1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00

avfilter/vf_overlay: split blend_image into functions for each overlay format

Signed-off-by: Paul B Mahol <onemda@gmail.com>
This commit is contained in:
Paul B Mahol 2016-09-10 12:17:08 +02:00
parent 054f912c0d
commit 140a0485d3

View File

@ -132,6 +132,8 @@ typedef struct OverlayContext {
int eof_action; ///< action to take on EOF from source int eof_action; ///< action to take on EOF from source
AVExpr *x_pexpr, *y_pexpr; AVExpr *x_pexpr, *y_pexpr;
void (*blend_image)(AVFilterContext *ctx, AVFrame *dst, const AVFrame *src, int x, int y);
} OverlayContext; } OverlayContext;
static av_cold void uninit(AVFilterContext *ctx) static av_cold void uninit(AVFilterContext *ctx)
@ -304,22 +306,6 @@ static const enum AVPixelFormat alpha_pix_fmts[] = {
AV_PIX_FMT_BGRA, AV_PIX_FMT_NONE AV_PIX_FMT_BGRA, AV_PIX_FMT_NONE
}; };
static int config_input_main(AVFilterLink *inlink)
{
OverlayContext *s = inlink->dst->priv;
const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format);
av_image_fill_max_pixsteps(s->main_pix_step, NULL, pix_desc);
s->hsub = pix_desc->log2_chroma_w;
s->vsub = pix_desc->log2_chroma_h;
s->main_is_packed_rgb =
ff_fill_rgba_map(s->main_rgba_map, inlink->format) >= 0;
s->main_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts);
return 0;
}
static int config_input_overlay(AVFilterLink *inlink) static int config_input_overlay(AVFilterLink *inlink)
{ {
AVFilterContext *ctx = inlink->dst; AVFilterContext *ctx = inlink->dst;
@ -397,9 +383,88 @@ static int config_output(AVFilterLink *outlink)
/** /**
* Blend image in src to destination buffer dst at position (x, y). * Blend image in src to destination buffer dst at position (x, y).
*/ */
static void blend_image(AVFilterContext *ctx,
AVFrame *dst, const AVFrame *src, static void blend_image_packed_rgb(AVFilterContext *ctx,
int x, int y) AVFrame *dst, const AVFrame *src,
int x, int y)
{
OverlayContext *s = ctx->priv;
int i, imax, j, jmax;
const int src_w = src->width;
const int src_h = src->height;
const int dst_w = dst->width;
const int dst_h = dst->height;
uint8_t alpha; ///< the amount of overlay to blend on to main
const int dr = s->main_rgba_map[R];
const int dg = s->main_rgba_map[G];
const int db = s->main_rgba_map[B];
const int da = s->main_rgba_map[A];
const int dstep = s->main_pix_step[0];
const int sr = s->overlay_rgba_map[R];
const int sg = s->overlay_rgba_map[G];
const int sb = s->overlay_rgba_map[B];
const int sa = s->overlay_rgba_map[A];
const int sstep = s->overlay_pix_step[0];
const int main_has_alpha = s->main_has_alpha;
uint8_t *S, *sp, *d, *dp;
i = FFMAX(-y, 0);
sp = src->data[0] + i * src->linesize[0];
dp = dst->data[0] + (y+i) * dst->linesize[0];
for (imax = FFMIN(-y + dst_h, src_h); i < imax; i++) {
j = FFMAX(-x, 0);
S = sp + j * sstep;
d = dp + (x+j) * dstep;
for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) {
alpha = S[sa];
// if the main channel has an alpha channel, alpha has to be calculated
// to create an un-premultiplied (straight) alpha value
if (main_has_alpha && alpha != 0 && alpha != 255) {
uint8_t alpha_d = d[da];
alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
}
switch (alpha) {
case 0:
break;
case 255:
d[dr] = S[sr];
d[dg] = S[sg];
d[db] = S[sb];
break;
default:
// main_value = main_value * (1 - alpha) + overlay_value * alpha
// since alpha is in the range 0-255, the result must divided by 255
d[dr] = FAST_DIV255(d[dr] * (255 - alpha) + S[sr] * alpha);
d[dg] = FAST_DIV255(d[dg] * (255 - alpha) + S[sg] * alpha);
d[db] = FAST_DIV255(d[db] * (255 - alpha) + S[sb] * alpha);
}
if (main_has_alpha) {
switch (alpha) {
case 0:
break;
case 255:
d[da] = S[sa];
break;
default:
// apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha
d[da] += FAST_DIV255((255 - d[da]) * S[sa]);
}
}
d += dstep;
S += sstep;
}
dp += dst->linesize[0];
sp += src->linesize[0];
}
}
static void blend_image_yuv(AVFilterContext *ctx,
AVFrame *dst, const AVFrame *src,
int x, int y)
{ {
OverlayContext *s = ctx->priv; OverlayContext *s = ctx->priv;
int i, imax, j, jmax, k, kmax; int i, imax, j, jmax, k, kmax;
@ -407,182 +472,135 @@ static void blend_image(AVFilterContext *ctx,
const int src_h = src->height; const int src_h = src->height;
const int dst_w = dst->width; const int dst_w = dst->width;
const int dst_h = dst->height; const int dst_h = dst->height;
const int main_has_alpha = s->main_has_alpha;
if (x >= dst_w || x+src_w < 0 || if (main_has_alpha) {
y >= dst_h || y+src_h < 0)
return; /* no intersection */
if (s->main_is_packed_rgb) {
uint8_t alpha; ///< the amount of overlay to blend on to main uint8_t alpha; ///< the amount of overlay to blend on to main
const int dr = s->main_rgba_map[R]; uint8_t *s, *sa, *d, *da;
const int dg = s->main_rgba_map[G];
const int db = s->main_rgba_map[B];
const int da = s->main_rgba_map[A];
const int dstep = s->main_pix_step[0];
const int sr = s->overlay_rgba_map[R];
const int sg = s->overlay_rgba_map[G];
const int sb = s->overlay_rgba_map[B];
const int sa = s->overlay_rgba_map[A];
const int sstep = s->overlay_pix_step[0];
const int main_has_alpha = s->main_has_alpha;
uint8_t *s, *sp, *d, *dp;
i = FFMAX(-y, 0); i = FFMAX(-y, 0);
sp = src->data[0] + i * src->linesize[0]; sa = src->data[3] + i * src->linesize[3];
dp = dst->data[0] + (y+i) * dst->linesize[0]; da = dst->data[3] + (y+i) * dst->linesize[3];
for (imax = FFMIN(-y + dst_h, src_h); i < imax; i++) { for (imax = FFMIN(-y + dst_h, src_h); i < imax; i++) {
j = FFMAX(-x, 0); j = FFMAX(-x, 0);
s = sp + j * sstep; s = sa + j;
d = dp + (x+j) * dstep; d = da + x+j;
for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) { for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) {
alpha = s[sa]; alpha = *s;
if (alpha != 0 && alpha != 255) {
// if the main channel has an alpha channel, alpha has to be calculated uint8_t alpha_d = *d;
// to create an un-premultiplied (straight) alpha value
if (main_has_alpha && alpha != 0 && alpha != 255) {
uint8_t alpha_d = d[da];
alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
} }
switch (alpha) { switch (alpha) {
case 0: case 0:
break; break;
case 255: case 255:
d[dr] = s[sr]; *d = *s;
d[dg] = s[sg];
d[db] = s[sb];
break; break;
default: default:
// main_value = main_value * (1 - alpha) + overlay_value * alpha // apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha
// since alpha is in the range 0-255, the result must divided by 255 *d += FAST_DIV255((255 - *d) * *s);
d[dr] = FAST_DIV255(d[dr] * (255 - alpha) + s[sr] * alpha);
d[dg] = FAST_DIV255(d[dg] * (255 - alpha) + s[sg] * alpha);
d[db] = FAST_DIV255(d[db] * (255 - alpha) + s[sb] * alpha);
} }
if (main_has_alpha) { d += 1;
switch (alpha) { s += 1;
case 0:
break;
case 255:
d[da] = s[sa];
break;
default:
// apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha
d[da] += FAST_DIV255((255 - d[da]) * s[sa]);
}
}
d += dstep;
s += sstep;
}
dp += dst->linesize[0];
sp += src->linesize[0];
}
} else {
const int main_has_alpha = s->main_has_alpha;
if (main_has_alpha) {
uint8_t alpha; ///< the amount of overlay to blend on to main
uint8_t *s, *sa, *d, *da;
i = FFMAX(-y, 0);
sa = src->data[3] + i * src->linesize[3];
da = dst->data[3] + (y+i) * dst->linesize[3];
for (imax = FFMIN(-y + dst_h, src_h); i < imax; i++) {
j = FFMAX(-x, 0);
s = sa + j;
d = da + x+j;
for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) {
alpha = *s;
if (alpha != 0 && alpha != 255) {
uint8_t alpha_d = *d;
alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
}
switch (alpha) {
case 0:
break;
case 255:
*d = *s;
break;
default:
// apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha
*d += FAST_DIV255((255 - *d) * *s);
}
d += 1;
s += 1;
}
da += dst->linesize[3];
sa += src->linesize[3];
}
}
for (i = 0; i < 3; i++) {
int hsub = i ? s->hsub : 0;
int vsub = i ? s->vsub : 0;
int src_wp = AV_CEIL_RSHIFT(src_w, hsub);
int src_hp = AV_CEIL_RSHIFT(src_h, vsub);
int dst_wp = AV_CEIL_RSHIFT(dst_w, hsub);
int dst_hp = AV_CEIL_RSHIFT(dst_h, vsub);
int yp = y>>vsub;
int xp = x>>hsub;
uint8_t *s, *sp, *d, *dp, *a, *ap;
j = FFMAX(-yp, 0);
sp = src->data[i] + j * src->linesize[i];
dp = dst->data[i] + (yp+j) * dst->linesize[i];
ap = src->data[3] + (j<<vsub) * src->linesize[3];
for (jmax = FFMIN(-yp + dst_hp, src_hp); j < jmax; j++) {
k = FFMAX(-xp, 0);
d = dp + xp+k;
s = sp + k;
a = ap + (k<<hsub);
for (kmax = FFMIN(-xp + dst_wp, src_wp); k < kmax; k++) {
int alpha_v, alpha_h, alpha;
// average alpha for color components, improve quality
if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) {
alpha = (a[0] + a[src->linesize[3]] +
a[1] + a[src->linesize[3]+1]) >> 2;
} else if (hsub || vsub) {
alpha_h = hsub && k+1 < src_wp ?
(a[0] + a[1]) >> 1 : a[0];
alpha_v = vsub && j+1 < src_hp ?
(a[0] + a[src->linesize[3]]) >> 1 : a[0];
alpha = (alpha_v + alpha_h) >> 1;
} else
alpha = a[0];
// if the main channel has an alpha channel, alpha has to be calculated
// to create an un-premultiplied (straight) alpha value
if (main_has_alpha && alpha != 0 && alpha != 255) {
// average alpha for color components, improve quality
uint8_t alpha_d;
if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) {
alpha_d = (d[0] + d[src->linesize[3]] +
d[1] + d[src->linesize[3]+1]) >> 2;
} else if (hsub || vsub) {
alpha_h = hsub && k+1 < src_wp ?
(d[0] + d[1]) >> 1 : d[0];
alpha_v = vsub && j+1 < src_hp ?
(d[0] + d[src->linesize[3]]) >> 1 : d[0];
alpha_d = (alpha_v + alpha_h) >> 1;
} else
alpha_d = d[0];
alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
}
*d = FAST_DIV255(*d * (255 - alpha) + *s * alpha);
s++;
d++;
a += 1 << hsub;
}
dp += dst->linesize[i];
sp += src->linesize[i];
ap += (1 << vsub) * src->linesize[3];
} }
da += dst->linesize[3];
sa += src->linesize[3];
} }
} }
for (i = 0; i < 3; i++) {
int hsub = i ? s->hsub : 0;
int vsub = i ? s->vsub : 0;
int src_wp = AV_CEIL_RSHIFT(src_w, hsub);
int src_hp = AV_CEIL_RSHIFT(src_h, vsub);
int dst_wp = AV_CEIL_RSHIFT(dst_w, hsub);
int dst_hp = AV_CEIL_RSHIFT(dst_h, vsub);
int yp = y>>vsub;
int xp = x>>hsub;
uint8_t *s, *sp, *d, *dp, *a, *ap;
j = FFMAX(-yp, 0);
sp = src->data[i] + j * src->linesize[i];
dp = dst->data[i] + (yp+j) * dst->linesize[i];
ap = src->data[3] + (j<<vsub) * src->linesize[3];
for (jmax = FFMIN(-yp + dst_hp, src_hp); j < jmax; j++) {
k = FFMAX(-xp, 0);
d = dp + xp+k;
s = sp + k;
a = ap + (k<<hsub);
for (kmax = FFMIN(-xp + dst_wp, src_wp); k < kmax; k++) {
int alpha_v, alpha_h, alpha;
// average alpha for color components, improve quality
if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) {
alpha = (a[0] + a[src->linesize[3]] +
a[1] + a[src->linesize[3]+1]) >> 2;
} else if (hsub || vsub) {
alpha_h = hsub && k+1 < src_wp ?
(a[0] + a[1]) >> 1 : a[0];
alpha_v = vsub && j+1 < src_hp ?
(a[0] + a[src->linesize[3]]) >> 1 : a[0];
alpha = (alpha_v + alpha_h) >> 1;
} else
alpha = a[0];
// if the main channel has an alpha channel, alpha has to be calculated
// to create an un-premultiplied (straight) alpha value
if (main_has_alpha && alpha != 0 && alpha != 255) {
// average alpha for color components, improve quality
uint8_t alpha_d;
if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) {
alpha_d = (d[0] + d[src->linesize[3]] +
d[1] + d[src->linesize[3]+1]) >> 2;
} else if (hsub || vsub) {
alpha_h = hsub && k+1 < src_wp ?
(d[0] + d[1]) >> 1 : d[0];
alpha_v = vsub && j+1 < src_hp ?
(d[0] + d[src->linesize[3]]) >> 1 : d[0];
alpha_d = (alpha_v + alpha_h) >> 1;
} else
alpha_d = d[0];
alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
}
*d = FAST_DIV255(*d * (255 - alpha) + *s * alpha);
s++;
d++;
a += 1 << hsub;
}
dp += dst->linesize[i];
sp += src->linesize[i];
ap += (1 << vsub) * src->linesize[3];
}
}
}
static int config_input_main(AVFilterLink *inlink)
{
OverlayContext *s = inlink->dst->priv;
const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format);
av_image_fill_max_pixsteps(s->main_pix_step, NULL, pix_desc);
s->hsub = pix_desc->log2_chroma_w;
s->vsub = pix_desc->log2_chroma_h;
s->main_is_packed_rgb =
ff_fill_rgba_map(s->main_rgba_map, inlink->format) >= 0;
s->main_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts);
switch (s->format) {
case OVERLAY_FORMAT_YUV420:
case OVERLAY_FORMAT_YUV422:
case OVERLAY_FORMAT_YUV444:
s->blend_image = blend_image_yuv;
break;
case OVERLAY_FORMAT_RGB:
s->blend_image = blend_image_packed_rgb;
break;
}
return 0;
} }
static AVFrame *do_blend(AVFilterContext *ctx, AVFrame *mainpic, static AVFrame *do_blend(AVFilterContext *ctx, AVFrame *mainpic,
@ -611,7 +629,9 @@ static AVFrame *do_blend(AVFilterContext *ctx, AVFrame *mainpic,
s->var_values[VAR_Y], s->y); s->var_values[VAR_Y], s->y);
} }
blend_image(ctx, mainpic, second, s->x, s->y); if (s->x < mainpic->width && s->x + second->width >= 0 ||
s->y < mainpic->height && s->y + second->height >= 0)
s->blend_image(ctx, mainpic, second, s->x, s->y);
return mainpic; return mainpic;
} }