mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-24 13:56:33 +02:00
dnn: change dnn interface to replace DNNData* with AVFrame*
Currently, every filter needs to provide code to transfer data from AVFrame* to model input (DNNData*), and also from model output (DNNData*) to AVFrame*. Actually, such transfer can be implemented within DNN module, and so filter can focus on its own business logic. DNN module also exports the function pointer pre_proc and post_proc in struct DNNModel, just in case that a filter has its special logic to transfer data between AVFrame* and DNNData*. The default implementation within DNN module is used if the filter does not set pre/post_proc.
This commit is contained in:
parent
6918e240d7
commit
2003e32f62
2
configure
vendored
2
configure
vendored
@ -2628,6 +2628,7 @@ cbs_vp9_select="cbs"
|
||||
dct_select="rdft"
|
||||
dirac_parse_select="golomb"
|
||||
dnn_suggest="libtensorflow libopenvino"
|
||||
dnn_deps="swscale"
|
||||
error_resilience_select="me_cmp"
|
||||
faandct_deps="faan"
|
||||
faandct_select="fdctdsp"
|
||||
@ -3532,7 +3533,6 @@ derain_filter_select="dnn"
|
||||
deshake_filter_select="pixelutils"
|
||||
deshake_opencl_filter_deps="opencl"
|
||||
dilation_opencl_filter_deps="opencl"
|
||||
dnn_processing_filter_deps="swscale"
|
||||
dnn_processing_filter_select="dnn"
|
||||
drawtext_filter_deps="libfreetype"
|
||||
drawtext_filter_suggest="libfontconfig libfribidi"
|
||||
|
@ -1,4 +1,5 @@
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_interface.o
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_io_proc.o
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o
|
||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_avgpool.o
|
||||
|
@ -27,6 +27,7 @@
|
||||
#include "libavutil/avassert.h"
|
||||
#include "dnn_backend_native_layer_conv2d.h"
|
||||
#include "dnn_backend_native_layers.h"
|
||||
#include "dnn_io_proc.h"
|
||||
|
||||
#define OFFSET(x) offsetof(NativeContext, x)
|
||||
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
|
||||
@ -69,11 +70,12 @@ static DNNReturnType get_input_native(void *model, DNNData *input, const char *i
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
static DNNReturnType set_input_native(void *model, DNNData *input, const char *input_name)
|
||||
static DNNReturnType set_input_native(void *model, AVFrame *frame, const char *input_name)
|
||||
{
|
||||
NativeModel *native_model = (NativeModel *)model;
|
||||
NativeContext *ctx = &native_model->ctx;
|
||||
DnnOperand *oprd = NULL;
|
||||
DNNData input;
|
||||
|
||||
if (native_model->layers_num <= 0 || native_model->operands_num <= 0) {
|
||||
av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n");
|
||||
@ -97,10 +99,8 @@ static DNNReturnType set_input_native(void *model, DNNData *input, const char *i
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
oprd->dims[0] = 1;
|
||||
oprd->dims[1] = input->height;
|
||||
oprd->dims[2] = input->width;
|
||||
oprd->dims[3] = input->channels;
|
||||
oprd->dims[1] = frame->height;
|
||||
oprd->dims[2] = frame->width;
|
||||
|
||||
av_freep(&oprd->data);
|
||||
oprd->length = calculate_operand_data_length(oprd);
|
||||
@ -114,7 +114,16 @@ static DNNReturnType set_input_native(void *model, DNNData *input, const char *i
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
input->data = oprd->data;
|
||||
input.height = oprd->dims[1];
|
||||
input.width = oprd->dims[2];
|
||||
input.channels = oprd->dims[3];
|
||||
input.data = oprd->data;
|
||||
input.dt = oprd->data_type;
|
||||
if (native_model->model->pre_proc != NULL) {
|
||||
native_model->model->pre_proc(frame, &input, native_model->model->userdata);
|
||||
} else {
|
||||
proc_from_frame_to_dnn(frame, &input, ctx);
|
||||
}
|
||||
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
@ -185,6 +194,7 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename, const char *optio
|
||||
if (av_opt_set_from_string(&native_model->ctx, model->options, NULL, "=", "&") < 0)
|
||||
goto fail;
|
||||
model->model = (void *)native_model;
|
||||
native_model->model = model;
|
||||
|
||||
#if !HAVE_PTHREAD_CANCEL
|
||||
if (native_model->ctx.options.conv2d_threads > 1){
|
||||
@ -275,11 +285,19 @@ fail:
|
||||
return NULL;
|
||||
}
|
||||
|
||||
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output)
|
||||
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame)
|
||||
{
|
||||
NativeModel *native_model = (NativeModel *)model->model;
|
||||
NativeContext *ctx = &native_model->ctx;
|
||||
int32_t layer;
|
||||
DNNData output;
|
||||
|
||||
if (nb_output != 1) {
|
||||
// currently, the filter does not need multiple outputs,
|
||||
// so we just pending the support until we really need it.
|
||||
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
if (native_model->layers_num <= 0 || native_model->operands_num <= 0) {
|
||||
av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n");
|
||||
@ -317,11 +335,22 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *output
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
outputs[i].data = oprd->data;
|
||||
outputs[i].height = oprd->dims[1];
|
||||
outputs[i].width = oprd->dims[2];
|
||||
outputs[i].channels = oprd->dims[3];
|
||||
outputs[i].dt = oprd->data_type;
|
||||
output.data = oprd->data;
|
||||
output.height = oprd->dims[1];
|
||||
output.width = oprd->dims[2];
|
||||
output.channels = oprd->dims[3];
|
||||
output.dt = oprd->data_type;
|
||||
|
||||
if (out_frame->width != output.width || out_frame->height != output.height) {
|
||||
out_frame->width = output.width;
|
||||
out_frame->height = output.height;
|
||||
} else {
|
||||
if (native_model->model->post_proc != NULL) {
|
||||
native_model->model->post_proc(out_frame, &output, native_model->model->userdata);
|
||||
} else {
|
||||
proc_from_dnn_to_frame(out_frame, &output, ctx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return DNN_SUCCESS;
|
||||
|
@ -119,6 +119,7 @@ typedef struct NativeContext {
|
||||
// Represents simple feed-forward convolutional network.
|
||||
typedef struct NativeModel{
|
||||
NativeContext ctx;
|
||||
DNNModel *model;
|
||||
Layer *layers;
|
||||
int32_t layers_num;
|
||||
DnnOperand *operands;
|
||||
@ -127,7 +128,7 @@ typedef struct NativeModel{
|
||||
|
||||
DNNModel *ff_dnn_load_model_native(const char *model_filename, const char *options, void *userdata);
|
||||
|
||||
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output);
|
||||
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame);
|
||||
|
||||
void ff_dnn_free_model_native(DNNModel **model);
|
||||
|
||||
|
@ -24,6 +24,7 @@
|
||||
*/
|
||||
|
||||
#include "dnn_backend_openvino.h"
|
||||
#include "dnn_io_proc.h"
|
||||
#include "libavformat/avio.h"
|
||||
#include "libavutil/avassert.h"
|
||||
#include "libavutil/opt.h"
|
||||
@ -42,6 +43,7 @@ typedef struct OVContext {
|
||||
|
||||
typedef struct OVModel{
|
||||
OVContext ctx;
|
||||
DNNModel *model;
|
||||
ie_core_t *core;
|
||||
ie_network_t *network;
|
||||
ie_executable_network_t *exe_network;
|
||||
@ -131,7 +133,7 @@ static DNNReturnType get_input_ov(void *model, DNNData *input, const char *input
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
static DNNReturnType set_input_ov(void *model, DNNData *input, const char *input_name)
|
||||
static DNNReturnType set_input_ov(void *model, AVFrame *frame, const char *input_name)
|
||||
{
|
||||
OVModel *ov_model = (OVModel *)model;
|
||||
OVContext *ctx = &ov_model->ctx;
|
||||
@ -139,10 +141,7 @@ static DNNReturnType set_input_ov(void *model, DNNData *input, const char *input
|
||||
dimensions_t dims;
|
||||
precision_e precision;
|
||||
ie_blob_buffer_t blob_buffer;
|
||||
|
||||
status = ie_exec_network_create_infer_request(ov_model->exe_network, &ov_model->infer_request);
|
||||
if (status != OK)
|
||||
goto err;
|
||||
DNNData input;
|
||||
|
||||
status = ie_infer_request_get_blob(ov_model->infer_request, input_name, &ov_model->input_blob);
|
||||
if (status != OK)
|
||||
@ -153,23 +152,26 @@ static DNNReturnType set_input_ov(void *model, DNNData *input, const char *input
|
||||
if (status != OK)
|
||||
goto err;
|
||||
|
||||
av_assert0(input->channels == dims.dims[1]);
|
||||
av_assert0(input->height == dims.dims[2]);
|
||||
av_assert0(input->width == dims.dims[3]);
|
||||
av_assert0(input->dt == precision_to_datatype(precision));
|
||||
|
||||
status = ie_blob_get_buffer(ov_model->input_blob, &blob_buffer);
|
||||
if (status != OK)
|
||||
goto err;
|
||||
input->data = blob_buffer.buffer;
|
||||
|
||||
input.height = dims.dims[2];
|
||||
input.width = dims.dims[3];
|
||||
input.channels = dims.dims[1];
|
||||
input.data = blob_buffer.buffer;
|
||||
input.dt = precision_to_datatype(precision);
|
||||
if (ov_model->model->pre_proc != NULL) {
|
||||
ov_model->model->pre_proc(frame, &input, ov_model->model->userdata);
|
||||
} else {
|
||||
proc_from_frame_to_dnn(frame, &input, ctx);
|
||||
}
|
||||
|
||||
return DNN_SUCCESS;
|
||||
|
||||
err:
|
||||
if (ov_model->input_blob)
|
||||
ie_blob_free(&ov_model->input_blob);
|
||||
if (ov_model->infer_request)
|
||||
ie_infer_request_free(&ov_model->infer_request);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to create inference instance or get input data/dims/precision/memory\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
@ -184,7 +186,7 @@ DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options,
|
||||
ie_config_t config = {NULL, NULL, NULL};
|
||||
ie_available_devices_t a_dev;
|
||||
|
||||
model = av_malloc(sizeof(DNNModel));
|
||||
model = av_mallocz(sizeof(DNNModel));
|
||||
if (!model){
|
||||
return NULL;
|
||||
}
|
||||
@ -192,6 +194,7 @@ DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options,
|
||||
ov_model = av_mallocz(sizeof(OVModel));
|
||||
if (!ov_model)
|
||||
goto err;
|
||||
ov_model->model = model;
|
||||
ov_model->ctx.class = &dnn_openvino_class;
|
||||
ctx = &ov_model->ctx;
|
||||
|
||||
@ -226,6 +229,10 @@ DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options,
|
||||
goto err;
|
||||
}
|
||||
|
||||
status = ie_exec_network_create_infer_request(ov_model->exe_network, &ov_model->infer_request);
|
||||
if (status != OK)
|
||||
goto err;
|
||||
|
||||
model->model = (void *)ov_model;
|
||||
model->set_input = &set_input_ov;
|
||||
model->get_input = &get_input_ov;
|
||||
@ -238,6 +245,8 @@ err:
|
||||
if (model)
|
||||
av_freep(&model);
|
||||
if (ov_model) {
|
||||
if (ov_model->infer_request)
|
||||
ie_infer_request_free(&ov_model->infer_request);
|
||||
if (ov_model->exe_network)
|
||||
ie_exec_network_free(&ov_model->exe_network);
|
||||
if (ov_model->network)
|
||||
@ -249,7 +258,7 @@ err:
|
||||
return NULL;
|
||||
}
|
||||
|
||||
DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output)
|
||||
DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame)
|
||||
{
|
||||
char *model_output_name = NULL;
|
||||
char *all_output_names = NULL;
|
||||
@ -258,8 +267,18 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNData *outputs, c
|
||||
ie_blob_buffer_t blob_buffer;
|
||||
OVModel *ov_model = (OVModel *)model->model;
|
||||
OVContext *ctx = &ov_model->ctx;
|
||||
IEStatusCode status = ie_infer_request_infer(ov_model->infer_request);
|
||||
IEStatusCode status;
|
||||
size_t model_output_count = 0;
|
||||
DNNData output;
|
||||
|
||||
if (nb_output != 1) {
|
||||
// currently, the filter does not need multiple outputs,
|
||||
// so we just pending the support until we really need it.
|
||||
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
status = ie_infer_request_infer(ov_model->infer_request);
|
||||
if (status != OK) {
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to start synchronous model inference\n");
|
||||
return DNN_ERROR;
|
||||
@ -296,11 +315,21 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNData *outputs, c
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
outputs[i].channels = dims.dims[1];
|
||||
outputs[i].height = dims.dims[2];
|
||||
outputs[i].width = dims.dims[3];
|
||||
outputs[i].dt = precision_to_datatype(precision);
|
||||
outputs[i].data = blob_buffer.buffer;
|
||||
output.channels = dims.dims[1];
|
||||
output.height = dims.dims[2];
|
||||
output.width = dims.dims[3];
|
||||
output.dt = precision_to_datatype(precision);
|
||||
output.data = blob_buffer.buffer;
|
||||
if (out_frame->width != output.width || out_frame->height != output.height) {
|
||||
out_frame->width = output.width;
|
||||
out_frame->height = output.height;
|
||||
} else {
|
||||
if (ov_model->model->post_proc != NULL) {
|
||||
ov_model->model->post_proc(out_frame, &output, ov_model->model->userdata);
|
||||
} else {
|
||||
proc_from_dnn_to_frame(out_frame, &output, ctx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return DNN_SUCCESS;
|
||||
|
@ -31,7 +31,7 @@
|
||||
|
||||
DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options, void *userdata);
|
||||
|
||||
DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output);
|
||||
DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame);
|
||||
|
||||
void ff_dnn_free_model_ov(DNNModel **model);
|
||||
|
||||
|
@ -31,6 +31,7 @@
|
||||
#include "libavutil/avassert.h"
|
||||
#include "dnn_backend_native_layer_pad.h"
|
||||
#include "dnn_backend_native_layer_maximum.h"
|
||||
#include "dnn_io_proc.h"
|
||||
|
||||
#include <tensorflow/c/c_api.h>
|
||||
|
||||
@ -40,13 +41,12 @@ typedef struct TFContext {
|
||||
|
||||
typedef struct TFModel{
|
||||
TFContext ctx;
|
||||
DNNModel *model;
|
||||
TF_Graph *graph;
|
||||
TF_Session *session;
|
||||
TF_Status *status;
|
||||
TF_Output input;
|
||||
TF_Tensor *input_tensor;
|
||||
TF_Tensor **output_tensors;
|
||||
uint32_t nb_output;
|
||||
} TFModel;
|
||||
|
||||
static const AVClass dnn_tensorflow_class = {
|
||||
@ -152,13 +152,19 @@ static DNNReturnType get_input_tf(void *model, DNNData *input, const char *input
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
static DNNReturnType set_input_tf(void *model, DNNData *input, const char *input_name)
|
||||
static DNNReturnType set_input_tf(void *model, AVFrame *frame, const char *input_name)
|
||||
{
|
||||
TFModel *tf_model = (TFModel *)model;
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
DNNData input;
|
||||
TF_SessionOptions *sess_opts;
|
||||
const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, "init");
|
||||
|
||||
if (get_input_tf(model, &input, input_name) != DNN_SUCCESS)
|
||||
return DNN_ERROR;
|
||||
input.height = frame->height;
|
||||
input.width = frame->width;
|
||||
|
||||
// Input operation
|
||||
tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, input_name);
|
||||
if (!tf_model->input.oper){
|
||||
@ -169,12 +175,18 @@ static DNNReturnType set_input_tf(void *model, DNNData *input, const char *input
|
||||
if (tf_model->input_tensor){
|
||||
TF_DeleteTensor(tf_model->input_tensor);
|
||||
}
|
||||
tf_model->input_tensor = allocate_input_tensor(input);
|
||||
tf_model->input_tensor = allocate_input_tensor(&input);
|
||||
if (!tf_model->input_tensor){
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
input->data = (float *)TF_TensorData(tf_model->input_tensor);
|
||||
input.data = (float *)TF_TensorData(tf_model->input_tensor);
|
||||
|
||||
if (tf_model->model->pre_proc != NULL) {
|
||||
tf_model->model->pre_proc(frame, &input, tf_model->model->userdata);
|
||||
} else {
|
||||
proc_from_frame_to_dnn(frame, &input, ctx);
|
||||
}
|
||||
|
||||
// session
|
||||
if (tf_model->session){
|
||||
@ -591,7 +603,7 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, const char *options,
|
||||
DNNModel *model = NULL;
|
||||
TFModel *tf_model = NULL;
|
||||
|
||||
model = av_malloc(sizeof(DNNModel));
|
||||
model = av_mallocz(sizeof(DNNModel));
|
||||
if (!model){
|
||||
return NULL;
|
||||
}
|
||||
@ -602,6 +614,7 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, const char *options,
|
||||
return NULL;
|
||||
}
|
||||
tf_model->ctx.class = &dnn_tensorflow_class;
|
||||
tf_model->model = model;
|
||||
|
||||
if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){
|
||||
if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){
|
||||
@ -621,11 +634,20 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, const char *options,
|
||||
return model;
|
||||
}
|
||||
|
||||
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output)
|
||||
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame)
|
||||
{
|
||||
TF_Output *tf_outputs;
|
||||
TFModel *tf_model = (TFModel *)model->model;
|
||||
TFContext *ctx = &tf_model->ctx;
|
||||
DNNData output;
|
||||
TF_Tensor **output_tensors;
|
||||
|
||||
if (nb_output != 1) {
|
||||
// currently, the filter does not need multiple outputs,
|
||||
// so we just pending the support until we really need it.
|
||||
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
tf_outputs = av_malloc_array(nb_output, sizeof(*tf_outputs));
|
||||
if (tf_outputs == NULL) {
|
||||
@ -633,18 +655,8 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, c
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
if (tf_model->output_tensors) {
|
||||
for (uint32_t i = 0; i < tf_model->nb_output; ++i) {
|
||||
if (tf_model->output_tensors[i]) {
|
||||
TF_DeleteTensor(tf_model->output_tensors[i]);
|
||||
tf_model->output_tensors[i] = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
av_freep(&tf_model->output_tensors);
|
||||
tf_model->nb_output = nb_output;
|
||||
tf_model->output_tensors = av_mallocz_array(nb_output, sizeof(*tf_model->output_tensors));
|
||||
if (!tf_model->output_tensors) {
|
||||
output_tensors = av_mallocz_array(nb_output, sizeof(*output_tensors));
|
||||
if (!output_tensors) {
|
||||
av_freep(&tf_outputs);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n"); \
|
||||
return DNN_ERROR;
|
||||
@ -654,6 +666,7 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, c
|
||||
tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, output_names[i]);
|
||||
if (!tf_outputs[i].oper) {
|
||||
av_freep(&tf_outputs);
|
||||
av_freep(&output_tensors);
|
||||
av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", output_names[i]); \
|
||||
return DNN_ERROR;
|
||||
}
|
||||
@ -662,22 +675,40 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, c
|
||||
|
||||
TF_SessionRun(tf_model->session, NULL,
|
||||
&tf_model->input, &tf_model->input_tensor, 1,
|
||||
tf_outputs, tf_model->output_tensors, nb_output,
|
||||
tf_outputs, output_tensors, nb_output,
|
||||
NULL, 0, NULL, tf_model->status);
|
||||
if (TF_GetCode(tf_model->status) != TF_OK) {
|
||||
av_freep(&tf_outputs);
|
||||
av_freep(&output_tensors);
|
||||
av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < nb_output; ++i) {
|
||||
outputs[i].height = TF_Dim(tf_model->output_tensors[i], 1);
|
||||
outputs[i].width = TF_Dim(tf_model->output_tensors[i], 2);
|
||||
outputs[i].channels = TF_Dim(tf_model->output_tensors[i], 3);
|
||||
outputs[i].data = TF_TensorData(tf_model->output_tensors[i]);
|
||||
outputs[i].dt = TF_TensorType(tf_model->output_tensors[i]);
|
||||
output.height = TF_Dim(output_tensors[i], 1);
|
||||
output.width = TF_Dim(output_tensors[i], 2);
|
||||
output.channels = TF_Dim(output_tensors[i], 3);
|
||||
output.data = TF_TensorData(output_tensors[i]);
|
||||
output.dt = TF_TensorType(output_tensors[i]);
|
||||
|
||||
if (out_frame->width != output.width || out_frame->height != output.height) {
|
||||
out_frame->width = output.width;
|
||||
out_frame->height = output.height;
|
||||
} else {
|
||||
if (tf_model->model->post_proc != NULL) {
|
||||
tf_model->model->post_proc(out_frame, &output, tf_model->model->userdata);
|
||||
} else {
|
||||
proc_from_dnn_to_frame(out_frame, &output, ctx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < nb_output; ++i) {
|
||||
if (output_tensors[i]) {
|
||||
TF_DeleteTensor(output_tensors[i]);
|
||||
}
|
||||
}
|
||||
av_freep(&output_tensors);
|
||||
av_freep(&tf_outputs);
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
@ -701,15 +732,6 @@ void ff_dnn_free_model_tf(DNNModel **model)
|
||||
if (tf_model->input_tensor){
|
||||
TF_DeleteTensor(tf_model->input_tensor);
|
||||
}
|
||||
if (tf_model->output_tensors) {
|
||||
for (uint32_t i = 0; i < tf_model->nb_output; ++i) {
|
||||
if (tf_model->output_tensors[i]) {
|
||||
TF_DeleteTensor(tf_model->output_tensors[i]);
|
||||
tf_model->output_tensors[i] = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
av_freep(&tf_model->output_tensors);
|
||||
av_freep(&tf_model);
|
||||
av_freep(model);
|
||||
}
|
||||
|
@ -31,7 +31,7 @@
|
||||
|
||||
DNNModel *ff_dnn_load_model_tf(const char *model_filename, const char *options, void *userdata);
|
||||
|
||||
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output);
|
||||
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame);
|
||||
|
||||
void ff_dnn_free_model_tf(DNNModel **model);
|
||||
|
||||
|
135
libavfilter/dnn/dnn_io_proc.c
Normal file
135
libavfilter/dnn/dnn_io_proc.c
Normal file
@ -0,0 +1,135 @@
|
||||
/*
|
||||
* Copyright (c) 2020
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include "dnn_io_proc.h"
|
||||
#include "libavutil/imgutils.h"
|
||||
#include "libswscale/swscale.h"
|
||||
|
||||
DNNReturnType proc_from_dnn_to_frame(AVFrame *frame, DNNData *output, void *log_ctx)
|
||||
{
|
||||
struct SwsContext *sws_ctx;
|
||||
int bytewidth = av_image_get_linesize(frame->format, frame->width, 0);
|
||||
if (output->dt != DNN_FLOAT) {
|
||||
av_log(log_ctx, AV_LOG_ERROR, "do not support data type rather than DNN_FLOAT\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
switch (frame->format) {
|
||||
case AV_PIX_FMT_RGB24:
|
||||
case AV_PIX_FMT_BGR24:
|
||||
sws_ctx = sws_getContext(frame->width * 3,
|
||||
frame->height,
|
||||
AV_PIX_FMT_GRAYF32,
|
||||
frame->width * 3,
|
||||
frame->height,
|
||||
AV_PIX_FMT_GRAY8,
|
||||
0, NULL, NULL, NULL);
|
||||
sws_scale(sws_ctx, (const uint8_t *[4]){(const uint8_t *)output->data, 0, 0, 0},
|
||||
(const int[4]){frame->width * 3 * sizeof(float), 0, 0, 0}, 0, frame->height,
|
||||
(uint8_t * const*)frame->data, frame->linesize);
|
||||
sws_freeContext(sws_ctx);
|
||||
return DNN_SUCCESS;
|
||||
case AV_PIX_FMT_GRAYF32:
|
||||
av_image_copy_plane(frame->data[0], frame->linesize[0],
|
||||
output->data, bytewidth,
|
||||
bytewidth, frame->height);
|
||||
return DNN_SUCCESS;
|
||||
case AV_PIX_FMT_YUV420P:
|
||||
case AV_PIX_FMT_YUV422P:
|
||||
case AV_PIX_FMT_YUV444P:
|
||||
case AV_PIX_FMT_YUV410P:
|
||||
case AV_PIX_FMT_YUV411P:
|
||||
case AV_PIX_FMT_GRAY8:
|
||||
sws_ctx = sws_getContext(frame->width,
|
||||
frame->height,
|
||||
AV_PIX_FMT_GRAYF32,
|
||||
frame->width,
|
||||
frame->height,
|
||||
AV_PIX_FMT_GRAY8,
|
||||
0, NULL, NULL, NULL);
|
||||
sws_scale(sws_ctx, (const uint8_t *[4]){(const uint8_t *)output->data, 0, 0, 0},
|
||||
(const int[4]){frame->width * sizeof(float), 0, 0, 0}, 0, frame->height,
|
||||
(uint8_t * const*)frame->data, frame->linesize);
|
||||
sws_freeContext(sws_ctx);
|
||||
return DNN_SUCCESS;
|
||||
default:
|
||||
av_log(log_ctx, AV_LOG_ERROR, "do not support frame format %d\n", frame->format);
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
return DNN_SUCCESS;
|
||||
}
|
||||
|
||||
DNNReturnType proc_from_frame_to_dnn(AVFrame *frame, DNNData *input, void *log_ctx)
|
||||
{
|
||||
struct SwsContext *sws_ctx;
|
||||
int bytewidth = av_image_get_linesize(frame->format, frame->width, 0);
|
||||
if (input->dt != DNN_FLOAT) {
|
||||
av_log(log_ctx, AV_LOG_ERROR, "do not support data type rather than DNN_FLOAT\n");
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
switch (frame->format) {
|
||||
case AV_PIX_FMT_RGB24:
|
||||
case AV_PIX_FMT_BGR24:
|
||||
sws_ctx = sws_getContext(frame->width * 3,
|
||||
frame->height,
|
||||
AV_PIX_FMT_GRAY8,
|
||||
frame->width * 3,
|
||||
frame->height,
|
||||
AV_PIX_FMT_GRAYF32,
|
||||
0, NULL, NULL, NULL);
|
||||
sws_scale(sws_ctx, (const uint8_t **)frame->data,
|
||||
frame->linesize, 0, frame->height,
|
||||
(uint8_t * const*)(&input->data),
|
||||
(const int [4]){frame->width * 3 * sizeof(float), 0, 0, 0});
|
||||
sws_freeContext(sws_ctx);
|
||||
break;
|
||||
case AV_PIX_FMT_GRAYF32:
|
||||
av_image_copy_plane(input->data, bytewidth,
|
||||
frame->data[0], frame->linesize[0],
|
||||
bytewidth, frame->height);
|
||||
break;
|
||||
case AV_PIX_FMT_YUV420P:
|
||||
case AV_PIX_FMT_YUV422P:
|
||||
case AV_PIX_FMT_YUV444P:
|
||||
case AV_PIX_FMT_YUV410P:
|
||||
case AV_PIX_FMT_YUV411P:
|
||||
case AV_PIX_FMT_GRAY8:
|
||||
sws_ctx = sws_getContext(frame->width,
|
||||
frame->height,
|
||||
AV_PIX_FMT_GRAY8,
|
||||
frame->width,
|
||||
frame->height,
|
||||
AV_PIX_FMT_GRAYF32,
|
||||
0, NULL, NULL, NULL);
|
||||
sws_scale(sws_ctx, (const uint8_t **)frame->data,
|
||||
frame->linesize, 0, frame->height,
|
||||
(uint8_t * const*)(&input->data),
|
||||
(const int [4]){frame->width * sizeof(float), 0, 0, 0});
|
||||
sws_freeContext(sws_ctx);
|
||||
break;
|
||||
default:
|
||||
av_log(log_ctx, AV_LOG_ERROR, "do not support frame format %d\n", frame->format);
|
||||
return DNN_ERROR;
|
||||
}
|
||||
|
||||
return DNN_SUCCESS;
|
||||
}
|
36
libavfilter/dnn/dnn_io_proc.h
Normal file
36
libavfilter/dnn/dnn_io_proc.h
Normal file
@ -0,0 +1,36 @@
|
||||
/*
|
||||
* Copyright (c) 2020
|
||||
*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* DNN input&output process between AVFrame and DNNData.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef AVFILTER_DNN_DNN_IO_PROC_H
|
||||
#define AVFILTER_DNN_DNN_IO_PROC_H
|
||||
|
||||
#include "../dnn_interface.h"
|
||||
#include "libavutil/frame.h"
|
||||
|
||||
DNNReturnType proc_from_frame_to_dnn(AVFrame *frame, DNNData *input, void *log_ctx);
|
||||
DNNReturnType proc_from_dnn_to_frame(AVFrame *frame, DNNData *output, void *log_ctx);
|
||||
|
||||
#endif
|
@ -27,6 +27,7 @@
|
||||
#define AVFILTER_DNN_INTERFACE_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include "libavutil/frame.h"
|
||||
|
||||
typedef enum {DNN_SUCCESS, DNN_ERROR} DNNReturnType;
|
||||
|
||||
@ -50,17 +51,23 @@ typedef struct DNNModel{
|
||||
// Gets model input information
|
||||
// Just reuse struct DNNData here, actually the DNNData.data field is not needed.
|
||||
DNNReturnType (*get_input)(void *model, DNNData *input, const char *input_name);
|
||||
// Sets model input and output.
|
||||
// Should be called at least once before model execution.
|
||||
DNNReturnType (*set_input)(void *model, DNNData *input, const char *input_name);
|
||||
// Sets model input.
|
||||
// Should be called every time before model execution.
|
||||
DNNReturnType (*set_input)(void *model, AVFrame *frame, const char *input_name);
|
||||
// set the pre process to transfer data from AVFrame to DNNData
|
||||
// the default implementation within DNN is used if it is not provided by the filter
|
||||
int (*pre_proc)(AVFrame *frame_in, DNNData *model_input, void *user_data);
|
||||
// set the post process to transfer data from DNNData to AVFrame
|
||||
// the default implementation within DNN is used if it is not provided by the filter
|
||||
int (*post_proc)(AVFrame *frame_out, DNNData *model_output, void *user_data);
|
||||
} DNNModel;
|
||||
|
||||
// Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
|
||||
typedef struct DNNModule{
|
||||
// Loads model and parameters from given file. Returns NULL if it is not possible.
|
||||
DNNModel *(*load_model)(const char *model_filename, const char *options, void *userdata);
|
||||
// Executes model with specified input and output. Returns DNN_ERROR otherwise.
|
||||
DNNReturnType (*execute_model)(const DNNModel *model, DNNData *outputs, const char **output_names, uint32_t nb_output);
|
||||
// Executes model with specified output. Returns DNN_ERROR otherwise.
|
||||
DNNReturnType (*execute_model)(const DNNModel *model, const char **output_names, uint32_t nb_output, AVFrame *out_frame);
|
||||
// Frees memory allocated for model.
|
||||
void (*free_model)(DNNModel **model);
|
||||
} DNNModule;
|
||||
|
@ -39,11 +39,8 @@ typedef struct DRContext {
|
||||
DNNBackendType backend_type;
|
||||
DNNModule *dnn_module;
|
||||
DNNModel *model;
|
||||
DNNData input;
|
||||
DNNData output;
|
||||
} DRContext;
|
||||
|
||||
#define CLIP(x, min, max) (x < min ? min : (x > max ? max : x))
|
||||
#define OFFSET(x) offsetof(DRContext, x)
|
||||
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
|
||||
static const AVOption derain_options[] = {
|
||||
@ -74,25 +71,6 @@ static int query_formats(AVFilterContext *ctx)
|
||||
return ff_set_common_formats(ctx, formats);
|
||||
}
|
||||
|
||||
static int config_inputs(AVFilterLink *inlink)
|
||||
{
|
||||
AVFilterContext *ctx = inlink->dst;
|
||||
DRContext *dr_context = ctx->priv;
|
||||
DNNReturnType result;
|
||||
|
||||
dr_context->input.width = inlink->w;
|
||||
dr_context->input.height = inlink->h;
|
||||
dr_context->input.channels = 3;
|
||||
|
||||
result = (dr_context->model->set_input)(dr_context->model->model, &dr_context->input, "x");
|
||||
if (result != DNN_SUCCESS) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not set input and output for the model\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
||||
{
|
||||
AVFilterContext *ctx = inlink->dst;
|
||||
@ -100,43 +78,30 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
||||
DRContext *dr_context = ctx->priv;
|
||||
DNNReturnType dnn_result;
|
||||
const char *model_output_name = "y";
|
||||
AVFrame *out;
|
||||
|
||||
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
||||
dnn_result = (dr_context->model->set_input)(dr_context->model->model, in, "x");
|
||||
if (dnn_result != DNN_SUCCESS) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not set input for the model\n");
|
||||
av_frame_free(&in);
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
||||
if (!out) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not allocate memory for output frame\n");
|
||||
av_frame_free(&in);
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
|
||||
av_frame_copy_props(out, in);
|
||||
|
||||
for (int i = 0; i < in->height; i++){
|
||||
for(int j = 0; j < in->width * 3; j++){
|
||||
int k = i * in->linesize[0] + j;
|
||||
int t = i * in->width * 3 + j;
|
||||
((float *)dr_context->input.data)[t] = in->data[0][k] / 255.0;
|
||||
}
|
||||
}
|
||||
|
||||
dnn_result = (dr_context->dnn_module->execute_model)(dr_context->model, &dr_context->output, &model_output_name, 1);
|
||||
dnn_result = (dr_context->dnn_module->execute_model)(dr_context->model, &model_output_name, 1, out);
|
||||
if (dnn_result != DNN_SUCCESS){
|
||||
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
|
||||
av_frame_free(&in);
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
out->height = dr_context->output.height;
|
||||
out->width = dr_context->output.width;
|
||||
outlink->h = dr_context->output.height;
|
||||
outlink->w = dr_context->output.width;
|
||||
|
||||
for (int i = 0; i < out->height; i++){
|
||||
for(int j = 0; j < out->width * 3; j++){
|
||||
int k = i * out->linesize[0] + j;
|
||||
int t = i * out->width * 3 + j;
|
||||
out->data[0][k] = CLIP((int)((((float *)dr_context->output.data)[t]) * 255), 0, 255);
|
||||
}
|
||||
}
|
||||
|
||||
av_frame_free(&in);
|
||||
|
||||
return ff_filter_frame(outlink, out);
|
||||
@ -146,7 +111,6 @@ static av_cold int init(AVFilterContext *ctx)
|
||||
{
|
||||
DRContext *dr_context = ctx->priv;
|
||||
|
||||
dr_context->input.dt = DNN_FLOAT;
|
||||
dr_context->dnn_module = ff_get_dnn_module(dr_context->backend_type);
|
||||
if (!dr_context->dnn_module) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not create DNN module for requested backend\n");
|
||||
@ -184,7 +148,6 @@ static const AVFilterPad derain_inputs[] = {
|
||||
{
|
||||
.name = "default",
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
.config_props = config_inputs,
|
||||
.filter_frame = filter_frame,
|
||||
},
|
||||
{ NULL }
|
||||
|
@ -46,12 +46,6 @@ typedef struct DnnProcessingContext {
|
||||
DNNModule *dnn_module;
|
||||
DNNModel *model;
|
||||
|
||||
// input & output of the model at execution time
|
||||
DNNData input;
|
||||
DNNData output;
|
||||
|
||||
struct SwsContext *sws_gray8_to_grayf32;
|
||||
struct SwsContext *sws_grayf32_to_gray8;
|
||||
struct SwsContext *sws_uv_scale;
|
||||
int sws_uv_height;
|
||||
} DnnProcessingContext;
|
||||
@ -103,7 +97,7 @@ static av_cold int init(AVFilterContext *context)
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
ctx->model = (ctx->dnn_module->load_model)(ctx->model_filename, ctx->backend_options, NULL);
|
||||
ctx->model = (ctx->dnn_module->load_model)(ctx->model_filename, ctx->backend_options, ctx);
|
||||
if (!ctx->model) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not load DNN model\n");
|
||||
return AVERROR(EINVAL);
|
||||
@ -148,6 +142,10 @@ static int check_modelinput_inlink(const DNNData *model_input, const AVFilterLin
|
||||
model_input->width, inlink->w);
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
if (model_input->dt != DNN_FLOAT) {
|
||||
av_log(ctx, AV_LOG_ERROR, "only support dnn models with input data type as float32.\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
switch (fmt) {
|
||||
case AV_PIX_FMT_RGB24:
|
||||
@ -156,20 +154,6 @@ static int check_modelinput_inlink(const DNNData *model_input, const AVFilterLin
|
||||
LOG_FORMAT_CHANNEL_MISMATCH();
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
if (model_input->dt != DNN_FLOAT && model_input->dt != DNN_UINT8) {
|
||||
av_log(ctx, AV_LOG_ERROR, "only support dnn models with input data type as float32 and uint8.\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
return 0;
|
||||
case AV_PIX_FMT_GRAY8:
|
||||
if (model_input->channels != 1) {
|
||||
LOG_FORMAT_CHANNEL_MISMATCH();
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
if (model_input->dt != DNN_UINT8) {
|
||||
av_log(ctx, AV_LOG_ERROR, "only support dnn models with input data type uint8.\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
return 0;
|
||||
case AV_PIX_FMT_GRAYF32:
|
||||
case AV_PIX_FMT_YUV420P:
|
||||
@ -181,10 +165,6 @@ static int check_modelinput_inlink(const DNNData *model_input, const AVFilterLin
|
||||
LOG_FORMAT_CHANNEL_MISMATCH();
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
if (model_input->dt != DNN_FLOAT) {
|
||||
av_log(ctx, AV_LOG_ERROR, "only support dnn models with input data type float32.\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
return 0;
|
||||
default:
|
||||
av_log(ctx, AV_LOG_ERROR, "%s not supported.\n", av_get_pix_fmt_name(fmt));
|
||||
@ -213,74 +193,24 @@ static int config_input(AVFilterLink *inlink)
|
||||
return check;
|
||||
}
|
||||
|
||||
ctx->input.width = inlink->w;
|
||||
ctx->input.height = inlink->h;
|
||||
ctx->input.channels = model_input.channels;
|
||||
ctx->input.dt = model_input.dt;
|
||||
|
||||
result = (ctx->model->set_input)(ctx->model->model,
|
||||
&ctx->input, ctx->model_inputname);
|
||||
if (result != DNN_SUCCESS) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not set input and output for the model\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int prepare_sws_context(AVFilterLink *outlink)
|
||||
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
|
||||
{
|
||||
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
|
||||
av_assert0(desc);
|
||||
return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components == 3;
|
||||
}
|
||||
|
||||
static int prepare_uv_scale(AVFilterLink *outlink)
|
||||
{
|
||||
AVFilterContext *context = outlink->src;
|
||||
DnnProcessingContext *ctx = context->priv;
|
||||
AVFilterLink *inlink = context->inputs[0];
|
||||
enum AVPixelFormat fmt = inlink->format;
|
||||
DNNDataType input_dt = ctx->input.dt;
|
||||
DNNDataType output_dt = ctx->output.dt;
|
||||
|
||||
switch (fmt) {
|
||||
case AV_PIX_FMT_RGB24:
|
||||
case AV_PIX_FMT_BGR24:
|
||||
if (input_dt == DNN_FLOAT) {
|
||||
ctx->sws_gray8_to_grayf32 = sws_getContext(inlink->w * 3,
|
||||
inlink->h,
|
||||
AV_PIX_FMT_GRAY8,
|
||||
inlink->w * 3,
|
||||
inlink->h,
|
||||
AV_PIX_FMT_GRAYF32,
|
||||
0, NULL, NULL, NULL);
|
||||
}
|
||||
if (output_dt == DNN_FLOAT) {
|
||||
ctx->sws_grayf32_to_gray8 = sws_getContext(outlink->w * 3,
|
||||
outlink->h,
|
||||
AV_PIX_FMT_GRAYF32,
|
||||
outlink->w * 3,
|
||||
outlink->h,
|
||||
AV_PIX_FMT_GRAY8,
|
||||
0, NULL, NULL, NULL);
|
||||
}
|
||||
return 0;
|
||||
case AV_PIX_FMT_YUV420P:
|
||||
case AV_PIX_FMT_YUV422P:
|
||||
case AV_PIX_FMT_YUV444P:
|
||||
case AV_PIX_FMT_YUV410P:
|
||||
case AV_PIX_FMT_YUV411P:
|
||||
av_assert0(input_dt == DNN_FLOAT);
|
||||
av_assert0(output_dt == DNN_FLOAT);
|
||||
ctx->sws_gray8_to_grayf32 = sws_getContext(inlink->w,
|
||||
inlink->h,
|
||||
AV_PIX_FMT_GRAY8,
|
||||
inlink->w,
|
||||
inlink->h,
|
||||
AV_PIX_FMT_GRAYF32,
|
||||
0, NULL, NULL, NULL);
|
||||
ctx->sws_grayf32_to_gray8 = sws_getContext(outlink->w,
|
||||
outlink->h,
|
||||
AV_PIX_FMT_GRAYF32,
|
||||
outlink->w,
|
||||
outlink->h,
|
||||
AV_PIX_FMT_GRAY8,
|
||||
0, NULL, NULL, NULL);
|
||||
|
||||
if (isPlanarYUV(fmt)) {
|
||||
if (inlink->w != outlink->w || inlink->h != outlink->h) {
|
||||
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(fmt);
|
||||
int sws_src_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
|
||||
@ -292,10 +222,6 @@ static int prepare_sws_context(AVFilterLink *outlink)
|
||||
SWS_BICUBIC, NULL, NULL, NULL);
|
||||
ctx->sws_uv_height = sws_src_h;
|
||||
}
|
||||
return 0;
|
||||
default:
|
||||
//do nothing
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
@ -306,120 +232,34 @@ static int config_output(AVFilterLink *outlink)
|
||||
AVFilterContext *context = outlink->src;
|
||||
DnnProcessingContext *ctx = context->priv;
|
||||
DNNReturnType result;
|
||||
AVFilterLink *inlink = context->inputs[0];
|
||||
AVFrame *out = NULL;
|
||||
|
||||
AVFrame *fake_in = ff_get_video_buffer(inlink, inlink->w, inlink->h);
|
||||
result = (ctx->model->set_input)(ctx->model->model, fake_in, ctx->model_inputname);
|
||||
if (result != DNN_SUCCESS) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not set input for the model\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
// have a try run in case that the dnn model resize the frame
|
||||
result = (ctx->dnn_module->execute_model)(ctx->model, &ctx->output, (const char **)&ctx->model_outputname, 1);
|
||||
out = ff_get_video_buffer(inlink, inlink->w, inlink->h);
|
||||
result = (ctx->dnn_module->execute_model)(ctx->model, (const char **)&ctx->model_outputname, 1, out);
|
||||
if (result != DNN_SUCCESS){
|
||||
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
outlink->w = ctx->output.width;
|
||||
outlink->h = ctx->output.height;
|
||||
outlink->w = out->width;
|
||||
outlink->h = out->height;
|
||||
|
||||
prepare_sws_context(outlink);
|
||||
av_frame_free(&fake_in);
|
||||
av_frame_free(&out);
|
||||
prepare_uv_scale(outlink);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int copy_from_frame_to_dnn(DnnProcessingContext *ctx, const AVFrame *frame)
|
||||
{
|
||||
int bytewidth = av_image_get_linesize(frame->format, frame->width, 0);
|
||||
DNNData *dnn_input = &ctx->input;
|
||||
|
||||
switch (frame->format) {
|
||||
case AV_PIX_FMT_RGB24:
|
||||
case AV_PIX_FMT_BGR24:
|
||||
if (dnn_input->dt == DNN_FLOAT) {
|
||||
sws_scale(ctx->sws_gray8_to_grayf32, (const uint8_t **)frame->data, frame->linesize,
|
||||
0, frame->height, (uint8_t * const*)(&dnn_input->data),
|
||||
(const int [4]){frame->width * 3 * sizeof(float), 0, 0, 0});
|
||||
} else {
|
||||
av_assert0(dnn_input->dt == DNN_UINT8);
|
||||
av_image_copy_plane(dnn_input->data, bytewidth,
|
||||
frame->data[0], frame->linesize[0],
|
||||
bytewidth, frame->height);
|
||||
}
|
||||
return 0;
|
||||
case AV_PIX_FMT_GRAY8:
|
||||
case AV_PIX_FMT_GRAYF32:
|
||||
av_image_copy_plane(dnn_input->data, bytewidth,
|
||||
frame->data[0], frame->linesize[0],
|
||||
bytewidth, frame->height);
|
||||
return 0;
|
||||
case AV_PIX_FMT_YUV420P:
|
||||
case AV_PIX_FMT_YUV422P:
|
||||
case AV_PIX_FMT_YUV444P:
|
||||
case AV_PIX_FMT_YUV410P:
|
||||
case AV_PIX_FMT_YUV411P:
|
||||
sws_scale(ctx->sws_gray8_to_grayf32, (const uint8_t **)frame->data, frame->linesize,
|
||||
0, frame->height, (uint8_t * const*)(&dnn_input->data),
|
||||
(const int [4]){frame->width * sizeof(float), 0, 0, 0});
|
||||
return 0;
|
||||
default:
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int copy_from_dnn_to_frame(DnnProcessingContext *ctx, AVFrame *frame)
|
||||
{
|
||||
int bytewidth = av_image_get_linesize(frame->format, frame->width, 0);
|
||||
DNNData *dnn_output = &ctx->output;
|
||||
|
||||
switch (frame->format) {
|
||||
case AV_PIX_FMT_RGB24:
|
||||
case AV_PIX_FMT_BGR24:
|
||||
if (dnn_output->dt == DNN_FLOAT) {
|
||||
sws_scale(ctx->sws_grayf32_to_gray8, (const uint8_t *[4]){(const uint8_t *)dnn_output->data, 0, 0, 0},
|
||||
(const int[4]){frame->width * 3 * sizeof(float), 0, 0, 0},
|
||||
0, frame->height, (uint8_t * const*)frame->data, frame->linesize);
|
||||
|
||||
} else {
|
||||
av_assert0(dnn_output->dt == DNN_UINT8);
|
||||
av_image_copy_plane(frame->data[0], frame->linesize[0],
|
||||
dnn_output->data, bytewidth,
|
||||
bytewidth, frame->height);
|
||||
}
|
||||
return 0;
|
||||
case AV_PIX_FMT_GRAY8:
|
||||
// it is possible that data type of dnn output is float32,
|
||||
// need to add support for such case when needed.
|
||||
av_assert0(dnn_output->dt == DNN_UINT8);
|
||||
av_image_copy_plane(frame->data[0], frame->linesize[0],
|
||||
dnn_output->data, bytewidth,
|
||||
bytewidth, frame->height);
|
||||
return 0;
|
||||
case AV_PIX_FMT_GRAYF32:
|
||||
av_assert0(dnn_output->dt == DNN_FLOAT);
|
||||
av_image_copy_plane(frame->data[0], frame->linesize[0],
|
||||
dnn_output->data, bytewidth,
|
||||
bytewidth, frame->height);
|
||||
return 0;
|
||||
case AV_PIX_FMT_YUV420P:
|
||||
case AV_PIX_FMT_YUV422P:
|
||||
case AV_PIX_FMT_YUV444P:
|
||||
case AV_PIX_FMT_YUV410P:
|
||||
case AV_PIX_FMT_YUV411P:
|
||||
sws_scale(ctx->sws_grayf32_to_gray8, (const uint8_t *[4]){(const uint8_t *)dnn_output->data, 0, 0, 0},
|
||||
(const int[4]){frame->width * sizeof(float), 0, 0, 0},
|
||||
0, frame->height, (uint8_t * const*)frame->data, frame->linesize);
|
||||
return 0;
|
||||
default:
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
|
||||
{
|
||||
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
|
||||
av_assert0(desc);
|
||||
return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components == 3;
|
||||
}
|
||||
|
||||
static int copy_uv_planes(DnnProcessingContext *ctx, AVFrame *out, const AVFrame *in)
|
||||
{
|
||||
const AVPixFmtDescriptor *desc;
|
||||
@ -453,11 +293,9 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
||||
DNNReturnType dnn_result;
|
||||
AVFrame *out;
|
||||
|
||||
copy_from_frame_to_dnn(ctx, in);
|
||||
|
||||
dnn_result = (ctx->dnn_module->execute_model)(ctx->model, &ctx->output, (const char **)&ctx->model_outputname, 1);
|
||||
if (dnn_result != DNN_SUCCESS){
|
||||
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
|
||||
dnn_result = (ctx->model->set_input)(ctx->model->model, in, ctx->model_inputname);
|
||||
if (dnn_result != DNN_SUCCESS) {
|
||||
av_log(ctx, AV_LOG_ERROR, "could not set input for the model\n");
|
||||
av_frame_free(&in);
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
@ -467,9 +305,15 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
||||
av_frame_free(&in);
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
|
||||
av_frame_copy_props(out, in);
|
||||
copy_from_dnn_to_frame(ctx, out);
|
||||
|
||||
dnn_result = (ctx->dnn_module->execute_model)(ctx->model, (const char **)&ctx->model_outputname, 1, out);
|
||||
if (dnn_result != DNN_SUCCESS){
|
||||
av_log(ctx, AV_LOG_ERROR, "failed to execute model\n");
|
||||
av_frame_free(&in);
|
||||
av_frame_free(&out);
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
if (isPlanarYUV(in->format))
|
||||
copy_uv_planes(ctx, out, in);
|
||||
@ -482,8 +326,6 @@ static av_cold void uninit(AVFilterContext *ctx)
|
||||
{
|
||||
DnnProcessingContext *context = ctx->priv;
|
||||
|
||||
sws_freeContext(context->sws_gray8_to_grayf32);
|
||||
sws_freeContext(context->sws_grayf32_to_gray8);
|
||||
sws_freeContext(context->sws_uv_scale);
|
||||
|
||||
if (context->dnn_module)
|
||||
|
@ -41,11 +41,10 @@ typedef struct SRContext {
|
||||
DNNBackendType backend_type;
|
||||
DNNModule *dnn_module;
|
||||
DNNModel *model;
|
||||
DNNData input;
|
||||
DNNData output;
|
||||
int scale_factor;
|
||||
struct SwsContext *sws_contexts[3];
|
||||
int sws_slice_h, sws_input_linesize, sws_output_linesize;
|
||||
struct SwsContext *sws_uv_scale;
|
||||
int sws_uv_height;
|
||||
struct SwsContext *sws_pre_scale;
|
||||
} SRContext;
|
||||
|
||||
#define OFFSET(x) offsetof(SRContext, x)
|
||||
@ -87,11 +86,6 @@ static av_cold int init(AVFilterContext *context)
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
sr_context->input.dt = DNN_FLOAT;
|
||||
sr_context->sws_contexts[0] = NULL;
|
||||
sr_context->sws_contexts[1] = NULL;
|
||||
sr_context->sws_contexts[2] = NULL;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -111,95 +105,63 @@ static int query_formats(AVFilterContext *context)
|
||||
return ff_set_common_formats(context, formats_list);
|
||||
}
|
||||
|
||||
static int config_props(AVFilterLink *inlink)
|
||||
static int config_output(AVFilterLink *outlink)
|
||||
{
|
||||
AVFilterContext *context = inlink->dst;
|
||||
SRContext *sr_context = context->priv;
|
||||
AVFilterLink *outlink = context->outputs[0];
|
||||
AVFilterContext *context = outlink->src;
|
||||
SRContext *ctx = context->priv;
|
||||
DNNReturnType result;
|
||||
int sws_src_h, sws_src_w, sws_dst_h, sws_dst_w;
|
||||
AVFilterLink *inlink = context->inputs[0];
|
||||
AVFrame *out = NULL;
|
||||
const char *model_output_name = "y";
|
||||
|
||||
sr_context->input.width = inlink->w * sr_context->scale_factor;
|
||||
sr_context->input.height = inlink->h * sr_context->scale_factor;
|
||||
sr_context->input.channels = 1;
|
||||
|
||||
result = (sr_context->model->set_input)(sr_context->model->model, &sr_context->input, "x");
|
||||
if (result != DNN_SUCCESS){
|
||||
av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n");
|
||||
AVFrame *fake_in = ff_get_video_buffer(inlink, inlink->w, inlink->h);
|
||||
result = (ctx->model->set_input)(ctx->model->model, fake_in, "x");
|
||||
if (result != DNN_SUCCESS) {
|
||||
av_log(context, AV_LOG_ERROR, "could not set input for the model\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
result = (sr_context->dnn_module->execute_model)(sr_context->model, &sr_context->output, &model_output_name, 1);
|
||||
// have a try run in case that the dnn model resize the frame
|
||||
out = ff_get_video_buffer(inlink, inlink->w, inlink->h);
|
||||
result = (ctx->dnn_module->execute_model)(ctx->model, (const char **)&model_output_name, 1, out);
|
||||
if (result != DNN_SUCCESS){
|
||||
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
if (sr_context->input.height != sr_context->output.height || sr_context->input.width != sr_context->output.width){
|
||||
sr_context->input.width = inlink->w;
|
||||
sr_context->input.height = inlink->h;
|
||||
result = (sr_context->model->set_input)(sr_context->model->model, &sr_context->input, "x");
|
||||
if (result != DNN_SUCCESS){
|
||||
av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
result = (sr_context->dnn_module->execute_model)(sr_context->model, &sr_context->output, &model_output_name, 1);
|
||||
if (result != DNN_SUCCESS){
|
||||
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
sr_context->scale_factor = 0;
|
||||
}
|
||||
outlink->h = sr_context->output.height;
|
||||
outlink->w = sr_context->output.width;
|
||||
sr_context->sws_contexts[1] = sws_getContext(sr_context->input.width, sr_context->input.height, AV_PIX_FMT_GRAY8,
|
||||
sr_context->input.width, sr_context->input.height, AV_PIX_FMT_GRAYF32,
|
||||
0, NULL, NULL, NULL);
|
||||
sr_context->sws_input_linesize = sr_context->input.width << 2;
|
||||
sr_context->sws_contexts[2] = sws_getContext(sr_context->output.width, sr_context->output.height, AV_PIX_FMT_GRAYF32,
|
||||
sr_context->output.width, sr_context->output.height, AV_PIX_FMT_GRAY8,
|
||||
0, NULL, NULL, NULL);
|
||||
sr_context->sws_output_linesize = sr_context->output.width << 2;
|
||||
if (!sr_context->sws_contexts[1] || !sr_context->sws_contexts[2]){
|
||||
av_log(context, AV_LOG_ERROR, "could not create SwsContext for conversions\n");
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
if (sr_context->scale_factor){
|
||||
sr_context->sws_contexts[0] = sws_getContext(inlink->w, inlink->h, inlink->format,
|
||||
outlink->w, outlink->h, outlink->format,
|
||||
SWS_BICUBIC, NULL, NULL, NULL);
|
||||
if (!sr_context->sws_contexts[0]){
|
||||
av_log(context, AV_LOG_ERROR, "could not create SwsContext for scaling\n");
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
sr_context->sws_slice_h = inlink->h;
|
||||
} else {
|
||||
if (fake_in->width != out->width || fake_in->height != out->height) {
|
||||
//espcn
|
||||
outlink->w = out->width;
|
||||
outlink->h = out->height;
|
||||
if (inlink->format != AV_PIX_FMT_GRAY8){
|
||||
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
|
||||
sws_src_h = AV_CEIL_RSHIFT(sr_context->input.height, desc->log2_chroma_h);
|
||||
sws_src_w = AV_CEIL_RSHIFT(sr_context->input.width, desc->log2_chroma_w);
|
||||
sws_dst_h = AV_CEIL_RSHIFT(sr_context->output.height, desc->log2_chroma_h);
|
||||
sws_dst_w = AV_CEIL_RSHIFT(sr_context->output.width, desc->log2_chroma_w);
|
||||
|
||||
sr_context->sws_contexts[0] = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8,
|
||||
sws_dst_w, sws_dst_h, AV_PIX_FMT_GRAY8,
|
||||
SWS_BICUBIC, NULL, NULL, NULL);
|
||||
if (!sr_context->sws_contexts[0]){
|
||||
av_log(context, AV_LOG_ERROR, "could not create SwsContext for scaling\n");
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
sr_context->sws_slice_h = sws_src_h;
|
||||
int sws_src_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
|
||||
int sws_src_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
|
||||
int sws_dst_h = AV_CEIL_RSHIFT(outlink->h, desc->log2_chroma_h);
|
||||
int sws_dst_w = AV_CEIL_RSHIFT(outlink->w, desc->log2_chroma_w);
|
||||
ctx->sws_uv_scale = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8,
|
||||
sws_dst_w, sws_dst_h, AV_PIX_FMT_GRAY8,
|
||||
SWS_BICUBIC, NULL, NULL, NULL);
|
||||
ctx->sws_uv_height = sws_src_h;
|
||||
}
|
||||
} else {
|
||||
//srcnn
|
||||
outlink->w = out->width * ctx->scale_factor;
|
||||
outlink->h = out->height * ctx->scale_factor;
|
||||
ctx->sws_pre_scale = sws_getContext(inlink->w, inlink->h, inlink->format,
|
||||
outlink->w, outlink->h, outlink->format,
|
||||
SWS_BICUBIC, NULL, NULL, NULL);
|
||||
}
|
||||
|
||||
av_frame_free(&fake_in);
|
||||
av_frame_free(&out);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
||||
{
|
||||
AVFilterContext *context = inlink->dst;
|
||||
SRContext *sr_context = context->priv;
|
||||
SRContext *ctx = context->priv;
|
||||
AVFilterLink *outlink = context->outputs[0];
|
||||
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
||||
DNNReturnType dnn_result;
|
||||
@ -211,45 +173,44 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
av_frame_copy_props(out, in);
|
||||
out->height = sr_context->output.height;
|
||||
out->width = sr_context->output.width;
|
||||
if (sr_context->scale_factor){
|
||||
sws_scale(sr_context->sws_contexts[0], (const uint8_t **)in->data, in->linesize,
|
||||
0, sr_context->sws_slice_h, out->data, out->linesize);
|
||||
|
||||
sws_scale(sr_context->sws_contexts[1], (const uint8_t **)out->data, out->linesize,
|
||||
0, out->height, (uint8_t * const*)(&sr_context->input.data),
|
||||
(const int [4]){sr_context->sws_input_linesize, 0, 0, 0});
|
||||
if (ctx->sws_pre_scale) {
|
||||
sws_scale(ctx->sws_pre_scale,
|
||||
(const uint8_t **)in->data, in->linesize, 0, in->height,
|
||||
out->data, out->linesize);
|
||||
dnn_result = (ctx->model->set_input)(ctx->model->model, out, "x");
|
||||
} else {
|
||||
if (sr_context->sws_contexts[0]){
|
||||
sws_scale(sr_context->sws_contexts[0], (const uint8_t **)(in->data + 1), in->linesize + 1,
|
||||
0, sr_context->sws_slice_h, out->data + 1, out->linesize + 1);
|
||||
sws_scale(sr_context->sws_contexts[0], (const uint8_t **)(in->data + 2), in->linesize + 2,
|
||||
0, sr_context->sws_slice_h, out->data + 2, out->linesize + 2);
|
||||
}
|
||||
|
||||
sws_scale(sr_context->sws_contexts[1], (const uint8_t **)in->data, in->linesize,
|
||||
0, in->height, (uint8_t * const*)(&sr_context->input.data),
|
||||
(const int [4]){sr_context->sws_input_linesize, 0, 0, 0});
|
||||
dnn_result = (ctx->model->set_input)(ctx->model->model, in, "x");
|
||||
}
|
||||
av_frame_free(&in);
|
||||
|
||||
dnn_result = (sr_context->dnn_module->execute_model)(sr_context->model, &sr_context->output, &model_output_name, 1);
|
||||
if (dnn_result != DNN_SUCCESS){
|
||||
av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
|
||||
if (dnn_result != DNN_SUCCESS) {
|
||||
av_frame_free(&in);
|
||||
av_frame_free(&out);
|
||||
av_log(context, AV_LOG_ERROR, "could not set input for the model\n");
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
sws_scale(sr_context->sws_contexts[2], (const uint8_t *[4]){(const uint8_t *)sr_context->output.data, 0, 0, 0},
|
||||
(const int[4]){sr_context->sws_output_linesize, 0, 0, 0},
|
||||
0, out->height, (uint8_t * const*)out->data, out->linesize);
|
||||
dnn_result = (ctx->dnn_module->execute_model)(ctx->model, (const char **)&model_output_name, 1, out);
|
||||
if (dnn_result != DNN_SUCCESS){
|
||||
av_log(ctx, AV_LOG_ERROR, "failed to execute loaded model\n");
|
||||
av_frame_free(&in);
|
||||
av_frame_free(&out);
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
|
||||
if (ctx->sws_uv_scale) {
|
||||
sws_scale(ctx->sws_uv_scale, (const uint8_t **)(in->data + 1), in->linesize + 1,
|
||||
0, ctx->sws_uv_height, out->data + 1, out->linesize + 1);
|
||||
sws_scale(ctx->sws_uv_scale, (const uint8_t **)(in->data + 2), in->linesize + 2,
|
||||
0, ctx->sws_uv_height, out->data + 2, out->linesize + 2);
|
||||
}
|
||||
|
||||
av_frame_free(&in);
|
||||
return ff_filter_frame(outlink, out);
|
||||
}
|
||||
|
||||
static av_cold void uninit(AVFilterContext *context)
|
||||
{
|
||||
int i;
|
||||
SRContext *sr_context = context->priv;
|
||||
|
||||
if (sr_context->dnn_module){
|
||||
@ -257,16 +218,14 @@ static av_cold void uninit(AVFilterContext *context)
|
||||
av_freep(&sr_context->dnn_module);
|
||||
}
|
||||
|
||||
for (i = 0; i < 3; ++i){
|
||||
sws_freeContext(sr_context->sws_contexts[i]);
|
||||
}
|
||||
sws_freeContext(sr_context->sws_uv_scale);
|
||||
sws_freeContext(sr_context->sws_pre_scale);
|
||||
}
|
||||
|
||||
static const AVFilterPad sr_inputs[] = {
|
||||
{
|
||||
.name = "default",
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
.config_props = config_props,
|
||||
.filter_frame = filter_frame,
|
||||
},
|
||||
{ NULL }
|
||||
@ -275,6 +234,7 @@ static const AVFilterPad sr_inputs[] = {
|
||||
static const AVFilterPad sr_outputs[] = {
|
||||
{
|
||||
.name = "default",
|
||||
.config_props = config_output,
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
},
|
||||
{ NULL }
|
||||
|
Loading…
x
Reference in New Issue
Block a user