1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavfilter/vf_bm3d.c

1059 lines
36 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015-2016 mawen1250
* Copyright (c) 2018 Paul B Mahol
*
* This file is part of FFmpeg.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/**
* @todo
* - opponent color space
* - temporal support
*/
#include <float.h>
#include "libavutil/cpu.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/tx.h"
#include "avfilter.h"
#include "filters.h"
#include "formats.h"
#include "framesync.h"
#include "internal.h"
#include "video.h"
#define MAX_NB_THREADS 32
enum FilterModes {
BASIC,
FINAL,
NB_MODES,
};
typedef struct ThreadData {
const uint8_t *src;
int src_linesize;
const uint8_t *ref;
int ref_linesize;
int plane;
} ThreadData;
typedef struct PosCode {
int x, y;
} PosCode;
typedef struct PosPairCode {
double score;
int x, y;
} PosPairCode;
typedef struct SliceContext {
AVTXContext *gdctf, *gdcti;
av_tx_fn tx_fn_g, itx_fn_g;
AVTXContext *dctf, *dcti;
av_tx_fn tx_fn, itx_fn;
float *bufferh;
float *buffert;
float *bufferv;
float *bufferz;
float *buffer;
float *rbufferh;
float *rbufferv;
float *rbufferz;
float *rbuffer;
float *num, *den;
PosPairCode match_blocks[256];
int nb_match_blocks;
PosCode *search_positions;
} SliceContext;
typedef struct BM3DContext {
const AVClass *class;
float sigma;
int block_size;
int block_step;
int group_size;
int bm_range;
int bm_step;
float th_mse;
float hard_threshold;
int mode;
int ref;
int planes;
int depth;
int max;
int nb_planes;
int planewidth[4];
int planeheight[4];
int pblock_size;
int pgroup_size;
SliceContext slices[MAX_NB_THREADS];
FFFrameSync fs;
int nb_threads;
void (*get_block_row)(const uint8_t *srcp, int src_linesize,
int y, int x, int block_size, float *dst);
double (*do_block_ssd)(struct BM3DContext *s, PosCode *pos,
const uint8_t *src, int src_stride,
int r_y, int r_x);
void (*do_output)(struct BM3DContext *s, uint8_t *dst, int dst_linesize,
int plane, int nb_jobs);
void (*block_filtering)(struct BM3DContext *s,
const uint8_t *src, int src_linesize,
const uint8_t *ref, int ref_linesize,
int y, int x, int plane, int jobnr);
} BM3DContext;
#define OFFSET(x) offsetof(BM3DContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption bm3d_options[] = {
{ "sigma", "set denoising strength",
OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 99999.9, FLAGS },
{ "block", "set size of local patch",
OFFSET(block_size), AV_OPT_TYPE_INT, {.i64=16}, 8, 64, FLAGS },
{ "bstep", "set sliding step for processing blocks",
OFFSET(block_step), AV_OPT_TYPE_INT, {.i64=4}, 1, 64, FLAGS },
{ "group", "set maximal number of similar blocks",
OFFSET(group_size), AV_OPT_TYPE_INT, {.i64=1}, 1, 256, FLAGS },
{ "range", "set block matching range",
OFFSET(bm_range), AV_OPT_TYPE_INT, {.i64=9}, 1, INT32_MAX, FLAGS },
{ "mstep", "set step for block matching",
OFFSET(bm_step), AV_OPT_TYPE_INT, {.i64=1}, 1, 64, FLAGS },
{ "thmse", "set threshold of mean square error for block matching",
OFFSET(th_mse), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, INT32_MAX, FLAGS },
{ "hdthr", "set hard threshold for 3D transfer domain",
OFFSET(hard_threshold), AV_OPT_TYPE_FLOAT, {.dbl=2.7}, 0, INT32_MAX, FLAGS },
{ "estim", "set filtering estimation mode",
OFFSET(mode), AV_OPT_TYPE_INT, {.i64=BASIC}, 0, NB_MODES-1, FLAGS, "mode" },
{ "basic", "basic estimate",
0, AV_OPT_TYPE_CONST, {.i64=BASIC}, 0, 0, FLAGS, "mode" },
{ "final", "final estimate",
0, AV_OPT_TYPE_CONST, {.i64=FINAL}, 0, 0, FLAGS, "mode" },
{ "ref", "have reference stream",
OFFSET(ref), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "planes", "set planes to filter",
OFFSET(planes), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(bm3d);
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10,
AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
static int do_search_boundary(int pos, int plane_boundary, int search_range, int search_step)
{
int search_boundary;
search_range = search_range / search_step * search_step;
if (pos == plane_boundary) {
search_boundary = plane_boundary;
} else if (pos > plane_boundary) {
search_boundary = pos - search_range;
while (search_boundary < plane_boundary) {
search_boundary += search_step;
}
} else {
search_boundary = pos + search_range;
while (search_boundary > plane_boundary) {
search_boundary -= search_step;
}
}
return search_boundary;
}
static int search_boundary(int plane_boundary, int search_range, int search_step, int vertical, int y, int x)
{
return do_search_boundary(vertical ? y : x, plane_boundary, search_range, search_step);
}
static int cmp_scores(const void *a, const void *b)
{
const struct PosPairCode *pair1 = a;
const struct PosPairCode *pair2 = b;
return FFDIFFSIGN(pair1->score, pair2->score);
}
static double do_block_ssd(BM3DContext *s, PosCode *pos, const uint8_t *src, int src_stride, int r_y, int r_x)
{
const uint8_t *srcp = src + pos->y * src_stride + pos->x;
const uint8_t *refp = src + r_y * src_stride + r_x;
const int block_size = s->block_size;
double dist = 0.;
int x, y;
for (y = 0; y < block_size; y++) {
for (x = 0; x < block_size; x++) {
double temp = refp[x] - srcp[x];
dist += temp * temp;
}
srcp += src_stride;
refp += src_stride;
}
return dist;
}
static double do_block_ssd16(BM3DContext *s, PosCode *pos, const uint8_t *src, int src_stride, int r_y, int r_x)
{
const uint16_t *srcp = (uint16_t *)src + pos->y * src_stride / 2 + pos->x;
const uint16_t *refp = (uint16_t *)src + r_y * src_stride / 2 + r_x;
const int block_size = s->block_size;
double dist = 0.;
int x, y;
for (y = 0; y < block_size; y++) {
for (x = 0; x < block_size; x++) {
double temp = refp[x] - srcp[x];
dist += temp * temp;
}
srcp += src_stride / 2;
refp += src_stride / 2;
}
return dist;
}
static void do_block_matching_multi(BM3DContext *s, const uint8_t *src, int src_stride, int src_range,
const PosCode *search_pos, int search_size, float th_mse,
int r_y, int r_x, int plane, int jobnr)
{
SliceContext *sc = &s->slices[jobnr];
double MSE2SSE = s->group_size * s->block_size * s->block_size * src_range * src_range / (s->max * s->max);
double distMul = 1. / MSE2SSE;
double th_sse = th_mse * MSE2SSE;
int index = sc->nb_match_blocks;
for (int i = 0; i < search_size; i++) {
PosCode pos = search_pos[i];
double dist;
dist = s->do_block_ssd(s, &pos, src, src_stride, r_y, r_x);
// Only match similar blocks but not identical blocks
if (dist <= th_sse && dist != 0) {
const double score = dist * distMul;
if (index >= s->group_size && score >= sc->match_blocks[index - 1].score) {
continue;
}
if (index >= s->group_size)
index = s->group_size - 1;
sc->match_blocks[index].score = score;
sc->match_blocks[index].y = pos.y;
sc->match_blocks[index].x = pos.x;
index++;
qsort(sc->match_blocks, index, sizeof(PosPairCode), cmp_scores);
}
}
sc->nb_match_blocks = index;
}
static void block_matching_multi(BM3DContext *s, const uint8_t *ref, int ref_linesize, int y, int x,
int exclude_cur_pos, int plane, int jobnr)
{
SliceContext *sc = &s->slices[jobnr];
const int width = s->planewidth[plane];
const int height = s->planeheight[plane];
const int block_size = s->block_size;
const int step = s->bm_step;
const int range = s->bm_range / step * step;
int l = search_boundary(0, range, step, 0, y, x);
int r = search_boundary(width - block_size, range, step, 0, y, x);
int t = search_boundary(0, range, step, 1, y, x);
int b = search_boundary(height - block_size, range, step, 1, y, x);
int index = 0;
for (int j = t; j <= b; j += step) {
for (int i = l; i <= r; i += step) {
PosCode pos;
if (exclude_cur_pos > 0 && j == y && i == x) {
continue;
}
pos.y = j;
pos.x = i;
sc->search_positions[index++] = pos;
}
}
if (exclude_cur_pos == 1) {
sc->match_blocks[0].score = 0;
sc->match_blocks[0].y = y;
sc->match_blocks[0].x = x;
sc->nb_match_blocks = 1;
}
do_block_matching_multi(s, ref, ref_linesize, s->bm_range,
sc->search_positions, index, s->th_mse, y, x, plane, jobnr);
}
static void block_matching(BM3DContext *s, const uint8_t *ref, int ref_linesize,
int j, int i, int plane, int jobnr)
{
SliceContext *sc = &s->slices[jobnr];
if (s->group_size == 1 || s->th_mse <= 0.f) {
sc->match_blocks[0].score = 1;
sc->match_blocks[0].x = i;
sc->match_blocks[0].y = j;
sc->nb_match_blocks = 1;
return;
}
sc->nb_match_blocks = 0;
block_matching_multi(s, ref, ref_linesize, j, i, 1, plane, jobnr);
}
static void get_block_row(const uint8_t *srcp, int src_linesize,
int y, int x, int block_size, float *dst)
{
const uint8_t *src = srcp + y * src_linesize + x;
for (int j = 0; j < block_size; j++)
dst[j] = src[j];
}
static void get_block_row16(const uint8_t *srcp, int src_linesize,
int y, int x, int block_size, float *dst)
{
const uint16_t *src = (uint16_t *)srcp + y * src_linesize / 2 + x;
for (int j = 0; j < block_size; j++)
dst[j] = src[j];
}
static void basic_block_filtering(BM3DContext *s, const uint8_t *src, int src_linesize,
const uint8_t *ref, int ref_linesize,
int y, int x, int plane, int jobnr)
{
SliceContext *sc = &s->slices[jobnr];
const int pblock_size = s->pblock_size;
const int buffer_linesize = s->pblock_size * s->pblock_size;
const int nb_match_blocks = sc->nb_match_blocks;
const int block_size = s->block_size;
const int width = s->planewidth[plane];
const int pgroup_size = s->pgroup_size;
const int group_size = s->group_size;
float *buffer = sc->buffer;
float *bufferh = sc->bufferh;
float *buffert = sc->buffert;
float *bufferv = sc->bufferv;
float *bufferz = sc->bufferz;
float threshold[4];
float den_weight, num_weight;
int retained = 0;
for (int k = 0; k < nb_match_blocks; k++) {
const int y = sc->match_blocks[k].y;
const int x = sc->match_blocks[k].x;
for (int i = 0; i < block_size; i++) {
s->get_block_row(src, src_linesize, y + i, x, block_size, bufferh + pblock_size * i);
sc->tx_fn(sc->dctf, buffert, bufferh + pblock_size * i, sizeof(float));
for (int j = 0; j < block_size; j++)
bufferv[j * pblock_size + i] = buffert[j];
}
for (int i = 0; i < block_size; i++) {
sc->tx_fn(sc->dctf, buffert, bufferv + i * pblock_size, sizeof(float));
memcpy(buffer + k * buffer_linesize + i * pblock_size,
buffert, block_size * sizeof(float));
}
}
for (int i = 0; i < block_size; i++) {
for (int j = 0; j < block_size; j++) {
for (int k = 0; k < nb_match_blocks; k++)
bufferz[k] = buffer[buffer_linesize * k + i * pblock_size + j];
if (group_size > 1)
sc->tx_fn_g(sc->gdctf, bufferz, bufferz, sizeof(float));
bufferz += pgroup_size;
}
}
threshold[0] = s->hard_threshold * s->sigma * M_SQRT2 * 4.f * block_size * block_size * (1 << (s->depth - 8)) / 255.f;
threshold[1] = threshold[0] * sqrtf(2.f);
threshold[2] = threshold[0] * 2.f;
threshold[3] = threshold[0] * sqrtf(8.f);
bufferz = sc->bufferz;
for (int i = 0; i < block_size; i++) {
for (int j = 0; j < block_size; j++) {
for (int k = 0; k < nb_match_blocks; k++) {
const float thresh = threshold[(j == 0) + (i == 0) + (k == 0)];
if (bufferz[k] > thresh || bufferz[k] < -thresh) {
retained++;
} else {
bufferz[k] = 0;
}
}
bufferz += pgroup_size;
}
}
bufferz = sc->bufferz;
buffer = sc->buffer;
for (int i = 0; i < block_size; i++) {
for (int j = 0; j < block_size; j++) {
if (group_size > 1)
sc->itx_fn_g(sc->gdcti, bufferz, bufferz, sizeof(float));
for (int k = 0; k < nb_match_blocks; k++)
buffer[buffer_linesize * k + i * pblock_size + j] = bufferz[k];
bufferz += pgroup_size;
}
}
den_weight = retained < 1 ? 1.f : 1.f / retained;
num_weight = den_weight;
buffer = sc->buffer;
for (int k = 0; k < nb_match_blocks; k++) {
float *num = sc->num + y * width + x;
float *den = sc->den + y * width + x;
for (int i = 0; i < block_size; i++) {
memcpy(bufferv + i * pblock_size,
buffer + k * buffer_linesize + i * pblock_size,
block_size * sizeof(float));
}
for (int i = 0; i < block_size; i++) {
sc->itx_fn(sc->dcti, buffert, bufferv + i * pblock_size, sizeof(float));
for (int j = 0; j < block_size; j++)
bufferh[j * pblock_size + i] = buffert[j];
}
for (int i = 0; i < block_size; i++) {
sc->itx_fn(sc->dcti, buffert, bufferh + pblock_size * i, sizeof(float));
for (int j = 0; j < block_size; j++) {
num[j] += buffert[j] * num_weight;
den[j] += den_weight;
}
num += width;
den += width;
}
}
}
static void final_block_filtering(BM3DContext *s, const uint8_t *src, int src_linesize,
const uint8_t *ref, int ref_linesize,
int y, int x, int plane, int jobnr)
{
SliceContext *sc = &s->slices[jobnr];
const int pblock_size = s->pblock_size;
const int buffer_linesize = s->pblock_size * s->pblock_size;
const int nb_match_blocks = sc->nb_match_blocks;
const int block_size = s->block_size;
const int width = s->planewidth[plane];
const int pgroup_size = s->pgroup_size;
const int group_size = s->group_size;
const float sigma_sqr = s->sigma * s->sigma;
float *buffer = sc->buffer;
float *bufferh = sc->bufferh;
float *bufferv = sc->bufferv;
float *bufferz = sc->bufferz;
float *rbuffer = sc->rbuffer;
float *rbufferh = sc->rbufferh;
float *rbufferv = sc->rbufferv;
float *rbufferz = sc->rbufferz;
float den_weight, num_weight;
float l2_wiener = 0;
for (int k = 0; k < nb_match_blocks; k++) {
const int y = sc->match_blocks[k].y;
const int x = sc->match_blocks[k].x;
for (int i = 0; i < block_size; i++) {
s->get_block_row(src, src_linesize, y + i, x, block_size, bufferh + pblock_size * i);
s->get_block_row(ref, ref_linesize, y + i, x, block_size, rbufferh + pblock_size * i);
sc->tx_fn(sc->dctf, bufferh + pblock_size * i, bufferh + pblock_size * i, sizeof(float));
sc->tx_fn(sc->dctf, rbufferh + pblock_size * i, rbufferh + pblock_size * i, sizeof(float));
}
for (int i = 0; i < block_size; i++) {
for (int j = 0; j < block_size; j++) {
bufferv[i * pblock_size + j] = bufferh[j * pblock_size + i];
rbufferv[i * pblock_size + j] = rbufferh[j * pblock_size + i];
}
sc->tx_fn(sc->dctf, bufferv + i * pblock_size, bufferv + i * pblock_size, sizeof(float));
sc->tx_fn(sc->dctf, rbufferv + i * pblock_size, rbufferv + i * pblock_size, sizeof(float));
}
for (int i = 0; i < block_size; i++) {
memcpy(buffer + k * buffer_linesize + i * pblock_size,
bufferv + i * pblock_size, block_size * sizeof(float));
memcpy(rbuffer + k * buffer_linesize + i * pblock_size,
rbufferv + i * pblock_size, block_size * sizeof(float));
}
}
for (int i = 0; i < block_size; i++) {
for (int j = 0; j < block_size; j++) {
for (int k = 0; k < nb_match_blocks; k++) {
bufferz[k] = buffer[buffer_linesize * k + i * pblock_size + j];
rbufferz[k] = rbuffer[buffer_linesize * k + i * pblock_size + j];
}
if (group_size > 1) {
sc->tx_fn_g(sc->gdctf, bufferz, bufferz, sizeof(float));
sc->tx_fn_g(sc->gdctf, rbufferz, rbufferz, sizeof(float));
}
bufferz += pgroup_size;
rbufferz += pgroup_size;
}
}
bufferz = sc->bufferz;
rbufferz = sc->rbufferz;
for (int i = 0; i < block_size; i++) {
for (int j = 0; j < block_size; j++) {
for (int k = 0; k < nb_match_blocks; k++) {
const float ref_sqr = rbufferz[k] * rbufferz[k];
float wiener_coef = ref_sqr / (ref_sqr + sigma_sqr);
if (isnan(wiener_coef))
wiener_coef = 1;
bufferz[k] *= wiener_coef;
l2_wiener += wiener_coef * wiener_coef;
}
bufferz += pgroup_size;
rbufferz += pgroup_size;
}
}
bufferz = sc->bufferz;
buffer = sc->buffer;
for (int i = 0; i < block_size; i++) {
for (int j = 0; j < block_size; j++) {
if (group_size > 1)
sc->itx_fn_g(sc->gdcti, bufferz, bufferz, sizeof(float));
for (int k = 0; k < nb_match_blocks; k++) {
buffer[buffer_linesize * k + i * pblock_size + j] = bufferz[k];
}
bufferz += pgroup_size;
}
}
l2_wiener = FFMAX(l2_wiener, 1e-15f);
den_weight = 1.f / l2_wiener;
num_weight = den_weight;
for (int k = 0; k < nb_match_blocks; k++) {
float *num = sc->num + y * width + x;
float *den = sc->den + y * width + x;
for (int i = 0; i < block_size; i++) {
memcpy(bufferv + i * pblock_size,
buffer + k * buffer_linesize + i * pblock_size,
block_size * sizeof(float));
}
for (int i = 0; i < block_size; i++) {
sc->itx_fn(sc->dcti, bufferv + pblock_size * i, bufferv + pblock_size * i, sizeof(float));
for (int j = 0; j < block_size; j++) {
bufferh[j * pblock_size + i] = bufferv[i * pblock_size + j];
}
}
for (int i = 0; i < block_size; i++) {
sc->itx_fn(sc->dcti, bufferh + pblock_size * i, bufferh + pblock_size * i, sizeof(float));
for (int j = 0; j < block_size; j++) {
num[j] += bufferh[i * pblock_size + j] * num_weight;
den[j] += den_weight;
}
num += width;
den += width;
}
}
}
static void do_output(BM3DContext *s, uint8_t *dst, int dst_linesize,
int plane, int nb_jobs)
{
const int height = s->planeheight[plane];
const int width = s->planewidth[plane];
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
uint8_t *dstp = dst + i * dst_linesize;
float sum_den = 0.f;
float sum_num = 0.f;
for (int k = 0; k < nb_jobs; k++) {
SliceContext *sc = &s->slices[k];
float num = sc->num[i * width + j];
float den = sc->den[i * width + j];
sum_num += num;
sum_den += den;
}
dstp[j] = av_clip_uint8(lrintf(sum_num / sum_den));
}
}
}
static void do_output16(BM3DContext *s, uint8_t *dst, int dst_linesize,
int plane, int nb_jobs)
{
const int height = s->planeheight[plane];
const int width = s->planewidth[plane];
const int depth = s->depth;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
uint16_t *dstp = (uint16_t *)dst + i * dst_linesize / 2;
float sum_den = 0.f;
float sum_num = 0.f;
for (int k = 0; k < nb_jobs; k++) {
SliceContext *sc = &s->slices[k];
float num = sc->num[i * width + j];
float den = sc->den[i * width + j];
sum_num += num;
sum_den += den;
}
dstp[j] = av_clip_uintp2_c(lrintf(sum_num / sum_den), depth);
}
}
}
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
BM3DContext *s = ctx->priv;
SliceContext *sc = &s->slices[jobnr];
const int block_step = s->block_step;
ThreadData *td = arg;
const uint8_t *src = td->src;
const uint8_t *ref = td->ref;
const int src_linesize = td->src_linesize;
const int ref_linesize = td->ref_linesize;
const int plane = td->plane;
const int width = s->planewidth[plane];
const int height = s->planeheight[plane];
const int block_pos_bottom = FFMAX(0, height - s->block_size);
const int block_pos_right = FFMAX(0, width - s->block_size);
const int slice_start = (((height + block_step - 1) / block_step) * jobnr / nb_jobs) * block_step;
const int slice_end = (jobnr == nb_jobs - 1) ? block_pos_bottom + block_step :
(((height + block_step - 1) / block_step) * (jobnr + 1) / nb_jobs) * block_step;
memset(sc->num, 0, width * height * sizeof(float));
memset(sc->den, 0, width * height * sizeof(float));
for (int j = slice_start; j < slice_end; j += block_step) {
if (j > block_pos_bottom) {
j = block_pos_bottom;
}
for (int i = 0; i < block_pos_right + block_step; i += block_step) {
if (i > block_pos_right) {
i = block_pos_right;
}
block_matching(s, ref, ref_linesize, j, i, plane, jobnr);
s->block_filtering(s, src, src_linesize,
ref, ref_linesize, j, i, plane, jobnr);
}
}
return 0;
}
static int filter_frame(AVFilterContext *ctx, AVFrame **out, AVFrame *in, AVFrame *ref)
{
BM3DContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
int p;
*out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!*out)
return AVERROR(ENOMEM);
av_frame_copy_props(*out, in);
for (p = 0; p < s->nb_planes; p++) {
const int nb_jobs = FFMAX(1, FFMIN(s->nb_threads, s->planeheight[p] / s->block_size));
ThreadData td;
if (!((1 << p) & s->planes) || ctx->is_disabled) {
av_image_copy_plane((*out)->data[p], (*out)->linesize[p],
in->data[p], in->linesize[p],
s->planewidth[p] * (1 + (s->depth > 8)), s->planeheight[p]);
continue;
}
td.src = in->data[p];
td.src_linesize = in->linesize[p];
td.ref = ref->data[p];
td.ref_linesize = ref->linesize[p];
td.plane = p;
ff_filter_execute(ctx, filter_slice, &td, NULL, nb_jobs);
s->do_output(s, (*out)->data[p], (*out)->linesize[p], p, nb_jobs);
}
return 0;
}
#define SQR(x) ((x) * (x))
static int config_input(AVFilterLink *inlink)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
AVFilterContext *ctx = inlink->dst;
BM3DContext *s = ctx->priv;
s->nb_threads = FFMIN(ff_filter_get_nb_threads(ctx), MAX_NB_THREADS);
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->depth = desc->comp[0].depth;
s->max = (1 << s->depth) - 1;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
s->pblock_size = FFALIGN(s->block_size * 2, av_cpu_max_align());
s->pgroup_size = FFALIGN(s->group_size * 2, av_cpu_max_align());
for (int i = 0; i < s->nb_threads; i++) {
SliceContext *sc = &s->slices[i];
float iscale = 0.5f / s->block_size;
float scale = 1.f;
int ret;
sc->num = av_calloc(FFALIGN(s->planewidth[0], s->block_size) * FFALIGN(s->planeheight[0], s->block_size), sizeof(float));
sc->den = av_calloc(FFALIGN(s->planewidth[0], s->block_size) * FFALIGN(s->planeheight[0], s->block_size), sizeof(float));
if (!sc->num || !sc->den)
return AVERROR(ENOMEM);
ret = av_tx_init(&sc->dctf, &sc->tx_fn, AV_TX_FLOAT_DCT, 0, s->block_size >> 0, &scale, 0);
if (ret < 0)
return ret;
ret = av_tx_init(&sc->dcti, &sc->itx_fn, AV_TX_FLOAT_DCT, 1, s->block_size >> 1, &iscale, 0);
if (ret < 0)
return ret;
if (s->group_size > 1) {
float iscale = 0.5f / s->group_size;
ret = av_tx_init(&sc->gdctf, &sc->tx_fn_g, AV_TX_FLOAT_DCT, 0, s->group_size >> 0, &scale, 0);
if (ret < 0)
return ret;
ret = av_tx_init(&sc->gdcti, &sc->itx_fn_g, AV_TX_FLOAT_DCT, 1, s->group_size >> 1, &iscale, 0);
if (ret < 0)
return ret;
}
sc->buffer = av_calloc(s->pblock_size * s->pblock_size * s->pgroup_size, sizeof(*sc->buffer));
sc->bufferz = av_calloc(s->pblock_size * s->pblock_size * s->pgroup_size, sizeof(*sc->bufferz));
sc->bufferh = av_calloc(s->pblock_size * s->pblock_size, sizeof(*sc->bufferh));
sc->bufferv = av_calloc(s->pblock_size * s->pblock_size, sizeof(*sc->bufferv));
sc->buffert = av_calloc(s->pblock_size, sizeof(*sc->buffert));
if (!sc->bufferh || !sc->bufferv || !sc->buffer || !sc->bufferz || !sc->buffert)
return AVERROR(ENOMEM);
if (s->mode == FINAL) {
sc->rbuffer = av_calloc(s->pblock_size * s->pblock_size * s->pgroup_size, sizeof(*sc->rbuffer));
sc->rbufferz = av_calloc(s->pblock_size * s->pblock_size * s->pgroup_size, sizeof(*sc->rbufferz));
sc->rbufferh = av_calloc(s->pblock_size * s->pblock_size, sizeof(*sc->rbufferh));
sc->rbufferv = av_calloc(s->pblock_size * s->pblock_size, sizeof(*sc->rbufferv));
if (!sc->rbufferh || !sc->rbufferv || !sc->rbuffer || !sc->rbufferz)
return AVERROR(ENOMEM);
}
sc->search_positions = av_calloc(SQR(2 * s->bm_range / s->bm_step + 1), sizeof(*sc->search_positions));
if (!sc->search_positions)
return AVERROR(ENOMEM);
}
s->do_output = do_output;
s->do_block_ssd = do_block_ssd;
s->get_block_row = get_block_row;
if (s->depth > 8) {
s->do_output = do_output16;
s->do_block_ssd = do_block_ssd16;
s->get_block_row = get_block_row16;
}
return 0;
}
static int activate(AVFilterContext *ctx)
{
BM3DContext *s = ctx->priv;
if (!s->ref) {
AVFrame *frame = NULL;
AVFrame *out = NULL;
int ret, status;
int64_t pts;
2019-10-19 18:45:35 +02:00
FF_FILTER_FORWARD_STATUS_BACK(ctx->outputs[0], ctx->inputs[0]);
if ((ret = ff_inlink_consume_frame(ctx->inputs[0], &frame)) > 0) {
ret = filter_frame(ctx, &out, frame, frame);
av_frame_free(&frame);
if (ret < 0)
return ret;
ret = ff_filter_frame(ctx->outputs[0], out);
}
if (ret < 0) {
return ret;
} else if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
ff_outlink_set_status(ctx->outputs[0], status, pts);
return 0;
} else {
if (ff_outlink_frame_wanted(ctx->outputs[0]))
ff_inlink_request_frame(ctx->inputs[0]);
return 0;
}
} else {
return ff_framesync_activate(&s->fs);
}
}
static int process_frame(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
BM3DContext *s = fs->opaque;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out = NULL, *src, *ref;
int ret;
if ((ret = ff_framesync_get_frame(&s->fs, 0, &src, 0)) < 0 ||
(ret = ff_framesync_get_frame(&s->fs, 1, &ref, 0)) < 0)
return ret;
if ((ret = filter_frame(ctx, &out, src, ref)) < 0)
return ret;
out->pts = av_rescale_q(src->pts, s->fs.time_base, outlink->time_base);
return ff_filter_frame(outlink, out);
}
static av_cold int init(AVFilterContext *ctx)
{
BM3DContext *s = ctx->priv;
AVFilterPad pad = { 0 };
int ret;
if (s->mode == BASIC) {
if (s->th_mse == 0.f)
s->th_mse = 400.f + s->sigma * 80.f;
s->block_filtering = basic_block_filtering;
} else if (s->mode == FINAL) {
if (!s->ref) {
av_log(ctx, AV_LOG_WARNING, "Reference stream is mandatory in final estimation mode.\n");
s->ref = 1;
}
if (s->th_mse == 0.f)
s->th_mse = 200.f + s->sigma * 10.f;
s->block_filtering = final_block_filtering;
} else {
return AVERROR_BUG;
}
if (s->block_step > s->block_size) {
av_log(ctx, AV_LOG_WARNING, "bstep: %d can't be bigger than block size. Changing to %d.\n",
s->block_step, s->block_size);
s->block_step = s->block_size;
}
if (s->bm_step > s->bm_range) {
av_log(ctx, AV_LOG_WARNING, "mstep: %d can't be bigger than block matching range. Changing to %d.\n",
s->bm_step, s->bm_range);
s->bm_step = s->bm_range;
}
pad.type = AVMEDIA_TYPE_VIDEO;
pad.name = "source";
pad.config_props = config_input;
if ((ret = ff_append_inpad(ctx, &pad)) < 0)
return ret;
if (s->ref) {
pad.type = AVMEDIA_TYPE_VIDEO;
pad.name = "reference";
pad.config_props = NULL;
if ((ret = ff_append_inpad(ctx, &pad)) < 0)
return ret;
}
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
BM3DContext *s = ctx->priv;
AVFilterLink *src = ctx->inputs[0];
AVFilterLink *ref;
FFFrameSyncIn *in;
int ret;
if (s->ref) {
ref = ctx->inputs[1];
if (src->w != ref->w ||
src->h != ref->h) {
av_log(ctx, AV_LOG_ERROR, "First input link %s parameters "
"(size %dx%d) do not match the corresponding "
"second input link %s parameters (%dx%d) ",
ctx->input_pads[0].name, src->w, src->h,
ctx->input_pads[1].name, ref->w, ref->h);
return AVERROR(EINVAL);
}
}
outlink->w = src->w;
outlink->h = src->h;
outlink->time_base = src->time_base;
outlink->sample_aspect_ratio = src->sample_aspect_ratio;
outlink->frame_rate = src->frame_rate;
if (!s->ref)
return 0;
if ((ret = ff_framesync_init(&s->fs, ctx, 2)) < 0)
return ret;
in = s->fs.in;
in[0].time_base = src->time_base;
in[1].time_base = ref->time_base;
in[0].sync = 1;
in[0].before = EXT_STOP;
in[0].after = EXT_STOP;
in[1].sync = 1;
in[1].before = EXT_STOP;
in[1].after = EXT_STOP;
s->fs.opaque = s;
s->fs.on_event = process_frame;
return ff_framesync_configure(&s->fs);
}
static av_cold void uninit(AVFilterContext *ctx)
{
BM3DContext *s = ctx->priv;
if (s->ref)
ff_framesync_uninit(&s->fs);
for (int i = 0; i < s->nb_threads; i++) {
SliceContext *sc = &s->slices[i];
av_freep(&sc->num);
av_freep(&sc->den);
av_tx_uninit(&sc->gdctf);
av_tx_uninit(&sc->gdcti);
av_tx_uninit(&sc->dctf);
av_tx_uninit(&sc->dcti);
av_freep(&sc->buffer);
av_freep(&sc->bufferh);
av_freep(&sc->buffert);
av_freep(&sc->bufferv);
av_freep(&sc->bufferz);
av_freep(&sc->rbuffer);
av_freep(&sc->rbufferh);
av_freep(&sc->rbufferv);
av_freep(&sc->rbufferz);
av_freep(&sc->search_positions);
}
}
static const AVFilterPad bm3d_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_vf_bm3d = {
.name = "bm3d",
.description = NULL_IF_CONFIG_SMALL("Block-Matching 3D denoiser."),
.priv_size = sizeof(BM3DContext),
.init = init,
.uninit = uninit,
.activate = activate,
.inputs = NULL,
2021-08-12 13:05:31 +02:00
FILTER_OUTPUTS(bm3d_outputs),
FILTER_PIXFMTS_ARRAY(pix_fmts),
.priv_class = &bm3d_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
AVFILTER_FLAG_DYNAMIC_INPUTS |
AVFILTER_FLAG_SLICE_THREADS,
};