mirror of
https://github.com/immich-app/immich.git
synced 2024-11-21 18:16:55 +02:00
feat(ml): add more search models (#11468)
* update export code * add uuid glob, sort model names * add new models to ml, sort names * add new models to server, sort by dims and name * typo in name * update export dependencies * onnx save function * format
This commit is contained in:
parent
2423bb36c4
commit
41580696c7
@ -65,7 +65,7 @@ class Ann(metaclass=_Singleton):
|
||||
self.input_shapes: dict[int, tuple[tuple[int], ...]] = {}
|
||||
self.ann: int | None = None
|
||||
self.new()
|
||||
|
||||
|
||||
if self.tuning_file is not None:
|
||||
# make sure tuning file exists (without clearing contents)
|
||||
# once filled, the tuning file reduces the cost/time of the first
|
||||
@ -105,7 +105,7 @@ class Ann(metaclass=_Singleton):
|
||||
raise ValueError("model_path must be a file with extension .armnn, .tflite or .onnx")
|
||||
if not exists(model_path):
|
||||
raise ValueError("model_path must point to an existing file!")
|
||||
|
||||
|
||||
save_cached_network = False
|
||||
if cached_network_path is not None and not exists(cached_network_path):
|
||||
save_cached_network = True
|
||||
|
@ -2,53 +2,64 @@ from app.config import clean_name
|
||||
from app.schemas import ModelSource
|
||||
|
||||
_OPENCLIP_MODELS = {
|
||||
"RN50__openai",
|
||||
"RN50__yfcc15m",
|
||||
"RN50__cc12m",
|
||||
"RN101__openai",
|
||||
"RN101__yfcc15m",
|
||||
"RN50x4__openai",
|
||||
"RN50__cc12m",
|
||||
"RN50__openai",
|
||||
"RN50__yfcc15m",
|
||||
"RN50x16__openai",
|
||||
"RN50x4__openai",
|
||||
"RN50x64__openai",
|
||||
"ViT-B-32__openai",
|
||||
"ViT-B-16-SigLIP-256__webli",
|
||||
"ViT-B-16-SigLIP-384__webli",
|
||||
"ViT-B-16-SigLIP-512__webli",
|
||||
"ViT-B-16-SigLIP-i18n-256__webli",
|
||||
"ViT-B-16-SigLIP__webli",
|
||||
"ViT-B-16-plus-240__laion400m_e31",
|
||||
"ViT-B-16-plus-240__laion400m_e32",
|
||||
"ViT-B-16__laion400m_e31",
|
||||
"ViT-B-16__laion400m_e32",
|
||||
"ViT-B-16__openai",
|
||||
"ViT-B-32__laion2b-s34b-b79k",
|
||||
"ViT-B-32__laion2b_e16",
|
||||
"ViT-B-32__laion400m_e31",
|
||||
"ViT-B-32__laion400m_e32",
|
||||
"ViT-B-32__laion2b-s34b-b79k",
|
||||
"ViT-B-16__openai",
|
||||
"ViT-B-16__laion400m_e31",
|
||||
"ViT-B-16__laion400m_e32",
|
||||
"ViT-B-16-plus-240__laion400m_e31",
|
||||
"ViT-B-16-plus-240__laion400m_e32",
|
||||
"ViT-L-14__openai",
|
||||
"ViT-B-32__openai",
|
||||
"ViT-H-14-378-quickgelu__dfn5b",
|
||||
"ViT-H-14-quickgelu__dfn5b",
|
||||
"ViT-H-14__laion2b-s32b-b79k",
|
||||
"ViT-L-14-336__openai",
|
||||
"ViT-L-14-quickgelu__dfn2b",
|
||||
"ViT-L-14__laion2b-s32b-b82k",
|
||||
"ViT-L-14__laion400m_e31",
|
||||
"ViT-L-14__laion400m_e32",
|
||||
"ViT-L-14__laion2b-s32b-b82k",
|
||||
"ViT-L-14-336__openai",
|
||||
"ViT-H-14__laion2b-s32b-b79k",
|
||||
"ViT-L-14__openai",
|
||||
"ViT-L-16-SigLIP-256__webli",
|
||||
"ViT-L-16-SigLIP-384__webli",
|
||||
"ViT-SO400M-14-SigLIP-384__webli",
|
||||
"ViT-g-14__laion2b-s12b-b42k",
|
||||
"ViT-L-14-quickgelu__dfn2b",
|
||||
"ViT-H-14-quickgelu__dfn5b",
|
||||
"ViT-H-14-378-quickgelu__dfn5b",
|
||||
"XLM-Roberta-Base-ViT-B-32__laion5b_s13b_b90k",
|
||||
"XLM-Roberta-Large-ViT-H-14__frozen_laion5b_s13b_b90k",
|
||||
"nllb-clip-base-siglip__mrl",
|
||||
"nllb-clip-base-siglip__v1",
|
||||
"nllb-clip-large-siglip__mrl",
|
||||
"nllb-clip-large-siglip__v1",
|
||||
}
|
||||
|
||||
|
||||
_MCLIP_MODELS = {
|
||||
"LABSE-Vit-L-14",
|
||||
"XLM-Roberta-Large-Vit-B-32",
|
||||
"XLM-Roberta-Large-Vit-B-16Plus",
|
||||
"XLM-Roberta-Large-Vit-B-32",
|
||||
"XLM-Roberta-Large-Vit-L-14",
|
||||
}
|
||||
|
||||
|
||||
_INSIGHTFACE_MODELS = {
|
||||
"antelopev2",
|
||||
"buffalo_l",
|
||||
"buffalo_m",
|
||||
"buffalo_s",
|
||||
"buffalo_m",
|
||||
"buffalo_l",
|
||||
}
|
||||
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -2,7 +2,7 @@ name: base
|
||||
channels:
|
||||
- conda-forge
|
||||
- nvidia
|
||||
- pytorch-nightly
|
||||
- pytorch
|
||||
platforms:
|
||||
- linux-64
|
||||
dependencies:
|
||||
@ -13,7 +13,7 @@ dependencies:
|
||||
- orjson==3.*
|
||||
- pip
|
||||
- python==3.11.*
|
||||
- pytorch
|
||||
- pytorch>=2.3
|
||||
- rich==13.*
|
||||
- safetensors==0.*
|
||||
- setuptools==68.*
|
||||
@ -21,5 +21,5 @@ dependencies:
|
||||
- transformers==4.*
|
||||
- pip:
|
||||
- multilingual-clip
|
||||
- onnx-simplifier
|
||||
- onnxsim
|
||||
category: main
|
||||
|
@ -1,3 +1,4 @@
|
||||
import os
|
||||
import tempfile
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
@ -8,7 +9,6 @@ from transformers import AutoTokenizer
|
||||
|
||||
from .openclip import OpenCLIPModelConfig
|
||||
from .openclip import to_onnx as openclip_to_onnx
|
||||
from .optimize import optimize
|
||||
from .util import get_model_path
|
||||
|
||||
_MCLIP_TO_OPENCLIP = {
|
||||
@ -23,18 +23,20 @@ def to_onnx(
|
||||
model_name: str,
|
||||
output_dir_visual: Path | str,
|
||||
output_dir_textual: Path | str,
|
||||
) -> None:
|
||||
) -> tuple[Path, Path]:
|
||||
textual_path = get_model_path(output_dir_textual)
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
model = MultilingualCLIP.from_pretrained(model_name, cache_dir=tmpdir)
|
||||
model = MultilingualCLIP.from_pretrained(model_name, cache_dir=os.environ.get("CACHE_DIR", tmpdir))
|
||||
AutoTokenizer.from_pretrained(model_name).save_pretrained(output_dir_textual)
|
||||
|
||||
model.eval()
|
||||
for param in model.parameters():
|
||||
param.requires_grad_(False)
|
||||
|
||||
export_text_encoder(model, textual_path)
|
||||
openclip_to_onnx(_MCLIP_TO_OPENCLIP[model_name], output_dir_visual)
|
||||
optimize(textual_path)
|
||||
visual_path, _ = openclip_to_onnx(_MCLIP_TO_OPENCLIP[model_name], output_dir_visual)
|
||||
assert visual_path is not None, "Visual model export failed"
|
||||
return visual_path, textual_path
|
||||
|
||||
|
||||
def export_text_encoder(model: MultilingualCLIP, output_path: Path | str) -> None:
|
||||
@ -58,10 +60,10 @@ def export_text_encoder(model: MultilingualCLIP, output_path: Path | str) -> Non
|
||||
args,
|
||||
output_path.as_posix(),
|
||||
input_names=["input_ids", "attention_mask"],
|
||||
output_names=["text_embedding"],
|
||||
output_names=["embedding"],
|
||||
opset_version=17,
|
||||
dynamic_axes={
|
||||
"input_ids": {0: "batch_size", 1: "sequence_length"},
|
||||
"attention_mask": {0: "batch_size", 1: "sequence_length"},
|
||||
},
|
||||
# dynamic_axes={
|
||||
# "input_ids": {0: "batch_size", 1: "sequence_length"},
|
||||
# "attention_mask": {0: "batch_size", 1: "sequence_length"},
|
||||
# },
|
||||
)
|
||||
|
@ -1,3 +1,4 @@
|
||||
import os
|
||||
import tempfile
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
@ -7,7 +8,6 @@ import open_clip
|
||||
import torch
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from .optimize import optimize
|
||||
from .util import get_model_path, save_config
|
||||
|
||||
|
||||
@ -23,25 +23,28 @@ class OpenCLIPModelConfig:
|
||||
if open_clip_cfg is None:
|
||||
raise ValueError(f"Unknown model {self.name}")
|
||||
self.image_size = open_clip_cfg["vision_cfg"]["image_size"]
|
||||
self.sequence_length = open_clip_cfg["text_cfg"]["context_length"]
|
||||
self.sequence_length = open_clip_cfg["text_cfg"].get("context_length", 77)
|
||||
|
||||
|
||||
def to_onnx(
|
||||
model_cfg: OpenCLIPModelConfig,
|
||||
output_dir_visual: Path | str | None = None,
|
||||
output_dir_textual: Path | str | None = None,
|
||||
) -> None:
|
||||
) -> tuple[Path | None, Path | None]:
|
||||
visual_path = None
|
||||
textual_path = None
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
model = open_clip.create_model(
|
||||
model_cfg.name,
|
||||
pretrained=model_cfg.pretrained,
|
||||
jit=False,
|
||||
cache_dir=tmpdir,
|
||||
cache_dir=os.environ.get("CACHE_DIR", tmpdir),
|
||||
require_pretrained=True,
|
||||
)
|
||||
|
||||
text_vision_cfg = open_clip.get_model_config(model_cfg.name)
|
||||
|
||||
model.eval()
|
||||
for param in model.parameters():
|
||||
param.requires_grad_(False)
|
||||
|
||||
@ -53,8 +56,6 @@ def to_onnx(
|
||||
save_config(text_vision_cfg, output_dir_visual.parent / "config.json")
|
||||
export_image_encoder(model, model_cfg, visual_path)
|
||||
|
||||
optimize(visual_path)
|
||||
|
||||
if output_dir_textual is not None:
|
||||
output_dir_textual = Path(output_dir_textual)
|
||||
textual_path = get_model_path(output_dir_textual)
|
||||
@ -62,7 +63,7 @@ def to_onnx(
|
||||
tokenizer_name = text_vision_cfg["text_cfg"].get("hf_tokenizer_name", "openai/clip-vit-base-patch32")
|
||||
AutoTokenizer.from_pretrained(tokenizer_name).save_pretrained(output_dir_textual)
|
||||
export_text_encoder(model, model_cfg, textual_path)
|
||||
optimize(textual_path)
|
||||
return visual_path, textual_path
|
||||
|
||||
|
||||
def export_image_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, output_path: Path | str) -> None:
|
||||
@ -83,9 +84,9 @@ def export_image_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig,
|
||||
args,
|
||||
output_path.as_posix(),
|
||||
input_names=["image"],
|
||||
output_names=["image_embedding"],
|
||||
output_names=["embedding"],
|
||||
opset_version=17,
|
||||
dynamic_axes={"image": {0: "batch_size"}},
|
||||
# dynamic_axes={"image": {0: "batch_size"}},
|
||||
)
|
||||
|
||||
|
||||
@ -107,7 +108,7 @@ def export_text_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, o
|
||||
args,
|
||||
output_path.as_posix(),
|
||||
input_names=["text"],
|
||||
output_names=["text_embedding"],
|
||||
output_names=["embedding"],
|
||||
opset_version=17,
|
||||
dynamic_axes={"text": {0: "batch_size"}},
|
||||
# dynamic_axes={"text": {0: "batch_size"}},
|
||||
)
|
||||
|
@ -5,13 +5,26 @@ import onnxruntime as ort
|
||||
import onnxsim
|
||||
|
||||
|
||||
def save_onnx(model: onnx.ModelProto, output_path: Path | str) -> None:
|
||||
try:
|
||||
onnx.save(model, output_path)
|
||||
except ValueError as e:
|
||||
if "The proto size is larger than the 2 GB limit." in str(e):
|
||||
onnx.save(model, output_path, save_as_external_data=True, size_threshold=1_000_000)
|
||||
else:
|
||||
raise e
|
||||
|
||||
|
||||
def optimize_onnxsim(model_path: Path | str, output_path: Path | str) -> None:
|
||||
model_path = Path(model_path)
|
||||
output_path = Path(output_path)
|
||||
model = onnx.load(model_path.as_posix())
|
||||
model, check = onnxsim.simplify(model, skip_shape_inference=True)
|
||||
model, check = onnxsim.simplify(model)
|
||||
assert check, "Simplified ONNX model could not be validated"
|
||||
onnx.save(model, output_path.as_posix())
|
||||
for file in model_path.parent.iterdir():
|
||||
if file.name.startswith("Constant") or "onnx" in file.name or file.suffix == ".weight":
|
||||
file.unlink()
|
||||
save_onnx(model, output_path)
|
||||
|
||||
|
||||
def optimize_ort(
|
||||
@ -33,6 +46,4 @@ def optimize(model_path: Path | str) -> None:
|
||||
model_path = Path(model_path)
|
||||
|
||||
optimize_ort(model_path, model_path)
|
||||
# onnxsim serializes large models as a blob, which uses much more memory when loading the model at runtime
|
||||
if not any(file.name.startswith("Constant") for file in model_path.parent.iterdir()):
|
||||
optimize_onnxsim(model_path, model_path)
|
||||
optimize_onnxsim(model_path, model_path)
|
||||
|
@ -3,74 +3,111 @@ import os
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
from huggingface_hub import create_repo, login, upload_folder
|
||||
import torch
|
||||
from huggingface_hub import create_repo, upload_folder
|
||||
from models import mclip, openclip
|
||||
from models.optimize import optimize
|
||||
from rich.progress import Progress
|
||||
|
||||
models = [
|
||||
"RN50::openai",
|
||||
"RN50::yfcc15m",
|
||||
"RN50::cc12m",
|
||||
"M-CLIP/LABSE-Vit-L-14",
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-B-16Plus",
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-B-32",
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-L-14",
|
||||
"RN101::openai",
|
||||
"RN101::yfcc15m",
|
||||
"RN50x4::openai",
|
||||
"RN50::cc12m",
|
||||
"RN50::openai",
|
||||
"RN50::yfcc15m",
|
||||
"RN50x16::openai",
|
||||
"RN50x4::openai",
|
||||
"RN50x64::openai",
|
||||
"ViT-B-32::openai",
|
||||
"ViT-B-16-SigLIP-256::webli",
|
||||
"ViT-B-16-SigLIP-384::webli",
|
||||
"ViT-B-16-SigLIP-512::webli",
|
||||
"ViT-B-16-SigLIP-i18n-256::webli",
|
||||
"ViT-B-16-SigLIP::webli",
|
||||
"ViT-B-16-plus-240::laion400m_e31",
|
||||
"ViT-B-16-plus-240::laion400m_e32",
|
||||
"ViT-B-16::laion400m_e31",
|
||||
"ViT-B-16::laion400m_e32",
|
||||
"ViT-B-16::openai",
|
||||
"ViT-B-32::laion2b-s34b-b79k",
|
||||
"ViT-B-32::laion2b_e16",
|
||||
"ViT-B-32::laion400m_e31",
|
||||
"ViT-B-32::laion400m_e32",
|
||||
"ViT-B-32::laion2b-s34b-b79k",
|
||||
"ViT-B-16::openai",
|
||||
"ViT-B-16::laion400m_e31",
|
||||
"ViT-B-16::laion400m_e32",
|
||||
"ViT-B-16-plus-240::laion400m_e31",
|
||||
"ViT-B-16-plus-240::laion400m_e32",
|
||||
"ViT-L-14::openai",
|
||||
"ViT-B-32::openai",
|
||||
"ViT-H-14-378-quickgelu::dfn5b",
|
||||
"ViT-H-14-quickgelu::dfn5b",
|
||||
"ViT-H-14::laion2b-s32b-b79k",
|
||||
"ViT-L-14-336::openai",
|
||||
"ViT-L-14-quickgelu::dfn2b",
|
||||
"ViT-L-14::laion2b-s32b-b82k",
|
||||
"ViT-L-14::laion400m_e31",
|
||||
"ViT-L-14::laion400m_e32",
|
||||
"ViT-L-14::laion2b-s32b-b82k",
|
||||
"ViT-L-14-336::openai",
|
||||
"ViT-H-14::laion2b-s32b-b79k",
|
||||
"ViT-L-14::openai",
|
||||
"ViT-L-16-SigLIP-256::webli",
|
||||
"ViT-L-16-SigLIP-384::webli",
|
||||
"ViT-SO400M-14-SigLIP-384::webli",
|
||||
"ViT-g-14::laion2b-s12b-b42k",
|
||||
"M-CLIP/LABSE-Vit-L-14",
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-B-32",
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-B-16Plus",
|
||||
"M-CLIP/XLM-Roberta-Large-Vit-L-14",
|
||||
"nllb-clip-base-siglip::mrl",
|
||||
"nllb-clip-base-siglip::v1",
|
||||
"nllb-clip-large-siglip::mrl",
|
||||
"nllb-clip-large-siglip::v1",
|
||||
"xlm-roberta-base-ViT-B-32::laion5b_s13b_b90k",
|
||||
"xlm-roberta-large-ViT-H-14::frozen_laion5b_s13b_b90k",
|
||||
]
|
||||
|
||||
login(token=os.environ["HF_AUTH_TOKEN"])
|
||||
# glob to delete old UUID blobs when reuploading models
|
||||
uuid_char = "[a-fA-F0-9]"
|
||||
uuid_glob = uuid_char * 8 + "-" + uuid_char * 4 + "-" + uuid_char * 4 + "-" + uuid_char * 4 + "-" + uuid_char * 12
|
||||
|
||||
# remote repo files to be deleted before uploading
|
||||
# deletion is in the same commit as the upload, so it's atomic
|
||||
delete_patterns = ["**/*onnx*", "**/Constant*", "**/*.weight", "**/*.bias", f"**/{uuid_glob}"]
|
||||
|
||||
with Progress() as progress:
|
||||
task1 = progress.add_task("[green]Exporting models...", total=len(models))
|
||||
task2 = progress.add_task("[yellow]Uploading models...", total=len(models))
|
||||
|
||||
task = progress.add_task("[green]Exporting models...", total=len(models))
|
||||
token = os.environ.get("HF_AUTH_TOKEN")
|
||||
torch.backends.mha.set_fastpath_enabled(False)
|
||||
with TemporaryDirectory() as tmp:
|
||||
tmpdir = Path(tmp)
|
||||
for model in models:
|
||||
model_name = model.split("/")[-1].replace("::", "__")
|
||||
hf_model_name = model_name.replace("xlm-roberta-large", "XLM-Roberta-Large")
|
||||
hf_model_name = model_name.replace("xlm-roberta-base", "XLM-Roberta-Base")
|
||||
config_path = tmpdir / model_name / "config.json"
|
||||
|
||||
def upload() -> None:
|
||||
progress.update(task2, description=f"[yellow]Uploading {model_name}")
|
||||
repo_id = f"immich-app/{model_name}"
|
||||
|
||||
create_repo(repo_id, exist_ok=True)
|
||||
upload_folder(repo_id=repo_id, folder_path=tmpdir / model_name)
|
||||
progress.update(task2, advance=1)
|
||||
|
||||
def export() -> None:
|
||||
progress.update(task1, description=f"[green]Exporting {model_name}")
|
||||
visual_dir = tmpdir / model_name / "visual"
|
||||
textual_dir = tmpdir / model_name / "textual"
|
||||
progress.update(task, description=f"[green]Exporting {hf_model_name}")
|
||||
visual_dir = tmpdir / hf_model_name / "visual"
|
||||
textual_dir = tmpdir / hf_model_name / "textual"
|
||||
if model.startswith("M-CLIP"):
|
||||
mclip.to_onnx(model, visual_dir, textual_dir)
|
||||
visual_path, textual_path = mclip.to_onnx(model, visual_dir, textual_dir)
|
||||
else:
|
||||
name, _, pretrained = model_name.partition("__")
|
||||
openclip.to_onnx(openclip.OpenCLIPModelConfig(name, pretrained), visual_dir, textual_dir)
|
||||
config = openclip.OpenCLIPModelConfig(name, pretrained)
|
||||
visual_path, textual_path = openclip.to_onnx(config, visual_dir, textual_dir)
|
||||
progress.update(task, description=f"[green]Optimizing {hf_model_name} (visual)")
|
||||
optimize(visual_path)
|
||||
progress.update(task, description=f"[green]Optimizing {hf_model_name} (textual)")
|
||||
optimize(textual_path)
|
||||
|
||||
progress.update(task1, advance=1)
|
||||
gc.collect()
|
||||
|
||||
def upload() -> None:
|
||||
progress.update(task, description=f"[yellow]Uploading {hf_model_name}")
|
||||
repo_id = f"immich-app/{hf_model_name}"
|
||||
|
||||
create_repo(repo_id, exist_ok=True)
|
||||
upload_folder(
|
||||
repo_id=repo_id,
|
||||
folder_path=tmpdir / hf_model_name,
|
||||
delete_patterns=delete_patterns,
|
||||
token=token,
|
||||
)
|
||||
|
||||
export()
|
||||
upload()
|
||||
if token is not None:
|
||||
upload()
|
||||
progress.update(task, advance=1)
|
||||
|
@ -93,39 +93,50 @@ export const supportedPresetTokens = [
|
||||
|
||||
type ModelInfo = { dimSize: number };
|
||||
export const CLIP_MODEL_INFO: Record<string, ModelInfo> = {
|
||||
RN50__openai: { dimSize: 1024 },
|
||||
RN50__yfcc15m: { dimSize: 1024 },
|
||||
RN50__cc12m: { dimSize: 1024 },
|
||||
RN101__openai: { dimSize: 512 },
|
||||
RN101__yfcc15m: { dimSize: 512 },
|
||||
RN50x4__openai: { dimSize: 640 },
|
||||
RN50x16__openai: { dimSize: 768 },
|
||||
RN50x64__openai: { dimSize: 1024 },
|
||||
'ViT-B-32__openai': { dimSize: 512 },
|
||||
'ViT-B-16__laion400m_e31': { dimSize: 512 },
|
||||
'ViT-B-16__laion400m_e32': { dimSize: 512 },
|
||||
'ViT-B-16__openai': { dimSize: 512 },
|
||||
'ViT-B-32__laion2b-s34b-b79k': { dimSize: 512 },
|
||||
'ViT-B-32__laion2b_e16': { dimSize: 512 },
|
||||
'ViT-B-32__laion400m_e31': { dimSize: 512 },
|
||||
'ViT-B-32__laion400m_e32': { dimSize: 512 },
|
||||
'ViT-B-32__laion2b-s34b-b79k': { dimSize: 512 },
|
||||
'ViT-B-16__openai': { dimSize: 512 },
|
||||
'ViT-B-16__laion400m_e31': { dimSize: 512 },
|
||||
'ViT-B-16__laion400m_e32': { dimSize: 512 },
|
||||
'ViT-B-32__openai': { dimSize: 512 },
|
||||
'XLM-Roberta-Base-ViT-B-32__laion5b_s13b_b90k': { dimSize: 512 },
|
||||
'XLM-Roberta-Large-Vit-B-32': { dimSize: 512 },
|
||||
RN50x4__openai: { dimSize: 640 },
|
||||
'ViT-B-16-plus-240__laion400m_e31': { dimSize: 640 },
|
||||
'ViT-B-16-plus-240__laion400m_e32': { dimSize: 640 },
|
||||
'ViT-L-14__openai': { dimSize: 768 },
|
||||
'ViT-L-14__laion400m_e31': { dimSize: 768 },
|
||||
'ViT-L-14__laion400m_e32': { dimSize: 768 },
|
||||
'ViT-L-14__laion2b-s32b-b82k': { dimSize: 768 },
|
||||
'XLM-Roberta-Large-Vit-B-16Plus': { dimSize: 640 },
|
||||
'LABSE-Vit-L-14': { dimSize: 768 },
|
||||
RN50x16__openai: { dimSize: 768 },
|
||||
'ViT-B-16-SigLIP-256__webli': { dimSize: 768 },
|
||||
'ViT-B-16-SigLIP-384__webli': { dimSize: 768 },
|
||||
'ViT-B-16-SigLIP-512__webli': { dimSize: 768 },
|
||||
'ViT-B-16-SigLIP-i18n-256__webli': { dimSize: 768 },
|
||||
'ViT-B-16-SigLIP__webli': { dimSize: 768 },
|
||||
'ViT-L-14-336__openai': { dimSize: 768 },
|
||||
'ViT-L-14-quickgelu__dfn2b': { dimSize: 768 },
|
||||
'ViT-H-14__laion2b-s32b-b79k': { dimSize: 1024 },
|
||||
'ViT-H-14-quickgelu__dfn5b': { dimSize: 1024 },
|
||||
'ViT-H-14-378-quickgelu__dfn5b': { dimSize: 1024 },
|
||||
'ViT-g-14__laion2b-s12b-b42k': { dimSize: 1024 },
|
||||
'LABSE-Vit-L-14': { dimSize: 768 },
|
||||
'XLM-Roberta-Large-Vit-B-32': { dimSize: 512 },
|
||||
'XLM-Roberta-Large-Vit-B-16Plus': { dimSize: 640 },
|
||||
'ViT-L-14__laion2b-s32b-b82k': { dimSize: 768 },
|
||||
'ViT-L-14__laion400m_e31': { dimSize: 768 },
|
||||
'ViT-L-14__laion400m_e32': { dimSize: 768 },
|
||||
'ViT-L-14__openai': { dimSize: 768 },
|
||||
'XLM-Roberta-Large-Vit-L-14': { dimSize: 768 },
|
||||
'XLM-Roberta-Large-ViT-H-14__frozen_laion5b_s13b_b90k': { dimSize: 1024 },
|
||||
'nllb-clip-base-siglip__mrl': { dimSize: 768 },
|
||||
'nllb-clip-base-siglip__v1': { dimSize: 768 },
|
||||
RN50__cc12m: { dimSize: 1024 },
|
||||
RN50__openai: { dimSize: 1024 },
|
||||
RN50__yfcc15m: { dimSize: 1024 },
|
||||
RN50x64__openai: { dimSize: 1024 },
|
||||
'ViT-H-14-378-quickgelu__dfn5b': { dimSize: 1024 },
|
||||
'ViT-H-14-quickgelu__dfn5b': { dimSize: 1024 },
|
||||
'ViT-H-14__laion2b-s32b-b79k': { dimSize: 1024 },
|
||||
'ViT-L-16-SigLIP-256__webli': { dimSize: 1024 },
|
||||
'ViT-L-16-SigLIP-384__webli': { dimSize: 1024 },
|
||||
'ViT-g-14__laion2b-s12b-b42k': { dimSize: 1024 },
|
||||
'XLM-Roberta-Large-ViT-H-14__frozen_laion5b_s13b_b90k': { dimSize: 1024 },
|
||||
'ViT-SO400M-14-SigLIP-384__webli': { dimSize: 1152 },
|
||||
'nllb-clip-large-siglip__mrl': { dimSize: 1152 },
|
||||
'nllb-clip-large-siglip__v1': { dimSize: 1152 },
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user