1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00

lavc/aacpsdsp: RISC-V V hybrid_analysis

This starts with one-time initialisation of the 26 constant factors
like  08edacc248. That is done with
the scalar instruction set. While the formula can readily be vectored,
the gains would (probably) be more than lost in transfering the results
back to FP registers (or suitably reshuffling them into vector
registers).

Note that the main loop could likely be scheduled sligthly better by
expanding the filter macro and interleaving loads with arithmetic.
It is not clear yet if that would be relevant for vector processing (as
opposed to traditional SIMD).

We could also use fewer vectors, but there is not much point in sparing
them (they are *all* callee-clobbered).
This commit is contained in:
Rémi Denis-Courmont 2022-09-26 17:52:48 +03:00 committed by Lynne
parent e180326a0b
commit 15c3a0bd6e
2 changed files with 100 additions and 0 deletions

View File

@ -27,6 +27,8 @@
void ff_ps_add_squares_rvv(float *dst, const float (*src)[2], int n);
void ff_ps_mul_pair_single_rvv(float (*dst)[2], float (*src0)[2], float *src1,
int n);
void ff_ps_hybrid_analysis_rvv(float (*out)[2], float (*in)[2],
const float (*filter)[8][2], ptrdiff_t, int n);
av_cold void ff_psdsp_init_riscv(PSDSPContext *c)
{
@ -36,6 +38,7 @@ av_cold void ff_psdsp_init_riscv(PSDSPContext *c)
if (flags & AV_CPU_FLAG_RVV_F32) {
c->add_squares = ff_ps_add_squares_rvv;
c->mul_pair_single = ff_ps_mul_pair_single_rvv;
c->hybrid_analysis = ff_ps_hybrid_analysis_rvv;
}
#endif
}

View File

@ -52,3 +52,100 @@ func ff_ps_mul_pair_single_rvv, zve32f
ret
endfunc
func ff_ps_hybrid_analysis_rvv, zve32f
/* We need 26 FP registers, for 20 scratch ones. Spill fs0-fs5. */
addi sp, sp, -32
.irp n, 0, 1, 2, 3, 4, 5
fsw fs\n, (4 * \n)(sp)
.endr
.macro input, j, fd0, fd1, fd2, fd3
flw \fd0, (4 * ((\j * 2) + 0))(a1)
flw fs4, (4 * (((12 - \j) * 2) + 0))(a1)
flw \fd1, (4 * ((\j * 2) + 1))(a1)
fsub.s \fd3, \fd0, fs4
flw fs5, (4 * (((12 - \j) * 2) + 1))(a1)
fadd.s \fd2, \fd1, fs5
fadd.s \fd0, \fd0, fs4
fsub.s \fd1, \fd1, fs5
.endm
// re0, re1, im0, im1
input 0, ft0, ft1, ft2, ft3
input 1, ft4, ft5, ft6, ft7
input 2, ft8, ft9, ft10, ft11
input 3, fa0, fa1, fa2, fa3
input 4, fa4, fa5, fa6, fa7
input 5, fs0, fs1, fs2, fs3
flw fs4, (4 * ((6 * 2) + 0))(a1)
flw fs5, (4 * ((6 * 2) + 1))(a1)
add a2, a2, 6 * 2 * 4 // point to filter[i][6][0]
li t4, 8 * 2 * 4 // filter byte stride
slli a3, a3, 3 // output byte stride
1:
.macro filter, vs0, vs1, fo0, fo1, fo2, fo3
vfmacc.vf v8, \fo0, \vs0
vfmacc.vf v9, \fo2, \vs0
vfnmsac.vf v8, \fo1, \vs1
vfmacc.vf v9, \fo3, \vs1
.endm
vsetvli t0, a4, e32, m1, ta, ma
/*
* The filter (a2) has 16 segments, of which 13 need to be extracted.
* R-V V supports only up to 8 segments, so unrolling is unavoidable.
*/
addi t1, a2, -48
vlse32.v v22, (a2), t4
addi t2, a2, -44
vlse32.v v16, (t1), t4
addi t1, a2, -40
vfmul.vf v8, v22, fs4
vlse32.v v24, (t2), t4
addi t2, a2, -36
vfmul.vf v9, v22, fs5
vlse32.v v17, (t1), t4
addi t1, a2, -32
vlse32.v v25, (t2), t4
addi t2, a2, -28
filter v16, v24, ft0, ft1, ft2, ft3
vlse32.v v18, (t1), t4
addi t1, a2, -24
vlse32.v v26, (t2), t4
addi t2, a2, -20
filter v17, v25, ft4, ft5, ft6, ft7
vlse32.v v19, (t1), t4
addi t1, a2, -16
vlse32.v v27, (t2), t4
addi t2, a2, -12
filter v18, v26, ft8, ft9, ft10, ft11
vlse32.v v20, (t1), t4
addi t1, a2, -8
vlse32.v v28, (t2), t4
addi t2, a2, -4
filter v19, v27, fa0, fa1, fa2, fa3
vlse32.v v21, (t1), t4
sub a4, a4, t0
vlse32.v v29, (t2), t4
slli t1, t0, 3 + 1 + 2 // ctz(8 * 2 * 4)
add a2, a2, t1
filter v20, v28, fa4, fa5, fa6, fa7
filter v21, v29, fs0, fs1, fs2, fs3
add t2, a0, 4
vsse32.v v8, (a0), a3
mul t0, t0, a3
vsse32.v v9, (t2), a3
add a0, a0, t0
bnez a4, 1b
.irp n, 5, 4, 3, 2, 1, 0
flw fs\n, (4 * \n)(sp)
.endr
addi sp, sp, 32
ret
.purgem input
.purgem filter
endfunc