1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00

Merge remote-tracking branch 'qatar/master'

* qatar/master:
  h264: error out on invalid bitdepth.
  aacsbr: use a swap index for the Y matrix rather than copy buffers.
  huffyuv: do not abort on unknown pix_fmt; instead, return an error.
  lcl: return negative error codes on decode_init() errors.
  rtpenc: Use MB info side data for splitting H263 packets for RFC 2190
  h263enc: Add an option for outputting info about MBs as side data
  avpacket: Add a function for shrinking already allocated side data
  nellymoserdec: Saner and faster IMDCT windowing

Conflicts:
	doc/APIchanges
	libavcodec/avpacket.c
	libavcodec/version.h

Merged-by: Michael Niedermayer <michaelni@gmx.at>
This commit is contained in:
Michael Niedermayer 2012-03-01 23:11:31 +01:00
commit 1eb7f39c7b
15 changed files with 265 additions and 52 deletions

View File

@ -13,7 +13,6 @@ libavutil: 2011-04-18
API changes, most recent first: API changes, most recent first:
<<<<<<< HEAD
2012-02-21 - xxxxxxx - lavc 54.4.100 2012-02-21 - xxxxxxx - lavc 54.4.100
Add av_get_pcm_codec() function. Add av_get_pcm_codec() function.
@ -36,8 +35,9 @@ API changes, most recent first:
2012-01-24 - xxxxxxx - lavfi 2.60.100 2012-01-24 - xxxxxxx - lavfi 2.60.100
Add avfilter_graph_dump. Add avfilter_graph_dump.
||||||| merged common ancestors 2012-xx-xx - xxxxxxx - lavc 54.3.0 - avcodec.h
======= Add av_packet_shrink_side_data.
2012-xx-xx - xxxxxxx - lavf 54.2.0 - avformat.h 2012-xx-xx - xxxxxxx - lavf 54.2.0 - avformat.h
Add AVStream.attached_pic and AV_DISPOSITION_ATTACHED_PIC, Add AVStream.attached_pic and AV_DISPOSITION_ATTACHED_PIC,
used for dealing with attached pictures/cover art. used for dealing with attached pictures/cover art.

View File

@ -1353,8 +1353,8 @@ static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
/// Generate the subband filtered lowband /// Generate the subband filtered lowband
static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64], static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
const float X_low[32][40][2], const float Y[2][38][64][2], const float Y0[38][64][2], const float Y1[38][64][2],
int ch) const float X_low[32][40][2], int ch)
{ {
int k, i; int k, i;
const int i_f = 32; const int i_f = 32;
@ -1368,8 +1368,8 @@ static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
} }
for (; k < sbr->kx[0] + sbr->m[0]; k++) { for (; k < sbr->kx[0] + sbr->m[0]; k++) {
for (i = 0; i < i_Temp; i++) { for (i = 0; i < i_Temp; i++) {
X[0][i][k] = Y[0][i + i_f][k][0]; X[0][i][k] = Y0[i + i_f][k][0];
X[1][i][k] = Y[0][i + i_f][k][1]; X[1][i][k] = Y0[i + i_f][k][1];
} }
} }
@ -1381,8 +1381,8 @@ static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
} }
for (; k < sbr->kx[1] + sbr->m[1]; k++) { for (; k < sbr->kx[1] + sbr->m[1]; k++) {
for (i = i_Temp; i < i_f; i++) { for (i = i_Temp; i < i_f; i++) {
X[0][i][k] = Y[1][i][k][0]; X[0][i][k] = Y1[i][k][0];
X[1][i][k] = Y[1][i][k][1]; X[1][i][k] = Y1[i][k][1];
} }
} }
return 0; return 0;
@ -1542,7 +1542,8 @@ static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
} }
/// Assembling HF Signals (14496-3 sp04 p220) /// Assembling HF Signals (14496-3 sp04 p220)
static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2], static void sbr_hf_assemble(float Y1[38][64][2],
const float X_high[64][40][2],
SpectralBandReplication *sbr, SBRData *ch_data, SpectralBandReplication *sbr, SBRData *ch_data,
const int e_a[2]) const int e_a[2])
{ {
@ -1564,7 +1565,6 @@ static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2]
float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp; float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
int indexnoise = ch_data->f_indexnoise; int indexnoise = ch_data->f_indexnoise;
int indexsine = ch_data->f_indexsine; int indexsine = ch_data->f_indexsine;
memcpy(Y[0], Y[1], sizeof(Y[0]));
if (sbr->reset) { if (sbr->reset) {
for (i = 0; i < h_SL; i++) { for (i = 0; i < h_SL; i++) {
@ -1607,18 +1607,18 @@ static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2]
q_filt = q_temp[i]; q_filt = q_temp[i];
} }
sbr->dsp.hf_g_filt(Y[1][i] + kx, X_high + kx, g_filt, m_max, sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
i + ENVELOPE_ADJUSTMENT_OFFSET); i + ENVELOPE_ADJUSTMENT_OFFSET);
if (e != e_a[0] && e != e_a[1]) { if (e != e_a[0] && e != e_a[1]) {
sbr->dsp.hf_apply_noise[indexsine](Y[1][i] + kx, sbr->s_m[e], sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
q_filt, indexnoise, q_filt, indexnoise,
kx, m_max); kx, m_max);
} else { } else {
for (m = 0; m < m_max; m++) { for (m = 0; m < m_max; m++) {
Y[1][i][m + kx][0] += Y1[i][m + kx][0] +=
sbr->s_m[e][m] * phi[0][indexsine]; sbr->s_m[e][m] * phi[0][indexsine];
Y[1][i][m + kx][1] += Y1[i][m + kx][1] +=
sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign); sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
phi_sign = -phi_sign; phi_sign = -phi_sign;
} }
@ -1658,12 +1658,17 @@ void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]); sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch], sbr->data[ch].Ypos ^= 1;
sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
sbr->X_high, sbr, &sbr->data[ch],
sbr->data[ch].e_a); sbr->data[ch].e_a);
} }
/* synthesis */ /* synthesis */
sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch); sbr_x_gen(sbr, sbr->X[ch],
sbr->data[ch].Y[1-sbr->data[ch].Ypos],
sbr->data[ch].Y[ sbr->data[ch].Ypos],
sbr->X_low, ch);
} }
if (ac->m4ac.ps == 1) { if (ac->m4ac.ps == 1) {

View File

@ -772,6 +772,7 @@ enum AVPacketSideDataType {
AV_PKT_DATA_PALETTE, AV_PKT_DATA_PALETTE,
AV_PKT_DATA_NEW_EXTRADATA, AV_PKT_DATA_NEW_EXTRADATA,
AV_PKT_DATA_PARAM_CHANGE, AV_PKT_DATA_PARAM_CHANGE,
AV_PKT_DATA_H263_MB_INFO,
}; };
typedef struct AVPacket { typedef struct AVPacket {
@ -854,6 +855,24 @@ typedef struct AVPacket {
* s32le height * s32le height
*/ */
/**
* An AV_PKT_DATA_H263_MB_INFO side data packet contains a number of
* structures with info about macroblocks relevant to splitting the
* packet into smaller packets on macroblock edges (e.g. as for RFC 2190).
* That is, it does not necessarily contain info about all macroblocks,
* as long as the distance between macroblocks in the info is smaller
* than the target payload size.
* Each MB info structure is 12 bytes, and is laid out as follows:
* u32le bit offset from the start of the packet
* u8 current quantizer at the start of the macroblock
* u8 GOB number
* u16le macroblock address within the GOB
* u8 horizontal MV predictor
* u8 vertical MV predictor
* u8 horizontal MV predictor for block number 3
* u8 vertical MV predictor for block number 3
*/
enum AVSideDataParamChangeFlags { enum AVSideDataParamChangeFlags {
AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_COUNT = 0x0001, AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_COUNT = 0x0001,
AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_LAYOUT = 0x0002, AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_LAYOUT = 0x0002,
@ -3149,6 +3168,17 @@ void av_free_packet(AVPacket *pkt);
uint8_t* av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type, uint8_t* av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type,
int size); int size);
/**
* Shrink the already allocated side data buffer
*
* @param pkt packet
* @param type side information type
* @param size new side information size
* @return 0 on success, < 0 on failure
*/
int av_packet_shrink_side_data(AVPacket *pkt, enum AVPacketSideDataType type,
int size);
/** /**
* Get side information from packet. * Get side information from packet.
* *

View File

@ -279,3 +279,19 @@ int av_packet_split_side_data(AVPacket *pkt){
} }
return 0; return 0;
} }
int av_packet_shrink_side_data(AVPacket *pkt, enum AVPacketSideDataType type,
int size)
{
int i;
for (i = 0; i < pkt->side_data_elems; i++) {
if (pkt->side_data[i].type == type) {
if (size > pkt->side_data[i].size)
return AVERROR(ENOMEM);
pkt->side_data[i].size = size;
return 0;
}
}
return AVERROR(ENOENT);
}

View File

@ -2692,11 +2692,6 @@ static int decode_slice_header(H264Context *h, H264Context *h0){
s->avctx->level = h->sps.level_idc; s->avctx->level = h->sps.level_idc;
s->avctx->refs = h->sps.ref_frame_count; s->avctx->refs = h->sps.ref_frame_count;
if(h == h0 && h->dequant_coeff_pps != pps_id){
h->dequant_coeff_pps = pps_id;
init_dequant_tables(h);
}
s->mb_width= h->sps.mb_width; s->mb_width= h->sps.mb_width;
s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag); s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
@ -2791,7 +2786,7 @@ static int decode_slice_header(H264Context *h, H264Context *h0){
else else
s->avctx->pix_fmt = PIX_FMT_YUV420P10; s->avctx->pix_fmt = PIX_FMT_YUV420P10;
break; break;
default: case 8:
if (CHROMA444){ if (CHROMA444){
s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ444P : PIX_FMT_YUV444P; s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ444P : PIX_FMT_YUV444P;
if (s->avctx->colorspace == AVCOL_SPC_RGB) { if (s->avctx->colorspace == AVCOL_SPC_RGB) {
@ -2810,6 +2805,11 @@ static int decode_slice_header(H264Context *h, H264Context *h0){
hwaccel_pixfmt_list_h264_jpeg_420 : hwaccel_pixfmt_list_h264_jpeg_420 :
ff_hwaccel_pixfmt_list_420); ff_hwaccel_pixfmt_list_420);
} }
break;
default:
av_log(s->avctx, AV_LOG_ERROR,
"Unsupported bit depth: %d\n", h->sps.bit_depth_luma);
return AVERROR_INVALIDDATA;
} }
s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt); s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt);
@ -2855,6 +2855,11 @@ static int decode_slice_header(H264Context *h, H264Context *h0){
} }
} }
if(h == h0 && h->dequant_coeff_pps != pps_id){
h->dequant_coeff_pps = pps_id;
init_dequant_tables(h);
}
h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num); h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
h->mb_mbaff = 0; h->mb_mbaff = 0;

View File

@ -543,7 +543,7 @@ s->bgr32=1;
} }
break; break;
default: default:
assert(0); return AVERROR_INVALIDDATA;
} }
alloc_temp(s); alloc_temp(s);

View File

@ -488,7 +488,7 @@ static av_cold int decode_init(AVCodecContext *avctx)
avcodec_get_frame_defaults(&c->pic); avcodec_get_frame_defaults(&c->pic);
if (avctx->extradata_size < 8) { if (avctx->extradata_size < 8) {
av_log(avctx, AV_LOG_ERROR, "Extradata size too small.\n"); av_log(avctx, AV_LOG_ERROR, "Extradata size too small.\n");
return 1; return AVERROR_INVALIDDATA;
} }
/* Check codec type */ /* Check codec type */
@ -537,7 +537,7 @@ static av_cold int decode_init(AVCodecContext *avctx)
break; break;
default: default:
av_log(avctx, AV_LOG_ERROR, "Unsupported image format %d.\n", c->imgtype); av_log(avctx, AV_LOG_ERROR, "Unsupported image format %d.\n", c->imgtype);
return 1; return AVERROR_INVALIDDATA;
} }
/* Detect compression method */ /* Detect compression method */
@ -554,7 +554,7 @@ static av_cold int decode_init(AVCodecContext *avctx)
break; break;
default: default:
av_log(avctx, AV_LOG_ERROR, "Unsupported compression format for MSZH (%d).\n", c->compression); av_log(avctx, AV_LOG_ERROR, "Unsupported compression format for MSZH (%d).\n", c->compression);
return 1; return AVERROR_INVALIDDATA;
} }
break; break;
#if CONFIG_ZLIB_DECODER #if CONFIG_ZLIB_DECODER
@ -572,7 +572,7 @@ static av_cold int decode_init(AVCodecContext *avctx)
default: default:
if (c->compression < Z_NO_COMPRESSION || c->compression > Z_BEST_COMPRESSION) { if (c->compression < Z_NO_COMPRESSION || c->compression > Z_BEST_COMPRESSION) {
av_log(avctx, AV_LOG_ERROR, "Unsupported compression level for ZLIB: (%d).\n", c->compression); av_log(avctx, AV_LOG_ERROR, "Unsupported compression level for ZLIB: (%d).\n", c->compression);
return 1; return AVERROR_INVALIDDATA;
} }
av_log(avctx, AV_LOG_DEBUG, "Compression level for ZLIB: (%d).\n", c->compression); av_log(avctx, AV_LOG_DEBUG, "Compression level for ZLIB: (%d).\n", c->compression);
} }
@ -580,14 +580,14 @@ static av_cold int decode_init(AVCodecContext *avctx)
#endif #endif
default: default:
av_log(avctx, AV_LOG_ERROR, "BUG! Unknown codec in compression switch.\n"); av_log(avctx, AV_LOG_ERROR, "BUG! Unknown codec in compression switch.\n");
return 1; return AVERROR_INVALIDDATA;
} }
/* Allocate decompression buffer */ /* Allocate decompression buffer */
if (c->decomp_size) { if (c->decomp_size) {
if ((c->decomp_buf = av_malloc(max_decomp_size)) == NULL) { if ((c->decomp_buf = av_malloc(max_decomp_size)) == NULL) {
av_log(avctx, AV_LOG_ERROR, "Can't allocate decompression buffer.\n"); av_log(avctx, AV_LOG_ERROR, "Can't allocate decompression buffer.\n");
return 1; return AVERROR(ENOMEM);
} }
} }
@ -613,7 +613,7 @@ static av_cold int decode_init(AVCodecContext *avctx)
if (zret != Z_OK) { if (zret != Z_OK) {
av_log(avctx, AV_LOG_ERROR, "Inflate init error: %d\n", zret); av_log(avctx, AV_LOG_ERROR, "Inflate init error: %d\n", zret);
av_freep(&c->decomp_buf); av_freep(&c->decomp_buf);
return 1; return AVERROR_UNKNOWN;
} }
} }
#endif #endif

View File

@ -511,6 +511,10 @@ typedef struct MpegEncContext {
int gob_index; int gob_index;
int obmc; ///< overlapped block motion compensation int obmc; ///< overlapped block motion compensation
int showed_packed_warning; ///< flag for having shown the warning about divxs invalid b frames int showed_packed_warning; ///< flag for having shown the warning about divxs invalid b frames
int mb_info; ///< interval for outputting info about mb offsets as side data
int prev_mb_info, last_mb_info;
uint8_t *mb_info_ptr;
int mb_info_size;
/* H.263+ specific */ /* H.263+ specific */
int umvplus; ///< == H263+ && unrestricted_mv int umvplus; ///< == H263+ && unrestricted_mv

View File

@ -43,6 +43,7 @@
#include "flv.h" #include "flv.h"
#include "mpeg4video.h" #include "mpeg4video.h"
#include "internal.h" #include "internal.h"
#include "bytestream.h"
#include <limits.h> #include <limits.h>
#include "sp5x.h" #include "sp5x.h"
@ -1437,6 +1438,12 @@ int ff_MPV_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
if (!pkt->data && if (!pkt->data &&
(ret = ff_alloc_packet(pkt, s->mb_width*s->mb_height*(MAX_MB_BYTES+100)+10000)) < 0) (ret = ff_alloc_packet(pkt, s->mb_width*s->mb_height*(MAX_MB_BYTES+100)+10000)) < 0)
return ret; return ret;
if (s->mb_info) {
s->mb_info_ptr = av_packet_new_side_data(pkt,
AV_PKT_DATA_H263_MB_INFO,
s->mb_width*s->mb_height*12);
s->prev_mb_info = s->last_mb_info = s->mb_info_size = 0;
}
for (i = 0; i < context_count; i++) { for (i = 0; i < context_count; i++) {
int start_y = s->thread_context[i]->start_mb_y; int start_y = s->thread_context[i]->start_mb_y;
@ -1604,6 +1611,8 @@ vbv_retry:
pkt->dts = pkt->pts; pkt->dts = pkt->pts;
if (s->current_picture.f.key_frame) if (s->current_picture.f.key_frame)
pkt->flags |= AV_PKT_FLAG_KEY; pkt->flags |= AV_PKT_FLAG_KEY;
if (s->mb_info)
av_packet_shrink_side_data(pkt, AV_PKT_DATA_H263_MB_INFO, s->mb_info_size);
} else { } else {
assert((put_bits_ptr(&s->pb) == s->pb.buf)); assert((put_bits_ptr(&s->pb) == s->pb.buf));
s->frame_bits = 0; s->frame_bits = 0;
@ -2348,6 +2357,49 @@ static void write_slice_end(MpegEncContext *s){
s->misc_bits+= get_bits_diff(s); s->misc_bits+= get_bits_diff(s);
} }
static void write_mb_info(MpegEncContext *s)
{
uint8_t *ptr = s->mb_info_ptr + s->mb_info_size - 12;
int offset = put_bits_count(&s->pb);
int mba = s->mb_x + s->mb_width * (s->mb_y % s->gob_index);
int gobn = s->mb_y / s->gob_index;
int pred_x, pred_y;
if (CONFIG_H263_ENCODER)
ff_h263_pred_motion(s, 0, 0, &pred_x, &pred_y);
bytestream_put_le32(&ptr, offset);
bytestream_put_byte(&ptr, s->qscale);
bytestream_put_byte(&ptr, gobn);
bytestream_put_le16(&ptr, mba);
bytestream_put_byte(&ptr, pred_x); /* hmv1 */
bytestream_put_byte(&ptr, pred_y); /* vmv1 */
/* 4MV not implemented */
bytestream_put_byte(&ptr, 0); /* hmv2 */
bytestream_put_byte(&ptr, 0); /* vmv2 */
}
static void update_mb_info(MpegEncContext *s, int startcode)
{
if (!s->mb_info)
return;
if (put_bits_count(&s->pb) - s->prev_mb_info*8 >= s->mb_info*8) {
s->mb_info_size += 12;
s->prev_mb_info = s->last_mb_info;
}
if (startcode) {
s->prev_mb_info = put_bits_count(&s->pb)/8;
/* This might have incremented mb_info_size above, and we return without
* actually writing any info into that slot yet. But in that case,
* this will be called again at the start of the after writing the
* start code, actually writing the mb info. */
return;
}
s->last_mb_info = put_bits_count(&s->pb)/8;
if (!s->mb_info_size)
s->mb_info_size += 12;
write_mb_info(s);
}
static int encode_thread(AVCodecContext *c, void *arg){ static int encode_thread(AVCodecContext *c, void *arg){
MpegEncContext *s= *(void**)arg; MpegEncContext *s= *(void**)arg;
int mb_x, mb_y, pdif = 0; int mb_x, mb_y, pdif = 0;
@ -2498,6 +2550,7 @@ static int encode_thread(AVCodecContext *c, void *arg){
int number_mb = (mb_y - s->resync_mb_y)*s->mb_width + mb_x - s->resync_mb_x; int number_mb = (mb_y - s->resync_mb_y)*s->mb_width + mb_x - s->resync_mb_x;
s->avctx->rtp_callback(s->avctx, s->ptr_lastgob, current_packet_size, number_mb); s->avctx->rtp_callback(s->avctx, s->ptr_lastgob, current_packet_size, number_mb);
} }
update_mb_info(s, 1);
switch(s->codec_id){ switch(s->codec_id){
case CODEC_ID_MPEG4: case CODEC_ID_MPEG4:
@ -2541,6 +2594,8 @@ static int encode_thread(AVCodecContext *c, void *arg){
s->mb_skipped=0; s->mb_skipped=0;
s->dquant=0; //only for QP_RD s->dquant=0; //only for QP_RD
update_mb_info(s, 0);
if (mb_type & (mb_type-1) || (s->mpv_flags & FF_MPV_FLAG_QP_RD)) { // more than 1 MB type possible or FF_MPV_FLAG_QP_RD if (mb_type & (mb_type-1) || (s->mpv_flags & FF_MPV_FLAG_QP_RD)) { // more than 1 MB type possible or FF_MPV_FLAG_QP_RD
int next_block=0; int next_block=0;
int pb_bits_count, pb2_bits_count, tex_pb_bits_count; int pb_bits_count, pb2_bits_count, tex_pb_bits_count;
@ -4117,6 +4172,7 @@ int ff_dct_quantize_c(MpegEncContext *s,
static const AVOption h263_options[] = { static const AVOption h263_options[] = {
{ "obmc", "use overlapped block motion compensation.", OFFSET(obmc), AV_OPT_TYPE_INT, { 0 }, 0, 1, VE }, { "obmc", "use overlapped block motion compensation.", OFFSET(obmc), AV_OPT_TYPE_INT, { 0 }, 0, 1, VE },
{ "structured_slices","Write slice start position at every GOB header instead of just GOB number.", OFFSET(h263_slice_structured), AV_OPT_TYPE_INT, { 0 }, 0, 1, VE}, { "structured_slices","Write slice start position at every GOB header instead of just GOB number.", OFFSET(h263_slice_structured), AV_OPT_TYPE_INT, { 0 }, 0, 1, VE},
{ "mb_info", "emit macroblock info for RFC 2190 packetization, the parameter value is the maximum payload size", OFFSET(mb_info), AV_OPT_TYPE_INT, { 0 }, 0, INT_MAX, VE },
FF_MPV_COMMON_OPTS FF_MPV_COMMON_OPTS
{ NULL }, { NULL },
}; };

View File

@ -49,14 +49,15 @@ typedef struct NellyMoserDecodeContext {
AVCodecContext* avctx; AVCodecContext* avctx;
AVFrame frame; AVFrame frame;
float *float_buf; float *float_buf;
DECLARE_ALIGNED(16, float, state)[NELLY_BUF_LEN];
AVLFG random_state; AVLFG random_state;
GetBitContext gb; GetBitContext gb;
float scale_bias; float scale_bias;
DSPContext dsp; DSPContext dsp;
FFTContext imdct_ctx; FFTContext imdct_ctx;
FmtConvertContext fmt_conv; FmtConvertContext fmt_conv;
DECLARE_ALIGNED(32, float, imdct_out)[NELLY_BUF_LEN * 2]; DECLARE_ALIGNED(32, float, imdct_buf)[2][NELLY_BUF_LEN];
float *imdct_out;
float *imdct_prev;
} NellyMoserDecodeContext; } NellyMoserDecodeContext;
static void nelly_decode_block(NellyMoserDecodeContext *s, static void nelly_decode_block(NellyMoserDecodeContext *s,
@ -106,12 +107,9 @@ static void nelly_decode_block(NellyMoserDecodeContext *s,
memset(&aptr[NELLY_FILL_LEN], 0, memset(&aptr[NELLY_FILL_LEN], 0,
(NELLY_BUF_LEN - NELLY_FILL_LEN) * sizeof(float)); (NELLY_BUF_LEN - NELLY_FILL_LEN) * sizeof(float));
s->imdct_ctx.imdct_calc(&s->imdct_ctx, s->imdct_out, aptr); s->imdct_ctx.imdct_half(&s->imdct_ctx, s->imdct_out, aptr);
/* XXX: overlapping and windowing should be part of a more s->dsp.vector_fmul_window(aptr, s->imdct_prev + NELLY_BUF_LEN/2, s->imdct_out, ff_sine_128, NELLY_BUF_LEN/2);
generic imdct function */ FFSWAP(float *, s->imdct_out, s->imdct_prev);
s->dsp.vector_fmul_reverse(s->state, s->state, ff_sine_128, NELLY_BUF_LEN);
s->dsp.vector_fmul_add(aptr, s->imdct_out, ff_sine_128, s->state, NELLY_BUF_LEN);
memcpy(s->state, s->imdct_out + NELLY_BUF_LEN, sizeof(float)*NELLY_BUF_LEN);
} }
} }
@ -119,6 +117,8 @@ static av_cold int decode_init(AVCodecContext * avctx) {
NellyMoserDecodeContext *s = avctx->priv_data; NellyMoserDecodeContext *s = avctx->priv_data;
s->avctx = avctx; s->avctx = avctx;
s->imdct_out = s->imdct_buf[0];
s->imdct_prev = s->imdct_buf[1];
av_lfg_init(&s->random_state, 0); av_lfg_init(&s->random_state, 0);
ff_mdct_init(&s->imdct_ctx, 8, 1, 1.0); ff_mdct_init(&s->imdct_ctx, 8, 1, 1.0);

View File

@ -88,6 +88,7 @@ typedef struct {
///QMF values of the original signal ///QMF values of the original signal
float W[2][32][32][2]; float W[2][32][32][2];
///QMF output of the HF adjustor ///QMF output of the HF adjustor
int Ypos;
DECLARE_ALIGNED(16, float, Y)[2][38][64][2]; DECLARE_ALIGNED(16, float, Y)[2][38][64][2];
DECLARE_ALIGNED(16, float, g_temp)[42][48]; DECLARE_ALIGNED(16, float, g_temp)[42][48];
float q_temp[42][48]; float q_temp[42][48];

View File

@ -21,7 +21,7 @@
#define AVCODEC_VERSION_H #define AVCODEC_VERSION_H
#define LIBAVCODEC_VERSION_MAJOR 54 #define LIBAVCODEC_VERSION_MAJOR 54
#define LIBAVCODEC_VERSION_MINOR 4 #define LIBAVCODEC_VERSION_MINOR 5
#define LIBAVCODEC_VERSION_MICRO 100 #define LIBAVCODEC_VERSION_MICRO 100
#define LIBAVCODEC_VERSION_INT AV_VERSION_INT(LIBAVCODEC_VERSION_MAJOR, \ #define LIBAVCODEC_VERSION_INT AV_VERSION_INT(LIBAVCODEC_VERSION_MAJOR, \

View File

@ -453,7 +453,11 @@ static int rtp_write_packet(AVFormatContext *s1, AVPacket *pkt)
break; break;
case CODEC_ID_H263: case CODEC_ID_H263:
if (s->flags & FF_RTP_FLAG_RFC2190) { if (s->flags & FF_RTP_FLAG_RFC2190) {
ff_rtp_send_h263_rfc2190(s1, pkt->data, size); int mb_info_size = 0;
const uint8_t *mb_info =
av_packet_get_side_data(pkt, AV_PKT_DATA_H263_MB_INFO,
&mb_info_size);
ff_rtp_send_h263_rfc2190(s1, pkt->data, size, mb_info, mb_info_size);
break; break;
} }
/* Fallthrough */ /* Fallthrough */

View File

@ -78,7 +78,8 @@ void ff_rtp_send_data(AVFormatContext *s1, const uint8_t *buf1, int len, int m);
void ff_rtp_send_h264(AVFormatContext *s1, const uint8_t *buf1, int size); void ff_rtp_send_h264(AVFormatContext *s1, const uint8_t *buf1, int size);
void ff_rtp_send_h263(AVFormatContext *s1, const uint8_t *buf1, int size); void ff_rtp_send_h263(AVFormatContext *s1, const uint8_t *buf1, int size);
void ff_rtp_send_h263_rfc2190(AVFormatContext *s1, const uint8_t *buf1, int size); void ff_rtp_send_h263_rfc2190(AVFormatContext *s1, const uint8_t *buf1, int size,
const uint8_t *mb_info, int mb_info_size);
void ff_rtp_send_aac(AVFormatContext *s1, const uint8_t *buff, int size); void ff_rtp_send_aac(AVFormatContext *s1, const uint8_t *buff, int size);
void ff_rtp_send_latm(AVFormatContext *s1, const uint8_t *buff, int size); void ff_rtp_send_latm(AVFormatContext *s1, const uint8_t *buff, int size);
void ff_rtp_send_amr(AVFormatContext *s1, const uint8_t *buff, int size); void ff_rtp_send_amr(AVFormatContext *s1, const uint8_t *buff, int size);

View File

@ -34,8 +34,15 @@ struct H263Info {
int tr; int tr;
}; };
struct H263State {
int gobn;
int mba;
int hmv1, vmv1, hmv2, vmv2;
int quant;
};
static void send_mode_a(AVFormatContext *s1, const struct H263Info *info, static void send_mode_a(AVFormatContext *s1, const struct H263Info *info,
const uint8_t *buf, int len, int m) const uint8_t *buf, int len, int ebits, int m)
{ {
RTPMuxContext *s = s1->priv_data; RTPMuxContext *s = s1->priv_data;
PutBitContext pb; PutBitContext pb;
@ -44,7 +51,7 @@ static void send_mode_a(AVFormatContext *s1, const struct H263Info *info,
put_bits(&pb, 1, 0); /* F - 0, mode A */ put_bits(&pb, 1, 0); /* F - 0, mode A */
put_bits(&pb, 1, 0); /* P - 0, normal I/P */ put_bits(&pb, 1, 0); /* P - 0, normal I/P */
put_bits(&pb, 3, 0); /* SBIT - 0 bits */ put_bits(&pb, 3, 0); /* SBIT - 0 bits */
put_bits(&pb, 3, 0); /* EBIT - 0 bits */ put_bits(&pb, 3, ebits); /* EBIT */
put_bits(&pb, 3, info->src); /* SRC - source format */ put_bits(&pb, 3, info->src); /* SRC - source format */
put_bits(&pb, 1, info->i); /* I - inter/intra */ put_bits(&pb, 1, info->i); /* I - inter/intra */
put_bits(&pb, 1, info->u); /* U - unrestricted motion vector */ put_bits(&pb, 1, info->u); /* U - unrestricted motion vector */
@ -60,12 +67,47 @@ static void send_mode_a(AVFormatContext *s1, const struct H263Info *info,
ff_rtp_send_data(s1, s->buf, len + 4, m); ff_rtp_send_data(s1, s->buf, len + 4, m);
} }
void ff_rtp_send_h263_rfc2190(AVFormatContext *s1, const uint8_t *buf, int size) static void send_mode_b(AVFormatContext *s1, const struct H263Info *info,
const struct H263State *state, const uint8_t *buf,
int len, int sbits, int ebits, int m)
{ {
RTPMuxContext *s = s1->priv_data; RTPMuxContext *s = s1->priv_data;
int len; PutBitContext pb;
init_put_bits(&pb, s->buf, 64);
put_bits(&pb, 1, 1); /* F - 1, mode B */
put_bits(&pb, 1, 0); /* P - 0, mode B */
put_bits(&pb, 3, sbits); /* SBIT - 0 bits */
put_bits(&pb, 3, ebits); /* EBIT - 0 bits */
put_bits(&pb, 3, info->src); /* SRC - source format */
put_bits(&pb, 5, state->quant); /* QUANT - quantizer for the first MB */
put_bits(&pb, 5, state->gobn); /* GOBN - GOB number */
put_bits(&pb, 9, state->mba); /* MBA - MB address */
put_bits(&pb, 2, 0); /* R - reserved */
put_bits(&pb, 1, info->i); /* I - inter/intra */
put_bits(&pb, 1, info->u); /* U - unrestricted motion vector */
put_bits(&pb, 1, info->s); /* S - syntax-baesd arithmetic coding */
put_bits(&pb, 1, info->a); /* A - advanced prediction */
put_bits(&pb, 7, state->hmv1); /* HVM1 - horizontal motion vector 1 */
put_bits(&pb, 7, state->vmv1); /* VMV1 - vertical motion vector 1 */
put_bits(&pb, 7, state->hmv2); /* HVM2 - horizontal motion vector 2 */
put_bits(&pb, 7, state->vmv2); /* VMV2 - vertical motion vector 2 */
flush_put_bits(&pb);
memcpy(s->buf + 8, buf, len);
ff_rtp_send_data(s1, s->buf, len + 8, m);
}
void ff_rtp_send_h263_rfc2190(AVFormatContext *s1, const uint8_t *buf, int size,
const uint8_t *mb_info, int mb_info_size)
{
RTPMuxContext *s = s1->priv_data;
int len, sbits = 0, ebits = 0;
GetBitContext gb; GetBitContext gb;
struct H263Info info = { 0 }; struct H263Info info = { 0 };
struct H263State state = { 0 };
int mb_info_pos = 0, mb_info_count = mb_info_size / 12;
const uint8_t *buf_base = buf;
s->timestamp = s->cur_timestamp; s->timestamp = s->cur_timestamp;
@ -83,22 +125,71 @@ void ff_rtp_send_h263_rfc2190(AVFormatContext *s1, const uint8_t *buf, int size)
} }
while (size > 0) { while (size > 0) {
len = FFMIN(s->max_payload_size - 4, size); struct H263State packet_start_state = state;
len = FFMIN(s->max_payload_size - 8, size);
/* Look for a better place to split the frame into packets. */ /* Look for a better place to split the frame into packets. */
if (len < size) { if (len < size) {
const uint8_t *end = ff_h263_find_resync_marker_reverse(buf, const uint8_t *end = ff_h263_find_resync_marker_reverse(buf,
buf + len); buf + len);
len = end - buf; len = end - buf;
if (len == s->max_payload_size - 4) if (len == s->max_payload_size - 8) {
av_log(s1, AV_LOG_WARNING, /* Skip mb info prior to the start of the current ptr */
"No GOB boundary found within MTU size, splitting at " while (mb_info_pos < mb_info_count) {
"a random boundary\n"); uint32_t pos = AV_RL32(&mb_info[12*mb_info_pos])/8;
if (pos >= buf - buf_base)
break;
mb_info_pos++;
}
/* Find the first mb info past the end pointer */
while (mb_info_pos + 1 < mb_info_count) {
uint32_t pos = AV_RL32(&mb_info[12*(mb_info_pos + 1)])/8;
if (pos >= end - buf_base)
break;
mb_info_pos++;
}
if (mb_info_pos < mb_info_count) {
const uint8_t *ptr = &mb_info[12*mb_info_pos];
uint32_t bit_pos = AV_RL32(ptr);
uint32_t pos = (bit_pos + 7)/8;
if (pos <= end - buf_base) {
state.quant = ptr[4];
state.gobn = ptr[5];
state.mba = AV_RL16(&ptr[6]);
state.hmv1 = (int8_t) ptr[8];
state.vmv1 = (int8_t) ptr[9];
state.hmv2 = (int8_t) ptr[10];
state.vmv2 = (int8_t) ptr[11];
ebits = 8 * pos - bit_pos;
len = pos - (buf - buf_base);
mb_info_pos++;
} else {
av_log(s1, AV_LOG_ERROR,
"Unable to split H263 packet, use -mb_info %d "
"or lower.\n", s->max_payload_size - 8);
}
} else {
av_log(s1, AV_LOG_ERROR, "Unable to split H263 packet, "
"use -mb_info %d or -ps 1.\n",
s->max_payload_size - 8);
}
}
} }
send_mode_a(s1, &info, buf, len, len == size); if (size > 2 && !buf[0] && !buf[1])
send_mode_a(s1, &info, buf, len, ebits, len == size);
else
send_mode_b(s1, &info, &packet_start_state, buf, len, sbits,
ebits, len == size);
if (ebits) {
sbits = 8 - ebits;
len--;
} else {
sbits = 0;
}
buf += len; buf += len;
size -= len; size -= len;
ebits = 0;
} }
} }