1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00

lavfi/dnn_backend_tf: Request-based Execution

This commit uses TFRequestItem and the existing sync execution
mechanism to use request-based execution. It will help in adding
async functionality to the TensorFlow backend later.

Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
This commit is contained in:
Shubhanshu Saxena 2021-07-05 16:00:55 +05:30 committed by Guo Yejun
parent a4de605110
commit 08d8b3b631
3 changed files with 91 additions and 70 deletions

View File

@ -26,6 +26,9 @@
#include "../dnn_interface.h"
#define DNN_BACKEND_COMMON_OPTIONS \
{ "nireq", "number of request", OFFSET(options.nireq), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, FLAGS },
// one task for one function call from dnn interface
typedef struct TaskItem {
void *model; // model for the backend

View File

@ -75,7 +75,7 @@ typedef struct RequestItem {
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
static const AVOption dnn_openvino_options[] = {
{ "device", "device to run model", OFFSET(options.device_type), AV_OPT_TYPE_STRING, { .str = "CPU" }, 0, 0, FLAGS },
{ "nireq", "number of request", OFFSET(options.nireq), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, FLAGS },
DNN_BACKEND_COMMON_OPTIONS
{ "batch_size", "batch size per request", OFFSET(options.batch_size), AV_OPT_TYPE_INT, { .i64 = 1 }, 1, 1000, FLAGS},
{ "input_resizable", "can input be resizable or not", OFFSET(options.input_resizable), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
{ NULL }

View File

@ -35,11 +35,13 @@
#include "dnn_backend_native_layer_maximum.h"
#include "dnn_io_proc.h"
#include "dnn_backend_common.h"
#include "safe_queue.h"
#include "queue.h"
#include <tensorflow/c/c_api.h>
typedef struct TFOptions{
char *sess_config;
uint32_t nireq;
} TFOptions;
typedef struct TFContext {
@ -53,6 +55,7 @@ typedef struct TFModel{
TF_Graph *graph;
TF_Session *session;
TF_Status *status;
SafeQueue *request_queue;
Queue *inference_queue;
} TFModel;
@ -77,12 +80,13 @@ typedef struct TFRequestItem {
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
static const AVOption dnn_tensorflow_options[] = {
{ "sess_config", "config for SessionOptions", OFFSET(options.sess_config), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
DNN_BACKEND_COMMON_OPTIONS
{ NULL }
};
AVFILTER_DEFINE_CLASS(dnn_tensorflow);
static DNNReturnType execute_model_tf(Queue *inference_queue);
static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_queue);
static void free_buffer(void *data, size_t length)
{
@ -237,6 +241,7 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu
AVFrame *in_frame = av_frame_alloc();
AVFrame *out_frame = NULL;
TaskItem task;
TFRequestItem *request;
if (!in_frame) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n");
@ -267,7 +272,13 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu
return DNN_ERROR;
}
ret = execute_model_tf(tf_model->inference_queue);
request = ff_safe_queue_pop_front(tf_model->request_queue);
if (!request) {
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
return DNN_ERROR;
}
ret = execute_model_tf(request, tf_model->inference_queue);
*output_width = out_frame->width;
*output_height = out_frame->height;
@ -771,6 +782,7 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
{
DNNModel *model = NULL;
TFModel *tf_model = NULL;
TFContext *ctx = NULL;
model = av_mallocz(sizeof(DNNModel));
if (!model){
@ -782,13 +794,14 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
av_freep(&model);
return NULL;
}
tf_model->ctx.class = &dnn_tensorflow_class;
tf_model->model = model;
ctx = &tf_model->ctx;
ctx->class = &dnn_tensorflow_class;
//parse options
av_opt_set_defaults(&tf_model->ctx);
if (av_opt_set_from_string(&tf_model->ctx, options, NULL, "=", "&") < 0) {
av_log(&tf_model->ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options);
av_opt_set_defaults(ctx);
if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options);
av_freep(&tf_model);
av_freep(&model);
return NULL;
@ -803,6 +816,18 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
}
}
if (ctx->options.nireq <= 0) {
ctx->options.nireq = av_cpu_count() / 2 + 1;
}
tf_model->request_queue = ff_safe_queue_create();
for (int i = 0; i < ctx->options.nireq; i++) {
TFRequestItem *item = av_mallocz(sizeof(*item));
item->infer_request = tf_create_inference_request();
ff_safe_queue_push_back(tf_model->request_queue, item);
}
tf_model->inference_queue = ff_queue_create();
model->model = tf_model;
model->get_input = &get_input_tf;
@ -814,42 +839,42 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
return model;
}
static DNNReturnType execute_model_tf(Queue *inference_queue)
static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_queue)
{
TF_Output *tf_outputs;
TFModel *tf_model;
TFContext *ctx;
TFInferRequest *infer_request;
InferenceItem *inference;
TaskItem *task;
DNNData input, *outputs;
TF_Tensor **output_tensors;
TF_Output tf_input;
TF_Tensor *input_tensor;
inference = ff_queue_pop_front(inference_queue);
av_assert0(inference);
task = inference->task;
tf_model = task->model;
ctx = &tf_model->ctx;
request->inference = inference;
if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS)
return DNN_ERROR;
infer_request = request->infer_request;
input.height = task->in_frame->height;
input.width = task->in_frame->width;
tf_input.oper = TF_GraphOperationByName(tf_model->graph, task->input_name);
if (!tf_input.oper){
infer_request->tf_input = av_malloc(sizeof(TF_Output));
infer_request->tf_input->oper = TF_GraphOperationByName(tf_model->graph, task->input_name);
if (!infer_request->tf_input->oper){
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name);
return DNN_ERROR;
}
tf_input.index = 0;
input_tensor = allocate_input_tensor(&input);
if (!input_tensor){
infer_request->tf_input->index = 0;
infer_request->input_tensor = allocate_input_tensor(&input);
if (!infer_request->input_tensor){
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n");
return DNN_ERROR;
}
input.data = (float *)TF_TensorData(input_tensor);
input.data = (float *)TF_TensorData(infer_request->input_tensor);
switch (tf_model->model->func_type) {
case DFT_PROCESS_FRAME:
@ -869,60 +894,52 @@ static DNNReturnType execute_model_tf(Queue *inference_queue)
break;
}
tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output));
if (tf_outputs == NULL) {
TF_DeleteTensor(input_tensor);
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); \
infer_request->tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output));
if (infer_request->tf_outputs == NULL) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n");
return DNN_ERROR;
}
output_tensors = av_mallocz_array(task->nb_output, sizeof(*output_tensors));
if (!output_tensors) {
TF_DeleteTensor(input_tensor);
av_freep(&tf_outputs);
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n"); \
infer_request->output_tensors = av_mallocz_array(task->nb_output, sizeof(*infer_request->output_tensors));
if (!infer_request->output_tensors) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n");
return DNN_ERROR;
}
for (int i = 0; i < task->nb_output; ++i) {
tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, task->output_names[i]);
if (!tf_outputs[i].oper) {
TF_DeleteTensor(input_tensor);
av_freep(&tf_outputs);
av_freep(&output_tensors);
av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", task->output_names[i]); \
infer_request->output_tensors[i] = NULL;
infer_request->tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, task->output_names[i]);
if (!infer_request->tf_outputs[i].oper) {
av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", task->output_names[i]);
return DNN_ERROR;
}
tf_outputs[i].index = 0;
infer_request->tf_outputs[i].index = 0;
}
TF_SessionRun(tf_model->session, NULL,
&tf_input, &input_tensor, 1,
tf_outputs, output_tensors, task->nb_output,
NULL, 0, NULL, tf_model->status);
infer_request->tf_input, &infer_request->input_tensor, 1,
infer_request->tf_outputs, infer_request->output_tensors,
task->nb_output, NULL, 0, NULL,
tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK) {
TF_DeleteTensor(input_tensor);
av_freep(&tf_outputs);
av_freep(&output_tensors);
av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n");
return DNN_ERROR;
tf_free_request(infer_request);
av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n");
return DNN_ERROR;
}
outputs = av_malloc_array(task->nb_output, sizeof(*outputs));
if (!outputs) {
TF_DeleteTensor(input_tensor);
av_freep(&tf_outputs);
av_freep(&output_tensors);
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n"); \
tf_free_request(infer_request);
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n");
return DNN_ERROR;
}
for (uint32_t i = 0; i < task->nb_output; ++i) {
outputs[i].height = TF_Dim(output_tensors[i], 1);
outputs[i].width = TF_Dim(output_tensors[i], 2);
outputs[i].channels = TF_Dim(output_tensors[i], 3);
outputs[i].data = TF_TensorData(output_tensors[i]);
outputs[i].dt = TF_TensorType(output_tensors[i]);
outputs[i].height = TF_Dim(infer_request->output_tensors[i], 1);
outputs[i].width = TF_Dim(infer_request->output_tensors[i], 2);
outputs[i].channels = TF_Dim(infer_request->output_tensors[i], 3);
outputs[i].data = TF_TensorData(infer_request->output_tensors[i]);
outputs[i].dt = TF_TensorType(infer_request->output_tensors[i]);
}
switch (tf_model->model->func_type) {
case DFT_PROCESS_FRAME:
@ -946,30 +963,15 @@ static DNNReturnType execute_model_tf(Queue *inference_queue)
tf_model->model->detect_post_proc(task->out_frame, outputs, task->nb_output, tf_model->model->filter_ctx);
break;
default:
for (uint32_t i = 0; i < task->nb_output; ++i) {
if (output_tensors[i]) {
TF_DeleteTensor(output_tensors[i]);
}
}
TF_DeleteTensor(input_tensor);
av_freep(&output_tensors);
av_freep(&tf_outputs);
av_freep(&outputs);
tf_free_request(infer_request);
av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n");
return DNN_ERROR;
}
for (uint32_t i = 0; i < task->nb_output; ++i) {
if (output_tensors[i]) {
TF_DeleteTensor(output_tensors[i]);
}
}
task->inference_done++;
TF_DeleteTensor(input_tensor);
av_freep(&output_tensors);
av_freep(&tf_outputs);
tf_free_request(infer_request);
av_freep(&outputs);
return DNN_SUCCESS;
ff_safe_queue_push_back(tf_model->request_queue, request);
return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_ERROR;
}
@ -978,6 +980,7 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *
TFModel *tf_model = model->model;
TFContext *ctx = &tf_model->ctx;
TaskItem task;
TFRequestItem *request;
if (ff_check_exec_params(ctx, DNN_TF, model->func_type, exec_params) != 0) {
return DNN_ERROR;
@ -991,7 +994,14 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
return DNN_ERROR;
}
return execute_model_tf(tf_model->inference_queue);
request = ff_safe_queue_pop_front(tf_model->request_queue);
if (!request) {
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
return DNN_ERROR;
}
return execute_model_tf(request, tf_model->inference_queue);
}
void ff_dnn_free_model_tf(DNNModel **model)
@ -1000,6 +1010,14 @@ void ff_dnn_free_model_tf(DNNModel **model)
if (*model){
tf_model = (*model)->model;
while (ff_safe_queue_size(tf_model->request_queue) != 0) {
TFRequestItem *item = ff_safe_queue_pop_front(tf_model->request_queue);
tf_free_request(item->infer_request);
av_freep(&item->infer_request);
av_freep(&item);
}
ff_safe_queue_destroy(tf_model->request_queue);
while (ff_queue_size(tf_model->inference_queue) != 0) {
InferenceItem *item = ff_queue_pop_front(tf_model->inference_queue);
av_freep(&item);