1
0
mirror of https://github.com/immich-app/immich.git synced 2024-11-30 09:47:31 +02:00
immich/machine-learning/app/schemas.py

119 lines
2.4 KiB
Python
Raw Normal View History

from enum import Enum
from typing import Any, Literal, Protocol, TypeGuard, TypeVar
import numpy as np
import numpy.typing as npt
from typing_extensions import TypedDict
class StrEnum(str, Enum):
value: str
def __str__(self) -> str:
return self.value
class BoundingBox(TypedDict):
x1: int
y1: int
x2: int
y2: int
class ModelTask(StrEnum):
FACIAL_RECOGNITION = "facial-recognition"
SEARCH = "clip"
class ModelType(StrEnum):
DETECTION = "detection"
RECOGNITION = "recognition"
TEXTUAL = "textual"
VISUAL = "visual"
class ModelFormat(StrEnum):
ARMNN = "armnn"
ONNX = "onnx"
class ModelSource(StrEnum):
INSIGHTFACE = "insightface"
MCLIP = "mclip"
OPENCLIP = "openclip"
ModelIdentity = tuple[ModelType, ModelTask]
2024-06-25 18:00:24 +02:00
class SessionNode(Protocol):
@property
def name(self) -> str | None: ...
@property
def shape(self) -> tuple[int, ...]: ...
class ModelSession(Protocol):
def run(
self,
output_names: list[str] | None,
input_feed: dict[str, npt.NDArray[np.float32]] | dict[str, npt.NDArray[np.int32]],
run_options: Any = None,
) -> list[npt.NDArray[np.float32]]: ...
2024-06-25 18:00:24 +02:00
def get_inputs(self) -> list[SessionNode]: ...
def get_outputs(self) -> list[SessionNode]: ...
class HasProfiling(Protocol):
profiling: dict[str, float]
class FaceDetectionOutput(TypedDict):
boxes: npt.NDArray[np.float32]
scores: npt.NDArray[np.float32]
landmarks: npt.NDArray[np.float32]
class DetectedFace(TypedDict):
boundingBox: BoundingBox
embedding: npt.NDArray[np.float32]
score: float
FacialRecognitionOutput = list[DetectedFace]
class PipelineEntry(TypedDict):
modelName: str
options: dict[str, Any]
PipelineRequest = dict[ModelTask, dict[ModelType, PipelineEntry]]
class InferenceEntry(TypedDict):
name: str
task: ModelTask
type: ModelType
options: dict[str, Any]
InferenceEntries = tuple[list[InferenceEntry], list[InferenceEntry]]
InferenceResponse = dict[ModelTask | Literal["imageHeight"] | Literal["imageWidth"], Any]
def has_profiling(obj: Any) -> TypeGuard[HasProfiling]:
return hasattr(obj, "profiling") and isinstance(obj.profiling, dict)
def is_ndarray(obj: Any, dtype: "type[np._DTypeScalar_co]") -> "TypeGuard[npt.NDArray[np._DTypeScalar_co]]":
return isinstance(obj, np.ndarray) and obj.dtype == dtype
T = TypeVar("T")