You've already forked FFmpeg
							
							
				mirror of
				https://github.com/FFmpeg/FFmpeg.git
				synced 2025-10-30 23:18:11 +02:00 
			
		
		
		
	polyphase kaiser windowed sinc and blackman nuttall windowed sinc audio resample filters
Originally committed as revision 3228 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
		| @@ -1846,6 +1846,7 @@ extern AVCodec ac3_decoder; | ||||
| /* resample.c */ | ||||
|  | ||||
| struct ReSampleContext; | ||||
| struct AVResampleContext; | ||||
|  | ||||
| typedef struct ReSampleContext ReSampleContext; | ||||
|  | ||||
| @@ -1854,6 +1855,9 @@ ReSampleContext *audio_resample_init(int output_channels, int input_channels, | ||||
| int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples); | ||||
| void audio_resample_close(ReSampleContext *s); | ||||
|  | ||||
| struct AVResampleContext *av_resample_init(int out_rate, int in_rate); | ||||
| int av_resample(struct AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx); | ||||
|  | ||||
| /* YUV420 format is assumed ! */ | ||||
|  | ||||
| struct ImgReSampleContext; | ||||
|   | ||||
| @@ -55,6 +55,8 @@ struct ImgReSampleContext { | ||||
|     uint8_t *line_buf; | ||||
| }; | ||||
|  | ||||
| void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type); | ||||
|  | ||||
| static inline int get_phase(int pos) | ||||
| { | ||||
|     return ((pos) >> (POS_FRAC_BITS - PHASE_BITS)) & ((1 << PHASE_BITS) - 1); | ||||
| @@ -540,48 +542,6 @@ static void component_resample(ImgReSampleContext *s, | ||||
|     } | ||||
| } | ||||
|  | ||||
| /* XXX: the following filter is quite naive, but it seems to suffice | ||||
|    for 4 taps */ | ||||
| static void build_filter(int16_t *filter, float factor) | ||||
| { | ||||
|     int ph, i, v; | ||||
|     float x, y, tab[NB_TAPS], norm, mult, target; | ||||
|  | ||||
|     /* if upsampling, only need to interpolate, no filter */ | ||||
|     if (factor > 1.0) | ||||
|         factor = 1.0; | ||||
|  | ||||
|     for(ph=0;ph<NB_PHASES;ph++) { | ||||
|         norm = 0; | ||||
|         for(i=0;i<NB_TAPS;i++) { | ||||
| #if 1 | ||||
|             const float d= -0.5; //first order derivative = -0.5 | ||||
|             x = fabs(((float)(i - FCENTER) - (float)ph / NB_PHASES) * factor); | ||||
|             if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x); | ||||
|             else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x); | ||||
| #else | ||||
|             x = M_PI * ((float)(i - FCENTER) - (float)ph / NB_PHASES) * factor; | ||||
|             if (x == 0) | ||||
|                 y = 1.0; | ||||
|             else | ||||
|                 y = sin(x) / x; | ||||
| #endif | ||||
|             tab[i] = y; | ||||
|             norm += y; | ||||
|         } | ||||
|  | ||||
|         /* normalize so that an uniform color remains the same */ | ||||
|         target= 1 << FILTER_BITS; | ||||
|         for(i=0;i<NB_TAPS;i++) { | ||||
|             mult = target / norm; | ||||
|             v = lrintf(tab[i] * mult); | ||||
|             filter[ph * NB_TAPS + i] = v; | ||||
|             norm -= tab[i]; | ||||
|             target -= v; | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| ImgReSampleContext *img_resample_init(int owidth, int oheight, | ||||
|                                       int iwidth, int iheight) | ||||
| { | ||||
| @@ -626,10 +586,10 @@ ImgReSampleContext *img_resample_full_init(int owidth, int oheight, | ||||
|     s->h_incr = ((iwidth - leftBand - rightBand) * POS_FRAC) / s->pad_owidth; | ||||
|     s->v_incr = ((iheight - topBand - bottomBand) * POS_FRAC) / s->pad_oheight;  | ||||
|  | ||||
|     build_filter(&s->h_filters[0][0], (float) s->pad_owidth  /  | ||||
|             (float) (iwidth - leftBand - rightBand)); | ||||
|     build_filter(&s->v_filters[0][0], (float) s->pad_oheight /  | ||||
|             (float) (iheight - topBand - bottomBand)); | ||||
|     av_build_filter(&s->h_filters[0][0], (float) s->pad_owidth  /  | ||||
|             (float) (iwidth - leftBand - rightBand), NB_TAPS, NB_PHASES, 1<<FILTER_BITS, 0); | ||||
|     av_build_filter(&s->v_filters[0][0], (float) s->pad_oheight /  | ||||
|             (float) (iheight - topBand - bottomBand), NB_TAPS, NB_PHASES, 1<<FILTER_BITS, 0); | ||||
|  | ||||
|     return s; | ||||
| fail: | ||||
|   | ||||
| @@ -24,103 +24,17 @@ | ||||
|  | ||||
| #include "avcodec.h" | ||||
|  | ||||
| typedef struct { | ||||
|     /* fractional resampling */ | ||||
|     uint32_t incr; /* fractional increment */ | ||||
|     uint32_t frac; | ||||
|     int last_sample; | ||||
|     /* integer down sample */ | ||||
|     int iratio;  /* integer divison ratio */ | ||||
|     int icount, isum; | ||||
|     int inv; | ||||
| } ReSampleChannelContext; | ||||
| struct AVResampleContext; | ||||
|  | ||||
| struct ReSampleContext { | ||||
|     ReSampleChannelContext channel_ctx[2]; | ||||
|     struct AVResampleContext *resample_context; | ||||
|     short *temp[2]; | ||||
|     int temp_len; | ||||
|     float ratio; | ||||
|     /* channel convert */ | ||||
|     int input_channels, output_channels, filter_channels; | ||||
| }; | ||||
|  | ||||
|  | ||||
| #define FRAC_BITS 16 | ||||
| #define FRAC (1 << FRAC_BITS) | ||||
|  | ||||
| static void init_mono_resample(ReSampleChannelContext *s, float ratio) | ||||
| { | ||||
|     ratio = 1.0 / ratio; | ||||
|     s->iratio = (int)floorf(ratio); | ||||
|     if (s->iratio == 0) | ||||
|         s->iratio = 1; | ||||
|     s->incr = (int)((ratio / s->iratio) * FRAC); | ||||
|     s->frac = FRAC; | ||||
|     s->last_sample = 0; | ||||
|     s->icount = s->iratio; | ||||
|     s->isum = 0; | ||||
|     s->inv = (FRAC / s->iratio); | ||||
| } | ||||
|  | ||||
| /* fractional audio resampling */ | ||||
| static int fractional_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples) | ||||
| { | ||||
|     unsigned int frac, incr; | ||||
|     int l0, l1; | ||||
|     short *q, *p, *pend; | ||||
|  | ||||
|     l0 = s->last_sample; | ||||
|     incr = s->incr; | ||||
|     frac = s->frac; | ||||
|  | ||||
|     p = input; | ||||
|     pend = input + nb_samples; | ||||
|     q = output; | ||||
|  | ||||
|     l1 = *p++; | ||||
|     for(;;) { | ||||
|         /* interpolate */ | ||||
|         *q++ = (l0 * (FRAC - frac) + l1 * frac) >> FRAC_BITS; | ||||
|         frac = frac + s->incr; | ||||
|         while (frac >= FRAC) { | ||||
|             frac -= FRAC; | ||||
|             if (p >= pend) | ||||
|                 goto the_end; | ||||
|             l0 = l1; | ||||
|             l1 = *p++; | ||||
|         } | ||||
|     } | ||||
|  the_end: | ||||
|     s->last_sample = l1; | ||||
|     s->frac = frac; | ||||
|     return q - output; | ||||
| } | ||||
|  | ||||
| static int integer_downsample(ReSampleChannelContext *s, short *output, short *input, int nb_samples) | ||||
| { | ||||
|     short *q, *p, *pend; | ||||
|     int c, sum; | ||||
|  | ||||
|     p = input; | ||||
|     pend = input + nb_samples; | ||||
|     q = output; | ||||
|  | ||||
|     c = s->icount; | ||||
|     sum = s->isum; | ||||
|  | ||||
|     for(;;) { | ||||
|         sum += *p++; | ||||
|         if (--c == 0) { | ||||
|             *q++ = (sum * s->inv) >> FRAC_BITS; | ||||
|             c = s->iratio; | ||||
|             sum = 0; | ||||
|         } | ||||
|         if (p >= pend) | ||||
|             break; | ||||
|     } | ||||
|     s->isum = sum; | ||||
|     s->icount = c; | ||||
|     return q - output; | ||||
| } | ||||
|  | ||||
| /* n1: number of samples */ | ||||
| static void stereo_to_mono(short *output, short *input, int n1) | ||||
| { | ||||
| @@ -210,31 +124,6 @@ static void ac3_5p1_mux(short *output, short *input1, short *input2, int n) | ||||
|     } | ||||
| } | ||||
|  | ||||
| static int mono_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples) | ||||
| { | ||||
|     short *buf1; | ||||
|     short *buftmp; | ||||
|  | ||||
|     buf1= (short*)av_malloc( nb_samples * sizeof(short) ); | ||||
|  | ||||
|     /* first downsample by an integer factor with averaging filter */ | ||||
|     if (s->iratio > 1) { | ||||
|         buftmp = buf1; | ||||
|         nb_samples = integer_downsample(s, buftmp, input, nb_samples); | ||||
|     } else { | ||||
|         buftmp = input; | ||||
|     } | ||||
|  | ||||
|     /* then do a fractional resampling with linear interpolation */ | ||||
|     if (s->incr != FRAC) { | ||||
|         nb_samples = fractional_resample(s, output, buftmp, nb_samples); | ||||
|     } else { | ||||
|         memcpy(output, buftmp, nb_samples * sizeof(short)); | ||||
|     } | ||||
|     av_free(buf1); | ||||
|     return nb_samples; | ||||
| } | ||||
|  | ||||
| ReSampleContext *audio_resample_init(int output_channels, int input_channels,  | ||||
|                                       int output_rate, int input_rate) | ||||
| { | ||||
| @@ -271,16 +160,13 @@ ReSampleContext *audio_resample_init(int output_channels, int input_channels, | ||||
|     if(s->filter_channels>2) | ||||
|       s->filter_channels = 2; | ||||
|  | ||||
|     for(i=0;i<s->filter_channels;i++) { | ||||
|         init_mono_resample(&s->channel_ctx[i], s->ratio); | ||||
|     } | ||||
|     s->resample_context= av_resample_init(output_rate, input_rate); | ||||
|      | ||||
|     return s; | ||||
| } | ||||
|  | ||||
| /* resample audio. 'nb_samples' is the number of input samples */ | ||||
| /* XXX: optimize it ! */ | ||||
| /* XXX: do it with polyphase filters, since the quality here is | ||||
|    HORRIBLE. Return the number of samples available in output */ | ||||
| int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples) | ||||
| { | ||||
|     int i, nb_samples1; | ||||
| @@ -296,8 +182,11 @@ int audio_resample(ReSampleContext *s, short *output, short *input, int nb_sampl | ||||
|     } | ||||
|  | ||||
|     /* XXX: move those malloc to resample init code */ | ||||
|     bufin[0]= (short*) av_malloc( nb_samples * sizeof(short) ); | ||||
|     bufin[1]= (short*) av_malloc( nb_samples * sizeof(short) ); | ||||
|     for(i=0; i<s->filter_channels; i++){ | ||||
|         bufin[i]= (short*) av_malloc( (nb_samples + s->temp_len) * sizeof(short) ); | ||||
|         memcpy(bufin[i], s->temp[i], s->temp_len * sizeof(short)); | ||||
|         buftmp2[i] = bufin[i] + s->temp_len; | ||||
|     } | ||||
|      | ||||
|     /* make some zoom to avoid round pb */ | ||||
|     lenout= (int)(nb_samples * s->ratio) + 16; | ||||
| @@ -306,27 +195,32 @@ int audio_resample(ReSampleContext *s, short *output, short *input, int nb_sampl | ||||
|  | ||||
|     if (s->input_channels == 2 && | ||||
|         s->output_channels == 1) { | ||||
|         buftmp2[0] = bufin[0]; | ||||
|         buftmp3[0] = output; | ||||
|         stereo_to_mono(buftmp2[0], input, nb_samples); | ||||
|     } else if (s->output_channels >= 2 && s->input_channels == 1) { | ||||
|         buftmp2[0] = input; | ||||
|         buftmp3[0] = bufout[0]; | ||||
|         memcpy(buftmp2[0], input, nb_samples*sizeof(short)); | ||||
|     } else if (s->output_channels >= 2) { | ||||
|         buftmp2[0] = bufin[0]; | ||||
|         buftmp2[1] = bufin[1]; | ||||
|         buftmp3[0] = bufout[0]; | ||||
|         buftmp3[1] = bufout[1]; | ||||
|         stereo_split(buftmp2[0], buftmp2[1], input, nb_samples); | ||||
|     } else { | ||||
|         buftmp2[0] = input; | ||||
|         buftmp3[0] = output; | ||||
|         memcpy(buftmp2[0], input, nb_samples*sizeof(short)); | ||||
|     } | ||||
|  | ||||
|     nb_samples += s->temp_len; | ||||
|  | ||||
|     /* resample each channel */ | ||||
|     nb_samples1 = 0; /* avoid warning */ | ||||
|     for(i=0;i<s->filter_channels;i++) { | ||||
|         nb_samples1 = mono_resample(&s->channel_ctx[i], buftmp3[i], buftmp2[i], nb_samples); | ||||
|         int consumed; | ||||
|         int is_last= i+1 == s->filter_channels; | ||||
|  | ||||
|         nb_samples1 = av_resample(s->resample_context, buftmp3[i], bufin[i], &consumed, nb_samples, lenout, is_last); | ||||
|         s->temp_len= nb_samples - consumed; | ||||
|         s->temp[i]= av_realloc(s->temp[i], s->temp_len*sizeof(short)); | ||||
|         memcpy(s->temp[i], bufin[i] + consumed, s->temp_len*sizeof(short)); | ||||
|     } | ||||
|  | ||||
|     if (s->output_channels == 2 && s->input_channels == 1) { | ||||
| @@ -347,5 +241,8 @@ int audio_resample(ReSampleContext *s, short *output, short *input, int nb_sampl | ||||
|  | ||||
| void audio_resample_close(ReSampleContext *s) | ||||
| { | ||||
|     av_resample_close(s->resample_context); | ||||
|     av_freep(&s->temp[0]); | ||||
|     av_freep(&s->temp[1]); | ||||
|     av_free(s); | ||||
| } | ||||
|   | ||||
							
								
								
									
										214
									
								
								libavcodec/resample2.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										214
									
								
								libavcodec/resample2.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,214 @@ | ||||
| /* | ||||
|  * audio resampling | ||||
|  * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> | ||||
|  * | ||||
|  * This library is free software; you can redistribute it and/or | ||||
|  * modify it under the terms of the GNU Lesser General Public | ||||
|  * License as published by the Free Software Foundation; either | ||||
|  * version 2 of the License, or (at your option) any later version. | ||||
|  * | ||||
|  * This library is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | ||||
|  * Lesser General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU Lesser General Public | ||||
|  * License along with this library; if not, write to the Free Software | ||||
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | ||||
|  * | ||||
|  */ | ||||
|   | ||||
| /** | ||||
|  * @file resample2.c | ||||
|  * audio resampling | ||||
|  * @author Michael Niedermayer <michaelni@gmx.at> | ||||
|  */ | ||||
|  | ||||
| #include "avcodec.h" | ||||
| #include "common.h" | ||||
|  | ||||
| #define PHASE_SHIFT 10 | ||||
| #define PHASE_COUNT (1<<PHASE_SHIFT) | ||||
| #define PHASE_MASK (PHASE_COUNT-1) | ||||
| #define FILTER_SHIFT 15 | ||||
|  | ||||
| typedef struct AVResampleContext{ | ||||
|     short *filter_bank; | ||||
|     int filter_length; | ||||
|     int ideal_dst_incr; | ||||
|     int dst_incr; | ||||
|     int index; | ||||
|     int frac; | ||||
|     int src_incr; | ||||
|     int compensation_distance; | ||||
| }AVResampleContext; | ||||
|  | ||||
| /** | ||||
|  * 0th order modified bessel function of the first kind. | ||||
|  */ | ||||
| double bessel(double x){ | ||||
|     double v=1; | ||||
|     double t=1; | ||||
|     int i; | ||||
|      | ||||
|     for(i=1; i<50; i++){ | ||||
|         t *= i; | ||||
|         v += pow(x*x/4, i)/(t*t); | ||||
|     } | ||||
|     return v; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * builds a polyphase filterbank. | ||||
|  * @param factor resampling factor | ||||
|  * @param scale wanted sum of coefficients for each filter | ||||
|  * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16 | ||||
|  */ | ||||
| void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type){ | ||||
|     int ph, i, v; | ||||
|     double x, y, w, tab[tap_count]; | ||||
|     const int center= (tap_count-1)/2; | ||||
|  | ||||
|     /* if upsampling, only need to interpolate, no filter */ | ||||
|     if (factor > 1.0) | ||||
|         factor = 1.0; | ||||
|  | ||||
|     for(ph=0;ph<phase_count;ph++) { | ||||
|         double norm = 0; | ||||
|         double e= 0; | ||||
|         for(i=0;i<tap_count;i++) { | ||||
|             x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor; | ||||
|             if (x == 0) y = 1.0; | ||||
|             else        y = sin(x) / x; | ||||
|             switch(type){ | ||||
|             case 0:{ | ||||
|                 const float d= -0.5; //first order derivative = -0.5 | ||||
|                 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor); | ||||
|                 if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x); | ||||
|                 else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x); | ||||
|                 break;} | ||||
|             case 1: | ||||
|                 w = 2.0*x / (factor*tap_count) + M_PI; | ||||
|                 y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w); | ||||
|                 break; | ||||
|             case 2: | ||||
|                 w = 2.0*x / (factor*tap_count*M_PI); | ||||
|                 y *= bessel(16*sqrt(FFMAX(1-w*w, 0))) / bessel(16); | ||||
|                 break; | ||||
|             } | ||||
|  | ||||
|             tab[i] = y; | ||||
|             norm += y; | ||||
|         } | ||||
|  | ||||
|         /* normalize so that an uniform color remains the same */ | ||||
|         for(i=0;i<tap_count;i++) { | ||||
|             v = clip(lrintf(tab[i] * scale / norm) + e, -32768, 32767); | ||||
|             filter[ph * tap_count + i] = v; | ||||
|             e += tab[i] * scale / norm - v; | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * initalizes a audio resampler. | ||||
|  * note, if either rate is not a integer then simply scale both rates up so they are | ||||
|  */ | ||||
| AVResampleContext *av_resample_init(int out_rate, int in_rate){ | ||||
|     AVResampleContext *c= av_mallocz(sizeof(AVResampleContext)); | ||||
|     double factor= FFMIN(out_rate / (double)in_rate, 1.0); | ||||
|  | ||||
|     memset(c, 0, sizeof(AVResampleContext)); | ||||
|  | ||||
|     c->filter_length= ceil(16.0/factor); | ||||
|     c->filter_bank= av_mallocz(c->filter_length*(PHASE_COUNT+1)*sizeof(short)); | ||||
|     av_build_filter(c->filter_bank, factor, c->filter_length, PHASE_COUNT, 1<<FILTER_SHIFT, 1); | ||||
|     c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1) + 1]= (1<<FILTER_SHIFT)-1; | ||||
|     c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1) + 2]= 1; | ||||
|  | ||||
|     c->src_incr= out_rate; | ||||
|     c->ideal_dst_incr= c->dst_incr= in_rate * PHASE_COUNT; | ||||
|     c->index= -PHASE_COUNT*((c->filter_length-1)/2); | ||||
|  | ||||
|     return c; | ||||
| } | ||||
|  | ||||
| void av_resample_close(AVResampleContext *c){ | ||||
|     av_freep(&c->filter_bank); | ||||
|     av_freep(&c); | ||||
| } | ||||
|  | ||||
| void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){ | ||||
|     assert(!c->compensation_distance); //FIXME | ||||
|  | ||||
|     c->compensation_distance= compensation_distance; | ||||
|     c->dst_incr-= c->ideal_dst_incr * sample_delta / compensation_distance; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * resamples. | ||||
|  * @param src an array of unconsumed samples | ||||
|  * @param consumed the number of samples of src which have been consumed are returned here | ||||
|  * @param src_size the number of unconsumed samples available | ||||
|  * @param dst_size the amount of space in samples available in dst | ||||
|  * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context | ||||
|  * @return the number of samples written in dst or -1 if an error occured | ||||
|  */ | ||||
| int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){ | ||||
|     int dst_index, i; | ||||
|     int index= c->index; | ||||
|     int frac= c->frac; | ||||
|     int dst_incr_frac= c->dst_incr % c->src_incr; | ||||
|     int dst_incr=      c->dst_incr / c->src_incr; | ||||
|      | ||||
|     if(c->compensation_distance && c->compensation_distance < dst_size) | ||||
|         dst_size= c->compensation_distance; | ||||
|      | ||||
|     for(dst_index=0; dst_index < dst_size; dst_index++){ | ||||
|         short *filter= c->filter_bank + c->filter_length*(index & PHASE_MASK); | ||||
|         int sample_index= index >> PHASE_SHIFT; | ||||
|         int val=0; | ||||
|          | ||||
|         if(sample_index < 0){ | ||||
|             for(i=0; i<c->filter_length; i++) | ||||
|                 val += src[ABS(sample_index + i)] * filter[i]; | ||||
|         }else if(sample_index + c->filter_length > src_size){ | ||||
|             break; | ||||
|         }else{ | ||||
| #if 0 | ||||
|             int64_t v=0; | ||||
|             int sub_phase= (frac<<12) / c->src_incr; | ||||
|             for(i=0; i<c->filter_length; i++){ | ||||
|                 int64_t coeff= filter[i]*(4096 - sub_phase) + filter[i + c->filter_length]*sub_phase; | ||||
|                 v += src[sample_index + i] * coeff; | ||||
|             } | ||||
|             val= v>>12; | ||||
| #else | ||||
|             for(i=0; i<c->filter_length; i++){ | ||||
|                 val += src[sample_index + i] * filter[i]; | ||||
|             } | ||||
| #endif | ||||
|         } | ||||
|  | ||||
|         val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT; | ||||
|         dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val; | ||||
|  | ||||
|         frac += dst_incr_frac; | ||||
|         index += dst_incr; | ||||
|         if(frac >= c->src_incr){ | ||||
|             frac -= c->src_incr; | ||||
|             index++; | ||||
|         } | ||||
|     } | ||||
|     if(update_ctx){ | ||||
|         if(c->compensation_distance){ | ||||
|             c->compensation_distance -= index; | ||||
|             if(!c->compensation_distance) | ||||
|                 c->dst_incr= c->ideal_dst_incr; | ||||
|         } | ||||
|         c->frac= frac; | ||||
|         c->index=0; | ||||
|     } | ||||
|     *consumed= index >> PHASE_SHIFT; | ||||
|     return dst_index; | ||||
| } | ||||
		Reference in New Issue
	
	Block a user