mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-21 10:55:51 +02:00
dnn/native: add native support for minimum
it can be tested with model file generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.minimum(0.7, x) x2 = tf.maximum(x1, 0.4) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
parent
607b85f07e
commit
71e28c5422
@ -150,6 +150,19 @@ int dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_ope
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
case DMBO_MINIMUM:
|
||||
if (params->input0_broadcast || params->input1_broadcast) {
|
||||
for (int i = 0; i < dims_count; ++i) {
|
||||
dst[i] = FFMIN(params->v, src[i]);
|
||||
}
|
||||
} else {
|
||||
const DnnOperand *input1 = &operands[input_operand_indexes[1]];
|
||||
const float *src1 = input1->data;
|
||||
for (int i = 0; i < dims_count; ++i) {
|
||||
dst[i] = FFMIN(src[i], src1[i]);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
|
@ -35,6 +35,7 @@ typedef enum {
|
||||
DMBO_ADD = 1,
|
||||
DMBO_MUL = 2,
|
||||
DMBO_REALDIV = 3,
|
||||
DMBO_MINIMUM = 4,
|
||||
DMBO_COUNT
|
||||
} DNNMathBinaryOperation;
|
||||
|
||||
|
@ -71,7 +71,7 @@ class TFConverter:
|
||||
self.conv2d_scope_names = set()
|
||||
self.conv2d_scopename_inputname_dict = {}
|
||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5}
|
||||
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3}
|
||||
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4}
|
||||
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
|
||||
self.name_operand_dict = {}
|
||||
|
||||
@ -305,15 +305,10 @@ class TFConverter:
|
||||
self.dump_mirrorpad_to_file(node, f)
|
||||
elif node.op == 'Maximum':
|
||||
self.dump_maximum_to_file(node, f)
|
||||
elif node.op == 'Sub':
|
||||
self.dump_mathbinary_to_file(node, f)
|
||||
elif node.op == 'Add':
|
||||
self.dump_mathbinary_to_file(node, f)
|
||||
elif node.op == 'Mul':
|
||||
self.dump_mathbinary_to_file(node, f)
|
||||
elif node.op == 'RealDiv':
|
||||
elif node.op in self.mathbin2code:
|
||||
self.dump_mathbinary_to_file(node, f)
|
||||
|
||||
|
||||
def dump_operands_to_file(self, f):
|
||||
operands = sorted(self.name_operand_dict.values())
|
||||
for operand in operands:
|
||||
|
@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE'
|
||||
major = 1
|
||||
|
||||
# increase minor when we don't have to re-convert the model file
|
||||
minor = 4
|
||||
minor = 5
|
||||
|
Loading…
Reference in New Issue
Block a user