mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-24 13:56:33 +02:00
lavfi/dnn_classify: add filter dnn_classify for classification based on detection bounding boxes
classification is done on every detection bounding box in frame's side data, which are the results of object detection (filter dnn_detect). Please refer to commit log of dnn_detect for the material for detection, and see below for classification. - download material for classifcation: wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.bin wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.xml wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.label - run command as: ./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,dnn_classify=dnn_backend=openvino:model=emotions-recognition-retail-0003.xml:input=data:output=prob_emotion:confidence=0.3:labels=emotions-recognition-retail-0003.label:target=face,showinfo -f null - We'll see the detect&classify result as below: [Parsed_showinfo_2 @ 0x55b7d25e77c0] side data - detection bounding boxes: [Parsed_showinfo_2 @ 0x55b7d25e77c0] source: face-detection-adas-0001.xml, emotions-recognition-retail-0003.xml [Parsed_showinfo_2 @ 0x55b7d25e77c0] index: 0, region: (1005, 813) -> (1086, 905), label: face, confidence: 10000/10000. [Parsed_showinfo_2 @ 0x55b7d25e77c0] classify: label: happy, confidence: 6757/10000. [Parsed_showinfo_2 @ 0x55b7d25e77c0] index: 1, region: (888, 839) -> (967, 926), label: face, confidence: 6917/10000. [Parsed_showinfo_2 @ 0x55b7d25e77c0] classify: label: anger, confidence: 4320/10000. Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
parent
fc26dca64e
commit
41ef57fdb2
1
configure
vendored
1
configure
vendored
@ -3581,6 +3581,7 @@ derain_filter_select="dnn"
|
||||
deshake_filter_select="pixelutils"
|
||||
deshake_opencl_filter_deps="opencl"
|
||||
dilation_opencl_filter_deps="opencl"
|
||||
dnn_classify_filter_select="dnn"
|
||||
dnn_detect_filter_select="dnn"
|
||||
dnn_processing_filter_select="dnn"
|
||||
drawtext_filter_deps="libfreetype"
|
||||
|
@ -10127,6 +10127,45 @@ ffmpeg -i INPUT -f lavfi -i nullsrc=hd720,geq='r=128+80*(sin(sqrt((X-W/2)*(X-W/2
|
||||
@end example
|
||||
@end itemize
|
||||
|
||||
@section dnn_classify
|
||||
|
||||
Do classification with deep neural networks based on bounding boxes.
|
||||
|
||||
The filter accepts the following options:
|
||||
|
||||
@table @option
|
||||
@item dnn_backend
|
||||
Specify which DNN backend to use for model loading and execution. This option accepts
|
||||
only openvino now, tensorflow backends will be added.
|
||||
|
||||
@item model
|
||||
Set path to model file specifying network architecture and its parameters.
|
||||
Note that different backends use different file formats.
|
||||
|
||||
@item input
|
||||
Set the input name of the dnn network.
|
||||
|
||||
@item output
|
||||
Set the output name of the dnn network.
|
||||
|
||||
@item confidence
|
||||
Set the confidence threshold (default: 0.5).
|
||||
|
||||
@item labels
|
||||
Set path to label file specifying the mapping between label id and name.
|
||||
Each label name is written in one line, tailing spaces and empty lines are skipped.
|
||||
The first line is the name of label id 0,
|
||||
and the second line is the name of label id 1, etc.
|
||||
The label id is considered as name if the label file is not provided.
|
||||
|
||||
@item backend_configs
|
||||
Set the configs to be passed into backend
|
||||
|
||||
For tensorflow backend, you can set its configs with @option{sess_config} options,
|
||||
please use tools/python/tf_sess_config.py to get the configs for your system.
|
||||
|
||||
@end table
|
||||
|
||||
@section dnn_detect
|
||||
|
||||
Do object detection with deep neural networks.
|
||||
|
@ -243,6 +243,7 @@ OBJS-$(CONFIG_DILATION_FILTER) += vf_neighbor.o
|
||||
OBJS-$(CONFIG_DILATION_OPENCL_FILTER) += vf_neighbor_opencl.o opencl.o \
|
||||
opencl/neighbor.o
|
||||
OBJS-$(CONFIG_DISPLACE_FILTER) += vf_displace.o framesync.o
|
||||
OBJS-$(CONFIG_DNN_CLASSIFY_FILTER) += vf_dnn_classify.o
|
||||
OBJS-$(CONFIG_DNN_DETECT_FILTER) += vf_dnn_detect.o
|
||||
OBJS-$(CONFIG_DNN_PROCESSING_FILTER) += vf_dnn_processing.o
|
||||
OBJS-$(CONFIG_DOUBLEWEAVE_FILTER) += vf_weave.o
|
||||
|
@ -229,6 +229,7 @@ extern const AVFilter ff_vf_detelecine;
|
||||
extern const AVFilter ff_vf_dilation;
|
||||
extern const AVFilter ff_vf_dilation_opencl;
|
||||
extern const AVFilter ff_vf_displace;
|
||||
extern const AVFilter ff_vf_dnn_classify;
|
||||
extern const AVFilter ff_vf_dnn_detect;
|
||||
extern const AVFilter ff_vf_dnn_processing;
|
||||
extern const AVFilter ff_vf_doubleweave;
|
||||
|
330
libavfilter/vf_dnn_classify.c
Normal file
330
libavfilter/vf_dnn_classify.c
Normal file
@ -0,0 +1,330 @@
|
||||
/*
|
||||
* This file is part of FFmpeg.
|
||||
*
|
||||
* FFmpeg is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* FFmpeg is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with FFmpeg; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* implementing an classification filter using deep learning networks.
|
||||
*/
|
||||
|
||||
#include "libavformat/avio.h"
|
||||
#include "libavutil/opt.h"
|
||||
#include "libavutil/pixdesc.h"
|
||||
#include "libavutil/avassert.h"
|
||||
#include "libavutil/imgutils.h"
|
||||
#include "filters.h"
|
||||
#include "dnn_filter_common.h"
|
||||
#include "formats.h"
|
||||
#include "internal.h"
|
||||
#include "libavutil/time.h"
|
||||
#include "libavutil/avstring.h"
|
||||
#include "libavutil/detection_bbox.h"
|
||||
|
||||
typedef struct DnnClassifyContext {
|
||||
const AVClass *class;
|
||||
DnnContext dnnctx;
|
||||
float confidence;
|
||||
char *labels_filename;
|
||||
char *target;
|
||||
char **labels;
|
||||
int label_count;
|
||||
} DnnClassifyContext;
|
||||
|
||||
#define OFFSET(x) offsetof(DnnClassifyContext, dnnctx.x)
|
||||
#define OFFSET2(x) offsetof(DnnClassifyContext, x)
|
||||
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
|
||||
static const AVOption dnn_classify_options[] = {
|
||||
{ "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 2 }, INT_MIN, INT_MAX, FLAGS, "backend" },
|
||||
#if (CONFIG_LIBOPENVINO == 1)
|
||||
{ "openvino", "openvino backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 2 }, 0, 0, FLAGS, "backend" },
|
||||
#endif
|
||||
DNN_COMMON_OPTIONS
|
||||
{ "confidence", "threshold of confidence", OFFSET2(confidence), AV_OPT_TYPE_FLOAT, { .dbl = 0.5 }, 0, 1, FLAGS},
|
||||
{ "labels", "path to labels file", OFFSET2(labels_filename), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
|
||||
{ "target", "which one to be classified", OFFSET2(target), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
AVFILTER_DEFINE_CLASS(dnn_classify);
|
||||
|
||||
static int dnn_classify_post_proc(AVFrame *frame, DNNData *output, uint32_t bbox_index, AVFilterContext *filter_ctx)
|
||||
{
|
||||
DnnClassifyContext *ctx = filter_ctx->priv;
|
||||
float conf_threshold = ctx->confidence;
|
||||
AVDetectionBBoxHeader *header;
|
||||
AVDetectionBBox *bbox;
|
||||
float *classifications;
|
||||
uint32_t label_id;
|
||||
float confidence;
|
||||
AVFrameSideData *sd;
|
||||
|
||||
if (output->channels <= 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
|
||||
header = (AVDetectionBBoxHeader *)sd->data;
|
||||
|
||||
if (bbox_index == 0) {
|
||||
av_strlcat(header->source, ", ", sizeof(header->source));
|
||||
av_strlcat(header->source, ctx->dnnctx.model_filename, sizeof(header->source));
|
||||
}
|
||||
|
||||
classifications = output->data;
|
||||
label_id = 0;
|
||||
confidence= classifications[0];
|
||||
for (int i = 1; i < output->channels; i++) {
|
||||
if (classifications[i] > confidence) {
|
||||
label_id = i;
|
||||
confidence= classifications[i];
|
||||
}
|
||||
}
|
||||
|
||||
if (confidence < conf_threshold) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
bbox = av_get_detection_bbox(header, bbox_index);
|
||||
bbox->classify_confidences[bbox->classify_count] = av_make_q((int)(confidence * 10000), 10000);
|
||||
|
||||
if (ctx->labels && label_id < ctx->label_count) {
|
||||
av_strlcpy(bbox->classify_labels[bbox->classify_count], ctx->labels[label_id], sizeof(bbox->classify_labels[bbox->classify_count]));
|
||||
} else {
|
||||
snprintf(bbox->classify_labels[bbox->classify_count], sizeof(bbox->classify_labels[bbox->classify_count]), "%d", label_id);
|
||||
}
|
||||
|
||||
bbox->classify_count++;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void free_classify_labels(DnnClassifyContext *ctx)
|
||||
{
|
||||
for (int i = 0; i < ctx->label_count; i++) {
|
||||
av_freep(&ctx->labels[i]);
|
||||
}
|
||||
ctx->label_count = 0;
|
||||
av_freep(&ctx->labels);
|
||||
}
|
||||
|
||||
static int read_classify_label_file(AVFilterContext *context)
|
||||
{
|
||||
int line_len;
|
||||
FILE *file;
|
||||
DnnClassifyContext *ctx = context->priv;
|
||||
|
||||
file = av_fopen_utf8(ctx->labels_filename, "r");
|
||||
if (!file){
|
||||
av_log(context, AV_LOG_ERROR, "failed to open file %s\n", ctx->labels_filename);
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
while (!feof(file)) {
|
||||
char *label;
|
||||
char buf[256];
|
||||
if (!fgets(buf, 256, file)) {
|
||||
break;
|
||||
}
|
||||
|
||||
line_len = strlen(buf);
|
||||
while (line_len) {
|
||||
int i = line_len - 1;
|
||||
if (buf[i] == '\n' || buf[i] == '\r' || buf[i] == ' ') {
|
||||
buf[i] = '\0';
|
||||
line_len--;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (line_len == 0) // empty line
|
||||
continue;
|
||||
|
||||
if (line_len >= AV_DETECTION_BBOX_LABEL_NAME_MAX_SIZE) {
|
||||
av_log(context, AV_LOG_ERROR, "label %s too long\n", buf);
|
||||
fclose(file);
|
||||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
label = av_strdup(buf);
|
||||
if (!label) {
|
||||
av_log(context, AV_LOG_ERROR, "failed to allocate memory for label %s\n", buf);
|
||||
fclose(file);
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
|
||||
if (av_dynarray_add_nofree(&ctx->labels, &ctx->label_count, label) < 0) {
|
||||
av_log(context, AV_LOG_ERROR, "failed to do av_dynarray_add\n");
|
||||
fclose(file);
|
||||
av_freep(&label);
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static av_cold int dnn_classify_init(AVFilterContext *context)
|
||||
{
|
||||
DnnClassifyContext *ctx = context->priv;
|
||||
int ret = ff_dnn_init(&ctx->dnnctx, DFT_ANALYTICS_CLASSIFY, context);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
ff_dnn_set_classify_post_proc(&ctx->dnnctx, dnn_classify_post_proc);
|
||||
|
||||
if (ctx->labels_filename) {
|
||||
return read_classify_label_file(context);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int dnn_classify_query_formats(AVFilterContext *context)
|
||||
{
|
||||
static const enum AVPixelFormat pix_fmts[] = {
|
||||
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
|
||||
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAYF32,
|
||||
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
|
||||
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
|
||||
AV_PIX_FMT_NV12,
|
||||
AV_PIX_FMT_NONE
|
||||
};
|
||||
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
|
||||
return ff_set_common_formats(context, fmts_list);
|
||||
}
|
||||
|
||||
static int dnn_classify_flush_frame(AVFilterLink *outlink, int64_t pts, int64_t *out_pts)
|
||||
{
|
||||
DnnClassifyContext *ctx = outlink->src->priv;
|
||||
int ret;
|
||||
DNNAsyncStatusType async_state;
|
||||
|
||||
ret = ff_dnn_flush(&ctx->dnnctx);
|
||||
if (ret != DNN_SUCCESS) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
do {
|
||||
AVFrame *in_frame = NULL;
|
||||
AVFrame *out_frame = NULL;
|
||||
async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame);
|
||||
if (out_frame) {
|
||||
av_assert0(in_frame == out_frame);
|
||||
ret = ff_filter_frame(outlink, out_frame);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
if (out_pts)
|
||||
*out_pts = out_frame->pts + pts;
|
||||
}
|
||||
av_usleep(5000);
|
||||
} while (async_state >= DAST_NOT_READY);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int dnn_classify_activate(AVFilterContext *filter_ctx)
|
||||
{
|
||||
AVFilterLink *inlink = filter_ctx->inputs[0];
|
||||
AVFilterLink *outlink = filter_ctx->outputs[0];
|
||||
DnnClassifyContext *ctx = filter_ctx->priv;
|
||||
AVFrame *in = NULL;
|
||||
int64_t pts;
|
||||
int ret, status;
|
||||
int got_frame = 0;
|
||||
int async_state;
|
||||
|
||||
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
|
||||
|
||||
do {
|
||||
// drain all input frames
|
||||
ret = ff_inlink_consume_frame(inlink, &in);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
if (ret > 0) {
|
||||
if (ff_dnn_execute_model_classification(&ctx->dnnctx, in, in, ctx->target) != DNN_SUCCESS) {
|
||||
return AVERROR(EIO);
|
||||
}
|
||||
}
|
||||
} while (ret > 0);
|
||||
|
||||
// drain all processed frames
|
||||
do {
|
||||
AVFrame *in_frame = NULL;
|
||||
AVFrame *out_frame = NULL;
|
||||
async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame);
|
||||
if (out_frame) {
|
||||
av_assert0(in_frame == out_frame);
|
||||
ret = ff_filter_frame(outlink, out_frame);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
got_frame = 1;
|
||||
}
|
||||
} while (async_state == DAST_SUCCESS);
|
||||
|
||||
// if frame got, schedule to next filter
|
||||
if (got_frame)
|
||||
return 0;
|
||||
|
||||
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
|
||||
if (status == AVERROR_EOF) {
|
||||
int64_t out_pts = pts;
|
||||
ret = dnn_classify_flush_frame(outlink, pts, &out_pts);
|
||||
ff_outlink_set_status(outlink, status, out_pts);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
FF_FILTER_FORWARD_WANTED(outlink, inlink);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static av_cold void dnn_classify_uninit(AVFilterContext *context)
|
||||
{
|
||||
DnnClassifyContext *ctx = context->priv;
|
||||
ff_dnn_uninit(&ctx->dnnctx);
|
||||
free_classify_labels(ctx);
|
||||
}
|
||||
|
||||
static const AVFilterPad dnn_classify_inputs[] = {
|
||||
{
|
||||
.name = "default",
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
},
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
static const AVFilterPad dnn_classify_outputs[] = {
|
||||
{
|
||||
.name = "default",
|
||||
.type = AVMEDIA_TYPE_VIDEO,
|
||||
},
|
||||
{ NULL }
|
||||
};
|
||||
|
||||
const AVFilter ff_vf_dnn_classify = {
|
||||
.name = "dnn_classify",
|
||||
.description = NULL_IF_CONFIG_SMALL("Apply DNN classify filter to the input."),
|
||||
.priv_size = sizeof(DnnClassifyContext),
|
||||
.init = dnn_classify_init,
|
||||
.uninit = dnn_classify_uninit,
|
||||
.query_formats = dnn_classify_query_formats,
|
||||
.inputs = dnn_classify_inputs,
|
||||
.outputs = dnn_classify_outputs,
|
||||
.priv_class = &dnn_classify_class,
|
||||
.activate = dnn_classify_activate,
|
||||
};
|
Loading…
x
Reference in New Issue
Block a user