1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00

dnn_backend_native_layer_conv2d.c:Add mutithread function

Use pthread to multithread dnn_execute_layer_conv2d.
Can be tested with command "./ffmpeg_g -i input.png -vf \
format=yuvj420p,dnn_processing=dnn_backend=native:model= \
espcn.model:input=x:output=y:options=conv2d_threads=23 \
 -y sr_native.jpg -benchmark"

before patch: utime=11.238s stime=0.005s rtime=11.248s
after patch:  utime=20.817s stime=0.047s rtime=1.051s
on my 3900X 12c24t @4.2GHz

About the increase of utime, it's because that CPU HyperThreading
technology makes logical cores twice of physical cores while cpu's
counting performance improves less than double. And utime sums
all cpu's logical cores' runtime. As a result, using threads num
near cpu's logical core's number will double utime, while reduce
rtime less than half for HyperThreading CPUs.

Signed-off-by: Xu Jun <xujunzz@sjtu.edu.cn>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
Xu Jun 2020-09-06 20:28:53 +08:00 committed by Guo, Yejun
parent 235e01f5a0
commit 3c7cad69f2
2 changed files with 108 additions and 13 deletions

View File

@ -19,10 +19,27 @@
*/
#include "libavutil/avassert.h"
#include "libavutil/thread.h"
#include "libavutil/cpu.h"
#include "dnn_backend_native_layer_conv2d.h"
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
//struct to pass parameters
typedef struct thread_common_param{
DnnOperand *operands;
const int32_t *input_operand_indexes;
int32_t output_operand_index;
const void *parameters;
NativeContext *ctx;
int thread_num;
} thread_common_param;
typedef struct thread_param{
thread_common_param *thread_common_param;
int thread_index;
} thread_param;
int dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
ConvolutionalParams *conv_params;
@ -88,17 +105,20 @@ int dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int fil
return dnn_size;
}
int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx)
static void * dnn_execute_layer_conv2d_thread(void *threadarg)
{
//pass parameters
thread_param *thread_param = (struct thread_param *)threadarg;
thread_common_param *thread_common_param = thread_param->thread_common_param;
DnnOperand *operands = thread_common_param->operands;
float *output;
int32_t input_operand_index = input_operand_indexes[0];
int32_t input_operand_index = thread_common_param->input_operand_indexes[0];
int number = operands[input_operand_index].dims[0];
int height = operands[input_operand_index].dims[1];
int width = operands[input_operand_index].dims[2];
int channel = operands[input_operand_index].dims[3];
const float *input = operands[input_operand_index].data;
const ConvolutionalParams *conv_params = (const ConvolutionalParams *)parameters;
const ConvolutionalParams *conv_params = (const ConvolutionalParams *)(thread_common_param->parameters);
int radius = conv_params->kernel_size >> 1;
int src_linesize = width * conv_params->input_num;
@ -106,7 +126,11 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
int filter_size = conv_params->kernel_size * filter_linesize;
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
DnnOperand *output_operand = &operands[output_operand_index];
int thread_stride = (height - pad_size * 2) / thread_common_param->thread_num;
int thread_start = thread_stride * thread_param->thread_index + pad_size;
int thread_end = (thread_param->thread_index == thread_common_param->thread_num - 1) ? (height - pad_size) : (thread_start + thread_stride);
DnnOperand *output_operand = &operands[thread_common_param->output_operand_index];
output_operand->dims[0] = number;
output_operand->dims[1] = height - pad_size * 2;
output_operand->dims[2] = width - pad_size * 2;
@ -114,19 +138,21 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = calculate_operand_data_length(output_operand);
if (output_operand->length <= 0) {
av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
return DNN_ERROR;
av_log(thread_common_param->ctx, AV_LOG_ERROR, "The output data length overflow\n");
return (void *)DNN_ERROR;
}
output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data) {
av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
return DNN_ERROR;
av_log(thread_common_param->ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
return (void *)DNN_ERROR;
}
output = output_operand->data;
output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_start - pad_size);
av_assert0(channel == conv_params->input_num);
for (int y = pad_size; y < height - pad_size; ++y) {
for (int y = thread_start; y < thread_end; ++y) {
for (int x = pad_size; x < width - pad_size; ++x) {
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
if (conv_params->has_bias)
@ -174,5 +200,64 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
output += conv_params->output_num;
}
}
return 0;
return (void *)DNN_SUCCESS;
}
int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters, NativeContext *ctx)
{
int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count())
? (av_cpu_count() + 1) : (ctx->options.conv2d_threads);
#if HAVE_PTHREAD_CANCEL
pthread_t *thread_id = av_malloc(thread_num * sizeof(pthread_t));
#endif
thread_param **thread_param = av_malloc(thread_num * sizeof(*thread_param));
void *res;
int error_flag = DNN_SUCCESS;
//struct used to pass parameters
thread_common_param thread_common_param;
thread_common_param.operands = operands;
thread_common_param.input_operand_indexes = input_operand_indexes;
thread_common_param.output_operand_index = output_operand_index;
thread_common_param.parameters = parameters;
thread_common_param.ctx = ctx;
#if HAVE_PTHREAD_CANCEL
thread_common_param.thread_num = thread_num;
//create threads
for (int i = 0; i < thread_num; i++){
thread_param[i] = av_malloc(sizeof(thread_param));
thread_param[i]->thread_common_param = &thread_common_param;
thread_param[i]->thread_index = i;
pthread_create(&thread_id[i], NULL, dnn_execute_layer_conv2d_thread, (void *)thread_param[i]);
}
//join threads, res gets function return
for (int i = 0; i < thread_num; i++){
pthread_join(thread_id[i], &res);
if ((int)res != DNN_SUCCESS)
error_flag = (int)res;
}
//release memory
av_free(thread_id);
for (int i = 0; i < thread_num; i++){
av_free(thread_param[i]);
}
#else
thread_common_param.thread_num = 1;
thread_param[0] = av_malloc(sizeof(thread_param));
thread_param[0]->thread_common_param = &thread_common_param;
thread_param[0]->thread_index = 0;
res = dnn_execute_layer_conv2d_thread((void *)thread_param[0]);
if ((int)res != DNN_SUCCESS)
error_flag = (int)res;
av_free(thread_param[0]);
#endif
av_free(thread_param);
return error_flag;
}

View File

@ -25,6 +25,8 @@
#define EPSON 0.00001
extern const AVClass dnn_native_class;
static int test_with_same_dilate(void)
{
// the input data and expected data are generated with below python code.
@ -96,6 +98,10 @@ static int test_with_same_dilate(void)
};
float bias[2] = { -1.6574852, -0.72915393 };
NativeContext ctx;
ctx.class = &dnn_native_class;
ctx.options.conv2d_threads = 1;
params.activation = TANH;
params.has_bias = 1;
params.biases = bias;
@ -114,7 +120,7 @@ static int test_with_same_dilate(void)
operands[1].data = NULL;
input_indexes[0] = 0;
dnn_execute_layer_conv2d(operands, input_indexes, 1, &params, NULL);
dnn_execute_layer_conv2d(operands, input_indexes, 1, &params, &ctx);
output = operands[1].data;
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
@ -196,6 +202,10 @@ static int test_with_valid(void)
};
float bias[2] = { -0.4773722, -0.19620377 };
NativeContext ctx;
ctx.class = &dnn_native_class;
ctx.options.conv2d_threads = 1;
params.activation = TANH;
params.has_bias = 1;
params.biases = bias;
@ -214,7 +224,7 @@ static int test_with_valid(void)
operands[1].data = NULL;
input_indexes[0] = 0;
dnn_execute_layer_conv2d(operands, input_indexes, 1, &params, NULL);
dnn_execute_layer_conv2d(operands, input_indexes, 1, &params, &ctx);
output = operands[1].data;
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {