1
0
mirror of https://github.com/immich-app/immich.git synced 2025-01-13 15:35:15 +02:00
immich/machine-learning/locustfile.py
Mert 87a0ba3db3
feat(ml): export clip models to ONNX and host models on Hugging Face (#4700)
* export clip models

* export to hf

refactored export code

* export mclip, general refactoring

cleanup

* updated conda deps

* do transforms with pillow and numpy, add tokenization config to export, general refactoring

* moved conda dockerfile, re-added poetry

* minor fixes

* updated link

* updated tests

* removed `requirements.txt` from workflow

* fixed mimalloc path

* removed torchvision

* cleaner np typing

* review suggestions

* update default model name

* update test
2023-10-31 05:02:04 -05:00

104 lines
3.3 KiB
Python

import json
from argparse import ArgumentParser
from io import BytesIO
from typing import Any
from locust import HttpUser, events, task
from locust.env import Environment
from PIL import Image
byte_image = BytesIO()
@events.init_command_line_parser.add_listener
def _(parser: ArgumentParser) -> None:
parser.add_argument("--tag-model", type=str, default="microsoft/resnet-50")
parser.add_argument("--clip-model", type=str, default="ViT-B-32::openai")
parser.add_argument("--face-model", type=str, default="buffalo_l")
parser.add_argument(
"--tag-min-score",
type=int,
default=0.0,
help="Returns all tags at or above this score. The default returns all tags.",
)
parser.add_argument(
"--face-min-score",
type=int,
default=0.034,
help=(
"Returns all faces at or above this score. The default returns 1 face per request; "
"setting this to 0 blows up the number of faces to the thousands."
),
)
parser.add_argument("--image-size", type=int, default=1000)
@events.test_start.add_listener
def on_test_start(environment: Environment, **kwargs: Any) -> None:
global byte_image
assert environment.parsed_options is not None
image = Image.new("RGB", (environment.parsed_options.image_size, environment.parsed_options.image_size))
byte_image = BytesIO()
image.save(byte_image, format="jpeg")
class InferenceLoadTest(HttpUser):
abstract: bool = True
host = "http://127.0.0.1:3003"
data: bytes
headers: dict[str, str] = {"Content-Type": "image/jpg"}
# re-use the image across all instances in a process
def on_start(self) -> None:
global byte_image
self.data = byte_image.getvalue()
class ClassificationFormDataLoadTest(InferenceLoadTest):
@task
def classify(self) -> None:
data = [
("modelName", self.environment.parsed_options.clip_model),
("modelType", "clip"),
("options", json.dumps({"minScore": self.environment.parsed_options.tag_min_score})),
]
files = {"image": self.data}
self.client.post("/predict", data=data, files=files)
class CLIPTextFormDataLoadTest(InferenceLoadTest):
@task
def encode_text(self) -> None:
data = [
("modelName", self.environment.parsed_options.clip_model),
("modelType", "clip"),
("options", json.dumps({"mode": "text"})),
("text", "test search query"),
]
self.client.post("/predict", data=data)
class CLIPVisionFormDataLoadTest(InferenceLoadTest):
@task
def encode_image(self) -> None:
data = [
("modelName", self.environment.parsed_options.clip_model),
("modelType", "clip"),
("options", json.dumps({"mode": "vision"})),
]
files = {"image": self.data}
self.client.post("/predict", data=data, files=files)
class RecognitionFormDataLoadTest(InferenceLoadTest):
@task
def recognize(self) -> None:
data = [
("modelName", self.environment.parsed_options.face_model),
("modelType", "facial-recognition"),
("options", json.dumps({"minScore": self.environment.parsed_options.face_min_score})),
]
files = {"image": self.data}
self.client.post("/predict", data=data, files=files)