1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/h264_mb.c

818 lines
37 KiB
C
Raw Normal View History

/*
* H.26L/H.264/AVC/JVT/14496-10/... decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG-4 part10 macroblock decoding
*/
#include <stdint.h>
#include "config.h"
#include "libavutil/common.h"
#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "h264dec.h"
#include "h264_ps.h"
#include "qpeldsp.h"
#include "threadframe.h"
static inline int get_lowest_part_list_y(H264SliceContext *sl,
int n, int height, int y_offset, int list)
{
int raw_my = sl->mv_cache[list][scan8[n]][1];
int filter_height_down = (raw_my & 3) ? 3 : 0;
int full_my = (raw_my >> 2) + y_offset;
int bottom = full_my + filter_height_down + height;
av_assert2(height >= 0);
return FFMAX(0, bottom);
}
static inline void get_lowest_part_y(const H264Context *h, H264SliceContext *sl,
int16_t refs[2][48], int n,
int height, int y_offset, int list0,
int list1, int *nrefs)
{
int my;
y_offset += 16 * (sl->mb_y >> MB_FIELD(sl));
if (list0) {
int ref_n = sl->ref_cache[0][scan8[n]];
H264Ref *ref = &sl->ref_list[0][ref_n];
// Error resilience puts the current picture in the ref list.
// Don't try to wait on these as it will cause a deadlock.
// Fields can wait on each other, though.
if (ref->parent->tf.progress->data != h->cur_pic.tf.progress->data ||
(ref->reference & 3) != h->picture_structure) {
my = get_lowest_part_list_y(sl, n, height, y_offset, 0);
if (refs[0][ref_n] < 0)
nrefs[0] += 1;
refs[0][ref_n] = FFMAX(refs[0][ref_n], my);
}
}
if (list1) {
int ref_n = sl->ref_cache[1][scan8[n]];
H264Ref *ref = &sl->ref_list[1][ref_n];
if (ref->parent->tf.progress->data != h->cur_pic.tf.progress->data ||
(ref->reference & 3) != h->picture_structure) {
my = get_lowest_part_list_y(sl, n, height, y_offset, 1);
if (refs[1][ref_n] < 0)
nrefs[1] += 1;
refs[1][ref_n] = FFMAX(refs[1][ref_n], my);
}
}
}
/**
* Wait until all reference frames are available for MC operations.
*
* @param h the H.264 context
*/
static void await_references(const H264Context *h, H264SliceContext *sl)
{
const int mb_xy = sl->mb_xy;
const int mb_type = h->cur_pic.mb_type[mb_xy];
int16_t refs[2][48];
int nrefs[2] = { 0 };
int ref, list;
memset(refs, -1, sizeof(refs));
if (IS_16X16(mb_type)) {
get_lowest_part_y(h, sl, refs, 0, 16, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
} else if (IS_16X8(mb_type)) {
get_lowest_part_y(h, sl, refs, 0, 8, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
get_lowest_part_y(h, sl, refs, 8, 8, 8,
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
} else if (IS_8X16(mb_type)) {
get_lowest_part_y(h, sl, refs, 0, 16, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
get_lowest_part_y(h, sl, refs, 4, 16, 0,
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
} else {
int i;
av_assert2(IS_8X8(mb_type));
for (i = 0; i < 4; i++) {
const int sub_mb_type = sl->sub_mb_type[i];
const int n = 4 * i;
int y_offset = (i & 2) << 2;
if (IS_SUB_8X8(sub_mb_type)) {
get_lowest_part_y(h, sl, refs, n, 8, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
} else if (IS_SUB_8X4(sub_mb_type)) {
get_lowest_part_y(h, sl, refs, n, 4, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
get_lowest_part_y(h, sl, refs, n + 2, 4, y_offset + 4,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
} else if (IS_SUB_4X8(sub_mb_type)) {
get_lowest_part_y(h, sl, refs, n, 8, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
get_lowest_part_y(h, sl, refs, n + 1, 8, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
} else {
int j;
av_assert2(IS_SUB_4X4(sub_mb_type));
for (j = 0; j < 4; j++) {
int sub_y_offset = y_offset + 2 * (j & 2);
get_lowest_part_y(h, sl, refs, n + j, 4, sub_y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
}
}
}
}
for (list = sl->list_count - 1; list >= 0; list--)
for (ref = 0; ref < 48 && nrefs[list]; ref++) {
int row = refs[list][ref];
if (row >= 0) {
H264Ref *ref_pic = &sl->ref_list[list][ref];
int ref_field = ref_pic->reference - 1;
int ref_field_picture = ref_pic->parent->field_picture;
int pic_height = 16 * h->mb_height >> ref_field_picture;
row <<= MB_MBAFF(sl);
nrefs[list]--;
if (!FIELD_PICTURE(h) && ref_field_picture) { // frame referencing two fields
av_assert2((ref_pic->parent->reference & 3) == 3);
ff_thread_await_progress(&ref_pic->parent->tf,
FFMIN((row >> 1) - !(row & 1),
pic_height - 1),
1);
ff_thread_await_progress(&ref_pic->parent->tf,
FFMIN((row >> 1), pic_height - 1),
0);
} else if (FIELD_PICTURE(h) && !ref_field_picture) { // field referencing one field of a frame
ff_thread_await_progress(&ref_pic->parent->tf,
FFMIN(row * 2 + ref_field,
pic_height - 1),
0);
} else if (FIELD_PICTURE(h)) {
ff_thread_await_progress(&ref_pic->parent->tf,
FFMIN(row, pic_height - 1),
ref_field);
} else {
ff_thread_await_progress(&ref_pic->parent->tf,
FFMIN(row, pic_height - 1),
0);
}
}
}
}
static av_always_inline void mc_dir_part(const H264Context *h, H264SliceContext *sl,
H264Ref *pic,
int n, int square, int height,
int delta, int list,
uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr,
int src_x_offset, int src_y_offset,
const qpel_mc_func *qpix_op,
h264_chroma_mc_func chroma_op,
int pixel_shift, int chroma_idc)
{
const int mx = sl->mv_cache[list][scan8[n]][0] + src_x_offset * 8;
int my = sl->mv_cache[list][scan8[n]][1] + src_y_offset * 8;
const int luma_xy = (mx & 3) + ((my & 3) << 2);
ptrdiff_t offset = (mx >> 2) * (1 << pixel_shift) + (my >> 2) * sl->mb_linesize;
uint8_t *src_y = pic->data[0] + offset;
uint8_t *src_cb, *src_cr;
int extra_width = 0;
int extra_height = 0;
int emu = 0;
const int full_mx = mx >> 2;
const int full_my = my >> 2;
const int pic_width = 16 * h->mb_width;
const int pic_height = 16 * h->mb_height >> MB_FIELD(sl);
int ysh;
if (mx & 7)
extra_width -= 3;
if (my & 7)
extra_height -= 3;
if (full_mx < 0 - extra_width ||
full_my < 0 - extra_height ||
full_mx + 16 /*FIXME*/ > pic_width + extra_width ||
full_my + 16 /*FIXME*/ > pic_height + extra_height) {
h->vdsp.emulated_edge_mc(sl->edge_emu_buffer,
src_y - (2 << pixel_shift) - 2 * sl->mb_linesize,
sl->mb_linesize, sl->mb_linesize,
16 + 5, 16 + 5 /*FIXME*/, full_mx - 2,
full_my - 2, pic_width, pic_height);
src_y = sl->edge_emu_buffer + (2 << pixel_shift) + 2 * sl->mb_linesize;
emu = 1;
}
qpix_op[luma_xy](dest_y, src_y, sl->mb_linesize); // FIXME try variable height perhaps?
if (!square)
qpix_op[luma_xy](dest_y + delta, src_y + delta, sl->mb_linesize);
if (CONFIG_GRAY && h->flags & AV_CODEC_FLAG_GRAY)
return;
if (chroma_idc == 3 /* yuv444 */) {
src_cb = pic->data[1] + offset;
if (emu) {
h->vdsp.emulated_edge_mc(sl->edge_emu_buffer,
src_cb - (2 << pixel_shift) - 2 * sl->mb_linesize,
sl->mb_linesize, sl->mb_linesize,
16 + 5, 16 + 5 /*FIXME*/,
full_mx - 2, full_my - 2,
pic_width, pic_height);
src_cb = sl->edge_emu_buffer + (2 << pixel_shift) + 2 * sl->mb_linesize;
}
qpix_op[luma_xy](dest_cb, src_cb, sl->mb_linesize); // FIXME try variable height perhaps?
if (!square)
qpix_op[luma_xy](dest_cb + delta, src_cb + delta, sl->mb_linesize);
src_cr = pic->data[2] + offset;
if (emu) {
h->vdsp.emulated_edge_mc(sl->edge_emu_buffer,
src_cr - (2 << pixel_shift) - 2 * sl->mb_linesize,
sl->mb_linesize, sl->mb_linesize,
16 + 5, 16 + 5 /*FIXME*/,
full_mx - 2, full_my - 2,
pic_width, pic_height);
src_cr = sl->edge_emu_buffer + (2 << pixel_shift) + 2 * sl->mb_linesize;
}
qpix_op[luma_xy](dest_cr, src_cr, sl->mb_linesize); // FIXME try variable height perhaps?
if (!square)
qpix_op[luma_xy](dest_cr + delta, src_cr + delta, sl->mb_linesize);
return;
}
ysh = 3 - (chroma_idc == 2 /* yuv422 */);
if (chroma_idc == 1 /* yuv420 */ && MB_FIELD(sl)) {
// chroma offset when predicting from a field of opposite parity
my += 2 * ((sl->mb_y & 1) - (pic->reference - 1));
emu |= (my >> 3) < 0 || (my >> 3) + 8 >= (pic_height >> 1);
}
src_cb = pic->data[1] + ((mx >> 3) * (1 << pixel_shift)) +
(my >> ysh) * sl->mb_uvlinesize;
src_cr = pic->data[2] + ((mx >> 3) * (1 << pixel_shift)) +
(my >> ysh) * sl->mb_uvlinesize;
if (emu) {
h->vdsp.emulated_edge_mc(sl->edge_emu_buffer, src_cb,
sl->mb_uvlinesize, sl->mb_uvlinesize,
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
src_cb = sl->edge_emu_buffer;
}
chroma_op(dest_cb, src_cb, sl->mb_uvlinesize,
height >> (chroma_idc == 1 /* yuv420 */),
mx & 7, ((unsigned)my << (chroma_idc == 2 /* yuv422 */)) & 7);
if (emu) {
h->vdsp.emulated_edge_mc(sl->edge_emu_buffer, src_cr,
sl->mb_uvlinesize, sl->mb_uvlinesize,
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
src_cr = sl->edge_emu_buffer;
}
chroma_op(dest_cr, src_cr, sl->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */),
mx & 7, ((unsigned)my << (chroma_idc == 2 /* yuv422 */)) & 7);
}
static av_always_inline void mc_part_std(const H264Context *h, H264SliceContext *sl,
int n, int square,
int height, int delta,
uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr,
int x_offset, int y_offset,
const qpel_mc_func *qpix_put,
h264_chroma_mc_func chroma_put,
const qpel_mc_func *qpix_avg,
h264_chroma_mc_func chroma_avg,
int list0, int list1,
int pixel_shift, int chroma_idc)
{
const qpel_mc_func *qpix_op = qpix_put;
h264_chroma_mc_func chroma_op = chroma_put;
dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
if (chroma_idc == 3 /* yuv444 */) {
dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
} else if (chroma_idc == 2 /* yuv422 */) {
dest_cb += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize;
} else { /* yuv420 */
dest_cb += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize;
}
x_offset += 8 * sl->mb_x;
y_offset += 8 * (sl->mb_y >> MB_FIELD(sl));
if (list0) {
H264Ref *ref = &sl->ref_list[0][sl->ref_cache[0][scan8[n]]];
mc_dir_part(h, sl, ref, n, square, height, delta, 0,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, pixel_shift, chroma_idc);
qpix_op = qpix_avg;
chroma_op = chroma_avg;
}
if (list1) {
H264Ref *ref = &sl->ref_list[1][sl->ref_cache[1][scan8[n]]];
mc_dir_part(h, sl, ref, n, square, height, delta, 1,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, pixel_shift, chroma_idc);
}
}
static av_always_inline void mc_part_weighted(const H264Context *h, H264SliceContext *sl,
int n, int square,
int height, int delta,
uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr,
int x_offset, int y_offset,
const qpel_mc_func *qpix_put,
h264_chroma_mc_func chroma_put,
h264_weight_func luma_weight_op,
h264_weight_func chroma_weight_op,
h264_biweight_func luma_weight_avg,
h264_biweight_func chroma_weight_avg,
int list0, int list1,
int pixel_shift, int chroma_idc)
{
int chroma_height;
dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
if (chroma_idc == 3 /* yuv444 */) {
chroma_height = height;
chroma_weight_avg = luma_weight_avg;
chroma_weight_op = luma_weight_op;
dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * sl->mb_linesize;
} else if (chroma_idc == 2 /* yuv422 */) {
chroma_height = height;
dest_cb += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + 2 * y_offset * sl->mb_uvlinesize;
} else { /* yuv420 */
chroma_height = height >> 1;
dest_cb += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + y_offset * sl->mb_uvlinesize;
}
x_offset += 8 * sl->mb_x;
y_offset += 8 * (sl->mb_y >> MB_FIELD(sl));
if (list0 && list1) {
/* don't optimize for luma-only case, since B-frames usually
* use implicit weights => chroma too. */
uint8_t *tmp_cb = sl->bipred_scratchpad;
uint8_t *tmp_cr = sl->bipred_scratchpad + (16 << pixel_shift);
uint8_t *tmp_y = sl->bipred_scratchpad + 16 * sl->mb_uvlinesize;
int refn0 = sl->ref_cache[0][scan8[n]];
int refn1 = sl->ref_cache[1][scan8[n]];
mc_dir_part(h, sl, &sl->ref_list[0][refn0], n, square, height, delta, 0,
dest_y, dest_cb, dest_cr,
x_offset, y_offset, qpix_put, chroma_put,
pixel_shift, chroma_idc);
mc_dir_part(h, sl, &sl->ref_list[1][refn1], n, square, height, delta, 1,
tmp_y, tmp_cb, tmp_cr,
x_offset, y_offset, qpix_put, chroma_put,
pixel_shift, chroma_idc);
if (sl->pwt.use_weight == 2) {
int weight0 = sl->pwt.implicit_weight[refn0][refn1][sl->mb_y & 1];
int weight1 = 64 - weight0;
luma_weight_avg(dest_y, tmp_y, sl->mb_linesize,
height, 5, weight0, weight1, 0);
if (!CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
chroma_weight_avg(dest_cb, tmp_cb, sl->mb_uvlinesize,
chroma_height, 5, weight0, weight1, 0);
chroma_weight_avg(dest_cr, tmp_cr, sl->mb_uvlinesize,
chroma_height, 5, weight0, weight1, 0);
}
} else {
luma_weight_avg(dest_y, tmp_y, sl->mb_linesize, height,
sl->pwt.luma_log2_weight_denom,
sl->pwt.luma_weight[refn0][0][0],
sl->pwt.luma_weight[refn1][1][0],
sl->pwt.luma_weight[refn0][0][1] +
sl->pwt.luma_weight[refn1][1][1]);
if (!CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
chroma_weight_avg(dest_cb, tmp_cb, sl->mb_uvlinesize, chroma_height,
sl->pwt.chroma_log2_weight_denom,
sl->pwt.chroma_weight[refn0][0][0][0],
sl->pwt.chroma_weight[refn1][1][0][0],
sl->pwt.chroma_weight[refn0][0][0][1] +
sl->pwt.chroma_weight[refn1][1][0][1]);
chroma_weight_avg(dest_cr, tmp_cr, sl->mb_uvlinesize, chroma_height,
sl->pwt.chroma_log2_weight_denom,
sl->pwt.chroma_weight[refn0][0][1][0],
sl->pwt.chroma_weight[refn1][1][1][0],
sl->pwt.chroma_weight[refn0][0][1][1] +
sl->pwt.chroma_weight[refn1][1][1][1]);
}
}
} else {
int list = list1 ? 1 : 0;
int refn = sl->ref_cache[list][scan8[n]];
H264Ref *ref = &sl->ref_list[list][refn];
mc_dir_part(h, sl, ref, n, square, height, delta, list,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put, chroma_put, pixel_shift, chroma_idc);
luma_weight_op(dest_y, sl->mb_linesize, height,
sl->pwt.luma_log2_weight_denom,
sl->pwt.luma_weight[refn][list][0],
sl->pwt.luma_weight[refn][list][1]);
if (!CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
if (sl->pwt.use_weight_chroma) {
chroma_weight_op(dest_cb, sl->mb_uvlinesize, chroma_height,
sl->pwt.chroma_log2_weight_denom,
sl->pwt.chroma_weight[refn][list][0][0],
sl->pwt.chroma_weight[refn][list][0][1]);
chroma_weight_op(dest_cr, sl->mb_uvlinesize, chroma_height,
sl->pwt.chroma_log2_weight_denom,
sl->pwt.chroma_weight[refn][list][1][0],
sl->pwt.chroma_weight[refn][list][1][1]);
}
}
}
}
static av_always_inline void prefetch_motion(const H264Context *h, H264SliceContext *sl,
int list, int pixel_shift,
int chroma_idc)
{
/* fetch pixels for estimated mv 4 macroblocks ahead
* optimized for 64byte cache lines */
const int refn = sl->ref_cache[list][scan8[0]];
if (refn >= 0) {
const int mx = (sl->mv_cache[list][scan8[0]][0] >> 2) + 16 * sl->mb_x + 8;
const int my = (sl->mv_cache[list][scan8[0]][1] >> 2) + 16 * sl->mb_y;
uint8_t **src = sl->ref_list[list][refn].data;
int off = mx * (1<< pixel_shift) +
(my + (sl->mb_x & 3) * 4) * sl->mb_linesize +
(64 << pixel_shift);
h->vdsp.prefetch(src[0] + off, sl->linesize, 4);
if (chroma_idc == 3 /* yuv444 */) {
h->vdsp.prefetch(src[1] + off, sl->linesize, 4);
h->vdsp.prefetch(src[2] + off, sl->linesize, 4);
} else {
off= ((mx>>1)+64) * (1<<pixel_shift) + ((my>>1) + (sl->mb_x&7))*sl->uvlinesize;
h->vdsp.prefetch(src[1] + off, src[2] - src[1], 2);
}
}
}
static av_always_inline void xchg_mb_border(const H264Context *h, H264SliceContext *sl,
uint8_t *src_y,
uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize,
int xchg, int chroma444,
int simple, int pixel_shift)
{
int deblock_topleft;
int deblock_top;
int top_idx = 1;
uint8_t *top_border_m1;
uint8_t *top_border;
if (!simple && FRAME_MBAFF(h)) {
if (sl->mb_y & 1) {
if (!MB_MBAFF(sl))
return;
} else {
top_idx = MB_MBAFF(sl) ? 0 : 1;
}
}
if (sl->deblocking_filter == 2) {
deblock_topleft = h->slice_table[sl->mb_xy - 1 - h->mb_stride] == sl->slice_num;
deblock_top = sl->top_type;
} else {
deblock_topleft = (sl->mb_x > 0);
deblock_top = (sl->mb_y > !!MB_FIELD(sl));
}
src_y -= linesize + 1 + pixel_shift;
src_cb -= uvlinesize + 1 + pixel_shift;
src_cr -= uvlinesize + 1 + pixel_shift;
top_border_m1 = sl->top_borders[top_idx][sl->mb_x - 1];
top_border = sl->top_borders[top_idx][sl->mb_x];
#define XCHG(a, b, xchg) \
if (pixel_shift) { \
if (xchg) { \
AV_SWAP64(b + 0, a + 0); \
AV_SWAP64(b + 8, a + 8); \
} else { \
AV_COPY128(b, a); \
} \
} else if (xchg) \
AV_SWAP64(b, a); \
else \
AV_COPY64(b, a);
if (deblock_top) {
if (deblock_topleft) {
XCHG(top_border_m1 + (8 << pixel_shift),
src_y - (7 << pixel_shift), 1);
}
XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg);
XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1);
if (sl->mb_x + 1 < h->mb_width) {
XCHG(sl->top_borders[top_idx][sl->mb_x + 1],
src_y + (17 << pixel_shift), 1);
}
if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
if (chroma444) {
if (deblock_topleft) {
XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1);
XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1);
}
XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg);
XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1);
XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg);
XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1);
if (sl->mb_x + 1 < h->mb_width) {
XCHG(sl->top_borders[top_idx][sl->mb_x + 1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1);
XCHG(sl->top_borders[top_idx][sl->mb_x + 1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1);
}
} else {
if (deblock_topleft) {
XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1);
XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1);
}
XCHG(top_border + (16 << pixel_shift), src_cb + 1 + pixel_shift, 1);
XCHG(top_border + (24 << pixel_shift), src_cr + 1 + pixel_shift, 1);
}
}
}
}
static av_always_inline int dctcoef_get(int16_t *mb, int high_bit_depth,
int index)
{
if (high_bit_depth) {
return AV_RN32A(((int32_t *)mb) + index);
} else
return AV_RN16A(mb + index);
}
static av_always_inline void dctcoef_set(int16_t *mb, int high_bit_depth,
int index, int value)
{
if (high_bit_depth) {
AV_WN32A(((int32_t *)mb) + index, value);
} else
AV_WN16A(mb + index, value);
}
static av_always_inline void hl_decode_mb_predict_luma(const H264Context *h,
H264SliceContext *sl,
2016-03-22 16:22:43 +02:00
int mb_type, int simple,
int transform_bypass,
int pixel_shift,
const int *block_offset,
int linesize,
uint8_t *dest_y, int p)
{
void (*idct_add)(uint8_t *dst, int16_t *block, int stride);
void (*idct_dc_add)(uint8_t *dst, int16_t *block, int stride);
int i;
int qscale = p == 0 ? sl->qscale : sl->chroma_qp[p - 1];
block_offset += 16 * p;
if (IS_INTRA4x4(mb_type)) {
if (IS_8x8DCT(mb_type)) {
if (transform_bypass) {
idct_dc_add =
idct_add = h->h264dsp.h264_add_pixels8_clear;
} else {
idct_dc_add = h->h264dsp.h264_idct8_dc_add;
idct_add = h->h264dsp.h264_idct8_add;
}
for (i = 0; i < 16; i += 4) {
uint8_t *const ptr = dest_y + block_offset[i];
const int dir = sl->intra4x4_pred_mode_cache[scan8[i]];
if (transform_bypass && h->ps.sps->profile_idc == 244 && dir <= 1) {
if (h->x264_build < 151U) {
h->hpc.pred8x8l_add[dir](ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
} else
h->hpc.pred8x8l_filter_add[dir](ptr, sl->mb + (i * 16 + p * 256 << pixel_shift),
(sl-> topleft_samples_available << i) & 0x8000,
(sl->topright_samples_available << i) & 0x4000, linesize);
} else {
const int nnz = sl->non_zero_count_cache[scan8[i + p * 16]];
h->hpc.pred8x8l[dir](ptr, (sl->topleft_samples_available << i) & 0x8000,
(sl->topright_samples_available << i) & 0x4000, linesize);
if (nnz) {
if (nnz == 1 && dctcoef_get(sl->mb, pixel_shift, i * 16 + p * 256))
idct_dc_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
else
idct_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
}
}
}
} else {
if (transform_bypass) {
idct_dc_add =
idct_add = h->h264dsp.h264_add_pixels4_clear;
} else {
idct_dc_add = h->h264dsp.h264_idct_dc_add;
idct_add = h->h264dsp.h264_idct_add;
}
for (i = 0; i < 16; i++) {
uint8_t *const ptr = dest_y + block_offset[i];
const int dir = sl->intra4x4_pred_mode_cache[scan8[i]];
if (transform_bypass && h->ps.sps->profile_idc == 244 && dir <= 1) {
h->hpc.pred4x4_add[dir](ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
} else {
uint8_t *topright;
int nnz, tr;
uint64_t tr_high;
if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) {
const int topright_avail = (sl->topright_samples_available << i) & 0x8000;
av_assert2(sl->mb_y || linesize <= block_offset[i]);
if (!topright_avail) {
if (pixel_shift) {
tr_high = ((uint16_t *)ptr)[3 - linesize / 2] * 0x0001000100010001ULL;
topright = (uint8_t *)&tr_high;
} else {
tr = ptr[3 - linesize] * 0x01010101u;
topright = (uint8_t *)&tr;
}
} else
topright = ptr + (4 << pixel_shift) - linesize;
} else
topright = NULL;
h->hpc.pred4x4[dir](ptr, topright, linesize);
nnz = sl->non_zero_count_cache[scan8[i + p * 16]];
if (nnz) {
2016-03-22 16:22:43 +02:00
if (nnz == 1 && dctcoef_get(sl->mb, pixel_shift, i * 16 + p * 256))
idct_dc_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
else
idct_add(ptr, sl->mb + (i * 16 + p * 256 << pixel_shift), linesize);
}
}
}
}
} else {
h->hpc.pred16x16[sl->intra16x16_pred_mode](dest_y, linesize);
2016-03-22 16:22:43 +02:00
if (sl->non_zero_count_cache[scan8[LUMA_DC_BLOCK_INDEX + p]]) {
if (!transform_bypass)
h->h264dsp.h264_luma_dc_dequant_idct(sl->mb + (p * 256 << pixel_shift),
sl->mb_luma_dc[p],
h->ps.pps->dequant4_coeff[p][qscale][0]);
2016-03-22 16:22:43 +02:00
else {
static const uint8_t dc_mapping[16] = {
0 * 16, 1 * 16, 4 * 16, 5 * 16,
2 * 16, 3 * 16, 6 * 16, 7 * 16,
8 * 16, 9 * 16, 12 * 16, 13 * 16,
10 * 16, 11 * 16, 14 * 16, 15 * 16
};
for (i = 0; i < 16; i++)
dctcoef_set(sl->mb + (p * 256 << pixel_shift),
pixel_shift, dc_mapping[i],
dctcoef_get(sl->mb_luma_dc[p],
pixel_shift, i));
}
2016-03-22 16:22:43 +02:00
}
}
}
static av_always_inline void hl_decode_mb_idct_luma(const H264Context *h, H264SliceContext *sl,
2016-03-22 16:22:43 +02:00
int mb_type, int simple,
int transform_bypass,
int pixel_shift,
const int *block_offset,
int linesize,
uint8_t *dest_y, int p)
{
void (*idct_add)(uint8_t *dst, int16_t *block, int stride);
int i;
block_offset += 16 * p;
if (!IS_INTRA4x4(mb_type)) {
2016-03-22 16:22:43 +02:00
if (IS_INTRA16x16(mb_type)) {
if (transform_bypass) {
if (h->ps.sps->profile_idc == 244 &&
2016-03-22 16:22:43 +02:00
(sl->intra16x16_pred_mode == VERT_PRED8x8 ||
sl->intra16x16_pred_mode == HOR_PRED8x8)) {
h->hpc.pred16x16_add[sl->intra16x16_pred_mode](dest_y, block_offset,
sl->mb + (p * 256 << pixel_shift),
linesize);
} else {
2016-03-22 16:22:43 +02:00
for (i = 0; i < 16; i++)
if (sl->non_zero_count_cache[scan8[i + p * 16]] ||
dctcoef_get(sl->mb, pixel_shift, i * 16 + p * 256))
h->h264dsp.h264_add_pixels4_clear(dest_y + block_offset[i],
sl->mb + (i * 16 + p * 256 << pixel_shift),
linesize);
}
2016-03-22 16:22:43 +02:00
} else {
h->h264dsp.h264_idct_add16intra(dest_y, block_offset,
sl->mb + (p * 256 << pixel_shift),
linesize,
sl->non_zero_count_cache + p * 5 * 8);
}
} else if (sl->cbp & 15) {
if (transform_bypass) {
const int di = IS_8x8DCT(mb_type) ? 4 : 1;
idct_add = IS_8x8DCT(mb_type) ? h->h264dsp.h264_add_pixels8_clear
: h->h264dsp.h264_add_pixels4_clear;
for (i = 0; i < 16; i += di)
if (sl->non_zero_count_cache[scan8[i + p * 16]])
idct_add(dest_y + block_offset[i],
sl->mb + (i * 16 + p * 256 << pixel_shift),
linesize);
} else {
if (IS_8x8DCT(mb_type))
h->h264dsp.h264_idct8_add4(dest_y, block_offset,
sl->mb + (p * 256 << pixel_shift),
linesize,
sl->non_zero_count_cache + p * 5 * 8);
else
h->h264dsp.h264_idct_add16(dest_y, block_offset,
sl->mb + (p * 256 << pixel_shift),
linesize,
sl->non_zero_count_cache + p * 5 * 8);
}
}
}
}
#define BITS 8
#define SIMPLE 1
#include "h264_mb_template.c"
#undef BITS
#define BITS 16
#include "h264_mb_template.c"
#undef SIMPLE
#define SIMPLE 0
#include "h264_mb_template.c"
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
{
const int mb_xy = sl->mb_xy;
const int mb_type = h->cur_pic.mb_type[mb_xy];
int is_complex = CONFIG_SMALL || sl->is_complex ||
IS_INTRA_PCM(mb_type) || sl->qscale == 0;
if (CHROMA444(h)) {
if (is_complex || h->pixel_shift)
hl_decode_mb_444_complex(h, sl);
else
hl_decode_mb_444_simple_8(h, sl);
} else if (is_complex) {
hl_decode_mb_complex(h, sl);
} else if (h->pixel_shift) {
hl_decode_mb_simple_16(h, sl);
} else
hl_decode_mb_simple_8(h, sl);
}