1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/tests/checkasm/vvc_mc.c

373 lines
17 KiB
C
Raw Normal View History

/*
* Copyright (c) 2023-2024 Nuo Mi
* Copyright (c) 2023-2024 Wu Jianhua
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include "checkasm.h"
#include "libavcodec/vvc/ctu.h"
#include "libavcodec/vvc/data.h"
#include "libavcodec/vvc/dsp.h"
#include "libavutil/common.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem_internal.h"
static const uint32_t pixel_mask[] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff, 0x3fff3fff, 0xffffffff };
static const int sizes[] = { 2, 4, 8, 16, 32, 64, 128 };
#define SIZEOF_PIXEL ((bit_depth + 7) / 8)
#define PIXEL_STRIDE (MAX_CTU_SIZE * 2)
#define EXTRA_BEFORE 3
#define EXTRA_AFTER 4
#define SRC_EXTRA (EXTRA_BEFORE + EXTRA_AFTER) * 2
#define SRC_BUF_SIZE (PIXEL_STRIDE + SRC_EXTRA) * (PIXEL_STRIDE + SRC_EXTRA)
#define DST_BUF_SIZE (MAX_CTU_SIZE * MAX_CTU_SIZE * 2)
#define SRC_OFFSET ((PIXEL_STRIDE + EXTRA_BEFORE * 2) * EXTRA_BEFORE)
#define randomize_buffers(buf0, buf1, size, mask) \
do { \
int k; \
for (k = 0; k < size; k += 4 / sizeof(*buf0)) { \
uint32_t r = rnd() & mask; \
AV_WN32A(buf0 + k, r); \
AV_WN32A(buf1 + k, r); \
} \
} while (0)
#define randomize_pixels(buf0, buf1, size) \
do { \
uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \
randomize_buffers(buf0, buf1, size, mask); \
} while (0)
#define randomize_avg_src(buf0, buf1, size) \
do { \
uint32_t mask = 0x3fff3fff; \
randomize_buffers(buf0, buf1, size, mask); \
} while (0)
static void check_put_vvc_luma(void)
{
LOCAL_ALIGNED_32(int16_t, dst0, [DST_BUF_SIZE / 2]);
LOCAL_ALIGNED_32(int16_t, dst1, [DST_BUF_SIZE / 2]);
LOCAL_ALIGNED_32(uint8_t, src0, [SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, src1, [SRC_BUF_SIZE]);
VVCDSPContext c;
declare_func(void, int16_t *dst, const uint8_t *src, const ptrdiff_t src_stride,
const int height, const int8_t *hf, const int8_t *vf, const int width);
for (int bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
randomize_pixels(src0, src1, SRC_BUF_SIZE);
ff_vvc_dsp_init(&c, bit_depth);
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
for (int h = 4; h <= MAX_CTU_SIZE; h *= 2) {
for (int w = 4; w <= MAX_CTU_SIZE; w *= 2) {
const int idx = av_log2(w) - 1;
const int mx = rnd() % 16;
const int my = rnd() % 16;
const int8_t *hf = ff_vvc_inter_luma_filters[rnd() % 3][mx];
const int8_t *vf = ff_vvc_inter_luma_filters[rnd() % 3][my];
const char *type;
switch ((j << 1) | i) {
case 0: type = "put_luma_pixels"; break; // 0 0
case 1: type = "put_luma_h"; break; // 0 1
case 2: type = "put_luma_v"; break; // 1 0
case 3: type = "put_luma_hv"; break; // 1 1
}
if (check_func(c.inter.put[LUMA][idx][j][i], "%s_%d_%dx%d", type, bit_depth, w, h)) {
memset(dst0, 0, DST_BUF_SIZE);
memset(dst1, 0, DST_BUF_SIZE);
call_ref(dst0, src0 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
call_new(dst1, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
if (memcmp(dst0, dst1, DST_BUF_SIZE))
fail();
if (w == h)
bench_new(dst1, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
}
}
}
}
}
}
report("put_luma");
}
static void check_put_vvc_luma_uni(void)
{
LOCAL_ALIGNED_32(uint8_t, dst0, [DST_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, dst1, [DST_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, src0, [SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, src1, [SRC_BUF_SIZE]);
VVCDSPContext c;
declare_func(void, uint8_t *dst, ptrdiff_t dststride,
const uint8_t *src, ptrdiff_t srcstride, int height,
const int8_t *hf, const int8_t *vf, int width);
for (int bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
ff_vvc_dsp_init(&c, bit_depth);
randomize_pixels(src0, src1, SRC_BUF_SIZE);
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
for (int h = 4; h <= MAX_CTU_SIZE; h *= 2) {
for (int w = 4; w <= MAX_CTU_SIZE; w *= 2) {
const int idx = av_log2(w) - 1;
const int mx = rnd() % VVC_INTER_LUMA_FACTS;
const int my = rnd() % VVC_INTER_LUMA_FACTS;
const int8_t *hf = ff_vvc_inter_luma_filters[rnd() % VVC_INTER_LUMA_FILTER_TYPES][mx];
const int8_t *vf = ff_vvc_inter_luma_filters[rnd() % VVC_INTER_LUMA_FILTER_TYPES][my];
const char *type;
switch ((j << 1) | i) {
case 0: type = "put_uni_pixels"; break; // 0 0
case 1: type = "put_uni_h"; break; // 0 1
case 2: type = "put_uni_v"; break; // 1 0
case 3: type = "put_uni_hv"; break; // 1 1
}
if (check_func(c.inter.put_uni[LUMA][idx][j][i], "%s_luma_%d_%dx%d", type, bit_depth, w, h)) {
memset(dst0, 0, DST_BUF_SIZE);
memset(dst1, 0, DST_BUF_SIZE);
call_ref(dst0, PIXEL_STRIDE, src0 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
call_new(dst1, PIXEL_STRIDE, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
if (memcmp(dst0, dst1, DST_BUF_SIZE))
fail();
if (w == h)
bench_new(dst1, PIXEL_STRIDE, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
}
}
}
}
}
}
report("put_uni_luma");
}
static void check_put_vvc_chroma(void)
{
LOCAL_ALIGNED_32(int16_t, dst0, [DST_BUF_SIZE / 2]);
LOCAL_ALIGNED_32(int16_t, dst1, [DST_BUF_SIZE / 2]);
LOCAL_ALIGNED_32(uint8_t, src0, [SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, src1, [SRC_BUF_SIZE]);
VVCDSPContext c;
declare_func(void, int16_t *dst, const uint8_t *src, const ptrdiff_t src_stride,
const int height, const int8_t *hf, const int8_t *vf, const int width);
for (int bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
randomize_pixels(src0, src1, SRC_BUF_SIZE);
ff_vvc_dsp_init(&c, bit_depth);
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
for (int h = 2; h <= MAX_CTU_SIZE; h *= 2) {
for (int w = 2; w <= MAX_CTU_SIZE; w *= 2) {
const int idx = av_log2(w) - 1;
const int mx = rnd() % VVC_INTER_CHROMA_FACTS;
const int my = rnd() % VVC_INTER_CHROMA_FACTS;
const int8_t *hf = ff_vvc_inter_chroma_filters[rnd() % VVC_INTER_CHROMA_FILTER_TYPES][mx];
const int8_t *vf = ff_vvc_inter_chroma_filters[rnd() % VVC_INTER_CHROMA_FILTER_TYPES][my];
const char *type;
switch ((j << 1) | i) {
case 0: type = "put_chroma_pixels"; break; // 0 0
case 1: type = "put_chroma_h"; break; // 0 1
case 2: type = "put_chroma_v"; break; // 1 0
case 3: type = "put_chroma_hv"; break; // 1 1
}
if (check_func(c.inter.put[CHROMA][idx][j][i], "%s_%d_%dx%d", type, bit_depth, w, h)) {
memset(dst0, 0, DST_BUF_SIZE);
memset(dst1, 0, DST_BUF_SIZE);
call_ref(dst0, src0 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
call_new(dst1, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
if (memcmp(dst0, dst1, DST_BUF_SIZE))
fail();
if (w == h)
bench_new(dst1, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
}
}
}
}
}
}
report("put_chroma");
}
static void check_put_vvc_chroma_uni(void)
{
LOCAL_ALIGNED_32(uint8_t, dst0, [DST_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, dst1, [DST_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, src0, [SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, src1, [SRC_BUF_SIZE]);
VVCDSPContext c;
declare_func(void, uint8_t *dst, ptrdiff_t dststride,
const uint8_t *src, ptrdiff_t srcstride, int height,
const int8_t *hf, const int8_t *vf, int width);
for (int bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
ff_vvc_dsp_init(&c, bit_depth);
randomize_pixels(src0, src1, SRC_BUF_SIZE);
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
for (int h = 4; h <= MAX_CTU_SIZE; h *= 2) {
for (int w = 4; w <= MAX_CTU_SIZE; w *= 2) {
const int idx = av_log2(w) - 1;
const int mx = rnd() % VVC_INTER_CHROMA_FACTS;
const int my = rnd() % VVC_INTER_CHROMA_FACTS;
const int8_t *hf = ff_vvc_inter_chroma_filters[rnd() % VVC_INTER_CHROMA_FILTER_TYPES][mx];
const int8_t *vf = ff_vvc_inter_chroma_filters[rnd() % VVC_INTER_CHROMA_FILTER_TYPES][my];
const char *type;
switch ((j << 1) | i) {
case 0: type = "put_uni_pixels"; break; // 0 0
case 1: type = "put_uni_h"; break; // 0 1
case 2: type = "put_uni_v"; break; // 1 0
case 3: type = "put_uni_hv"; break; // 1 1
}
if (check_func(c.inter.put_uni[CHROMA][idx][j][i], "%s_chroma_%d_%dx%d", type, bit_depth, w, h)) {
memset(dst0, 0, DST_BUF_SIZE);
memset(dst1, 0, DST_BUF_SIZE);
call_ref(dst0, PIXEL_STRIDE, src0 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
call_new(dst1, PIXEL_STRIDE, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
if (memcmp(dst0, dst1, DST_BUF_SIZE))
fail();
if (w == h)
bench_new(dst1, PIXEL_STRIDE, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w);
}
}
}
}
}
}
report("put_uni_chroma");
}
#define AVG_SRC_BUF_SIZE (MAX_CTU_SIZE * MAX_CTU_SIZE)
#define AVG_DST_BUF_SIZE (MAX_PB_SIZE * MAX_PB_SIZE * 2)
static void check_avg(void)
{
LOCAL_ALIGNED_32(int16_t, src00, [AVG_SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(int16_t, src01, [AVG_SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(int16_t, src10, [AVG_SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(int16_t, src11, [AVG_SRC_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, dst0, [AVG_DST_BUF_SIZE]);
LOCAL_ALIGNED_32(uint8_t, dst1, [AVG_DST_BUF_SIZE]);
VVCDSPContext c;
for (int bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
randomize_avg_src((uint8_t*)src00, (uint8_t*)src10, AVG_SRC_BUF_SIZE * sizeof(int16_t));
randomize_avg_src((uint8_t*)src01, (uint8_t*)src11, AVG_SRC_BUF_SIZE * sizeof(int16_t));
ff_vvc_dsp_init(&c, bit_depth);
for (int h = 2; h <= MAX_CTU_SIZE; h *= 2) {
for (int w = 2; w <= MAX_CTU_SIZE; w *= 2) {
{
declare_func(void, uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *src0, const int16_t *src1, int width, int height);
if (check_func(c.inter.avg, "avg_%d_%dx%d", bit_depth, w, h)) {
memset(dst0, 0, AVG_DST_BUF_SIZE);
memset(dst1, 0, AVG_DST_BUF_SIZE);
call_ref(dst0, MAX_CTU_SIZE * SIZEOF_PIXEL, src00, src01, w, h);
call_new(dst1, MAX_CTU_SIZE * SIZEOF_PIXEL, src10, src11, w, h);
if (memcmp(dst0, dst1, DST_BUF_SIZE))
fail();
if (w == h)
bench_new(dst0, MAX_CTU_SIZE * SIZEOF_PIXEL, src00, src01, w, h);
}
}
{
declare_func(void, uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *src0, const int16_t *src1, int width, int height,
int denom, int w0, int w1, int o0, int o1);
{
const int denom = rnd() % 8;
const int w0 = rnd() % 256 - 128;
const int w1 = rnd() % 256 - 128;
const int o0 = rnd() % 256 - 128;
const int o1 = rnd() % 256 - 128;
if (check_func(c.inter.w_avg, "w_avg_%d_%dx%d", bit_depth, w, h)) {
memset(dst0, 0, AVG_DST_BUF_SIZE);
memset(dst1, 0, AVG_DST_BUF_SIZE);
call_ref(dst0, MAX_CTU_SIZE * SIZEOF_PIXEL, src00, src01, w, h, denom, w0, w1, o0, o1);
call_new(dst1, MAX_CTU_SIZE * SIZEOF_PIXEL, src10, src11, w, h, denom, w0, w1, o0, o1);
if (memcmp(dst0, dst1, DST_BUF_SIZE))
fail();
if (w == h)
bench_new(dst0, MAX_CTU_SIZE * SIZEOF_PIXEL, src00, src01, w, h, denom, w0, w1, o0, o1);
}
}
}
}
}
}
report("avg");
}
static void check_vvc_sad(void)
{
const int bit_depth = 10;
VVCDSPContext c;
LOCAL_ALIGNED_32(uint16_t, src0, [MAX_CTU_SIZE * MAX_CTU_SIZE * 4]);
LOCAL_ALIGNED_32(uint16_t, src1, [MAX_CTU_SIZE * MAX_CTU_SIZE * 4]);
declare_func(int, const int16_t *src0, const int16_t *src1, int dx, int dy, int block_w, int block_h);
ff_vvc_dsp_init(&c, bit_depth);
randomize_pixels(src0, src1, MAX_CTU_SIZE * MAX_CTU_SIZE * 4);
for (int h = 8; h <= 16; h *= 2) {
for (int w = 8; w <= 16; w *= 2) {
for(int offy = 0; offy <= 4; offy++) {
for(int offx = 0; offx <= 4; offx++) {
if (w * h < 128)
continue;
if (check_func(c.inter.sad, "sad_%dx%d", w, h)) {
int result0;
int result1;
result0 = call_ref(src0 + PIXEL_STRIDE * 2 + 2, src1 + PIXEL_STRIDE * 2 + 2, offx, offy, w, h);
result1 = call_new(src0 + PIXEL_STRIDE * 2 + 2, src1 + PIXEL_STRIDE * 2 + 2, offx, offy, w, h);
if (result1 != result0)
fail();
if(offx == 0 && offy == 0)
bench_new(src0 + PIXEL_STRIDE * 2 + 2, src1 + PIXEL_STRIDE * 2 + 2, offx, offy, w, h);
}
}
}
}
}
report("sad");
}
void checkasm_check_vvc_mc(void)
{
check_vvc_sad();
check_put_vvc_luma();
check_put_vvc_luma_uni();
check_put_vvc_chroma();
check_put_vvc_chroma_uni();
check_avg();
}