1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/resample2.c

275 lines
9.3 KiB
C
Raw Normal View History

/*
* audio resampling
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* @file resample2.c
* audio resampling
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "avcodec.h"
#include "common.h"
#include "dsputil.h"
#if 1
#define FILTER_SHIFT 15
#define FELEM int16_t
#define FELEM2 int32_t
#define FELEM_MAX INT16_MAX
#define FELEM_MIN INT16_MIN
#else
#define FILTER_SHIFT 22
#define FELEM int32_t
#define FELEM2 int64_t
#define FELEM_MAX INT32_MAX
#define FELEM_MIN INT32_MIN
#endif
typedef struct AVResampleContext{
FELEM *filter_bank;
int filter_length;
int ideal_dst_incr;
int dst_incr;
int index;
int frac;
int src_incr;
int compensation_distance;
int phase_shift;
int phase_mask;
int linear;
}AVResampleContext;
/**
* 0th order modified bessel function of the first kind.
*/
static double bessel(double x){
double v=1;
double t=1;
int i;
for(i=1; i<50; i++){
t *= i;
v += pow(x*x/4, i)/(t*t);
}
return v;
}
/**
* builds a polyphase filterbank.
* @param factor resampling factor
* @param scale wanted sum of coefficients for each filter
* @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16
*/
void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
int ph, i, v;
double x, y, w, tab[tap_count];
const int center= (tap_count-1)/2;
/* if upsampling, only need to interpolate, no filter */
if (factor > 1.0)
factor = 1.0;
for(ph=0;ph<phase_count;ph++) {
double norm = 0;
double e= 0;
for(i=0;i<tap_count;i++) {
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
if (x == 0) y = 1.0;
else y = sin(x) / x;
switch(type){
case 0:{
const float d= -0.5; //first order derivative = -0.5
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
else y= d*(-4 + 8*x - 5*x*x + x*x*x);
break;}
case 1:
w = 2.0*x / (factor*tap_count) + M_PI;
y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
break;
case 2:
w = 2.0*x / (factor*tap_count*M_PI);
y *= bessel(16*sqrt(FFMAX(1-w*w, 0)));
break;
}
tab[i] = y;
norm += y;
}
/* normalize so that an uniform color remains the same */
for(i=0;i<tap_count;i++) {
v = clip(lrintf(tab[i] * scale / norm + e), FELEM_MIN, FELEM_MAX);
filter[ph * tap_count + i] = v;
e += tab[i] * scale / norm - v;
}
}
}
/**
* initalizes a audio resampler.
* note, if either rate is not a integer then simply scale both rates up so they are
*/
AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
int phase_count= 1<<phase_shift;
c->phase_shift= phase_shift;
c->phase_mask= phase_count-1;
c->linear= linear;
c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, 1);
memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
c->src_incr= out_rate;
c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
c->index= -phase_count*((c->filter_length-1)/2);
return c;
}
void av_resample_close(AVResampleContext *c){
av_freep(&c->filter_bank);
av_freep(&c);
}
/**
* Compensates samplerate/timestamp drift. The compensation is done by changing
* the resampler parameters, so no audible clicks or similar distortions ocur
* @param compensation_distance distance in output samples over which the compensation should be performed
* @param sample_delta number of output samples which should be output less
*
* example: av_resample_compensate(c, 10, 500)
* here instead of 510 samples only 500 samples would be output
*
* note, due to rounding the actual compensation might be slightly different,
* especially if the compensation_distance is large and the in_rate used during init is small
*/
void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
// sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
c->compensation_distance= compensation_distance;
c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
}
/**
* resamples.
* @param src an array of unconsumed samples
* @param consumed the number of samples of src which have been consumed are returned here
* @param src_size the number of unconsumed samples available
* @param dst_size the amount of space in samples available in dst
* @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
* @return the number of samples written in dst or -1 if an error occured
*/
int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
int dst_index, i;
int index= c->index;
int frac= c->frac;
int dst_incr_frac= c->dst_incr % c->src_incr;
int dst_incr= c->dst_incr / c->src_incr;
int compensation_distance= c->compensation_distance;
if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
int64_t index2= ((int64_t)index)<<32;
int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
for(dst_index=0; dst_index < dst_size; dst_index++){
dst[dst_index] = src[index2>>32];
index2 += incr;
}
frac += dst_index * dst_incr_frac;
index += dst_index * dst_incr;
index += frac / c->src_incr;
frac %= c->src_incr;
}else{
for(dst_index=0; dst_index < dst_size; dst_index++){
FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
int sample_index= index >> c->phase_shift;
FELEM2 val=0;
if(sample_index < 0){
for(i=0; i<c->filter_length; i++)
val += src[FFABS(sample_index + i) % src_size] * filter[i];
}else if(sample_index + c->filter_length > src_size){
break;
}else if(c->linear){
int64_t v=0;
int sub_phase= (frac<<8) / c->src_incr;
for(i=0; i<c->filter_length; i++){
int64_t coeff= filter[i]*(256 - sub_phase) + filter[i + c->filter_length]*sub_phase;
v += src[sample_index + i] * coeff;
}
val= v>>8;
}else{
for(i=0; i<c->filter_length; i++){
val += src[sample_index + i] * (FELEM2)filter[i];
}
}
val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
frac += dst_incr_frac;
index += dst_incr;
if(frac >= c->src_incr){
frac -= c->src_incr;
index++;
}
if(dst_index + 1 == compensation_distance){
compensation_distance= 0;
dst_incr_frac= c->ideal_dst_incr % c->src_incr;
dst_incr= c->ideal_dst_incr / c->src_incr;
}
}
}
*consumed= FFMAX(index, 0) >> c->phase_shift;
if(index>=0) index &= c->phase_mask;
if(compensation_distance){
compensation_distance -= dst_index;
assert(compensation_distance > 0);
}
if(update_ctx){
c->frac= frac;
c->index= index;
c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
c->compensation_distance= compensation_distance;
}
#if 0
if(update_ctx && !c->compensation_distance){
#undef rand
av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
}
#endif
return dst_index;
}