
This commit is contained in:
parent
3212a47720
commit
87a0ba3db3
1
.github/workflows/test.yml
vendored
1
.github/workflows/test.yml
vendored
@ -166,7 +166,6 @@ jobs:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
poetry install --with dev
|
||||
poetry run pip install --no-deps -r requirements.txt
|
||||
- name: Lint with ruff
|
||||
run: |
|
||||
poetry run ruff check --format=github app
|
||||
|
@ -10,9 +10,8 @@ RUN poetry config installer.max-workers 10 && \
|
||||
RUN python -m venv /opt/venv
|
||||
ENV VIRTUAL_ENV="/opt/venv" PATH="/opt/venv/bin:${PATH}"
|
||||
|
||||
COPY poetry.lock pyproject.toml requirements.txt ./
|
||||
COPY poetry.lock pyproject.toml ./
|
||||
RUN poetry install --sync --no-interaction --no-ansi --no-root --only main
|
||||
RUN pip install --no-deps -r requirements.txt
|
||||
|
||||
FROM python:3.11-slim-bookworm
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
import json
|
||||
from typing import Any, Iterator, TypeAlias
|
||||
from pathlib import Path
|
||||
from typing import Any, Iterator
|
||||
from unittest import mock
|
||||
|
||||
import numpy as np
|
||||
@ -8,8 +9,7 @@ from fastapi.testclient import TestClient
|
||||
from PIL import Image
|
||||
|
||||
from .main import app, init_state
|
||||
|
||||
ndarray: TypeAlias = np.ndarray[int, np.dtype[np.float32]]
|
||||
from .schemas import ndarray_f32
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@ -18,13 +18,13 @@ def pil_image() -> Image.Image:
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def cv_image(pil_image: Image.Image) -> ndarray:
|
||||
def cv_image(pil_image: Image.Image) -> ndarray_f32:
|
||||
return np.asarray(pil_image)[:, :, ::-1] # PIL uses RGB while cv2 uses BGR
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_get_model() -> Iterator[mock.Mock]:
|
||||
with mock.patch("app.models.cache.InferenceModel.from_model_type", autospec=True) as mocked:
|
||||
with mock.patch("app.models.cache.from_model_type", autospec=True) as mocked:
|
||||
yield mocked
|
||||
|
||||
|
||||
@ -37,3 +37,25 @@ def deployed_app() -> TestClient:
|
||||
@pytest.fixture(scope="session")
|
||||
def responses() -> dict[str, Any]:
|
||||
return json.load(open("responses.json", "r"))
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def clip_model_cfg() -> dict[str, Any]:
|
||||
return {
|
||||
"embed_dim": 512,
|
||||
"vision_cfg": {"image_size": 224, "layers": 12, "width": 768, "patch_size": 32},
|
||||
"text_cfg": {"context_length": 77, "vocab_size": 49408, "width": 512, "heads": 8, "layers": 12},
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def clip_preprocess_cfg() -> dict[str, Any]:
|
||||
return {
|
||||
"size": [224, 224],
|
||||
"mode": "RGB",
|
||||
"mean": [0.48145466, 0.4578275, 0.40821073],
|
||||
"std": [0.26862954, 0.26130258, 0.27577711],
|
||||
"interpolation": "bicubic",
|
||||
"resize_mode": "shortest",
|
||||
"fill_color": 0,
|
||||
}
|
||||
|
@ -1,3 +1,25 @@
|
||||
from .clip import CLIPEncoder
|
||||
from typing import Any
|
||||
|
||||
from app.schemas import ModelType
|
||||
|
||||
from .base import InferenceModel
|
||||
from .clip import MCLIPEncoder, OpenCLIPEncoder, is_mclip, is_openclip
|
||||
from .facial_recognition import FaceRecognizer
|
||||
from .image_classification import ImageClassifier
|
||||
|
||||
|
||||
def from_model_type(model_type: ModelType, model_name: str, **model_kwargs: Any) -> InferenceModel:
|
||||
match model_type:
|
||||
case ModelType.CLIP:
|
||||
if is_openclip(model_name):
|
||||
return OpenCLIPEncoder(model_name, **model_kwargs)
|
||||
elif is_mclip(model_name):
|
||||
return MCLIPEncoder(model_name, **model_kwargs)
|
||||
else:
|
||||
raise ValueError(f"Unknown CLIP model {model_name}")
|
||||
case ModelType.FACIAL_RECOGNITION:
|
||||
return FaceRecognizer(model_name, **model_kwargs)
|
||||
case ModelType.IMAGE_CLASSIFICATION:
|
||||
return ImageClassifier(model_name, **model_kwargs)
|
||||
case _:
|
||||
raise ValueError(f"Unknown model type {model_type}")
|
||||
|
@ -25,7 +25,7 @@ class InferenceModel(ABC):
|
||||
) -> None:
|
||||
self.model_name = model_name
|
||||
self.loaded = False
|
||||
self._cache_dir = Path(cache_dir) if cache_dir is not None else get_cache_dir(model_name, self.model_type)
|
||||
self._cache_dir = Path(cache_dir) if cache_dir is not None else None
|
||||
self.providers = model_kwargs.pop("providers", ["CPUExecutionProvider"])
|
||||
# don't pre-allocate more memory than needed
|
||||
self.provider_options = model_kwargs.pop(
|
||||
@ -92,7 +92,7 @@ class InferenceModel(ABC):
|
||||
|
||||
@property
|
||||
def cache_dir(self) -> Path:
|
||||
return self._cache_dir
|
||||
return self._cache_dir if self._cache_dir is not None else get_cache_dir(self.model_name, self.model_type)
|
||||
|
||||
@cache_dir.setter
|
||||
def cache_dir(self, cache_dir: Path) -> None:
|
||||
|
@ -4,6 +4,8 @@ from aiocache.backends.memory import SimpleMemoryCache
|
||||
from aiocache.lock import OptimisticLock
|
||||
from aiocache.plugins import BasePlugin, TimingPlugin
|
||||
|
||||
from app.models import from_model_type
|
||||
|
||||
from ..schemas import ModelType
|
||||
from .base import InferenceModel
|
||||
|
||||
@ -50,7 +52,7 @@ class ModelCache:
|
||||
async with OptimisticLock(self.cache, key) as lock:
|
||||
model = await self.cache.get(key)
|
||||
if model is None:
|
||||
model = InferenceModel.from_model_type(model_type, model_name, **model_kwargs)
|
||||
model = from_model_type(model_type, model_name, **model_kwargs)
|
||||
await lock.cas(model, ttl=self.ttl)
|
||||
return model
|
||||
|
||||
|
@ -1,23 +1,24 @@
|
||||
import os
|
||||
import zipfile
|
||||
import json
|
||||
from abc import abstractmethod
|
||||
from functools import cached_property
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
from clip_server.model.clip import BICUBIC, _convert_image_to_rgb
|
||||
from clip_server.model.clip_onnx import _MODELS, _S3_BUCKET_V2, CLIPOnnxModel, download_model
|
||||
from clip_server.model.pretrained_models import _VISUAL_MODEL_IMAGE_SIZE
|
||||
from clip_server.model.tokenization import Tokenizer
|
||||
from huggingface_hub import snapshot_download
|
||||
from PIL import Image
|
||||
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from app.config import log
|
||||
from app.models.transforms import crop, get_pil_resampling, normalize, resize, to_numpy
|
||||
from app.schemas import ModelType, ndarray_f32, ndarray_i32, ndarray_i64
|
||||
|
||||
from ..config import log
|
||||
from ..schemas import ModelType
|
||||
from .base import InferenceModel
|
||||
|
||||
|
||||
class CLIPEncoder(InferenceModel):
|
||||
class BaseCLIPEncoder(InferenceModel):
|
||||
_model_type = ModelType.CLIP
|
||||
|
||||
def __init__(
|
||||
@ -27,48 +28,29 @@ class CLIPEncoder(InferenceModel):
|
||||
mode: Literal["text", "vision"] | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
if mode is not None and mode not in ("text", "vision"):
|
||||
raise ValueError(f"Mode must be 'text', 'vision', or omitted; got '{mode}'")
|
||||
if model_name not in _MODELS:
|
||||
raise ValueError(f"Unknown model name {model_name}.")
|
||||
self.mode = mode
|
||||
super().__init__(model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def _download(self) -> None:
|
||||
models: tuple[tuple[str, str], tuple[str, str]] = _MODELS[self.model_name]
|
||||
text_onnx_path = self.cache_dir / "textual.onnx"
|
||||
vision_onnx_path = self.cache_dir / "visual.onnx"
|
||||
|
||||
if not text_onnx_path.is_file():
|
||||
self._download_model(*models[0])
|
||||
|
||||
if not vision_onnx_path.is_file():
|
||||
self._download_model(*models[1])
|
||||
|
||||
def _load(self) -> None:
|
||||
if self.mode == "text" or self.mode is None:
|
||||
log.debug(f"Loading clip text model '{self.model_name}'")
|
||||
|
||||
self.text_model = ort.InferenceSession(
|
||||
self.cache_dir / "textual.onnx",
|
||||
self.textual_path.as_posix(),
|
||||
sess_options=self.sess_options,
|
||||
providers=self.providers,
|
||||
provider_options=self.provider_options,
|
||||
)
|
||||
self.text_outputs = [output.name for output in self.text_model.get_outputs()]
|
||||
self.tokenizer = Tokenizer(self.model_name)
|
||||
|
||||
if self.mode == "vision" or self.mode is None:
|
||||
log.debug(f"Loading clip vision model '{self.model_name}'")
|
||||
|
||||
self.vision_model = ort.InferenceSession(
|
||||
self.cache_dir / "visual.onnx",
|
||||
self.visual_path.as_posix(),
|
||||
sess_options=self.sess_options,
|
||||
providers=self.providers,
|
||||
provider_options=self.provider_options,
|
||||
)
|
||||
self.vision_outputs = [output.name for output in self.vision_model.get_outputs()]
|
||||
|
||||
image_size = _VISUAL_MODEL_IMAGE_SIZE[CLIPOnnxModel.get_model_name(self.model_name)]
|
||||
self.transform = _transform_pil_image(image_size)
|
||||
|
||||
def _predict(self, image_or_text: Image.Image | str) -> list[float]:
|
||||
if isinstance(image_or_text, bytes):
|
||||
@ -78,55 +60,163 @@ class CLIPEncoder(InferenceModel):
|
||||
case Image.Image():
|
||||
if self.mode == "text":
|
||||
raise TypeError("Cannot encode image as text-only model")
|
||||
pixel_values = self.transform(image_or_text)
|
||||
assert isinstance(pixel_values, torch.Tensor)
|
||||
pixel_values = torch.unsqueeze(pixel_values, 0).numpy()
|
||||
outputs = self.vision_model.run(self.vision_outputs, {"pixel_values": pixel_values})
|
||||
|
||||
outputs = self.vision_model.run(None, self.transform(image_or_text))
|
||||
case str():
|
||||
if self.mode == "vision":
|
||||
raise TypeError("Cannot encode text as vision-only model")
|
||||
text_inputs: dict[str, torch.Tensor] = self.tokenizer(image_or_text)
|
||||
inputs = {
|
||||
"input_ids": text_inputs["input_ids"].int().numpy(),
|
||||
"attention_mask": text_inputs["attention_mask"].int().numpy(),
|
||||
}
|
||||
outputs = self.text_model.run(self.text_outputs, inputs)
|
||||
|
||||
outputs = self.text_model.run(None, self.tokenize(image_or_text))
|
||||
case _:
|
||||
raise TypeError(f"Expected Image or str, but got: {type(image_or_text)}")
|
||||
|
||||
return outputs[0][0].tolist()
|
||||
|
||||
def _download_model(self, model_name: str, model_md5: str) -> bool:
|
||||
# downloading logic is adapted from clip-server's CLIPOnnxModel class
|
||||
download_model(
|
||||
url=_S3_BUCKET_V2 + model_name,
|
||||
target_folder=self.cache_dir.as_posix(),
|
||||
md5sum=model_md5,
|
||||
with_resume=True,
|
||||
)
|
||||
file = self.cache_dir / model_name.split("/")[1]
|
||||
if file.suffix == ".zip":
|
||||
with zipfile.ZipFile(file, "r") as zip_ref:
|
||||
zip_ref.extractall(self.cache_dir)
|
||||
os.remove(file)
|
||||
return True
|
||||
@abstractmethod
|
||||
def tokenize(self, text: str) -> dict[str, ndarray_i32]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def transform(self, image: Image.Image) -> dict[str, ndarray_f32]:
|
||||
pass
|
||||
|
||||
@property
|
||||
def textual_dir(self) -> Path:
|
||||
return self.cache_dir / "textual"
|
||||
|
||||
@property
|
||||
def visual_dir(self) -> Path:
|
||||
return self.cache_dir / "visual"
|
||||
|
||||
@property
|
||||
def model_cfg_path(self) -> Path:
|
||||
return self.cache_dir / "config.json"
|
||||
|
||||
@property
|
||||
def textual_path(self) -> Path:
|
||||
return self.textual_dir / "model.onnx"
|
||||
|
||||
@property
|
||||
def visual_path(self) -> Path:
|
||||
return self.visual_dir / "model.onnx"
|
||||
|
||||
@property
|
||||
def preprocess_cfg_path(self) -> Path:
|
||||
return self.visual_dir / "preprocess_cfg.json"
|
||||
|
||||
@property
|
||||
def cached(self) -> bool:
|
||||
return (self.cache_dir / "textual.onnx").is_file() and (self.cache_dir / "visual.onnx").is_file()
|
||||
return self.textual_path.is_file() and self.visual_path.is_file()
|
||||
|
||||
|
||||
# same as `_transform_blob` without `_blob2image`
|
||||
def _transform_pil_image(n_px: int) -> Compose:
|
||||
return Compose(
|
||||
[
|
||||
Resize(n_px, interpolation=BICUBIC),
|
||||
CenterCrop(n_px),
|
||||
_convert_image_to_rgb,
|
||||
ToTensor(),
|
||||
Normalize(
|
||||
(0.48145466, 0.4578275, 0.40821073),
|
||||
(0.26862954, 0.26130258, 0.27577711),
|
||||
),
|
||||
]
|
||||
)
|
||||
class OpenCLIPEncoder(BaseCLIPEncoder):
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
cache_dir: str | None = None,
|
||||
mode: Literal["text", "vision"] | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
super().__init__(_clean_model_name(model_name), cache_dir, mode, **model_kwargs)
|
||||
|
||||
def _download(self) -> None:
|
||||
snapshot_download(
|
||||
f"immich-app/{self.model_name}",
|
||||
cache_dir=self.cache_dir,
|
||||
local_dir=self.cache_dir,
|
||||
local_dir_use_symlinks=False,
|
||||
)
|
||||
|
||||
def _load(self) -> None:
|
||||
super()._load()
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.textual_dir)
|
||||
self.sequence_length = self.model_cfg["text_cfg"]["context_length"]
|
||||
|
||||
self.size = (
|
||||
self.preprocess_cfg["size"][0] if type(self.preprocess_cfg["size"]) == list else self.preprocess_cfg["size"]
|
||||
)
|
||||
self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
|
||||
self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
|
||||
self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
|
||||
|
||||
def tokenize(self, text: str) -> dict[str, ndarray_i32]:
|
||||
input_ids: ndarray_i64 = self.tokenizer(
|
||||
text,
|
||||
max_length=self.sequence_length,
|
||||
return_tensors="np",
|
||||
return_attention_mask=False,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
).input_ids
|
||||
return {"text": input_ids.astype(np.int32)}
|
||||
|
||||
def transform(self, image: Image.Image) -> dict[str, ndarray_f32]:
|
||||
image = resize(image, self.size)
|
||||
image = crop(image, self.size)
|
||||
image_np = to_numpy(image)
|
||||
image_np = normalize(image_np, self.mean, self.std)
|
||||
return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}
|
||||
|
||||
@cached_property
|
||||
def model_cfg(self) -> dict[str, Any]:
|
||||
return json.load(self.model_cfg_path.open())
|
||||
|
||||
@cached_property
|
||||
def preprocess_cfg(self) -> dict[str, Any]:
|
||||
return json.load(self.preprocess_cfg_path.open())
|
||||
|
||||
|
||||
class MCLIPEncoder(OpenCLIPEncoder):
|
||||
def tokenize(self, text: str) -> dict[str, ndarray_i32]:
|
||||
tokens: dict[str, ndarray_i64] = self.tokenizer(text, return_tensors="np")
|
||||
return {k: v.astype(np.int32) for k, v in tokens.items()}
|
||||
|
||||
|
||||
_OPENCLIP_MODELS = {
|
||||
"RN50__openai",
|
||||
"RN50__yfcc15m",
|
||||
"RN50__cc12m",
|
||||
"RN101__openai",
|
||||
"RN101__yfcc15m",
|
||||
"RN50x4__openai",
|
||||
"RN50x16__openai",
|
||||
"RN50x64__openai",
|
||||
"ViT-B-32__openai",
|
||||
"ViT-B-32__laion2b_e16",
|
||||
"ViT-B-32__laion400m_e31",
|
||||
"ViT-B-32__laion400m_e32",
|
||||
"ViT-B-32__laion2b-s34b-b79k",
|
||||
"ViT-B-16__openai",
|
||||
"ViT-B-16__laion400m_e31",
|
||||
"ViT-B-16__laion400m_e32",
|
||||
"ViT-B-16-plus-240__laion400m_e31",
|
||||
"ViT-B-16-plus-240__laion400m_e32",
|
||||
"ViT-L-14__openai",
|
||||
"ViT-L-14__laion400m_e31",
|
||||
"ViT-L-14__laion400m_e32",
|
||||
"ViT-L-14__laion2b-s32b-b82k",
|
||||
"ViT-L-14-336__openai",
|
||||
"ViT-H-14__laion2b-s32b-b79k",
|
||||
"ViT-g-14__laion2b-s12b-b42k",
|
||||
}
|
||||
|
||||
|
||||
_MCLIP_MODELS = {
|
||||
"LABSE-Vit-L-14",
|
||||
"XLM-Roberta-Large-Vit-B-32",
|
||||
"XLM-Roberta-Large-Vit-B-16Plus",
|
||||
"XLM-Roberta-Large-Vit-L-14",
|
||||
}
|
||||
|
||||
|
||||
def _clean_model_name(model_name: str) -> str:
|
||||
return model_name.split("/")[-1].replace("::", "__")
|
||||
|
||||
|
||||
def is_openclip(model_name: str) -> bool:
|
||||
return _clean_model_name(model_name) in _OPENCLIP_MODELS
|
||||
|
||||
|
||||
def is_mclip(model_name: str) -> bool:
|
||||
return _clean_model_name(model_name) in _MCLIP_MODELS
|
||||
|
@ -9,7 +9,8 @@ from insightface.model_zoo import ArcFaceONNX, RetinaFace
|
||||
from insightface.utils.face_align import norm_crop
|
||||
from insightface.utils.storage import BASE_REPO_URL, download_file
|
||||
|
||||
from ..schemas import ModelType
|
||||
from app.schemas import ModelType, ndarray_f32
|
||||
|
||||
from .base import InferenceModel
|
||||
|
||||
|
||||
@ -68,7 +69,7 @@ class FaceRecognizer(InferenceModel):
|
||||
)
|
||||
self.rec_model.prepare(ctx_id=0)
|
||||
|
||||
def _predict(self, image: np.ndarray[int, np.dtype[Any]] | bytes) -> list[dict[str, Any]]:
|
||||
def _predict(self, image: ndarray_f32 | bytes) -> list[dict[str, Any]]:
|
||||
if isinstance(image, bytes):
|
||||
image = cv2.imdecode(np.frombuffer(image, np.uint8), cv2.IMREAD_COLOR)
|
||||
bboxes, kpss = self.det_model.detect(image)
|
||||
|
35
machine-learning/app/models/transforms.py
Normal file
35
machine-learning/app/models/transforms.py
Normal file
@ -0,0 +1,35 @@
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from app.schemas import ndarray_f32
|
||||
|
||||
_PIL_RESAMPLING_METHODS = {resampling.name.lower(): resampling for resampling in Image.Resampling}
|
||||
|
||||
|
||||
def resize(img: Image.Image, size: int) -> Image.Image:
|
||||
if img.width < img.height:
|
||||
return img.resize((size, int((img.height / img.width) * size)), resample=Image.BICUBIC)
|
||||
else:
|
||||
return img.resize((int((img.width / img.height) * size), size), resample=Image.BICUBIC)
|
||||
|
||||
|
||||
# https://stackoverflow.com/a/60883103
|
||||
def crop(img: Image.Image, size: int) -> Image.Image:
|
||||
left = int((img.size[0] / 2) - (size / 2))
|
||||
upper = int((img.size[1] / 2) - (size / 2))
|
||||
right = left + size
|
||||
lower = upper + size
|
||||
|
||||
return img.crop((left, upper, right, lower))
|
||||
|
||||
|
||||
def to_numpy(img: Image.Image) -> ndarray_f32:
|
||||
return np.asarray(img.convert("RGB")).astype(np.float32) / 255.0
|
||||
|
||||
|
||||
def normalize(img: ndarray_f32, mean: float | ndarray_f32, std: float | ndarray_f32) -> ndarray_f32:
|
||||
return (img - mean) / std
|
||||
|
||||
|
||||
def get_pil_resampling(resample: str) -> Image.Resampling:
|
||||
return _PIL_RESAMPLING_METHODS[resample.lower()]
|
@ -1,5 +1,7 @@
|
||||
from enum import StrEnum
|
||||
from typing import TypeAlias
|
||||
|
||||
import numpy as np
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@ -31,3 +33,8 @@ class ModelType(StrEnum):
|
||||
IMAGE_CLASSIFICATION = "image-classification"
|
||||
CLIP = "clip"
|
||||
FACIAL_RECOGNITION = "facial-recognition"
|
||||
|
||||
|
||||
ndarray_f32: TypeAlias = np.ndarray[int, np.dtype[np.float32]]
|
||||
ndarray_i64: TypeAlias = np.ndarray[int, np.dtype[np.int64]]
|
||||
ndarray_i32: TypeAlias = np.ndarray[int, np.dtype[np.int32]]
|
||||
|
@ -1,7 +1,8 @@
|
||||
import json
|
||||
import pickle
|
||||
from io import BytesIO
|
||||
from typing import Any, TypeAlias
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable
|
||||
from unittest import mock
|
||||
|
||||
import cv2
|
||||
@ -14,13 +15,11 @@ from pytest_mock import MockerFixture
|
||||
from .config import settings
|
||||
from .models.base import PicklableSessionOptions
|
||||
from .models.cache import ModelCache
|
||||
from .models.clip import CLIPEncoder
|
||||
from .models.clip import OpenCLIPEncoder
|
||||
from .models.facial_recognition import FaceRecognizer
|
||||
from .models.image_classification import ImageClassifier
|
||||
from .schemas import ModelType
|
||||
|
||||
ndarray: TypeAlias = np.ndarray[int, np.dtype[np.float32]]
|
||||
|
||||
|
||||
class TestImageClassifier:
|
||||
classifier_preds = [
|
||||
@ -56,30 +55,50 @@ class TestImageClassifier:
|
||||
|
||||
class TestCLIP:
|
||||
embedding = np.random.rand(512).astype(np.float32)
|
||||
cache_dir = Path("test_cache")
|
||||
|
||||
def test_basic_image(self, pil_image: Image.Image, mocker: MockerFixture) -> None:
|
||||
mocker.patch.object(CLIPEncoder, "download")
|
||||
def test_basic_image(
|
||||
self,
|
||||
pil_image: Image.Image,
|
||||
mocker: MockerFixture,
|
||||
clip_model_cfg: dict[str, Any],
|
||||
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
|
||||
) -> None:
|
||||
mocker.patch.object(OpenCLIPEncoder, "download")
|
||||
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
|
||||
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
|
||||
mocker.patch("app.models.clip.AutoTokenizer.from_pretrained", autospec=True)
|
||||
mocked = mocker.patch("app.models.clip.ort.InferenceSession", autospec=True)
|
||||
mocked.return_value.run.return_value = [[self.embedding]]
|
||||
clip_encoder = CLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", mode="vision")
|
||||
assert clip_encoder.mode == "vision"
|
||||
|
||||
clip_encoder = OpenCLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", mode="vision")
|
||||
embedding = clip_encoder.predict(pil_image)
|
||||
|
||||
assert clip_encoder.mode == "vision"
|
||||
assert isinstance(embedding, list)
|
||||
assert len(embedding) == 512
|
||||
assert len(embedding) == clip_model_cfg["embed_dim"]
|
||||
assert all([isinstance(num, float) for num in embedding])
|
||||
clip_encoder.vision_model.run.assert_called_once()
|
||||
|
||||
def test_basic_text(self, mocker: MockerFixture) -> None:
|
||||
mocker.patch.object(CLIPEncoder, "download")
|
||||
def test_basic_text(
|
||||
self,
|
||||
mocker: MockerFixture,
|
||||
clip_model_cfg: dict[str, Any],
|
||||
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
|
||||
) -> None:
|
||||
mocker.patch.object(OpenCLIPEncoder, "download")
|
||||
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
|
||||
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
|
||||
mocker.patch("app.models.clip.AutoTokenizer.from_pretrained", autospec=True)
|
||||
mocked = mocker.patch("app.models.clip.ort.InferenceSession", autospec=True)
|
||||
mocked.return_value.run.return_value = [[self.embedding]]
|
||||
clip_encoder = CLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", mode="text")
|
||||
assert clip_encoder.mode == "text"
|
||||
|
||||
clip_encoder = OpenCLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", mode="text")
|
||||
embedding = clip_encoder.predict("test search query")
|
||||
|
||||
assert clip_encoder.mode == "text"
|
||||
assert isinstance(embedding, list)
|
||||
assert len(embedding) == 512
|
||||
assert len(embedding) == clip_model_cfg["embed_dim"]
|
||||
assert all([isinstance(num, float) for num in embedding])
|
||||
clip_encoder.text_model.run.assert_called_once()
|
||||
|
||||
|
21
machine-learning/export/Dockerfile
Normal file
21
machine-learning/export/Dockerfile
Normal file
@ -0,0 +1,21 @@
|
||||
FROM mambaorg/micromamba:bookworm-slim as builder
|
||||
|
||||
ENV NODE_ENV=production \
|
||||
TRANSFORMERS_CACHE=/cache \
|
||||
PYTHONDONTWRITEBYTECODE=1 \
|
||||
PYTHONUNBUFFERED=1 \
|
||||
PATH="/opt/venv/bin:$PATH" \
|
||||
PYTHONPATH=/usr/src
|
||||
|
||||
COPY --chown=$MAMBA_USER:$MAMBA_USER conda-lock.yml /tmp/conda-lock.yml
|
||||
RUN micromamba install -y -n base -f /tmp/conda-lock.yml && \
|
||||
micromamba remove -y -n base cxx-compiler && \
|
||||
micromamba clean --all --yes
|
||||
|
||||
WORKDIR /usr/src/app
|
||||
|
||||
COPY --chown=$MAMBA_USER:$MAMBA_USER start.sh .
|
||||
COPY --chown=$MAMBA_USER:$MAMBA_USER app .
|
||||
|
||||
ENTRYPOINT ["/usr/local/bin/_entrypoint.sh"]
|
||||
CMD ["./start.sh"]
|
3520
machine-learning/export/conda-lock.yml
Normal file
3520
machine-learning/export/conda-lock.yml
Normal file
File diff suppressed because it is too large
Load Diff
15
machine-learning/export/env.dev.yaml
Normal file
15
machine-learning/export/env.dev.yaml
Normal file
@ -0,0 +1,15 @@
|
||||
name: base
|
||||
channels:
|
||||
- conda-forge
|
||||
platforms:
|
||||
- linux-64
|
||||
- linux-aarch64
|
||||
dependencies:
|
||||
- black
|
||||
- conda-lock
|
||||
- mypy
|
||||
- pytest
|
||||
- pytest-cov
|
||||
- pytest-mock
|
||||
- ruff
|
||||
category: dev
|
25
machine-learning/export/env.yaml
Normal file
25
machine-learning/export/env.yaml
Normal file
@ -0,0 +1,25 @@
|
||||
name: base
|
||||
channels:
|
||||
- conda-forge
|
||||
- nvidia
|
||||
- pytorch-nightly
|
||||
platforms:
|
||||
- linux-64
|
||||
dependencies:
|
||||
- cxx-compiler
|
||||
- onnx==1.*
|
||||
- onnxruntime==1.*
|
||||
- open-clip-torch==2.*
|
||||
- orjson==3.*
|
||||
- pip
|
||||
- python==3.11.*
|
||||
- pytorch
|
||||
- rich==13.*
|
||||
- safetensors==0.*
|
||||
- setuptools==68.*
|
||||
- torchvision
|
||||
- transformers==4.*
|
||||
- pip:
|
||||
- multilingual-clip
|
||||
- onnx-simplifier
|
||||
category: main
|
0
machine-learning/export/models/__init__.py
Normal file
0
machine-learning/export/models/__init__.py
Normal file
67
machine-learning/export/models/mclip.py
Normal file
67
machine-learning/export/models/mclip.py
Normal file
@ -0,0 +1,67 @@
|
||||
import tempfile
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from multilingual_clip.pt_multilingual_clip import MultilingualCLIP
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from .openclip import OpenCLIPModelConfig
|
||||
from .openclip import to_onnx as openclip_to_onnx
|
||||
from .optimize import optimize
|
||||
from .util import get_model_path
|
||||
|
||||
_MCLIP_TO_OPENCLIP = {
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-B-32": OpenCLIPModelConfig("ViT-B-32", "openai"),
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-B-16Plus": OpenCLIPModelConfig("ViT-B-16-plus-240", "laion400m_e32"),
|
||||
"M-CLIP/LABSE-Vit-L-14": OpenCLIPModelConfig("ViT-L-14", "openai"),
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-L-14": OpenCLIPModelConfig("ViT-L-14", "openai"),
|
||||
}
|
||||
|
||||
|
||||
def to_onnx(
|
||||
model_name: str,
|
||||
output_dir_visual: Path | str,
|
||||
output_dir_textual: Path | str,
|
||||
) -> None:
|
||||
textual_path = get_model_path(output_dir_textual)
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
model = MultilingualCLIP.from_pretrained(model_name, cache_dir=tmpdir)
|
||||
AutoTokenizer.from_pretrained(model_name).save_pretrained(output_dir_textual)
|
||||
|
||||
for param in model.parameters():
|
||||
param.requires_grad_(False)
|
||||
|
||||
export_text_encoder(model, textual_path)
|
||||
openclip_to_onnx(_MCLIP_TO_OPENCLIP[model_name], output_dir_visual)
|
||||
optimize(textual_path)
|
||||
|
||||
|
||||
def export_text_encoder(model: MultilingualCLIP, output_path: Path | str) -> None:
|
||||
output_path = Path(output_path)
|
||||
|
||||
def forward(self: MultilingualCLIP, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
||||
embs = self.transformer(input_ids, attention_mask)[0]
|
||||
embs = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None]
|
||||
embs = self.LinearTransformation(embs)
|
||||
return torch.nn.functional.normalize(embs, dim=-1)
|
||||
|
||||
# unfortunately need to monkeypatch for tracing to work here
|
||||
# otherwise it hits the 2GiB protobuf serialization limit
|
||||
MultilingualCLIP.forward = forward
|
||||
|
||||
args = (torch.ones(1, 77, dtype=torch.int32), torch.ones(1, 77, dtype=torch.int32))
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
torch.onnx.export(
|
||||
model,
|
||||
args,
|
||||
output_path.as_posix(),
|
||||
input_names=["input_ids", "attention_mask"],
|
||||
output_names=["text_embedding"],
|
||||
opset_version=17,
|
||||
dynamic_axes={
|
||||
"input_ids": {0: "batch_size", 1: "sequence_length"},
|
||||
"attention_mask": {0: "batch_size", 1: "sequence_length"},
|
||||
},
|
||||
)
|
109
machine-learning/export/models/openclip.py
Normal file
109
machine-learning/export/models/openclip.py
Normal file
@ -0,0 +1,109 @@
|
||||
import tempfile
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
|
||||
import open_clip
|
||||
import torch
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from .optimize import optimize
|
||||
from .util import get_model_path, save_config
|
||||
|
||||
|
||||
@dataclass
|
||||
class OpenCLIPModelConfig:
|
||||
name: str
|
||||
pretrained: str
|
||||
image_size: int = field(init=False)
|
||||
sequence_length: int = field(init=False)
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
open_clip_cfg = open_clip.get_model_config(self.name)
|
||||
if open_clip_cfg is None:
|
||||
raise ValueError(f"Unknown model {self.name}")
|
||||
self.image_size = open_clip_cfg["vision_cfg"]["image_size"]
|
||||
self.sequence_length = open_clip_cfg["text_cfg"]["context_length"]
|
||||
|
||||
|
||||
def to_onnx(
|
||||
model_cfg: OpenCLIPModelConfig,
|
||||
output_dir_visual: Path | str | None = None,
|
||||
output_dir_textual: Path | str | None = None,
|
||||
) -> None:
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
model = open_clip.create_model(
|
||||
model_cfg.name,
|
||||
pretrained=model_cfg.pretrained,
|
||||
jit=False,
|
||||
cache_dir=tmpdir,
|
||||
require_pretrained=True,
|
||||
)
|
||||
|
||||
text_vision_cfg = open_clip.get_model_config(model_cfg.name)
|
||||
|
||||
for param in model.parameters():
|
||||
param.requires_grad_(False)
|
||||
|
||||
if output_dir_visual is not None:
|
||||
output_dir_visual = Path(output_dir_visual)
|
||||
visual_path = get_model_path(output_dir_visual)
|
||||
|
||||
save_config(open_clip.get_model_preprocess_cfg(model), output_dir_visual / "preprocess_cfg.json")
|
||||
save_config(text_vision_cfg, output_dir_visual.parent / "config.json")
|
||||
export_image_encoder(model, model_cfg, visual_path)
|
||||
|
||||
optimize(visual_path)
|
||||
|
||||
if output_dir_textual is not None:
|
||||
output_dir_textual = Path(output_dir_textual)
|
||||
textual_path = get_model_path(output_dir_textual)
|
||||
|
||||
tokenizer_name = text_vision_cfg["text_cfg"].get("hf_tokenizer_name", "openai/clip-vit-base-patch32")
|
||||
AutoTokenizer.from_pretrained(tokenizer_name).save_pretrained(output_dir_textual)
|
||||
export_text_encoder(model, model_cfg, textual_path)
|
||||
optimize(textual_path)
|
||||
|
||||
|
||||
def export_image_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, output_path: Path | str) -> None:
|
||||
output_path = Path(output_path)
|
||||
|
||||
def encode_image(image: torch.Tensor) -> torch.Tensor:
|
||||
return model.encode_image(image, normalize=True)
|
||||
|
||||
args = (torch.randn(1, 3, model_cfg.image_size, model_cfg.image_size),)
|
||||
traced = torch.jit.trace(encode_image, args)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
torch.onnx.export(
|
||||
traced,
|
||||
args,
|
||||
output_path.as_posix(),
|
||||
input_names=["image"],
|
||||
output_names=["image_embedding"],
|
||||
opset_version=17,
|
||||
dynamic_axes={"image": {0: "batch_size"}},
|
||||
)
|
||||
|
||||
|
||||
def export_text_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, output_path: Path | str) -> None:
|
||||
output_path = Path(output_path)
|
||||
|
||||
def encode_text(text: torch.Tensor) -> torch.Tensor:
|
||||
return model.encode_text(text, normalize=True)
|
||||
|
||||
args = (torch.ones(1, model_cfg.sequence_length, dtype=torch.int32),)
|
||||
traced = torch.jit.trace(encode_text, args)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
torch.onnx.export(
|
||||
traced,
|
||||
args,
|
||||
output_path.as_posix(),
|
||||
input_names=["text"],
|
||||
output_names=["text_embedding"],
|
||||
opset_version=17,
|
||||
dynamic_axes={"text": {0: "batch_size"}},
|
||||
)
|
38
machine-learning/export/models/optimize.py
Normal file
38
machine-learning/export/models/optimize.py
Normal file
@ -0,0 +1,38 @@
|
||||
from pathlib import Path
|
||||
|
||||
import onnx
|
||||
import onnxruntime as ort
|
||||
import onnxsim
|
||||
|
||||
|
||||
def optimize_onnxsim(model_path: Path | str, output_path: Path | str) -> None:
|
||||
model_path = Path(model_path)
|
||||
output_path = Path(output_path)
|
||||
model = onnx.load(model_path.as_posix())
|
||||
model, check = onnxsim.simplify(model, skip_shape_inference=True)
|
||||
assert check, "Simplified ONNX model could not be validated"
|
||||
onnx.save(model, output_path.as_posix())
|
||||
|
||||
|
||||
def optimize_ort(
|
||||
model_path: Path | str,
|
||||
output_path: Path | str,
|
||||
level: ort.GraphOptimizationLevel = ort.GraphOptimizationLevel.ORT_ENABLE_BASIC,
|
||||
) -> None:
|
||||
model_path = Path(model_path)
|
||||
output_path = Path(output_path)
|
||||
|
||||
sess_options = ort.SessionOptions()
|
||||
sess_options.graph_optimization_level = level
|
||||
sess_options.optimized_model_filepath = output_path.as_posix()
|
||||
|
||||
ort.InferenceSession(model_path.as_posix(), providers=["CPUExecutionProvider"], sess_options=sess_options)
|
||||
|
||||
|
||||
def optimize(model_path: Path | str) -> None:
|
||||
model_path = Path(model_path)
|
||||
|
||||
optimize_ort(model_path, model_path)
|
||||
# onnxsim serializes large models as a blob, which uses much more memory when loading the model at runtime
|
||||
if not any(file.name.startswith("Constant") for file in model_path.parent.iterdir()):
|
||||
optimize_onnxsim(model_path, model_path)
|
15
machine-learning/export/models/util.py
Normal file
15
machine-learning/export/models/util.py
Normal file
@ -0,0 +1,15 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
|
||||
def get_model_path(output_dir: Path | str) -> Path:
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
return output_dir / "model.onnx"
|
||||
|
||||
|
||||
def save_config(config: Any, output_path: Path | str) -> None:
|
||||
output_path = Path(output_path)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
json.dump(config, output_path.open("w"))
|
76
machine-learning/export/run.py
Normal file
76
machine-learning/export/run.py
Normal file
@ -0,0 +1,76 @@
|
||||
import gc
|
||||
import os
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
from huggingface_hub import create_repo, login, upload_folder
|
||||
from models import mclip, openclip
|
||||
from rich.progress import Progress
|
||||
|
||||
models = [
|
||||
"RN50::openai",
|
||||
"RN50::yfcc15m",
|
||||
"RN50::cc12m",
|
||||
"RN101::openai",
|
||||
"RN101::yfcc15m",
|
||||
"RN50x4::openai",
|
||||
"RN50x16::openai",
|
||||
"RN50x64::openai",
|
||||
"ViT-B-32::openai",
|
||||
"ViT-B-32::laion2b_e16",
|
||||
"ViT-B-32::laion400m_e31",
|
||||
"ViT-B-32::laion400m_e32",
|
||||
"ViT-B-32::laion2b-s34b-b79k",
|
||||
"ViT-B-16::openai",
|
||||
"ViT-B-16::laion400m_e31",
|
||||
"ViT-B-16::laion400m_e32",
|
||||
"ViT-B-16-plus-240::laion400m_e31",
|
||||
"ViT-B-16-plus-240::laion400m_e32",
|
||||
"ViT-L-14::openai",
|
||||
"ViT-L-14::laion400m_e31",
|
||||
"ViT-L-14::laion400m_e32",
|
||||
"ViT-L-14::laion2b-s32b-b82k",
|
||||
"ViT-L-14-336::openai",
|
||||
"ViT-H-14::laion2b-s32b-b79k",
|
||||
"ViT-g-14::laion2b-s12b-b42k",
|
||||
"M-CLIP/LABSE-Vit-L-14",
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-B-32",
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-B-16Plus",
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-L-14",
|
||||
]
|
||||
|
||||
login(token=os.environ["HF_AUTH_TOKEN"])
|
||||
|
||||
with Progress() as progress:
|
||||
task1 = progress.add_task("[green]Exporting models...", total=len(models))
|
||||
task2 = progress.add_task("[yellow]Uploading models...", total=len(models))
|
||||
|
||||
with TemporaryDirectory() as tmp:
|
||||
tmpdir = Path(tmp)
|
||||
for model in models:
|
||||
model_name = model.split("/")[-1].replace("::", "__")
|
||||
config_path = tmpdir / model_name / "config.json"
|
||||
|
||||
def upload() -> None:
|
||||
progress.update(task2, description=f"[yellow]Uploading {model_name}")
|
||||
repo_id = f"immich-app/{model_name}"
|
||||
|
||||
create_repo(repo_id, exist_ok=True)
|
||||
upload_folder(repo_id=repo_id, folder_path=tmpdir / model_name)
|
||||
progress.update(task2, advance=1)
|
||||
|
||||
def export() -> None:
|
||||
progress.update(task1, description=f"[green]Exporting {model_name}")
|
||||
visual_dir = tmpdir / model_name / "visual"
|
||||
textual_dir = tmpdir / model_name / "textual"
|
||||
if model.startswith("M-CLIP"):
|
||||
mclip.to_onnx(model, visual_dir, textual_dir)
|
||||
else:
|
||||
name, _, pretrained = model_name.partition("__")
|
||||
openclip.to_onnx(openclip.OpenCLIPModelConfig(name, pretrained), visual_dir, textual_dir)
|
||||
|
||||
progress.update(task1, advance=1)
|
||||
gc.collect()
|
||||
|
||||
export()
|
||||
upload()
|
@ -1,11 +1,12 @@
|
||||
from io import BytesIO
|
||||
import json
|
||||
from argparse import ArgumentParser
|
||||
from io import BytesIO
|
||||
from typing import Any
|
||||
|
||||
from locust import HttpUser, events, task
|
||||
from locust.env import Environment
|
||||
from PIL import Image
|
||||
from argparse import ArgumentParser
|
||||
|
||||
byte_image = BytesIO()
|
||||
|
||||
|
||||
@ -14,11 +15,21 @@ def _(parser: ArgumentParser) -> None:
|
||||
parser.add_argument("--tag-model", type=str, default="microsoft/resnet-50")
|
||||
parser.add_argument("--clip-model", type=str, default="ViT-B-32::openai")
|
||||
parser.add_argument("--face-model", type=str, default="buffalo_l")
|
||||
parser.add_argument("--tag-min-score", type=int, default=0.0,
|
||||
help="Returns all tags at or above this score. The default returns all tags.")
|
||||
parser.add_argument("--face-min-score", type=int, default=0.034,
|
||||
help=("Returns all faces at or above this score. The default returns 1 face per request; "
|
||||
"setting this to 0 blows up the number of faces to the thousands."))
|
||||
parser.add_argument(
|
||||
"--tag-min-score",
|
||||
type=int,
|
||||
default=0.0,
|
||||
help="Returns all tags at or above this score. The default returns all tags.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--face-min-score",
|
||||
type=int,
|
||||
default=0.034,
|
||||
help=(
|
||||
"Returns all faces at or above this score. The default returns 1 face per request; "
|
||||
"setting this to 0 blows up the number of faces to the thousands."
|
||||
),
|
||||
)
|
||||
parser.add_argument("--image-size", type=int, default=1000)
|
||||
|
||||
|
||||
@ -62,7 +73,7 @@ class CLIPTextFormDataLoadTest(InferenceLoadTest):
|
||||
("modelName", self.environment.parsed_options.clip_model),
|
||||
("modelType", "clip"),
|
||||
("options", json.dumps({"mode": "text"})),
|
||||
("text", "test search query")
|
||||
("text", "test search query"),
|
||||
]
|
||||
self.client.post("/predict", data=data)
|
||||
|
||||
@ -88,5 +99,5 @@ class RecognitionFormDataLoadTest(InferenceLoadTest):
|
||||
("options", json.dumps({"minScore": self.environment.parsed_options.face_min_score})),
|
||||
]
|
||||
files = {"image": self.data}
|
||||
|
||||
|
||||
self.client.post("/predict", data=data, files=files)
|
||||
|
3875
machine-learning/poetry.lock
generated
3875
machine-learning/poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -9,8 +9,8 @@ packages = [{include = "app"}]
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.11"
|
||||
torch = [
|
||||
{markers = "platform_machine == 'arm64' or platform_machine == 'aarch64'", version = "=2.0.1", source = "pypi"},
|
||||
{markers = "platform_machine == 'amd64' or platform_machine == 'x86_64'", version = "=2.0.1", source = "pytorch-cpu"}
|
||||
{markers = "platform_machine == 'arm64' or platform_machine == 'aarch64'", version = "=2.1.0", source = "pypi"},
|
||||
{markers = "platform_machine == 'amd64' or platform_machine == 'x86_64'", version = "=2.1.0", source = "pytorch-cpu"}
|
||||
]
|
||||
transformers = "^4.29.2"
|
||||
onnxruntime = "^1.15.0"
|
||||
@ -22,14 +22,9 @@ uvicorn = {extras = ["standard"], version = "^0.22.0"}
|
||||
pydantic = "^1.10.8"
|
||||
aiocache = "^0.12.1"
|
||||
optimum = "^1.9.1"
|
||||
torchvision = [
|
||||
{markers = "platform_machine == 'arm64' or platform_machine == 'aarch64'", version = "=0.15.2", source = "pypi"},
|
||||
{markers = "platform_machine == 'amd64' or platform_machine == 'x86_64'", version = "=0.15.2", source = "pytorch-cpu"}
|
||||
]
|
||||
rich = "^13.4.2"
|
||||
ftfy = "^6.1.1"
|
||||
setuptools = "^68.0.0"
|
||||
open-clip-torch = "^2.20.0"
|
||||
python-multipart = "^0.0.6"
|
||||
orjson = "^3.9.5"
|
||||
safetensors = "0.3.2"
|
||||
@ -63,6 +58,7 @@ warn_redundant_casts = true
|
||||
disallow_any_generics = true
|
||||
check_untyped_defs = true
|
||||
disallow_untyped_defs = true
|
||||
ignore_missing_imports = true
|
||||
|
||||
[tool.pydantic-mypy]
|
||||
init_forbid_extra = true
|
||||
@ -70,30 +66,6 @@ init_typed = true
|
||||
warn_required_dynamic_aliases = true
|
||||
warn_untyped_fields = true
|
||||
|
||||
[[tool.mypy.overrides]]
|
||||
module = [
|
||||
"huggingface_hub",
|
||||
"transformers",
|
||||
"gunicorn",
|
||||
"cv2",
|
||||
"insightface.model_zoo",
|
||||
"insightface.utils.face_align",
|
||||
"insightface.utils.storage",
|
||||
"onnxruntime",
|
||||
"optimum",
|
||||
"optimum.pipelines",
|
||||
"optimum.onnxruntime",
|
||||
"clip_server.model.clip",
|
||||
"clip_server.model.clip_onnx",
|
||||
"clip_server.model.pretrained_models",
|
||||
"clip_server.model.tokenization",
|
||||
"torchvision.transforms",
|
||||
"aiocache.backends.memory",
|
||||
"aiocache.lock",
|
||||
"aiocache.plugins"
|
||||
]
|
||||
ignore_missing_imports = true
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 120
|
||||
target-version = "py311"
|
||||
|
@ -1,2 +0,0 @@
|
||||
# requirements to be installed with `--no-deps` flag
|
||||
clip-server==0.8.*
|
@ -193,7 +193,7 @@ describe(SmartInfoService.name, () => {
|
||||
expect(machineMock.encodeImage).toHaveBeenCalledWith(
|
||||
'http://immich-machine-learning:3003',
|
||||
{ imagePath: 'path/to/resize.ext' },
|
||||
{ enabled: true, modelName: 'ViT-B-32::openai' },
|
||||
{ enabled: true, modelName: 'ViT-B-32__openai' },
|
||||
);
|
||||
expect(smartMock.upsert).toHaveBeenCalledWith({
|
||||
assetId: 'asset-1',
|
||||
|
@ -67,7 +67,7 @@ export const defaults = Object.freeze<SystemConfig>({
|
||||
},
|
||||
clip: {
|
||||
enabled: true,
|
||||
modelName: 'ViT-B-32::openai',
|
||||
modelName: 'ViT-B-32__openai',
|
||||
},
|
||||
facialRecognition: {
|
||||
enabled: true,
|
||||
|
@ -68,7 +68,7 @@ const updatedConfig = Object.freeze<SystemConfig>({
|
||||
},
|
||||
clip: {
|
||||
enabled: true,
|
||||
modelName: 'ViT-B-32::openai',
|
||||
modelName: 'ViT-B-32__openai',
|
||||
},
|
||||
facialRecognition: {
|
||||
enabled: true,
|
||||
|
@ -140,9 +140,8 @@
|
||||
isEdited={machineLearningConfig.clip.modelName !== savedConfig.clip.modelName}
|
||||
>
|
||||
<p slot="desc" class="immich-form-label pb-2 text-sm">
|
||||
The name of a CLIP model listed <a
|
||||
href="https://clip-as-service.jina.ai/user-guides/benchmark/#size-and-efficiency"><u>here</u></a
|
||||
>. Note that you must re-run the 'Encode CLIP' job for all images upon changing a model.
|
||||
The name of a CLIP model listed <a href="https://huggingface.co/immich-app"><u>here</u></a>. Note that
|
||||
you must re-run the 'Encode CLIP' job for all images upon changing a model.
|
||||
</p>
|
||||
</SettingInputField>
|
||||
</div>
|
||||
|
Loading…
Reference in New Issue
Block a user