1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-11-23 21:54:53 +02:00

swscale/ops: introduce new low level framework

See docs/swscale-v2.txt for an in-depth introduction to the new approach.

This commit merely introduces the ops definitions and boilerplate functions.
The subsequent commits will flesh out the underlying implementation.
This commit is contained in:
Niklas Haas
2025-03-06 13:10:05 +01:00
parent ce0938da8c
commit 16e191c8ef
4 changed files with 802 additions and 0 deletions

View File

@@ -15,6 +15,7 @@ OBJS = alphablend.o \
graph.o \
input.o \
lut3d.o \
ops.o \
options.o \
output.o \
rgb2rgb.o \

510
libswscale/ops.c Normal file
View File

@@ -0,0 +1,510 @@
/**
* Copyright (C) 2025 Niklas Haas
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "libavutil/bswap.h"
#include "libavutil/mem.h"
#include "libavutil/rational.h"
#include "libavutil/refstruct.h"
#include "ops.h"
#include "ops_internal.h"
const char *ff_sws_pixel_type_name(SwsPixelType type)
{
switch (type) {
case SWS_PIXEL_U8: return "u8";
case SWS_PIXEL_U16: return "u16";
case SWS_PIXEL_U32: return "u32";
case SWS_PIXEL_F32: return "f32";
case SWS_PIXEL_NONE: return "none";
case SWS_PIXEL_TYPE_NB: break;
}
av_unreachable("Invalid pixel type!");
return "ERR";
}
int ff_sws_pixel_type_size(SwsPixelType type)
{
switch (type) {
case SWS_PIXEL_U8: return sizeof(uint8_t);
case SWS_PIXEL_U16: return sizeof(uint16_t);
case SWS_PIXEL_U32: return sizeof(uint32_t);
case SWS_PIXEL_F32: return sizeof(float);
case SWS_PIXEL_NONE: break;
case SWS_PIXEL_TYPE_NB: break;
}
av_unreachable("Invalid pixel type!");
return 0;
}
bool ff_sws_pixel_type_is_int(SwsPixelType type)
{
switch (type) {
case SWS_PIXEL_U8:
case SWS_PIXEL_U16:
case SWS_PIXEL_U32:
return true;
case SWS_PIXEL_F32:
return false;
case SWS_PIXEL_NONE:
case SWS_PIXEL_TYPE_NB: break;
}
av_unreachable("Invalid pixel type!");
return false;
}
SwsPixelType ff_sws_pixel_type_to_uint(SwsPixelType type)
{
if (!type)
return type;
switch (ff_sws_pixel_type_size(type)) {
case 8: return SWS_PIXEL_U8;
case 16: return SWS_PIXEL_U16;
case 32: return SWS_PIXEL_U32;
}
av_unreachable("Invalid pixel type!");
return SWS_PIXEL_NONE;
}
/* biased towards `a` */
static AVRational av_min_q(AVRational a, AVRational b)
{
return av_cmp_q(a, b) == 1 ? b : a;
}
static AVRational av_max_q(AVRational a, AVRational b)
{
return av_cmp_q(a, b) == -1 ? b : a;
}
void ff_sws_apply_op_q(const SwsOp *op, AVRational x[4])
{
uint64_t mask[4];
int shift[4];
switch (op->op) {
case SWS_OP_READ:
case SWS_OP_WRITE:
return;
case SWS_OP_UNPACK: {
unsigned val = x[0].num;
ff_sws_pack_op_decode(op, mask, shift);
for (int i = 0; i < 4; i++)
x[i] = Q((val >> shift[i]) & mask[i]);
return;
}
case SWS_OP_PACK: {
unsigned val = 0;
ff_sws_pack_op_decode(op, mask, shift);
for (int i = 0; i < 4; i++)
val |= (x[i].num & mask[i]) << shift[i];
x[0] = Q(val);
return;
}
case SWS_OP_SWAP_BYTES:
switch (ff_sws_pixel_type_size(op->type)) {
case 2:
for (int i = 0; i < 4; i++)
x[i].num = av_bswap16(x[i].num);
break;
case 4:
for (int i = 0; i < 4; i++)
x[i].num = av_bswap32(x[i].num);
break;
}
return;
case SWS_OP_CLEAR:
for (int i = 0; i < 4; i++) {
if (op->c.q4[i].den)
x[i] = op->c.q4[i];
}
return;
case SWS_OP_LSHIFT: {
AVRational mult = Q(1 << op->c.u);
for (int i = 0; i < 4; i++)
x[i] = x[i].den ? av_mul_q(x[i], mult) : x[i];
return;
}
case SWS_OP_RSHIFT: {
AVRational mult = Q(1 << op->c.u);
for (int i = 0; i < 4; i++)
x[i] = x[i].den ? av_div_q(x[i], mult) : x[i];
return;
}
case SWS_OP_SWIZZLE: {
const AVRational orig[4] = { x[0], x[1], x[2], x[3] };
for (int i = 0; i < 4; i++)
x[i] = orig[op->swizzle.in[i]];
return;
}
case SWS_OP_CONVERT:
if (ff_sws_pixel_type_is_int(op->convert.to)) {
const AVRational scale = ff_sws_pixel_expand(op->type, op->convert.to);
for (int i = 0; i < 4; i++) {
x[i] = x[i].den ? Q(x[i].num / x[i].den) : x[i];
if (op->convert.expand)
x[i] = av_mul_q(x[i], scale);
}
}
return;
case SWS_OP_DITHER:
for (int i = 0; i < 4; i++)
x[i] = x[i].den ? av_add_q(x[i], av_make_q(1, 2)) : x[i];
return;
case SWS_OP_MIN:
for (int i = 0; i < 4; i++)
x[i] = av_min_q(x[i], op->c.q4[i]);
return;
case SWS_OP_MAX:
for (int i = 0; i < 4; i++)
x[i] = av_max_q(x[i], op->c.q4[i]);
return;
case SWS_OP_LINEAR: {
const AVRational orig[4] = { x[0], x[1], x[2], x[3] };
for (int i = 0; i < 4; i++) {
AVRational sum = op->lin.m[i][4];
for (int j = 0; j < 4; j++)
sum = av_add_q(sum, av_mul_q(orig[j], op->lin.m[i][j]));
x[i] = sum;
}
return;
}
case SWS_OP_SCALE:
for (int i = 0; i < 4; i++)
x[i] = x[i].den ? av_mul_q(x[i], op->c.q) : x[i];
return;
}
av_unreachable("Invalid operation type!");
}
static void op_uninit(SwsOp *op)
{
switch (op->op) {
case SWS_OP_DITHER:
av_refstruct_unref(&op->dither.matrix);
break;
}
*op = (SwsOp) {0};
}
SwsOpList *ff_sws_op_list_alloc(void)
{
SwsOpList *ops = av_mallocz(sizeof(SwsOpList));
if (!ops)
return NULL;
ff_fmt_clear(&ops->src);
ff_fmt_clear(&ops->dst);
return ops;
}
void ff_sws_op_list_free(SwsOpList **p_ops)
{
SwsOpList *ops = *p_ops;
if (!ops)
return;
for (int i = 0; i < ops->num_ops; i++)
op_uninit(&ops->ops[i]);
av_freep(&ops->ops);
av_free(ops);
*p_ops = NULL;
}
SwsOpList *ff_sws_op_list_duplicate(const SwsOpList *ops)
{
SwsOpList *copy = av_malloc(sizeof(*copy));
if (!copy)
return NULL;
int num = ops->num_ops;
if (num)
num = 1 << av_ceil_log2(num);
*copy = *ops;
copy->ops = av_memdup(ops->ops, num * sizeof(ops->ops[0]));
if (!copy->ops) {
av_free(copy);
return NULL;
}
for (int i = 0; i < ops->num_ops; i++) {
const SwsOp *op = &ops->ops[i];
switch (op->op) {
case SWS_OP_DITHER:
av_refstruct_ref(copy->ops[i].dither.matrix);
break;
}
}
return copy;
}
void ff_sws_op_list_remove_at(SwsOpList *ops, int index, int count)
{
const int end = ops->num_ops - count;
av_assert2(index >= 0 && count >= 0 && index + count <= ops->num_ops);
op_uninit(&ops->ops[index]);
for (int i = index; i < end; i++)
ops->ops[i] = ops->ops[i + count];
ops->num_ops = end;
}
int ff_sws_op_list_insert_at(SwsOpList *ops, int index, SwsOp *op)
{
void *ret = av_dynarray2_add((void **) &ops->ops, &ops->num_ops, sizeof(*op), NULL);
if (!ret) {
op_uninit(op);
return AVERROR(ENOMEM);
}
for (int i = ops->num_ops - 1; i > index; i--)
ops->ops[i] = ops->ops[i - 1];
ops->ops[index] = *op;
return 0;
}
int ff_sws_op_list_append(SwsOpList *ops, SwsOp *op)
{
return ff_sws_op_list_insert_at(ops, ops->num_ops, op);
}
int ff_sws_op_list_max_size(const SwsOpList *ops)
{
int max_size = 0;
for (int i = 0; i < ops->num_ops; i++) {
const int size = ff_sws_pixel_type_size(ops->ops[i].type);
max_size = FFMAX(max_size, size);
}
return max_size;
}
uint32_t ff_sws_linear_mask(const SwsLinearOp c)
{
uint32_t mask = 0;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 5; j++) {
if (av_cmp_q(c.m[i][j], Q(i == j)))
mask |= SWS_MASK(i, j);
}
}
return mask;
}
static const char *describe_lin_mask(uint32_t mask)
{
/* Try to be fairly descriptive without assuming too much */
static const struct {
char name[24];
uint32_t mask;
} patterns[] = {
{ "noop", 0 },
{ "luma", SWS_MASK_LUMA },
{ "alpha", SWS_MASK_ALPHA },
{ "luma+alpha", SWS_MASK_LUMA | SWS_MASK_ALPHA },
{ "dot3", 0x7 },
{ "dot4", 0xF },
{ "row0", SWS_MASK_ROW(0) },
{ "row0+alpha", SWS_MASK_ROW(0) | SWS_MASK_ALPHA },
{ "col0", SWS_MASK_COL(0) },
{ "col0+off3", SWS_MASK_COL(0) | SWS_MASK_OFF3 },
{ "off3", SWS_MASK_OFF3 },
{ "off3+alpha", SWS_MASK_OFF3 | SWS_MASK_ALPHA },
{ "diag3", SWS_MASK_DIAG3 },
{ "diag4", SWS_MASK_DIAG4 },
{ "diag3+alpha", SWS_MASK_DIAG3 | SWS_MASK_ALPHA },
{ "diag3+off3", SWS_MASK_DIAG3 | SWS_MASK_OFF3 },
{ "diag3+off3+alpha", SWS_MASK_DIAG3 | SWS_MASK_OFF3 | SWS_MASK_ALPHA },
{ "diag4+off4", SWS_MASK_DIAG4 | SWS_MASK_OFF4 },
{ "matrix3", SWS_MASK_MAT3 },
{ "matrix3+off3", SWS_MASK_MAT3 | SWS_MASK_OFF3 },
{ "matrix3+off3+alpha", SWS_MASK_MAT3 | SWS_MASK_OFF3 | SWS_MASK_ALPHA },
{ "matrix4", SWS_MASK_MAT4 },
{ "matrix4+off4", SWS_MASK_MAT4 | SWS_MASK_OFF4 },
};
for (int i = 0; i < FF_ARRAY_ELEMS(patterns); i++) {
if (!(mask & ~patterns[i].mask))
return patterns[i].name;
}
av_unreachable("Invalid linear mask!");
return "ERR";
}
static char describe_comp_flags(unsigned flags)
{
if (flags & SWS_COMP_GARBAGE)
return 'X';
else if (flags & SWS_COMP_ZERO)
return '0';
else if (flags & SWS_COMP_EXACT)
return '+';
else
return '.';
}
static const char *print_q(const AVRational q, char buf[], int buf_len)
{
if (!q.den) {
return q.num > 0 ? "inf" : q.num < 0 ? "-inf" : "nan";
} else if (q.den == 1) {
snprintf(buf, buf_len, "%d", q.num);
return buf;
} else if (abs(q.num) > 1000 || abs(q.den) > 1000) {
snprintf(buf, buf_len, "%f", av_q2d(q));
return buf;
} else {
snprintf(buf, buf_len, "%d/%d", q.num, q.den);
return buf;
}
}
#define PRINTQ(q) print_q(q, (char[32]){0}, sizeof(char[32]) - 1)
void ff_sws_op_list_print(void *log, int lev, const SwsOpList *ops)
{
if (!ops->num_ops) {
av_log(log, lev, " (empty)\n");
return;
}
for (int i = 0; i < ops->num_ops; i++) {
const SwsOp *op = &ops->ops[i];
av_log(log, lev, " [%3s %c%c%c%c -> %c%c%c%c] ",
ff_sws_pixel_type_name(op->type),
op->comps.unused[0] ? 'X' : '.',
op->comps.unused[1] ? 'X' : '.',
op->comps.unused[2] ? 'X' : '.',
op->comps.unused[3] ? 'X' : '.',
describe_comp_flags(op->comps.flags[0]),
describe_comp_flags(op->comps.flags[1]),
describe_comp_flags(op->comps.flags[2]),
describe_comp_flags(op->comps.flags[3]));
switch (op->op) {
case SWS_OP_INVALID:
av_log(log, lev, "SWS_OP_INVALID\n");
break;
case SWS_OP_READ:
case SWS_OP_WRITE:
av_log(log, lev, "%-20s: %d elem(s) %s >> %d\n",
op->op == SWS_OP_READ ? "SWS_OP_READ"
: "SWS_OP_WRITE",
op->rw.elems, op->rw.packed ? "packed" : "planar",
op->rw.frac);
break;
case SWS_OP_SWAP_BYTES:
av_log(log, lev, "SWS_OP_SWAP_BYTES\n");
break;
case SWS_OP_LSHIFT:
av_log(log, lev, "%-20s: << %u\n", "SWS_OP_LSHIFT", op->c.u);
break;
case SWS_OP_RSHIFT:
av_log(log, lev, "%-20s: >> %u\n", "SWS_OP_RSHIFT", op->c.u);
break;
case SWS_OP_PACK:
case SWS_OP_UNPACK:
av_log(log, lev, "%-20s: {%d %d %d %d}\n",
op->op == SWS_OP_PACK ? "SWS_OP_PACK"
: "SWS_OP_UNPACK",
op->pack.pattern[0], op->pack.pattern[1],
op->pack.pattern[2], op->pack.pattern[3]);
break;
case SWS_OP_CLEAR:
av_log(log, lev, "%-20s: {%s %s %s %s}\n", "SWS_OP_CLEAR",
op->c.q4[0].den ? PRINTQ(op->c.q4[0]) : "_",
op->c.q4[1].den ? PRINTQ(op->c.q4[1]) : "_",
op->c.q4[2].den ? PRINTQ(op->c.q4[2]) : "_",
op->c.q4[3].den ? PRINTQ(op->c.q4[3]) : "_");
break;
case SWS_OP_SWIZZLE:
av_log(log, lev, "%-20s: %d%d%d%d\n", "SWS_OP_SWIZZLE",
op->swizzle.x, op->swizzle.y, op->swizzle.z, op->swizzle.w);
break;
case SWS_OP_CONVERT:
av_log(log, lev, "%-20s: %s -> %s%s\n", "SWS_OP_CONVERT",
ff_sws_pixel_type_name(op->type),
ff_sws_pixel_type_name(op->convert.to),
op->convert.expand ? " (expand)" : "");
break;
case SWS_OP_DITHER:
av_log(log, lev, "%-20s: %dx%d matrix\n", "SWS_OP_DITHER",
1 << op->dither.size_log2, 1 << op->dither.size_log2);
break;
case SWS_OP_MIN:
av_log(log, lev, "%-20s: x <= {%s %s %s %s}\n", "SWS_OP_MIN",
op->c.q4[0].den ? PRINTQ(op->c.q4[0]) : "_",
op->c.q4[1].den ? PRINTQ(op->c.q4[1]) : "_",
op->c.q4[2].den ? PRINTQ(op->c.q4[2]) : "_",
op->c.q4[3].den ? PRINTQ(op->c.q4[3]) : "_");
break;
case SWS_OP_MAX:
av_log(log, lev, "%-20s: {%s %s %s %s} <= x\n", "SWS_OP_MAX",
op->c.q4[0].den ? PRINTQ(op->c.q4[0]) : "_",
op->c.q4[1].den ? PRINTQ(op->c.q4[1]) : "_",
op->c.q4[2].den ? PRINTQ(op->c.q4[2]) : "_",
op->c.q4[3].den ? PRINTQ(op->c.q4[3]) : "_");
break;
case SWS_OP_LINEAR:
av_log(log, lev, "%-20s: %s [[%s %s %s %s %s] "
"[%s %s %s %s %s] "
"[%s %s %s %s %s] "
"[%s %s %s %s %s]]\n",
"SWS_OP_LINEAR", describe_lin_mask(op->lin.mask),
PRINTQ(op->lin.m[0][0]), PRINTQ(op->lin.m[0][1]), PRINTQ(op->lin.m[0][2]), PRINTQ(op->lin.m[0][3]), PRINTQ(op->lin.m[0][4]),
PRINTQ(op->lin.m[1][0]), PRINTQ(op->lin.m[1][1]), PRINTQ(op->lin.m[1][2]), PRINTQ(op->lin.m[1][3]), PRINTQ(op->lin.m[1][4]),
PRINTQ(op->lin.m[2][0]), PRINTQ(op->lin.m[2][1]), PRINTQ(op->lin.m[2][2]), PRINTQ(op->lin.m[2][3]), PRINTQ(op->lin.m[2][4]),
PRINTQ(op->lin.m[3][0]), PRINTQ(op->lin.m[3][1]), PRINTQ(op->lin.m[3][2]), PRINTQ(op->lin.m[3][3]), PRINTQ(op->lin.m[3][4]));
break;
case SWS_OP_SCALE:
av_log(log, lev, "%-20s: * %s\n", "SWS_OP_SCALE",
PRINTQ(op->c.q));
break;
case SWS_OP_TYPE_NB:
break;
}
if (op->comps.min[0].den || op->comps.min[1].den ||
op->comps.min[2].den || op->comps.min[3].den ||
op->comps.max[0].den || op->comps.max[1].den ||
op->comps.max[2].den || op->comps.max[3].den)
{
av_log(log, AV_LOG_TRACE, " min: {%s, %s, %s, %s}, max: {%s, %s, %s, %s}\n",
PRINTQ(op->comps.min[0]), PRINTQ(op->comps.min[1]),
PRINTQ(op->comps.min[2]), PRINTQ(op->comps.min[3]),
PRINTQ(op->comps.max[0]), PRINTQ(op->comps.max[1]),
PRINTQ(op->comps.max[2]), PRINTQ(op->comps.max[3]));
}
}
av_log(log, lev, " (X = unused, + = exact, 0 = zero)\n");
}

243
libswscale/ops.h Normal file
View File

@@ -0,0 +1,243 @@
/**
* Copyright (C) 2025 Niklas Haas
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef SWSCALE_OPS_H
#define SWSCALE_OPS_H
#include <assert.h>
#include <stdbool.h>
#include <stdalign.h>
#include "graph.h"
typedef enum SwsPixelType {
SWS_PIXEL_NONE = 0,
SWS_PIXEL_U8,
SWS_PIXEL_U16,
SWS_PIXEL_U32,
SWS_PIXEL_F32,
SWS_PIXEL_TYPE_NB
} SwsPixelType;
const char *ff_sws_pixel_type_name(SwsPixelType type);
int ff_sws_pixel_type_size(SwsPixelType type) av_const;
bool ff_sws_pixel_type_is_int(SwsPixelType type) av_const;
SwsPixelType ff_sws_pixel_type_to_uint(SwsPixelType type) av_const;
typedef enum SwsOpType {
SWS_OP_INVALID = 0,
/* Input/output handling */
SWS_OP_READ, /* gather raw pixels from planes */
SWS_OP_WRITE, /* write raw pixels to planes */
SWS_OP_SWAP_BYTES, /* swap byte order (for differing endianness) */
SWS_OP_UNPACK, /* split tightly packed data into components */
SWS_OP_PACK, /* compress components into tightly packed data */
/* Pixel manipulation */
SWS_OP_CLEAR, /* clear pixel values */
SWS_OP_LSHIFT, /* logical left shift of raw pixel values by (u8) */
SWS_OP_RSHIFT, /* right shift of raw pixel values by (u8) */
SWS_OP_SWIZZLE, /* rearrange channel order, or duplicate channels */
SWS_OP_CONVERT, /* convert (cast) between formats */
SWS_OP_DITHER, /* add dithering noise */
/* Arithmetic operations */
SWS_OP_LINEAR, /* generalized linear affine transform */
SWS_OP_SCALE, /* multiplication by scalar (q) */
SWS_OP_MIN, /* numeric minimum (q4) */
SWS_OP_MAX, /* numeric maximum (q4) */
SWS_OP_TYPE_NB,
} SwsOpType;
enum SwsCompFlags {
SWS_COMP_GARBAGE = 1 << 0, /* contents are undefined / garbage data */
SWS_COMP_EXACT = 1 << 1, /* value is an in-range, exact, integer */
SWS_COMP_ZERO = 1 << 2, /* known to be a constant zero */
};
typedef union SwsConst {
/* Generic constant value */
AVRational q4[4];
AVRational q;
unsigned u;
} SwsConst;
static_assert(sizeof(SwsConst) == sizeof(AVRational) * 4,
"First field of SwsConst should span the entire union");
typedef struct SwsComps {
unsigned flags[4]; /* knowledge about (output) component contents */
bool unused[4]; /* which input components are definitely unused */
/* Keeps track of the known possible value range, or {0, 0} for undefined
* or (unknown range) floating point inputs */
AVRational min[4], max[4];
} SwsComps;
typedef struct SwsReadWriteOp {
uint8_t elems; /* number of elements (of type `op.type`) to read/write */
uint8_t frac; /* fractional pixel step factor (log2) */
bool packed; /* read multiple elements from a single plane */
/** Examples:
* rgba = 4x u8 packed
* yuv444p = 3x u8
* rgb565 = 1x u16 <- use SWS_OP_UNPACK to unpack
* monow = 1x u8 (frac 3)
* rgb4 = 1x u8 (frac 1)
*/
} SwsReadWriteOp;
typedef struct SwsPackOp {
uint8_t pattern[4]; /* bit depth pattern, from MSB to LSB */
} SwsPackOp;
typedef struct SwsSwizzleOp {
/**
* Input component for each output component:
* Out[x] := In[swizzle.in[x]]
*/
union {
uint32_t mask;
uint8_t in[4];
struct { uint8_t x, y, z, w; };
};
} SwsSwizzleOp;
#define SWS_SWIZZLE(X,Y,Z,W) ((SwsSwizzleOp) { .in = {X, Y, Z, W} })
typedef struct SwsConvertOp {
SwsPixelType to; /* type of pixel to convert to */
bool expand; /* if true, integers are expanded to the full range */
} SwsConvertOp;
typedef struct SwsDitherOp {
AVRational *matrix; /* tightly packed dither matrix (refstruct) */
int size_log2; /* size (in bits) of the dither matrix */
} SwsDitherOp;
typedef struct SwsLinearOp {
/**
* Generalized 5x5 affine transformation:
* [ Out.x ] = [ A B C D E ]
* [ Out.y ] = [ F G H I J ] * [ x y z w 1 ]
* [ Out.z ] = [ K L M N O ]
* [ Out.w ] = [ P Q R S T ]
*
* The mask keeps track of which components differ from an identity matrix.
* There may be more efficient implementations of particular subsets, for
* example the common subset of {A, E, G, J, M, O} can be implemented with
* just three fused multiply-add operations.
*/
AVRational m[4][5];
uint32_t mask; /* m[i][j] <-> 1 << (5 * i + j) */
} SwsLinearOp;
#define SWS_MASK(I, J) (1 << (5 * (I) + (J)))
#define SWS_MASK_OFF(I) SWS_MASK(I, 4)
#define SWS_MASK_ROW(I) (0x1F << (5 * (I)))
#define SWS_MASK_COL(J) (0x8421 << J)
enum {
SWS_MASK_ALL = (1 << 20) - 1,
SWS_MASK_LUMA = SWS_MASK(0, 0) | SWS_MASK_OFF(0),
SWS_MASK_ALPHA = SWS_MASK(3, 3) | SWS_MASK_OFF(3),
SWS_MASK_DIAG3 = SWS_MASK(0, 0) | SWS_MASK(1, 1) | SWS_MASK(2, 2),
SWS_MASK_OFF3 = SWS_MASK_OFF(0) | SWS_MASK_OFF(1) | SWS_MASK_OFF(2),
SWS_MASK_MAT3 = SWS_MASK(0, 0) | SWS_MASK(0, 1) | SWS_MASK(0, 2) |
SWS_MASK(1, 0) | SWS_MASK(1, 1) | SWS_MASK(1, 2) |
SWS_MASK(2, 0) | SWS_MASK(2, 1) | SWS_MASK(2, 2),
SWS_MASK_DIAG4 = SWS_MASK_DIAG3 | SWS_MASK(3, 3),
SWS_MASK_OFF4 = SWS_MASK_OFF3 | SWS_MASK_OFF(3),
SWS_MASK_MAT4 = SWS_MASK_ALL & ~SWS_MASK_OFF4,
};
/* Helper function to compute the correct mask */
uint32_t ff_sws_linear_mask(SwsLinearOp);
typedef struct SwsOp {
SwsOpType op; /* operation to perform */
SwsPixelType type; /* pixel type to operate on */
union {
SwsLinearOp lin;
SwsReadWriteOp rw;
SwsPackOp pack;
SwsSwizzleOp swizzle;
SwsConvertOp convert;
SwsDitherOp dither;
SwsConst c;
};
/* For use internal use inside ff_sws_*() functions */
SwsComps comps;
} SwsOp;
/**
* Frees any allocations associated with an SwsOp and sets it to {0}.
*/
void ff_sws_op_uninit(SwsOp *op);
/**
* Apply an operation to an AVRational. No-op for read/write operations.
*/
void ff_sws_apply_op_q(const SwsOp *op, AVRational x[4]);
/**
* Helper struct for representing a list of operations.
*/
typedef struct SwsOpList {
SwsOp *ops;
int num_ops;
/* Purely informative metadata associated with this operation list */
SwsFormat src, dst;
} SwsOpList;
SwsOpList *ff_sws_op_list_alloc(void);
void ff_sws_op_list_free(SwsOpList **ops);
/**
* Returns a duplicate of `ops`, or NULL on OOM.
*/
SwsOpList *ff_sws_op_list_duplicate(const SwsOpList *ops);
/**
* Returns the size of the largest pixel type used in `ops`.
*/
int ff_sws_op_list_max_size(const SwsOpList *ops);
/**
* These will take over ownership of `op` and set it to {0}, even on failure.
*/
int ff_sws_op_list_append(SwsOpList *ops, SwsOp *op);
int ff_sws_op_list_insert_at(SwsOpList *ops, int index, SwsOp *op);
void ff_sws_op_list_remove_at(SwsOpList *ops, int index, int count);
/**
* Print out the contents of an operation list.
*/
void ff_sws_op_list_print(void *log_ctx, int log_level, const SwsOpList *ops);
#endif

48
libswscale/ops_internal.h Normal file
View File

@@ -0,0 +1,48 @@
/**
* Copyright (C) 2025 Niklas Haas
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef SWSCALE_OPS_INTERNAL_H
#define SWSCALE_OPS_INTERNAL_H
#include "ops.h"
#define Q(N) ((AVRational) { N, 1 })
static inline AVRational ff_sws_pixel_expand(SwsPixelType from, SwsPixelType to)
{
const int src = ff_sws_pixel_type_size(from);
const int dst = ff_sws_pixel_type_size(to);
int scale = 0;
for (int i = 0; i < dst / src; i++)
scale = scale << src * 8 | 1;
return Q(scale);
}
static inline void ff_sws_pack_op_decode(const SwsOp *op, uint64_t mask[4], int shift[4])
{
const int size = ff_sws_pixel_type_size(op->type) * 8;
for (int i = 0; i < 4; i++) {
const int bits = op->pack.pattern[i];
mask[i] = (UINT64_C(1) << bits) - 1;
shift[i] = (i ? shift[i - 1] : size) - bits;
}
}
#endif /* SWSCALE_OPS_INTERNAL_H */