1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00

lavfi/dnn_classify: add filter dnn_classify for classification based on detection bounding boxes

classification is done on every detection bounding box in frame's side data,
which are the results of object detection (filter dnn_detect).

Please refer to commit log of dnn_detect for the material for detection,
and see below for classification.

- download material for classifcation:
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.bin
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.xml
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.label

- run command as:
./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,dnn_classify=dnn_backend=openvino:model=emotions-recognition-retail-0003.xml:input=data:output=prob_emotion:confidence=0.3:labels=emotions-recognition-retail-0003.label:target=face,showinfo -f null -

We'll see the detect&classify result as below:
[Parsed_showinfo_2 @ 0x55b7d25e77c0]   side data - detection bounding boxes:
[Parsed_showinfo_2 @ 0x55b7d25e77c0] source: face-detection-adas-0001.xml, emotions-recognition-retail-0003.xml
[Parsed_showinfo_2 @ 0x55b7d25e77c0] index: 0,  region: (1005, 813) -> (1086, 905), label: face, confidence: 10000/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0]            classify:  label: happy, confidence: 6757/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0] index: 1,  region: (888, 839) -> (967, 926), label: face, confidence: 6917/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0]            classify:  label: anger, confidence: 4320/10000.

Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
Guo, Yejun 2021-03-17 14:08:38 +08:00
parent fc26dca64e
commit 41ef57fdb2
5 changed files with 372 additions and 0 deletions

1
configure vendored
View File

@ -3581,6 +3581,7 @@ derain_filter_select="dnn"
deshake_filter_select="pixelutils"
deshake_opencl_filter_deps="opencl"
dilation_opencl_filter_deps="opencl"
dnn_classify_filter_select="dnn"
dnn_detect_filter_select="dnn"
dnn_processing_filter_select="dnn"
drawtext_filter_deps="libfreetype"

View File

@ -10127,6 +10127,45 @@ ffmpeg -i INPUT -f lavfi -i nullsrc=hd720,geq='r=128+80*(sin(sqrt((X-W/2)*(X-W/2
@end example
@end itemize
@section dnn_classify
Do classification with deep neural networks based on bounding boxes.
The filter accepts the following options:
@table @option
@item dnn_backend
Specify which DNN backend to use for model loading and execution. This option accepts
only openvino now, tensorflow backends will be added.
@item model
Set path to model file specifying network architecture and its parameters.
Note that different backends use different file formats.
@item input
Set the input name of the dnn network.
@item output
Set the output name of the dnn network.
@item confidence
Set the confidence threshold (default: 0.5).
@item labels
Set path to label file specifying the mapping between label id and name.
Each label name is written in one line, tailing spaces and empty lines are skipped.
The first line is the name of label id 0,
and the second line is the name of label id 1, etc.
The label id is considered as name if the label file is not provided.
@item backend_configs
Set the configs to be passed into backend
For tensorflow backend, you can set its configs with @option{sess_config} options,
please use tools/python/tf_sess_config.py to get the configs for your system.
@end table
@section dnn_detect
Do object detection with deep neural networks.

View File

@ -243,6 +243,7 @@ OBJS-$(CONFIG_DILATION_FILTER) += vf_neighbor.o
OBJS-$(CONFIG_DILATION_OPENCL_FILTER) += vf_neighbor_opencl.o opencl.o \
opencl/neighbor.o
OBJS-$(CONFIG_DISPLACE_FILTER) += vf_displace.o framesync.o
OBJS-$(CONFIG_DNN_CLASSIFY_FILTER) += vf_dnn_classify.o
OBJS-$(CONFIG_DNN_DETECT_FILTER) += vf_dnn_detect.o
OBJS-$(CONFIG_DNN_PROCESSING_FILTER) += vf_dnn_processing.o
OBJS-$(CONFIG_DOUBLEWEAVE_FILTER) += vf_weave.o

View File

@ -229,6 +229,7 @@ extern const AVFilter ff_vf_detelecine;
extern const AVFilter ff_vf_dilation;
extern const AVFilter ff_vf_dilation_opencl;
extern const AVFilter ff_vf_displace;
extern const AVFilter ff_vf_dnn_classify;
extern const AVFilter ff_vf_dnn_detect;
extern const AVFilter ff_vf_dnn_processing;
extern const AVFilter ff_vf_doubleweave;

View File

@ -0,0 +1,330 @@
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* implementing an classification filter using deep learning networks.
*/
#include "libavformat/avio.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/avassert.h"
#include "libavutil/imgutils.h"
#include "filters.h"
#include "dnn_filter_common.h"
#include "formats.h"
#include "internal.h"
#include "libavutil/time.h"
#include "libavutil/avstring.h"
#include "libavutil/detection_bbox.h"
typedef struct DnnClassifyContext {
const AVClass *class;
DnnContext dnnctx;
float confidence;
char *labels_filename;
char *target;
char **labels;
int label_count;
} DnnClassifyContext;
#define OFFSET(x) offsetof(DnnClassifyContext, dnnctx.x)
#define OFFSET2(x) offsetof(DnnClassifyContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
static const AVOption dnn_classify_options[] = {
{ "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 2 }, INT_MIN, INT_MAX, FLAGS, "backend" },
#if (CONFIG_LIBOPENVINO == 1)
{ "openvino", "openvino backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 2 }, 0, 0, FLAGS, "backend" },
#endif
DNN_COMMON_OPTIONS
{ "confidence", "threshold of confidence", OFFSET2(confidence), AV_OPT_TYPE_FLOAT, { .dbl = 0.5 }, 0, 1, FLAGS},
{ "labels", "path to labels file", OFFSET2(labels_filename), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
{ "target", "which one to be classified", OFFSET2(target), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(dnn_classify);
static int dnn_classify_post_proc(AVFrame *frame, DNNData *output, uint32_t bbox_index, AVFilterContext *filter_ctx)
{
DnnClassifyContext *ctx = filter_ctx->priv;
float conf_threshold = ctx->confidence;
AVDetectionBBoxHeader *header;
AVDetectionBBox *bbox;
float *classifications;
uint32_t label_id;
float confidence;
AVFrameSideData *sd;
if (output->channels <= 0) {
return -1;
}
sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
header = (AVDetectionBBoxHeader *)sd->data;
if (bbox_index == 0) {
av_strlcat(header->source, ", ", sizeof(header->source));
av_strlcat(header->source, ctx->dnnctx.model_filename, sizeof(header->source));
}
classifications = output->data;
label_id = 0;
confidence= classifications[0];
for (int i = 1; i < output->channels; i++) {
if (classifications[i] > confidence) {
label_id = i;
confidence= classifications[i];
}
}
if (confidence < conf_threshold) {
return 0;
}
bbox = av_get_detection_bbox(header, bbox_index);
bbox->classify_confidences[bbox->classify_count] = av_make_q((int)(confidence * 10000), 10000);
if (ctx->labels && label_id < ctx->label_count) {
av_strlcpy(bbox->classify_labels[bbox->classify_count], ctx->labels[label_id], sizeof(bbox->classify_labels[bbox->classify_count]));
} else {
snprintf(bbox->classify_labels[bbox->classify_count], sizeof(bbox->classify_labels[bbox->classify_count]), "%d", label_id);
}
bbox->classify_count++;
return 0;
}
static void free_classify_labels(DnnClassifyContext *ctx)
{
for (int i = 0; i < ctx->label_count; i++) {
av_freep(&ctx->labels[i]);
}
ctx->label_count = 0;
av_freep(&ctx->labels);
}
static int read_classify_label_file(AVFilterContext *context)
{
int line_len;
FILE *file;
DnnClassifyContext *ctx = context->priv;
file = av_fopen_utf8(ctx->labels_filename, "r");
if (!file){
av_log(context, AV_LOG_ERROR, "failed to open file %s\n", ctx->labels_filename);
return AVERROR(EINVAL);
}
while (!feof(file)) {
char *label;
char buf[256];
if (!fgets(buf, 256, file)) {
break;
}
line_len = strlen(buf);
while (line_len) {
int i = line_len - 1;
if (buf[i] == '\n' || buf[i] == '\r' || buf[i] == ' ') {
buf[i] = '\0';
line_len--;
} else {
break;
}
}
if (line_len == 0) // empty line
continue;
if (line_len >= AV_DETECTION_BBOX_LABEL_NAME_MAX_SIZE) {
av_log(context, AV_LOG_ERROR, "label %s too long\n", buf);
fclose(file);
return AVERROR(EINVAL);
}
label = av_strdup(buf);
if (!label) {
av_log(context, AV_LOG_ERROR, "failed to allocate memory for label %s\n", buf);
fclose(file);
return AVERROR(ENOMEM);
}
if (av_dynarray_add_nofree(&ctx->labels, &ctx->label_count, label) < 0) {
av_log(context, AV_LOG_ERROR, "failed to do av_dynarray_add\n");
fclose(file);
av_freep(&label);
return AVERROR(ENOMEM);
}
}
fclose(file);
return 0;
}
static av_cold int dnn_classify_init(AVFilterContext *context)
{
DnnClassifyContext *ctx = context->priv;
int ret = ff_dnn_init(&ctx->dnnctx, DFT_ANALYTICS_CLASSIFY, context);
if (ret < 0)
return ret;
ff_dnn_set_classify_post_proc(&ctx->dnnctx, dnn_classify_post_proc);
if (ctx->labels_filename) {
return read_classify_label_file(context);
}
return 0;
}
static int dnn_classify_query_formats(AVFilterContext *context)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAYF32,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_NV12,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
return ff_set_common_formats(context, fmts_list);
}
static int dnn_classify_flush_frame(AVFilterLink *outlink, int64_t pts, int64_t *out_pts)
{
DnnClassifyContext *ctx = outlink->src->priv;
int ret;
DNNAsyncStatusType async_state;
ret = ff_dnn_flush(&ctx->dnnctx);
if (ret != DNN_SUCCESS) {
return -1;
}
do {
AVFrame *in_frame = NULL;
AVFrame *out_frame = NULL;
async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame);
if (out_frame) {
av_assert0(in_frame == out_frame);
ret = ff_filter_frame(outlink, out_frame);
if (ret < 0)
return ret;
if (out_pts)
*out_pts = out_frame->pts + pts;
}
av_usleep(5000);
} while (async_state >= DAST_NOT_READY);
return 0;
}
static int dnn_classify_activate(AVFilterContext *filter_ctx)
{
AVFilterLink *inlink = filter_ctx->inputs[0];
AVFilterLink *outlink = filter_ctx->outputs[0];
DnnClassifyContext *ctx = filter_ctx->priv;
AVFrame *in = NULL;
int64_t pts;
int ret, status;
int got_frame = 0;
int async_state;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
do {
// drain all input frames
ret = ff_inlink_consume_frame(inlink, &in);
if (ret < 0)
return ret;
if (ret > 0) {
if (ff_dnn_execute_model_classification(&ctx->dnnctx, in, in, ctx->target) != DNN_SUCCESS) {
return AVERROR(EIO);
}
}
} while (ret > 0);
// drain all processed frames
do {
AVFrame *in_frame = NULL;
AVFrame *out_frame = NULL;
async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame);
if (out_frame) {
av_assert0(in_frame == out_frame);
ret = ff_filter_frame(outlink, out_frame);
if (ret < 0)
return ret;
got_frame = 1;
}
} while (async_state == DAST_SUCCESS);
// if frame got, schedule to next filter
if (got_frame)
return 0;
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
if (status == AVERROR_EOF) {
int64_t out_pts = pts;
ret = dnn_classify_flush_frame(outlink, pts, &out_pts);
ff_outlink_set_status(outlink, status, out_pts);
return ret;
}
}
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return 0;
}
static av_cold void dnn_classify_uninit(AVFilterContext *context)
{
DnnClassifyContext *ctx = context->priv;
ff_dnn_uninit(&ctx->dnnctx);
free_classify_labels(ctx);
}
static const AVFilterPad dnn_classify_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
static const AVFilterPad dnn_classify_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
const AVFilter ff_vf_dnn_classify = {
.name = "dnn_classify",
.description = NULL_IF_CONFIG_SMALL("Apply DNN classify filter to the input."),
.priv_size = sizeof(DnnClassifyContext),
.init = dnn_classify_init,
.uninit = dnn_classify_uninit,
.query_formats = dnn_classify_query_formats,
.inputs = dnn_classify_inputs,
.outputs = dnn_classify_outputs,
.priv_class = &dnn_classify_class,
.activate = dnn_classify_activate,
};