1
0
mirror of https://github.com/immich-app/immich.git synced 2025-06-16 03:40:33 +02:00

feat(ml): add more search models (#11468)

* update export code

* add uuid glob, sort model names

* add new models to ml, sort names

* add new models to server, sort by dims and name

* typo in name

* update export dependencies

* onnx save function

* format
This commit is contained in:
Mert
2024-07-31 00:34:45 -04:00
committed by GitHub
parent 2423bb36c4
commit 41580696c7
9 changed files with 3804 additions and 2923 deletions

View File

@ -5,13 +5,26 @@ import onnxruntime as ort
import onnxsim
def save_onnx(model: onnx.ModelProto, output_path: Path | str) -> None:
try:
onnx.save(model, output_path)
except ValueError as e:
if "The proto size is larger than the 2 GB limit." in str(e):
onnx.save(model, output_path, save_as_external_data=True, size_threshold=1_000_000)
else:
raise e
def optimize_onnxsim(model_path: Path | str, output_path: Path | str) -> None:
model_path = Path(model_path)
output_path = Path(output_path)
model = onnx.load(model_path.as_posix())
model, check = onnxsim.simplify(model, skip_shape_inference=True)
model, check = onnxsim.simplify(model)
assert check, "Simplified ONNX model could not be validated"
onnx.save(model, output_path.as_posix())
for file in model_path.parent.iterdir():
if file.name.startswith("Constant") or "onnx" in file.name or file.suffix == ".weight":
file.unlink()
save_onnx(model, output_path)
def optimize_ort(
@ -33,6 +46,4 @@ def optimize(model_path: Path | str) -> None:
model_path = Path(model_path)
optimize_ort(model_path, model_path)
# onnxsim serializes large models as a blob, which uses much more memory when loading the model at runtime
if not any(file.name.startswith("Constant") for file in model_path.parent.iterdir()):
optimize_onnxsim(model_path, model_path)
optimize_onnxsim(model_path, model_path)