You've already forked FFmpeg
							
							
				mirror of
				https://github.com/FFmpeg/FFmpeg.git
				synced 2025-10-30 23:18:11 +02:00 
			
		
		
		
	avcodec/opus: Rename opus.c->opus_celt.c, opus_celt.c->opusdec_celt.c
Since commit 4fc2531fff opus.c
contains only the celt stuff shared between decoder and encoder.
meanwhile, opus_celt.c is decoder-only. So the new names
reflect the actual content better than the current ones.
Reviewed-by: Lynne <dev@lynne.ee>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
			
			
This commit is contained in:
		| @@ -554,11 +554,11 @@ OBJS-$(CONFIG_NELLYMOSER_ENCODER)      += nellymoserenc.o nellymoser.o | ||||
| OBJS-$(CONFIG_NOTCHLC_DECODER)         += notchlc.o | ||||
| OBJS-$(CONFIG_NUV_DECODER)             += nuv.o rtjpeg.o | ||||
| OBJS-$(CONFIG_ON2AVC_DECODER)          += on2avc.o on2avcdata.o | ||||
| OBJS-$(CONFIG_OPUS_DECODER)            += opusdec.o opus.o opus_celt.o opus_rc.o \ | ||||
| OBJS-$(CONFIG_OPUS_DECODER)            += opusdec.o opusdec_celt.o opus_celt.o \ | ||||
|                                           opus_pvq.o opus_silk.o opustab.o vorbis_data.o \ | ||||
|                                           opusdsp.o opus_parse.o | ||||
| OBJS-$(CONFIG_OPUS_ENCODER)            += opusenc.o opus.o opus_rc.o opustab.o opus_pvq.o \ | ||||
|                                           opusenc_psy.o | ||||
|                                           opusdsp.o opus_parse.o opus_rc.o | ||||
| OBJS-$(CONFIG_OPUS_ENCODER)            += opusenc.o opusenc_psy.o opus_celt.o \ | ||||
|                                           opus_pvq.o opus_rc.o opustab.o | ||||
| OBJS-$(CONFIG_PAF_AUDIO_DECODER)       += pafaudio.o | ||||
| OBJS-$(CONFIG_PAF_VIDEO_DECODER)       += pafvideo.o | ||||
| OBJS-$(CONFIG_PAM_DECODER)             += pnmdec.o pnm.o | ||||
|   | ||||
| @@ -1,484 +0,0 @@ | ||||
| /* | ||||
|  * Copyright (c) 2012 Andrew D'Addesio | ||||
|  * Copyright (c) 2013-2014 Mozilla Corporation | ||||
|  * | ||||
|  * This file is part of FFmpeg. | ||||
|  * | ||||
|  * FFmpeg is free software; you can redistribute it and/or | ||||
|  * modify it under the terms of the GNU Lesser General Public | ||||
|  * License as published by the Free Software Foundation; either | ||||
|  * version 2.1 of the License, or (at your option) any later version. | ||||
|  * | ||||
|  * FFmpeg is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | ||||
|  * Lesser General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU Lesser General Public | ||||
|  * License along with FFmpeg; if not, write to the Free Software | ||||
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||||
|  */ | ||||
|  | ||||
| #include <stdint.h> | ||||
|  | ||||
| #include "opus_celt.h" | ||||
| #include "opus_pvq.h" | ||||
| #include "opustab.h" | ||||
|  | ||||
| void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc) | ||||
| { | ||||
|     float lowband_scratch[8 * 22]; | ||||
|     float norm1[2 * 8 * 100]; | ||||
|     float *norm2 = norm1 + 8 * 100; | ||||
|  | ||||
|     int totalbits = (f->framebits << 3) - f->anticollapse_needed; | ||||
|  | ||||
|     int update_lowband = 1; | ||||
|     int lowband_offset = 0; | ||||
|  | ||||
|     int i, j; | ||||
|  | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; | ||||
|         int band_offset = ff_celt_freq_bands[i] << f->size; | ||||
|         int band_size   = ff_celt_freq_range[i] << f->size; | ||||
|         float *X = f->block[0].coeffs + band_offset; | ||||
|         float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL; | ||||
|         float *norm_loc1, *norm_loc2; | ||||
|  | ||||
|         int consumed = opus_rc_tell_frac(rc); | ||||
|         int effective_lowband = -1; | ||||
|         int b = 0; | ||||
|  | ||||
|         /* Compute how many bits we want to allocate to this band */ | ||||
|         if (i != f->start_band) | ||||
|             f->remaining -= consumed; | ||||
|         f->remaining2 = totalbits - consumed - 1; | ||||
|         if (i <= f->coded_bands - 1) { | ||||
|             int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i); | ||||
|             b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14); | ||||
|         } | ||||
|  | ||||
|         if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] || | ||||
|             i == f->start_band + 1) && (update_lowband || lowband_offset == 0)) | ||||
|             lowband_offset = i; | ||||
|  | ||||
|         if (i == f->start_band + 1) { | ||||
|             /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into | ||||
|             the second to ensure the second band never has to use the LCG. */ | ||||
|             int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size; | ||||
|  | ||||
|             memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float)); | ||||
|  | ||||
|             if (f->channels == 2) | ||||
|                 memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float)); | ||||
|         } | ||||
|  | ||||
|         /* Get a conservative estimate of the collapse_mask's for the bands we're | ||||
|            going to be folding from. */ | ||||
|         if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE || | ||||
|                                     f->blocks > 1 || f->tf_change[i] < 0)) { | ||||
|             int foldstart, foldend; | ||||
|  | ||||
|             /* This ensures we never repeat spectral content within one band */ | ||||
|             effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band], | ||||
|                                       ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]); | ||||
|             foldstart = lowband_offset; | ||||
|             while (ff_celt_freq_bands[--foldstart] > effective_lowband); | ||||
|             foldend = lowband_offset - 1; | ||||
|             while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]); | ||||
|  | ||||
|             cm[0] = cm[1] = 0; | ||||
|             for (j = foldstart; j < foldend; j++) { | ||||
|                 cm[0] |= f->block[0].collapse_masks[j]; | ||||
|                 cm[1] |= f->block[f->channels - 1].collapse_masks[j]; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         if (f->dual_stereo && i == f->intensity_stereo) { | ||||
|             /* Switch off dual stereo to do intensity */ | ||||
|             f->dual_stereo = 0; | ||||
|             for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++) | ||||
|                 norm1[j] = (norm1[j] + norm2[j]) / 2; | ||||
|         } | ||||
|  | ||||
|         norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL; | ||||
|         norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL; | ||||
|  | ||||
|         if (f->dual_stereo) { | ||||
|             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1, | ||||
|                                        f->blocks, norm_loc1, f->size, | ||||
|                                        norm1 + band_offset, 0, 1.0f, | ||||
|                                        lowband_scratch, cm[0]); | ||||
|  | ||||
|             cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1, | ||||
|                                        f->blocks, norm_loc2, f->size, | ||||
|                                        norm2 + band_offset, 0, 1.0f, | ||||
|                                        lowband_scratch, cm[1]); | ||||
|         } else { | ||||
|             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X,    Y, band_size, b >> 0, | ||||
|                                        f->blocks, norm_loc1, f->size, | ||||
|                                        norm1 + band_offset, 0, 1.0f, | ||||
|                                        lowband_scratch, cm[0] | cm[1]); | ||||
|             cm[1] = cm[0]; | ||||
|         } | ||||
|  | ||||
|         f->block[0].collapse_masks[i]               = (uint8_t)cm[0]; | ||||
|         f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1]; | ||||
|         f->remaining += f->pulses[i] + consumed; | ||||
|  | ||||
|         /* Update the folding position only as long as we have 1 bit/sample depth */ | ||||
|         update_lowband = (b > band_size << 3); | ||||
|     } | ||||
| } | ||||
|  | ||||
| #define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2) | ||||
|  | ||||
| void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode) | ||||
| { | ||||
|     int i, j, low, high, total, done, bandbits, remaining, tbits_8ths; | ||||
|     int skip_startband      = f->start_band; | ||||
|     int skip_bit            = 0; | ||||
|     int intensitystereo_bit = 0; | ||||
|     int dualstereo_bit      = 0; | ||||
|     int dynalloc            = 6; | ||||
|     int extrabits           = 0; | ||||
|  | ||||
|     int boost[CELT_MAX_BANDS] = { 0 }; | ||||
|     int trim_offset[CELT_MAX_BANDS]; | ||||
|     int threshold[CELT_MAX_BANDS]; | ||||
|     int bits1[CELT_MAX_BANDS]; | ||||
|     int bits2[CELT_MAX_BANDS]; | ||||
|  | ||||
|     /* Spread */ | ||||
|     if (opus_rc_tell(rc) + 4 <= f->framebits) { | ||||
|         if (encode) | ||||
|             ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread); | ||||
|         else | ||||
|             f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread); | ||||
|     } else { | ||||
|         f->spread = CELT_SPREAD_NORMAL; | ||||
|     } | ||||
|  | ||||
|     /* Initialize static allocation caps */ | ||||
|     for (i = 0; i < CELT_MAX_BANDS; i++) | ||||
|         f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]); | ||||
|  | ||||
|     /* Band boosts */ | ||||
|     tbits_8ths = f->framebits << 3; | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size; | ||||
|         int b_dynalloc = dynalloc; | ||||
|         int boost_amount = f->alloc_boost[i]; | ||||
|         quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta)); | ||||
|  | ||||
|         while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) { | ||||
|             int is_boost; | ||||
|             if (encode) { | ||||
|                 is_boost = boost_amount--; | ||||
|                 ff_opus_rc_enc_log(rc, is_boost, b_dynalloc); | ||||
|             } else { | ||||
|                 is_boost = ff_opus_rc_dec_log(rc, b_dynalloc); | ||||
|             } | ||||
|  | ||||
|             if (!is_boost) | ||||
|                 break; | ||||
|  | ||||
|             boost[i]   += quanta; | ||||
|             tbits_8ths -= quanta; | ||||
|  | ||||
|             b_dynalloc = 1; | ||||
|         } | ||||
|  | ||||
|         if (boost[i]) | ||||
|             dynalloc = FFMAX(dynalloc - 1, 2); | ||||
|     } | ||||
|  | ||||
|     /* Allocation trim */ | ||||
|     if (!encode) | ||||
|         f->alloc_trim = 5; | ||||
|     if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths) | ||||
|         if (encode) | ||||
|             ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim); | ||||
|         else | ||||
|             f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim); | ||||
|  | ||||
|     /* Anti-collapse bit reservation */ | ||||
|     tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1; | ||||
|     f->anticollapse_needed = 0; | ||||
|     if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3)) | ||||
|         f->anticollapse_needed = 1 << 3; | ||||
|     tbits_8ths -= f->anticollapse_needed; | ||||
|  | ||||
|     /* Band skip bit reservation */ | ||||
|     if (tbits_8ths >= 1 << 3) | ||||
|         skip_bit = 1 << 3; | ||||
|     tbits_8ths -= skip_bit; | ||||
|  | ||||
|     /* Intensity/dual stereo bit reservation */ | ||||
|     if (f->channels == 2) { | ||||
|         intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band]; | ||||
|         if (intensitystereo_bit <= tbits_8ths) { | ||||
|             tbits_8ths -= intensitystereo_bit; | ||||
|             if (tbits_8ths >= 1 << 3) { | ||||
|                 dualstereo_bit = 1 << 3; | ||||
|                 tbits_8ths -= 1 << 3; | ||||
|             } | ||||
|         } else { | ||||
|             intensitystereo_bit = 0; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* Trim offsets */ | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         int trim     = f->alloc_trim - 5 - f->size; | ||||
|         int band     = ff_celt_freq_range[i] * (f->end_band - i - 1); | ||||
|         int duration = f->size + 3; | ||||
|         int scale    = duration + f->channels - 1; | ||||
|  | ||||
|         /* PVQ minimum allocation threshold, below this value the band is | ||||
|          * skipped */ | ||||
|         threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4, | ||||
|                              f->channels << 3); | ||||
|  | ||||
|         trim_offset[i] = trim * (band << scale) >> 6; | ||||
|  | ||||
|         if (ff_celt_freq_range[i] << f->size == 1) | ||||
|             trim_offset[i] -= f->channels << 3; | ||||
|     } | ||||
|  | ||||
|     /* Bisection */ | ||||
|     low  = 1; | ||||
|     high = CELT_VECTORS - 1; | ||||
|     while (low <= high) { | ||||
|         int center = (low + high) >> 1; | ||||
|         done = total = 0; | ||||
|  | ||||
|         for (i = f->end_band - 1; i >= f->start_band; i--) { | ||||
|             bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]); | ||||
|  | ||||
|             if (bandbits) | ||||
|                 bandbits = FFMAX(bandbits + trim_offset[i], 0); | ||||
|             bandbits += boost[i]; | ||||
|  | ||||
|             if (bandbits >= threshold[i] || done) { | ||||
|                 done = 1; | ||||
|                 total += FFMIN(bandbits, f->caps[i]); | ||||
|             } else if (bandbits >= f->channels << 3) { | ||||
|                 total += f->channels << 3; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         if (total > tbits_8ths) | ||||
|             high = center - 1; | ||||
|         else | ||||
|             low = center + 1; | ||||
|     } | ||||
|     high = low--; | ||||
|  | ||||
|     /* Bisection */ | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]); | ||||
|         bits2[i] = high >= CELT_VECTORS ? f->caps[i] : | ||||
|                    NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]); | ||||
|  | ||||
|         if (bits1[i]) | ||||
|             bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0); | ||||
|         if (bits2[i]) | ||||
|             bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0); | ||||
|  | ||||
|         if (low) | ||||
|             bits1[i] += boost[i]; | ||||
|         bits2[i] += boost[i]; | ||||
|  | ||||
|         if (boost[i]) | ||||
|             skip_startband = i; | ||||
|         bits2[i] = FFMAX(bits2[i] - bits1[i], 0); | ||||
|     } | ||||
|  | ||||
|     /* Bisection */ | ||||
|     low  = 0; | ||||
|     high = 1 << CELT_ALLOC_STEPS; | ||||
|     for (i = 0; i < CELT_ALLOC_STEPS; i++) { | ||||
|         int center = (low + high) >> 1; | ||||
|         done = total = 0; | ||||
|  | ||||
|         for (j = f->end_band - 1; j >= f->start_band; j--) { | ||||
|             bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS); | ||||
|  | ||||
|             if (bandbits >= threshold[j] || done) { | ||||
|                 done = 1; | ||||
|                 total += FFMIN(bandbits, f->caps[j]); | ||||
|             } else if (bandbits >= f->channels << 3) | ||||
|                 total += f->channels << 3; | ||||
|         } | ||||
|         if (total > tbits_8ths) | ||||
|             high = center; | ||||
|         else | ||||
|             low = center; | ||||
|     } | ||||
|  | ||||
|     /* Bisection */ | ||||
|     done = total = 0; | ||||
|     for (i = f->end_band - 1; i >= f->start_band; i--) { | ||||
|         bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS); | ||||
|  | ||||
|         if (bandbits >= threshold[i] || done) | ||||
|             done = 1; | ||||
|         else | ||||
|             bandbits = (bandbits >= f->channels << 3) ? | ||||
|             f->channels << 3 : 0; | ||||
|  | ||||
|         bandbits     = FFMIN(bandbits, f->caps[i]); | ||||
|         f->pulses[i] = bandbits; | ||||
|         total      += bandbits; | ||||
|     } | ||||
|  | ||||
|     /* Band skipping */ | ||||
|     for (f->coded_bands = f->end_band; ; f->coded_bands--) { | ||||
|         int allocation; | ||||
|         j = f->coded_bands - 1; | ||||
|  | ||||
|         if (j == skip_startband) { | ||||
|             /* all remaining bands are not skipped */ | ||||
|             tbits_8ths += skip_bit; | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|         /* determine the number of bits available for coding "do not skip" markers */ | ||||
|         remaining   = tbits_8ths - total; | ||||
|         bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); | ||||
|         remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); | ||||
|         allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j]; | ||||
|         allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0); | ||||
|  | ||||
|         /* a "do not skip" marker is only coded if the allocation is | ||||
|          * above the chosen threshold */ | ||||
|         if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) { | ||||
|             int do_not_skip; | ||||
|             if (encode) { | ||||
|                 do_not_skip = f->coded_bands <= f->skip_band_floor; | ||||
|                 ff_opus_rc_enc_log(rc, do_not_skip, 1); | ||||
|             } else { | ||||
|                 do_not_skip = ff_opus_rc_dec_log(rc, 1); | ||||
|             } | ||||
|  | ||||
|             if (do_not_skip) | ||||
|                 break; | ||||
|  | ||||
|             total      += 1 << 3; | ||||
|             allocation -= 1 << 3; | ||||
|         } | ||||
|  | ||||
|         /* the band is skipped, so reclaim its bits */ | ||||
|         total -= f->pulses[j]; | ||||
|         if (intensitystereo_bit) { | ||||
|             total -= intensitystereo_bit; | ||||
|             intensitystereo_bit = ff_celt_log2_frac[j - f->start_band]; | ||||
|             total += intensitystereo_bit; | ||||
|         } | ||||
|  | ||||
|         total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0; | ||||
|     } | ||||
|  | ||||
|     /* IS start band */ | ||||
|     if (encode) { | ||||
|         if (intensitystereo_bit) { | ||||
|             f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands); | ||||
|             ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band); | ||||
|         } | ||||
|     } else { | ||||
|         f->intensity_stereo = f->dual_stereo = 0; | ||||
|         if (intensitystereo_bit) | ||||
|             f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band); | ||||
|     } | ||||
|  | ||||
|     /* DS flag */ | ||||
|     if (f->intensity_stereo <= f->start_band) | ||||
|         tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */ | ||||
|     else if (dualstereo_bit) | ||||
|         if (encode) | ||||
|             ff_opus_rc_enc_log(rc, f->dual_stereo, 1); | ||||
|         else | ||||
|             f->dual_stereo = ff_opus_rc_dec_log(rc, 1); | ||||
|  | ||||
|     /* Supply the remaining bits in this frame to lower bands */ | ||||
|     remaining = tbits_8ths - total; | ||||
|     bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); | ||||
|     remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); | ||||
|     for (i = f->start_band; i < f->coded_bands; i++) { | ||||
|         const int bits = FFMIN(remaining, ff_celt_freq_range[i]); | ||||
|         f->pulses[i] += bits + bandbits * ff_celt_freq_range[i]; | ||||
|         remaining    -= bits; | ||||
|     } | ||||
|  | ||||
|     /* Finally determine the allocation */ | ||||
|     for (i = f->start_band; i < f->coded_bands; i++) { | ||||
|         int N = ff_celt_freq_range[i] << f->size; | ||||
|         int prev_extra = extrabits; | ||||
|         f->pulses[i] += extrabits; | ||||
|  | ||||
|         if (N > 1) { | ||||
|             int dof;        /* degrees of freedom */ | ||||
|             int temp;       /* dof * channels * log(dof) */ | ||||
|             int fine_bits; | ||||
|             int max_bits; | ||||
|             int offset;     /* fine energy quantization offset, i.e. | ||||
|                              * extra bits assigned over the standard | ||||
|                              * totalbits/dof */ | ||||
|  | ||||
|             extrabits = FFMAX(f->pulses[i] - f->caps[i], 0); | ||||
|             f->pulses[i] -= extrabits; | ||||
|  | ||||
|             /* intensity stereo makes use of an extra degree of freedom */ | ||||
|             dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo); | ||||
|             temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3)); | ||||
|             offset = (temp >> 1) - dof * CELT_FINE_OFFSET; | ||||
|             if (N == 2) /* dof=2 is the only case that doesn't fit the model */ | ||||
|                 offset += dof << 1; | ||||
|  | ||||
|             /* grant an additional bias for the first and second pulses */ | ||||
|             if (f->pulses[i] + offset < 2 * (dof << 3)) | ||||
|                 offset += temp >> 2; | ||||
|             else if (f->pulses[i] + offset < 3 * (dof << 3)) | ||||
|                 offset += temp >> 3; | ||||
|  | ||||
|             fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3); | ||||
|             max_bits  = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS); | ||||
|             max_bits  = FFMAX(max_bits, 0); | ||||
|             f->fine_bits[i] = av_clip(fine_bits, 0, max_bits); | ||||
|  | ||||
|             /* If fine_bits was rounded down or capped, | ||||
|              * give priority for the final fine energy pass */ | ||||
|             f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset); | ||||
|  | ||||
|             /* the remaining bits are assigned to PVQ */ | ||||
|             f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3; | ||||
|         } else { | ||||
|             /* all bits go to fine energy except for the sign bit */ | ||||
|             extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0); | ||||
|             f->pulses[i] -= extrabits; | ||||
|             f->fine_bits[i] = 0; | ||||
|             f->fine_priority[i] = 1; | ||||
|         } | ||||
|  | ||||
|         /* hand back a limited number of extra fine energy bits to this band */ | ||||
|         if (extrabits > 0) { | ||||
|             int fineextra = FFMIN(extrabits >> (f->channels + 2), | ||||
|                                   CELT_MAX_FINE_BITS - f->fine_bits[i]); | ||||
|             f->fine_bits[i] += fineextra; | ||||
|  | ||||
|             fineextra <<= f->channels + 2; | ||||
|             f->fine_priority[i] = (fineextra >= extrabits - prev_extra); | ||||
|             extrabits -= fineextra; | ||||
|         } | ||||
|     } | ||||
|     f->remaining = extrabits; | ||||
|  | ||||
|     /* skipped bands dedicate all of their bits for fine energy */ | ||||
|     for (; i < f->end_band; i++) { | ||||
|         f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3; | ||||
|         f->pulses[i]        = 0; | ||||
|         f->fine_priority[i] = f->fine_bits[i] < 1; | ||||
|     } | ||||
| } | ||||
| @@ -1,7 +1,6 @@ | ||||
| /* | ||||
|  * Copyright (c) 2012 Andrew D'Addesio | ||||
|  * Copyright (c) 2013-2014 Mozilla Corporation | ||||
|  * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com> | ||||
|  * | ||||
|  * This file is part of FFmpeg. | ||||
|  * | ||||
| @@ -20,567 +19,466 @@ | ||||
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @file | ||||
|  * Opus CELT decoder | ||||
|  */ | ||||
|  | ||||
| #include <float.h> | ||||
| #include <stdint.h> | ||||
|  | ||||
| #include "opus_celt.h" | ||||
| #include "opustab.h" | ||||
| #include "opus_pvq.h" | ||||
| #include "opustab.h" | ||||
|  | ||||
| /* Use the 2D z-transform to apply prediction in both the time domain (alpha) | ||||
|  * and the frequency domain (beta) */ | ||||
| static void celt_decode_coarse_energy(CeltFrame *f, OpusRangeCoder *rc) | ||||
| void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc) | ||||
| { | ||||
|     int i, j; | ||||
|     float prev[2] = { 0 }; | ||||
|     float alpha = ff_celt_alpha_coef[f->size]; | ||||
|     float beta  = ff_celt_beta_coef[f->size]; | ||||
|     const uint8_t *model = ff_celt_coarse_energy_dist[f->size][0]; | ||||
|     float lowband_scratch[8 * 22]; | ||||
|     float norm1[2 * 8 * 100]; | ||||
|     float *norm2 = norm1 + 8 * 100; | ||||
|  | ||||
|     /* intra frame */ | ||||
|     if (opus_rc_tell(rc) + 3 <= f->framebits && ff_opus_rc_dec_log(rc, 3)) { | ||||
|         alpha = 0.0f; | ||||
|         beta  = 1.0f - (4915.0f/32768.0f); | ||||
|         model = ff_celt_coarse_energy_dist[f->size][1]; | ||||
|     } | ||||
|     int totalbits = (f->framebits << 3) - f->anticollapse_needed; | ||||
|  | ||||
|     for (i = 0; i < CELT_MAX_BANDS; i++) { | ||||
|         for (j = 0; j < f->channels; j++) { | ||||
|             CeltBlock *block = &f->block[j]; | ||||
|             float value; | ||||
|             int available; | ||||
|     int update_lowband = 1; | ||||
|     int lowband_offset = 0; | ||||
|  | ||||
|             if (i < f->start_band || i >= f->end_band) { | ||||
|                 block->energy[i] = 0.0; | ||||
|                 continue; | ||||
|             } | ||||
|  | ||||
|             available = f->framebits - opus_rc_tell(rc); | ||||
|             if (available >= 15) { | ||||
|                 /* decode using a Laplace distribution */ | ||||
|                 int k = FFMIN(i, 20) << 1; | ||||
|                 value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6); | ||||
|             } else if (available >= 2) { | ||||
|                 int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small); | ||||
|                 value = (x>>1) ^ -(x&1); | ||||
|             } else if (available >= 1) { | ||||
|                 value = -(float)ff_opus_rc_dec_log(rc, 1); | ||||
|             } else value = -1; | ||||
|  | ||||
|             block->energy[i] = FFMAX(-9.0f, block->energy[i]) * alpha + prev[j] + value; | ||||
|             prev[j] += beta * value; | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void celt_decode_fine_energy(CeltFrame *f, OpusRangeCoder *rc) | ||||
| { | ||||
|     int i; | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         int j; | ||||
|         if (!f->fine_bits[i]) | ||||
|             continue; | ||||
|  | ||||
|         for (j = 0; j < f->channels; j++) { | ||||
|             CeltBlock *block = &f->block[j]; | ||||
|             int q2; | ||||
|             float offset; | ||||
|             q2 = ff_opus_rc_get_raw(rc, f->fine_bits[i]); | ||||
|             offset = (q2 + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f - 0.5f; | ||||
|             block->energy[i] += offset; | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void celt_decode_final_energy(CeltFrame *f, OpusRangeCoder *rc) | ||||
| { | ||||
|     int priority, i, j; | ||||
|     int bits_left = f->framebits - opus_rc_tell(rc); | ||||
|  | ||||
|     for (priority = 0; priority < 2; priority++) { | ||||
|         for (i = f->start_band; i < f->end_band && bits_left >= f->channels; i++) { | ||||
|             if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS) | ||||
|                 continue; | ||||
|  | ||||
|             for (j = 0; j < f->channels; j++) { | ||||
|                 int q2; | ||||
|                 float offset; | ||||
|                 q2 = ff_opus_rc_get_raw(rc, 1); | ||||
|                 offset = (q2 - 0.5f) * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f; | ||||
|                 f->block[j].energy[i] += offset; | ||||
|                 bits_left--; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc) | ||||
| { | ||||
|     int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit; | ||||
|     int consumed, bits = f->transient ? 2 : 4; | ||||
|  | ||||
|     consumed = opus_rc_tell(rc); | ||||
|     tf_select_bit = (f->size != 0 && consumed+bits+1 <= f->framebits); | ||||
|  | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         if (consumed+bits+tf_select_bit <= f->framebits) { | ||||
|             diff ^= ff_opus_rc_dec_log(rc, bits); | ||||
|             consumed = opus_rc_tell(rc); | ||||
|             tf_changed |= diff; | ||||
|         } | ||||
|         f->tf_change[i] = diff; | ||||
|         bits = f->transient ? 4 : 5; | ||||
|     } | ||||
|  | ||||
|     if (tf_select_bit && ff_celt_tf_select[f->size][f->transient][0][tf_changed] != | ||||
|                          ff_celt_tf_select[f->size][f->transient][1][tf_changed]) | ||||
|         tf_select = ff_opus_rc_dec_log(rc, 1); | ||||
|  | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]]; | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data) | ||||
| { | ||||
|     int i, j; | ||||
|  | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         float *dst = data + (ff_celt_freq_bands[i] << f->size); | ||||
|         float log_norm = block->energy[i] + ff_celt_mean_energy[i]; | ||||
|         float norm = exp2f(FFMIN(log_norm, 32.0f)); | ||||
|         uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; | ||||
|         int band_offset = ff_celt_freq_bands[i] << f->size; | ||||
|         int band_size   = ff_celt_freq_range[i] << f->size; | ||||
|         float *X = f->block[0].coeffs + band_offset; | ||||
|         float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL; | ||||
|         float *norm_loc1, *norm_loc2; | ||||
|  | ||||
|         for (j = 0; j < ff_celt_freq_range[i] << f->size; j++) | ||||
|             dst[j] *= norm; | ||||
|     } | ||||
| } | ||||
|         int consumed = opus_rc_tell_frac(rc); | ||||
|         int effective_lowband = -1; | ||||
|         int b = 0; | ||||
|  | ||||
| static void celt_postfilter_apply_transition(CeltBlock *block, float *data) | ||||
| { | ||||
|     const int T0 = block->pf_period_old; | ||||
|     const int T1 = block->pf_period; | ||||
|         /* Compute how many bits we want to allocate to this band */ | ||||
|         if (i != f->start_band) | ||||
|             f->remaining -= consumed; | ||||
|         f->remaining2 = totalbits - consumed - 1; | ||||
|         if (i <= f->coded_bands - 1) { | ||||
|             int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i); | ||||
|             b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14); | ||||
|         } | ||||
|  | ||||
|     float g00, g01, g02; | ||||
|     float g10, g11, g12; | ||||
|         if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] || | ||||
|             i == f->start_band + 1) && (update_lowband || lowband_offset == 0)) | ||||
|             lowband_offset = i; | ||||
|  | ||||
|     float x0, x1, x2, x3, x4; | ||||
|         if (i == f->start_band + 1) { | ||||
|             /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into | ||||
|             the second to ensure the second band never has to use the LCG. */ | ||||
|             int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size; | ||||
|  | ||||
|     int i; | ||||
|             memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float)); | ||||
|  | ||||
|     if (block->pf_gains[0]     == 0.0 && | ||||
|         block->pf_gains_old[0] == 0.0) | ||||
|         return; | ||||
|             if (f->channels == 2) | ||||
|                 memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float)); | ||||
|         } | ||||
|  | ||||
|     g00 = block->pf_gains_old[0]; | ||||
|     g01 = block->pf_gains_old[1]; | ||||
|     g02 = block->pf_gains_old[2]; | ||||
|     g10 = block->pf_gains[0]; | ||||
|     g11 = block->pf_gains[1]; | ||||
|     g12 = block->pf_gains[2]; | ||||
|         /* Get a conservative estimate of the collapse_mask's for the bands we're | ||||
|            going to be folding from. */ | ||||
|         if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE || | ||||
|                                     f->blocks > 1 || f->tf_change[i] < 0)) { | ||||
|             int foldstart, foldend; | ||||
|  | ||||
|     x1 = data[-T1 + 1]; | ||||
|     x2 = data[-T1]; | ||||
|     x3 = data[-T1 - 1]; | ||||
|     x4 = data[-T1 - 2]; | ||||
|             /* This ensures we never repeat spectral content within one band */ | ||||
|             effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band], | ||||
|                                       ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]); | ||||
|             foldstart = lowband_offset; | ||||
|             while (ff_celt_freq_bands[--foldstart] > effective_lowband); | ||||
|             foldend = lowband_offset - 1; | ||||
|             while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]); | ||||
|  | ||||
|     for (i = 0; i < CELT_OVERLAP; i++) { | ||||
|         float w = ff_celt_window2[i]; | ||||
|         x0 = data[i - T1 + 2]; | ||||
|  | ||||
|         data[i] +=  (1.0 - w) * g00 * data[i - T0]                          + | ||||
|                     (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) + | ||||
|                     (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) + | ||||
|                     w         * g10 * x2                                    + | ||||
|                     w         * g11 * (x1 + x3)                             + | ||||
|                     w         * g12 * (x0 + x4); | ||||
|         x4 = x3; | ||||
|         x3 = x2; | ||||
|         x2 = x1; | ||||
|         x1 = x0; | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void celt_postfilter(CeltFrame *f, CeltBlock *block) | ||||
| { | ||||
|     int len = f->blocksize * f->blocks; | ||||
|     const int filter_len = len - 2 * CELT_OVERLAP; | ||||
|  | ||||
|     celt_postfilter_apply_transition(block, block->buf + 1024); | ||||
|  | ||||
|     block->pf_period_old = block->pf_period; | ||||
|     memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains)); | ||||
|  | ||||
|     block->pf_period = block->pf_period_new; | ||||
|     memcpy(block->pf_gains, block->pf_gains_new, sizeof(block->pf_gains)); | ||||
|  | ||||
|     if (len > CELT_OVERLAP) { | ||||
|         celt_postfilter_apply_transition(block, block->buf + 1024 + CELT_OVERLAP); | ||||
|  | ||||
|         if (block->pf_gains[0] > FLT_EPSILON && filter_len > 0) | ||||
|             f->opusdsp.postfilter(block->buf + 1024 + 2 * CELT_OVERLAP, | ||||
|                                   block->pf_period, block->pf_gains, | ||||
|                                   filter_len); | ||||
|  | ||||
|         block->pf_period_old = block->pf_period; | ||||
|         memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains)); | ||||
|     } | ||||
|  | ||||
|     memmove(block->buf, block->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float)); | ||||
| } | ||||
|  | ||||
| static int parse_postfilter(CeltFrame *f, OpusRangeCoder *rc, int consumed) | ||||
| { | ||||
|     int i; | ||||
|  | ||||
|     memset(f->block[0].pf_gains_new, 0, sizeof(f->block[0].pf_gains_new)); | ||||
|     memset(f->block[1].pf_gains_new, 0, sizeof(f->block[1].pf_gains_new)); | ||||
|  | ||||
|     if (f->start_band == 0 && consumed + 16 <= f->framebits) { | ||||
|         int has_postfilter = ff_opus_rc_dec_log(rc, 1); | ||||
|         if (has_postfilter) { | ||||
|             float gain; | ||||
|             int tapset, octave, period; | ||||
|  | ||||
|             octave = ff_opus_rc_dec_uint(rc, 6); | ||||
|             period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1; | ||||
|             gain   = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1); | ||||
|             tapset = (opus_rc_tell(rc) + 2 <= f->framebits) ? | ||||
|                      ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0; | ||||
|  | ||||
|             for (i = 0; i < 2; i++) { | ||||
|                 CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|                 block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD); | ||||
|                 block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0]; | ||||
|                 block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1]; | ||||
|                 block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2]; | ||||
|             cm[0] = cm[1] = 0; | ||||
|             for (j = foldstart; j < foldend; j++) { | ||||
|                 cm[0] |= f->block[0].collapse_masks[j]; | ||||
|                 cm[1] |= f->block[f->channels - 1].collapse_masks[j]; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         consumed = opus_rc_tell(rc); | ||||
|     } | ||||
|  | ||||
|     return consumed; | ||||
| } | ||||
|  | ||||
| static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X) | ||||
| { | ||||
|     int i, j, k; | ||||
|  | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         int renormalize = 0; | ||||
|         float *xptr; | ||||
|         float prev[2]; | ||||
|         float Ediff, r; | ||||
|         float thresh, sqrt_1; | ||||
|         int depth; | ||||
|  | ||||
|         /* depth in 1/8 bits */ | ||||
|         depth = (1 + f->pulses[i]) / (ff_celt_freq_range[i] << f->size); | ||||
|         thresh = exp2f(-1.0 - 0.125f * depth); | ||||
|         sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << f->size); | ||||
|  | ||||
|         xptr = X + (ff_celt_freq_bands[i] << f->size); | ||||
|  | ||||
|         prev[0] = block->prev_energy[0][i]; | ||||
|         prev[1] = block->prev_energy[1][i]; | ||||
|         if (f->channels == 1) { | ||||
|             CeltBlock *block1 = &f->block[1]; | ||||
|  | ||||
|             prev[0] = FFMAX(prev[0], block1->prev_energy[0][i]); | ||||
|             prev[1] = FFMAX(prev[1], block1->prev_energy[1][i]); | ||||
|         } | ||||
|         Ediff = block->energy[i] - FFMIN(prev[0], prev[1]); | ||||
|         Ediff = FFMAX(0, Ediff); | ||||
|  | ||||
|         /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because | ||||
|         short blocks don't have the same energy as long */ | ||||
|         r = exp2f(1 - Ediff); | ||||
|         if (f->size == 3) | ||||
|             r *= M_SQRT2; | ||||
|         r = FFMIN(thresh, r) * sqrt_1; | ||||
|         for (k = 0; k < 1 << f->size; k++) { | ||||
|             /* Detect collapse */ | ||||
|             if (!(block->collapse_masks[i] & 1 << k)) { | ||||
|                 /* Fill with noise */ | ||||
|                 for (j = 0; j < ff_celt_freq_range[i]; j++) | ||||
|                     xptr[(j << f->size) + k] = (celt_rng(f) & 0x8000) ? r : -r; | ||||
|                 renormalize = 1; | ||||
|             } | ||||
|         if (f->dual_stereo && i == f->intensity_stereo) { | ||||
|             /* Switch off dual stereo to do intensity */ | ||||
|             f->dual_stereo = 0; | ||||
|             for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++) | ||||
|                 norm1[j] = (norm1[j] + norm2[j]) / 2; | ||||
|         } | ||||
|  | ||||
|         /* We just added some energy, so we need to renormalize */ | ||||
|         if (renormalize) | ||||
|             celt_renormalize_vector(xptr, ff_celt_freq_range[i] << f->size, 1.0f); | ||||
|     } | ||||
| } | ||||
|         norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL; | ||||
|         norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL; | ||||
|  | ||||
| int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc, | ||||
|                          float **output, int channels, int frame_size, | ||||
|                          int start_band,  int end_band) | ||||
| { | ||||
|     int i, j, downmix = 0; | ||||
|     int consumed;           // bits of entropy consumed thus far for this frame | ||||
|     AVTXContext *imdct; | ||||
|     av_tx_fn imdct_fn; | ||||
|         if (f->dual_stereo) { | ||||
|             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1, | ||||
|                                        f->blocks, norm_loc1, f->size, | ||||
|                                        norm1 + band_offset, 0, 1.0f, | ||||
|                                        lowband_scratch, cm[0]); | ||||
|  | ||||
|     if (channels != 1 && channels != 2) { | ||||
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n", | ||||
|                channels); | ||||
|         return AVERROR_INVALIDDATA; | ||||
|     } | ||||
|     if (start_band < 0 || start_band > end_band || end_band > CELT_MAX_BANDS) { | ||||
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n", | ||||
|                start_band, end_band); | ||||
|         return AVERROR_INVALIDDATA; | ||||
|     } | ||||
|  | ||||
|     f->silence        = 0; | ||||
|     f->transient      = 0; | ||||
|     f->anticollapse   = 0; | ||||
|     f->flushed        = 0; | ||||
|     f->channels       = channels; | ||||
|     f->start_band     = start_band; | ||||
|     f->end_band       = end_band; | ||||
|     f->framebits      = rc->rb.bytes * 8; | ||||
|  | ||||
|     f->size = av_log2(frame_size / CELT_SHORT_BLOCKSIZE); | ||||
|     if (f->size > CELT_MAX_LOG_BLOCKS || | ||||
|         frame_size != CELT_SHORT_BLOCKSIZE * (1 << f->size)) { | ||||
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n", | ||||
|                frame_size); | ||||
|         return AVERROR_INVALIDDATA; | ||||
|     } | ||||
|  | ||||
|     if (!f->output_channels) | ||||
|         f->output_channels = channels; | ||||
|  | ||||
|     for (i = 0; i < f->channels; i++) { | ||||
|         memset(f->block[i].coeffs,         0, sizeof(f->block[i].coeffs)); | ||||
|         memset(f->block[i].collapse_masks, 0, sizeof(f->block[i].collapse_masks)); | ||||
|     } | ||||
|  | ||||
|     consumed = opus_rc_tell(rc); | ||||
|  | ||||
|     /* obtain silence flag */ | ||||
|     if (consumed >= f->framebits) | ||||
|         f->silence = 1; | ||||
|     else if (consumed == 1) | ||||
|         f->silence = ff_opus_rc_dec_log(rc, 15); | ||||
|  | ||||
|  | ||||
|     if (f->silence) { | ||||
|         consumed = f->framebits; | ||||
|         rc->total_bits += f->framebits - opus_rc_tell(rc); | ||||
|     } | ||||
|  | ||||
|     /* obtain post-filter options */ | ||||
|     consumed = parse_postfilter(f, rc, consumed); | ||||
|  | ||||
|     /* obtain transient flag */ | ||||
|     if (f->size != 0 && consumed+3 <= f->framebits) | ||||
|         f->transient = ff_opus_rc_dec_log(rc, 3); | ||||
|  | ||||
|     f->blocks    = f->transient ? 1 << f->size : 1; | ||||
|     f->blocksize = frame_size / f->blocks; | ||||
|  | ||||
|     imdct = f->tx[f->transient ? 0 : f->size]; | ||||
|     imdct_fn = f->tx_fn[f->transient ? 0 : f->size]; | ||||
|  | ||||
|     if (channels == 1) { | ||||
|         for (i = 0; i < CELT_MAX_BANDS; i++) | ||||
|             f->block[0].energy[i] = FFMAX(f->block[0].energy[i], f->block[1].energy[i]); | ||||
|     } | ||||
|  | ||||
|     celt_decode_coarse_energy(f, rc); | ||||
|     celt_decode_tf_changes   (f, rc); | ||||
|     ff_celt_bitalloc         (f, rc, 0); | ||||
|     celt_decode_fine_energy  (f, rc); | ||||
|     ff_celt_quant_bands      (f, rc); | ||||
|  | ||||
|     if (f->anticollapse_needed) | ||||
|         f->anticollapse = ff_opus_rc_get_raw(rc, 1); | ||||
|  | ||||
|     celt_decode_final_energy(f, rc); | ||||
|  | ||||
|     /* apply anti-collapse processing and denormalization to | ||||
|      * each coded channel */ | ||||
|     for (i = 0; i < f->channels; i++) { | ||||
|         CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|         if (f->anticollapse) | ||||
|             process_anticollapse(f, block, f->block[i].coeffs); | ||||
|  | ||||
|         celt_denormalize(f, block, f->block[i].coeffs); | ||||
|     } | ||||
|  | ||||
|     /* stereo -> mono downmix */ | ||||
|     if (f->output_channels < f->channels) { | ||||
|         f->dsp->vector_fmac_scalar(f->block[0].coeffs, f->block[1].coeffs, 1.0, FFALIGN(frame_size, 16)); | ||||
|         downmix = 1; | ||||
|     } else if (f->output_channels > f->channels) | ||||
|         memcpy(f->block[1].coeffs, f->block[0].coeffs, frame_size * sizeof(float)); | ||||
|  | ||||
|     if (f->silence) { | ||||
|         for (i = 0; i < 2; i++) { | ||||
|             CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|             for (j = 0; j < FF_ARRAY_ELEMS(block->energy); j++) | ||||
|                 block->energy[j] = CELT_ENERGY_SILENCE; | ||||
|         } | ||||
|         memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs)); | ||||
|         memset(f->block[1].coeffs, 0, sizeof(f->block[1].coeffs)); | ||||
|     } | ||||
|  | ||||
|     /* transform and output for each output channel */ | ||||
|     for (i = 0; i < f->output_channels; i++) { | ||||
|         CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|         /* iMDCT and overlap-add */ | ||||
|         for (j = 0; j < f->blocks; j++) { | ||||
|             float *dst  = block->buf + 1024 + j * f->blocksize; | ||||
|  | ||||
|             imdct_fn(imdct, dst + CELT_OVERLAP / 2, f->block[i].coeffs + j, | ||||
|                      sizeof(float)*f->blocks); | ||||
|             f->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2, | ||||
|                                        ff_celt_window, CELT_OVERLAP / 2); | ||||
|         } | ||||
|  | ||||
|         if (downmix) | ||||
|             f->dsp->vector_fmul_scalar(&block->buf[1024], &block->buf[1024], 0.5f, frame_size); | ||||
|  | ||||
|         /* postfilter */ | ||||
|         celt_postfilter(f, block); | ||||
|  | ||||
|         /* deemphasis */ | ||||
|         block->emph_coeff = f->opusdsp.deemphasis(output[i], | ||||
|                                                   &block->buf[1024 - frame_size], | ||||
|                                                   block->emph_coeff, frame_size); | ||||
|     } | ||||
|  | ||||
|     if (channels == 1) | ||||
|         memcpy(f->block[1].energy, f->block[0].energy, sizeof(f->block[0].energy)); | ||||
|  | ||||
|     for (i = 0; i < 2; i++ ) { | ||||
|         CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|         if (!f->transient) { | ||||
|             memcpy(block->prev_energy[1], block->prev_energy[0], sizeof(block->prev_energy[0])); | ||||
|             memcpy(block->prev_energy[0], block->energy,         sizeof(block->prev_energy[0])); | ||||
|             cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1, | ||||
|                                        f->blocks, norm_loc2, f->size, | ||||
|                                        norm2 + band_offset, 0, 1.0f, | ||||
|                                        lowband_scratch, cm[1]); | ||||
|         } else { | ||||
|             for (j = 0; j < CELT_MAX_BANDS; j++) | ||||
|                 block->prev_energy[0][j] = FFMIN(block->prev_energy[0][j], block->energy[j]); | ||||
|             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X,    Y, band_size, b >> 0, | ||||
|                                        f->blocks, norm_loc1, f->size, | ||||
|                                        norm1 + band_offset, 0, 1.0f, | ||||
|                                        lowband_scratch, cm[0] | cm[1]); | ||||
|             cm[1] = cm[0]; | ||||
|         } | ||||
|  | ||||
|         for (j = 0; j < f->start_band; j++) { | ||||
|             block->prev_energy[0][j] = CELT_ENERGY_SILENCE; | ||||
|             block->energy[j]         = 0.0; | ||||
|         f->block[0].collapse_masks[i]               = (uint8_t)cm[0]; | ||||
|         f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1]; | ||||
|         f->remaining += f->pulses[i] + consumed; | ||||
|  | ||||
|         /* Update the folding position only as long as we have 1 bit/sample depth */ | ||||
|         update_lowband = (b > band_size << 3); | ||||
|     } | ||||
| } | ||||
|  | ||||
| #define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2) | ||||
|  | ||||
| void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode) | ||||
| { | ||||
|     int i, j, low, high, total, done, bandbits, remaining, tbits_8ths; | ||||
|     int skip_startband      = f->start_band; | ||||
|     int skip_bit            = 0; | ||||
|     int intensitystereo_bit = 0; | ||||
|     int dualstereo_bit      = 0; | ||||
|     int dynalloc            = 6; | ||||
|     int extrabits           = 0; | ||||
|  | ||||
|     int boost[CELT_MAX_BANDS] = { 0 }; | ||||
|     int trim_offset[CELT_MAX_BANDS]; | ||||
|     int threshold[CELT_MAX_BANDS]; | ||||
|     int bits1[CELT_MAX_BANDS]; | ||||
|     int bits2[CELT_MAX_BANDS]; | ||||
|  | ||||
|     /* Spread */ | ||||
|     if (opus_rc_tell(rc) + 4 <= f->framebits) { | ||||
|         if (encode) | ||||
|             ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread); | ||||
|         else | ||||
|             f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread); | ||||
|     } else { | ||||
|         f->spread = CELT_SPREAD_NORMAL; | ||||
|     } | ||||
|  | ||||
|     /* Initialize static allocation caps */ | ||||
|     for (i = 0; i < CELT_MAX_BANDS; i++) | ||||
|         f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]); | ||||
|  | ||||
|     /* Band boosts */ | ||||
|     tbits_8ths = f->framebits << 3; | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size; | ||||
|         int b_dynalloc = dynalloc; | ||||
|         int boost_amount = f->alloc_boost[i]; | ||||
|         quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta)); | ||||
|  | ||||
|         while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) { | ||||
|             int is_boost; | ||||
|             if (encode) { | ||||
|                 is_boost = boost_amount--; | ||||
|                 ff_opus_rc_enc_log(rc, is_boost, b_dynalloc); | ||||
|             } else { | ||||
|                 is_boost = ff_opus_rc_dec_log(rc, b_dynalloc); | ||||
|             } | ||||
|  | ||||
|             if (!is_boost) | ||||
|                 break; | ||||
|  | ||||
|             boost[i]   += quanta; | ||||
|             tbits_8ths -= quanta; | ||||
|  | ||||
|             b_dynalloc = 1; | ||||
|         } | ||||
|         for (j = f->end_band; j < CELT_MAX_BANDS; j++) { | ||||
|             block->prev_energy[0][j] = CELT_ENERGY_SILENCE; | ||||
|             block->energy[j]         = 0.0; | ||||
|  | ||||
|         if (boost[i]) | ||||
|             dynalloc = FFMAX(dynalloc - 1, 2); | ||||
|     } | ||||
|  | ||||
|     /* Allocation trim */ | ||||
|     if (!encode) | ||||
|         f->alloc_trim = 5; | ||||
|     if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths) | ||||
|         if (encode) | ||||
|             ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim); | ||||
|         else | ||||
|             f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim); | ||||
|  | ||||
|     /* Anti-collapse bit reservation */ | ||||
|     tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1; | ||||
|     f->anticollapse_needed = 0; | ||||
|     if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3)) | ||||
|         f->anticollapse_needed = 1 << 3; | ||||
|     tbits_8ths -= f->anticollapse_needed; | ||||
|  | ||||
|     /* Band skip bit reservation */ | ||||
|     if (tbits_8ths >= 1 << 3) | ||||
|         skip_bit = 1 << 3; | ||||
|     tbits_8ths -= skip_bit; | ||||
|  | ||||
|     /* Intensity/dual stereo bit reservation */ | ||||
|     if (f->channels == 2) { | ||||
|         intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band]; | ||||
|         if (intensitystereo_bit <= tbits_8ths) { | ||||
|             tbits_8ths -= intensitystereo_bit; | ||||
|             if (tbits_8ths >= 1 << 3) { | ||||
|                 dualstereo_bit = 1 << 3; | ||||
|                 tbits_8ths -= 1 << 3; | ||||
|             } | ||||
|         } else { | ||||
|             intensitystereo_bit = 0; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     f->seed = rc->range; | ||||
|     /* Trim offsets */ | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         int trim     = f->alloc_trim - 5 - f->size; | ||||
|         int band     = ff_celt_freq_range[i] * (f->end_band - i - 1); | ||||
|         int duration = f->size + 3; | ||||
|         int scale    = duration + f->channels - 1; | ||||
|  | ||||
|     return 0; | ||||
| } | ||||
|         /* PVQ minimum allocation threshold, below this value the band is | ||||
|          * skipped */ | ||||
|         threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4, | ||||
|                              f->channels << 3); | ||||
|  | ||||
| void ff_celt_flush(CeltFrame *f) | ||||
| { | ||||
|     int i, j; | ||||
|         trim_offset[i] = trim * (band << scale) >> 6; | ||||
|  | ||||
|     if (f->flushed) | ||||
|         return; | ||||
|  | ||||
|     for (i = 0; i < 2; i++) { | ||||
|         CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|         for (j = 0; j < CELT_MAX_BANDS; j++) | ||||
|             block->prev_energy[0][j] = block->prev_energy[1][j] = CELT_ENERGY_SILENCE; | ||||
|  | ||||
|         memset(block->energy, 0, sizeof(block->energy)); | ||||
|         memset(block->buf,    0, sizeof(block->buf)); | ||||
|  | ||||
|         memset(block->pf_gains,     0, sizeof(block->pf_gains)); | ||||
|         memset(block->pf_gains_old, 0, sizeof(block->pf_gains_old)); | ||||
|         memset(block->pf_gains_new, 0, sizeof(block->pf_gains_new)); | ||||
|  | ||||
|         /* libopus uses CELT_EMPH_COEFF on init, but 0 is better since there's | ||||
|          * a lesser discontinuity when seeking. | ||||
|          * The deemphasis functions differ from libopus in that they require | ||||
|          * an initial state divided by the coefficient. */ | ||||
|         block->emph_coeff = 0.0f / CELT_EMPH_COEFF; | ||||
|     } | ||||
|     f->seed = 0; | ||||
|  | ||||
|     f->flushed = 1; | ||||
| } | ||||
|  | ||||
| void ff_celt_free(CeltFrame **f) | ||||
| { | ||||
|     CeltFrame *frm = *f; | ||||
|     int i; | ||||
|  | ||||
|     if (!frm) | ||||
|         return; | ||||
|  | ||||
|     for (i = 0; i < FF_ARRAY_ELEMS(frm->tx); i++) | ||||
|         av_tx_uninit(&frm->tx[i]); | ||||
|  | ||||
|     ff_celt_pvq_uninit(&frm->pvq); | ||||
|  | ||||
|     av_freep(&frm->dsp); | ||||
|     av_freep(f); | ||||
| } | ||||
|  | ||||
| int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels, | ||||
|                  int apply_phase_inv) | ||||
| { | ||||
|     CeltFrame *frm; | ||||
|     int i, ret; | ||||
|  | ||||
|     if (output_channels != 1 && output_channels != 2) { | ||||
|         av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n", | ||||
|                output_channels); | ||||
|         return AVERROR(EINVAL); | ||||
|         if (ff_celt_freq_range[i] << f->size == 1) | ||||
|             trim_offset[i] -= f->channels << 3; | ||||
|     } | ||||
|  | ||||
|     frm = av_mallocz(sizeof(*frm)); | ||||
|     if (!frm) | ||||
|         return AVERROR(ENOMEM); | ||||
|     /* Bisection */ | ||||
|     low  = 1; | ||||
|     high = CELT_VECTORS - 1; | ||||
|     while (low <= high) { | ||||
|         int center = (low + high) >> 1; | ||||
|         done = total = 0; | ||||
|  | ||||
|     frm->avctx           = avctx; | ||||
|     frm->output_channels = output_channels; | ||||
|     frm->apply_phase_inv = apply_phase_inv; | ||||
|         for (i = f->end_band - 1; i >= f->start_band; i--) { | ||||
|             bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]); | ||||
|  | ||||
|     for (i = 0; i < FF_ARRAY_ELEMS(frm->tx); i++) { | ||||
|         const float scale = -1.0f/32768; | ||||
|         if ((ret = av_tx_init(&frm->tx[i], &frm->tx_fn[i], AV_TX_FLOAT_MDCT, 1, 15 << (i + 3), &scale, 0)) < 0) | ||||
|             goto fail; | ||||
|             if (bandbits) | ||||
|                 bandbits = FFMAX(bandbits + trim_offset[i], 0); | ||||
|             bandbits += boost[i]; | ||||
|  | ||||
|             if (bandbits >= threshold[i] || done) { | ||||
|                 done = 1; | ||||
|                 total += FFMIN(bandbits, f->caps[i]); | ||||
|             } else if (bandbits >= f->channels << 3) { | ||||
|                 total += f->channels << 3; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         if (total > tbits_8ths) | ||||
|             high = center - 1; | ||||
|         else | ||||
|             low = center + 1; | ||||
|     } | ||||
|     high = low--; | ||||
|  | ||||
|     /* Bisection */ | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]); | ||||
|         bits2[i] = high >= CELT_VECTORS ? f->caps[i] : | ||||
|                    NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]); | ||||
|  | ||||
|         if (bits1[i]) | ||||
|             bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0); | ||||
|         if (bits2[i]) | ||||
|             bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0); | ||||
|  | ||||
|         if (low) | ||||
|             bits1[i] += boost[i]; | ||||
|         bits2[i] += boost[i]; | ||||
|  | ||||
|         if (boost[i]) | ||||
|             skip_startband = i; | ||||
|         bits2[i] = FFMAX(bits2[i] - bits1[i], 0); | ||||
|     } | ||||
|  | ||||
|     if ((ret = ff_celt_pvq_init(&frm->pvq, 0)) < 0) | ||||
|         goto fail; | ||||
|     /* Bisection */ | ||||
|     low  = 0; | ||||
|     high = 1 << CELT_ALLOC_STEPS; | ||||
|     for (i = 0; i < CELT_ALLOC_STEPS; i++) { | ||||
|         int center = (low + high) >> 1; | ||||
|         done = total = 0; | ||||
|  | ||||
|     frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); | ||||
|     if (!frm->dsp) { | ||||
|         ret = AVERROR(ENOMEM); | ||||
|         goto fail; | ||||
|         for (j = f->end_band - 1; j >= f->start_band; j--) { | ||||
|             bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS); | ||||
|  | ||||
|             if (bandbits >= threshold[j] || done) { | ||||
|                 done = 1; | ||||
|                 total += FFMIN(bandbits, f->caps[j]); | ||||
|             } else if (bandbits >= f->channels << 3) | ||||
|                 total += f->channels << 3; | ||||
|         } | ||||
|         if (total > tbits_8ths) | ||||
|             high = center; | ||||
|         else | ||||
|             low = center; | ||||
|     } | ||||
|  | ||||
|     ff_opus_dsp_init(&frm->opusdsp); | ||||
|     ff_celt_flush(frm); | ||||
|     /* Bisection */ | ||||
|     done = total = 0; | ||||
|     for (i = f->end_band - 1; i >= f->start_band; i--) { | ||||
|         bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS); | ||||
|  | ||||
|     *f = frm; | ||||
|         if (bandbits >= threshold[i] || done) | ||||
|             done = 1; | ||||
|         else | ||||
|             bandbits = (bandbits >= f->channels << 3) ? | ||||
|             f->channels << 3 : 0; | ||||
|  | ||||
|     return 0; | ||||
| fail: | ||||
|     ff_celt_free(&frm); | ||||
|     return ret; | ||||
|         bandbits     = FFMIN(bandbits, f->caps[i]); | ||||
|         f->pulses[i] = bandbits; | ||||
|         total      += bandbits; | ||||
|     } | ||||
|  | ||||
|     /* Band skipping */ | ||||
|     for (f->coded_bands = f->end_band; ; f->coded_bands--) { | ||||
|         int allocation; | ||||
|         j = f->coded_bands - 1; | ||||
|  | ||||
|         if (j == skip_startband) { | ||||
|             /* all remaining bands are not skipped */ | ||||
|             tbits_8ths += skip_bit; | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|         /* determine the number of bits available for coding "do not skip" markers */ | ||||
|         remaining   = tbits_8ths - total; | ||||
|         bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); | ||||
|         remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); | ||||
|         allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j]; | ||||
|         allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0); | ||||
|  | ||||
|         /* a "do not skip" marker is only coded if the allocation is | ||||
|          * above the chosen threshold */ | ||||
|         if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) { | ||||
|             int do_not_skip; | ||||
|             if (encode) { | ||||
|                 do_not_skip = f->coded_bands <= f->skip_band_floor; | ||||
|                 ff_opus_rc_enc_log(rc, do_not_skip, 1); | ||||
|             } else { | ||||
|                 do_not_skip = ff_opus_rc_dec_log(rc, 1); | ||||
|             } | ||||
|  | ||||
|             if (do_not_skip) | ||||
|                 break; | ||||
|  | ||||
|             total      += 1 << 3; | ||||
|             allocation -= 1 << 3; | ||||
|         } | ||||
|  | ||||
|         /* the band is skipped, so reclaim its bits */ | ||||
|         total -= f->pulses[j]; | ||||
|         if (intensitystereo_bit) { | ||||
|             total -= intensitystereo_bit; | ||||
|             intensitystereo_bit = ff_celt_log2_frac[j - f->start_band]; | ||||
|             total += intensitystereo_bit; | ||||
|         } | ||||
|  | ||||
|         total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0; | ||||
|     } | ||||
|  | ||||
|     /* IS start band */ | ||||
|     if (encode) { | ||||
|         if (intensitystereo_bit) { | ||||
|             f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands); | ||||
|             ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band); | ||||
|         } | ||||
|     } else { | ||||
|         f->intensity_stereo = f->dual_stereo = 0; | ||||
|         if (intensitystereo_bit) | ||||
|             f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band); | ||||
|     } | ||||
|  | ||||
|     /* DS flag */ | ||||
|     if (f->intensity_stereo <= f->start_band) | ||||
|         tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */ | ||||
|     else if (dualstereo_bit) | ||||
|         if (encode) | ||||
|             ff_opus_rc_enc_log(rc, f->dual_stereo, 1); | ||||
|         else | ||||
|             f->dual_stereo = ff_opus_rc_dec_log(rc, 1); | ||||
|  | ||||
|     /* Supply the remaining bits in this frame to lower bands */ | ||||
|     remaining = tbits_8ths - total; | ||||
|     bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); | ||||
|     remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); | ||||
|     for (i = f->start_band; i < f->coded_bands; i++) { | ||||
|         const int bits = FFMIN(remaining, ff_celt_freq_range[i]); | ||||
|         f->pulses[i] += bits + bandbits * ff_celt_freq_range[i]; | ||||
|         remaining    -= bits; | ||||
|     } | ||||
|  | ||||
|     /* Finally determine the allocation */ | ||||
|     for (i = f->start_band; i < f->coded_bands; i++) { | ||||
|         int N = ff_celt_freq_range[i] << f->size; | ||||
|         int prev_extra = extrabits; | ||||
|         f->pulses[i] += extrabits; | ||||
|  | ||||
|         if (N > 1) { | ||||
|             int dof;        /* degrees of freedom */ | ||||
|             int temp;       /* dof * channels * log(dof) */ | ||||
|             int fine_bits; | ||||
|             int max_bits; | ||||
|             int offset;     /* fine energy quantization offset, i.e. | ||||
|                              * extra bits assigned over the standard | ||||
|                              * totalbits/dof */ | ||||
|  | ||||
|             extrabits = FFMAX(f->pulses[i] - f->caps[i], 0); | ||||
|             f->pulses[i] -= extrabits; | ||||
|  | ||||
|             /* intensity stereo makes use of an extra degree of freedom */ | ||||
|             dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo); | ||||
|             temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3)); | ||||
|             offset = (temp >> 1) - dof * CELT_FINE_OFFSET; | ||||
|             if (N == 2) /* dof=2 is the only case that doesn't fit the model */ | ||||
|                 offset += dof << 1; | ||||
|  | ||||
|             /* grant an additional bias for the first and second pulses */ | ||||
|             if (f->pulses[i] + offset < 2 * (dof << 3)) | ||||
|                 offset += temp >> 2; | ||||
|             else if (f->pulses[i] + offset < 3 * (dof << 3)) | ||||
|                 offset += temp >> 3; | ||||
|  | ||||
|             fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3); | ||||
|             max_bits  = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS); | ||||
|             max_bits  = FFMAX(max_bits, 0); | ||||
|             f->fine_bits[i] = av_clip(fine_bits, 0, max_bits); | ||||
|  | ||||
|             /* If fine_bits was rounded down or capped, | ||||
|              * give priority for the final fine energy pass */ | ||||
|             f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset); | ||||
|  | ||||
|             /* the remaining bits are assigned to PVQ */ | ||||
|             f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3; | ||||
|         } else { | ||||
|             /* all bits go to fine energy except for the sign bit */ | ||||
|             extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0); | ||||
|             f->pulses[i] -= extrabits; | ||||
|             f->fine_bits[i] = 0; | ||||
|             f->fine_priority[i] = 1; | ||||
|         } | ||||
|  | ||||
|         /* hand back a limited number of extra fine energy bits to this band */ | ||||
|         if (extrabits > 0) { | ||||
|             int fineextra = FFMIN(extrabits >> (f->channels + 2), | ||||
|                                   CELT_MAX_FINE_BITS - f->fine_bits[i]); | ||||
|             f->fine_bits[i] += fineextra; | ||||
|  | ||||
|             fineextra <<= f->channels + 2; | ||||
|             f->fine_priority[i] = (fineextra >= extrabits - prev_extra); | ||||
|             extrabits -= fineextra; | ||||
|         } | ||||
|     } | ||||
|     f->remaining = extrabits; | ||||
|  | ||||
|     /* skipped bands dedicate all of their bits for fine energy */ | ||||
|     for (; i < f->end_band; i++) { | ||||
|         f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3; | ||||
|         f->pulses[i]        = 0; | ||||
|         f->fine_priority[i] = f->fine_bits[i] < 1; | ||||
|     } | ||||
| } | ||||
|   | ||||
							
								
								
									
										586
									
								
								libavcodec/opusdec_celt.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										586
									
								
								libavcodec/opusdec_celt.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,586 @@ | ||||
| /* | ||||
|  * Copyright (c) 2012 Andrew D'Addesio | ||||
|  * Copyright (c) 2013-2014 Mozilla Corporation | ||||
|  * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com> | ||||
|  * | ||||
|  * This file is part of FFmpeg. | ||||
|  * | ||||
|  * FFmpeg is free software; you can redistribute it and/or | ||||
|  * modify it under the terms of the GNU Lesser General Public | ||||
|  * License as published by the Free Software Foundation; either | ||||
|  * version 2.1 of the License, or (at your option) any later version. | ||||
|  * | ||||
|  * FFmpeg is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | ||||
|  * Lesser General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU Lesser General Public | ||||
|  * License along with FFmpeg; if not, write to the Free Software | ||||
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @file | ||||
|  * Opus CELT decoder | ||||
|  */ | ||||
|  | ||||
| #include <float.h> | ||||
|  | ||||
| #include "opus_celt.h" | ||||
| #include "opustab.h" | ||||
| #include "opus_pvq.h" | ||||
|  | ||||
| /* Use the 2D z-transform to apply prediction in both the time domain (alpha) | ||||
|  * and the frequency domain (beta) */ | ||||
| static void celt_decode_coarse_energy(CeltFrame *f, OpusRangeCoder *rc) | ||||
| { | ||||
|     int i, j; | ||||
|     float prev[2] = { 0 }; | ||||
|     float alpha = ff_celt_alpha_coef[f->size]; | ||||
|     float beta  = ff_celt_beta_coef[f->size]; | ||||
|     const uint8_t *model = ff_celt_coarse_energy_dist[f->size][0]; | ||||
|  | ||||
|     /* intra frame */ | ||||
|     if (opus_rc_tell(rc) + 3 <= f->framebits && ff_opus_rc_dec_log(rc, 3)) { | ||||
|         alpha = 0.0f; | ||||
|         beta  = 1.0f - (4915.0f/32768.0f); | ||||
|         model = ff_celt_coarse_energy_dist[f->size][1]; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < CELT_MAX_BANDS; i++) { | ||||
|         for (j = 0; j < f->channels; j++) { | ||||
|             CeltBlock *block = &f->block[j]; | ||||
|             float value; | ||||
|             int available; | ||||
|  | ||||
|             if (i < f->start_band || i >= f->end_band) { | ||||
|                 block->energy[i] = 0.0; | ||||
|                 continue; | ||||
|             } | ||||
|  | ||||
|             available = f->framebits - opus_rc_tell(rc); | ||||
|             if (available >= 15) { | ||||
|                 /* decode using a Laplace distribution */ | ||||
|                 int k = FFMIN(i, 20) << 1; | ||||
|                 value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6); | ||||
|             } else if (available >= 2) { | ||||
|                 int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small); | ||||
|                 value = (x>>1) ^ -(x&1); | ||||
|             } else if (available >= 1) { | ||||
|                 value = -(float)ff_opus_rc_dec_log(rc, 1); | ||||
|             } else value = -1; | ||||
|  | ||||
|             block->energy[i] = FFMAX(-9.0f, block->energy[i]) * alpha + prev[j] + value; | ||||
|             prev[j] += beta * value; | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void celt_decode_fine_energy(CeltFrame *f, OpusRangeCoder *rc) | ||||
| { | ||||
|     int i; | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         int j; | ||||
|         if (!f->fine_bits[i]) | ||||
|             continue; | ||||
|  | ||||
|         for (j = 0; j < f->channels; j++) { | ||||
|             CeltBlock *block = &f->block[j]; | ||||
|             int q2; | ||||
|             float offset; | ||||
|             q2 = ff_opus_rc_get_raw(rc, f->fine_bits[i]); | ||||
|             offset = (q2 + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f - 0.5f; | ||||
|             block->energy[i] += offset; | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void celt_decode_final_energy(CeltFrame *f, OpusRangeCoder *rc) | ||||
| { | ||||
|     int priority, i, j; | ||||
|     int bits_left = f->framebits - opus_rc_tell(rc); | ||||
|  | ||||
|     for (priority = 0; priority < 2; priority++) { | ||||
|         for (i = f->start_band; i < f->end_band && bits_left >= f->channels; i++) { | ||||
|             if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS) | ||||
|                 continue; | ||||
|  | ||||
|             for (j = 0; j < f->channels; j++) { | ||||
|                 int q2; | ||||
|                 float offset; | ||||
|                 q2 = ff_opus_rc_get_raw(rc, 1); | ||||
|                 offset = (q2 - 0.5f) * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f; | ||||
|                 f->block[j].energy[i] += offset; | ||||
|                 bits_left--; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc) | ||||
| { | ||||
|     int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit; | ||||
|     int consumed, bits = f->transient ? 2 : 4; | ||||
|  | ||||
|     consumed = opus_rc_tell(rc); | ||||
|     tf_select_bit = (f->size != 0 && consumed+bits+1 <= f->framebits); | ||||
|  | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         if (consumed+bits+tf_select_bit <= f->framebits) { | ||||
|             diff ^= ff_opus_rc_dec_log(rc, bits); | ||||
|             consumed = opus_rc_tell(rc); | ||||
|             tf_changed |= diff; | ||||
|         } | ||||
|         f->tf_change[i] = diff; | ||||
|         bits = f->transient ? 4 : 5; | ||||
|     } | ||||
|  | ||||
|     if (tf_select_bit && ff_celt_tf_select[f->size][f->transient][0][tf_changed] != | ||||
|                          ff_celt_tf_select[f->size][f->transient][1][tf_changed]) | ||||
|         tf_select = ff_opus_rc_dec_log(rc, 1); | ||||
|  | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]]; | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data) | ||||
| { | ||||
|     int i, j; | ||||
|  | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         float *dst = data + (ff_celt_freq_bands[i] << f->size); | ||||
|         float log_norm = block->energy[i] + ff_celt_mean_energy[i]; | ||||
|         float norm = exp2f(FFMIN(log_norm, 32.0f)); | ||||
|  | ||||
|         for (j = 0; j < ff_celt_freq_range[i] << f->size; j++) | ||||
|             dst[j] *= norm; | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void celt_postfilter_apply_transition(CeltBlock *block, float *data) | ||||
| { | ||||
|     const int T0 = block->pf_period_old; | ||||
|     const int T1 = block->pf_period; | ||||
|  | ||||
|     float g00, g01, g02; | ||||
|     float g10, g11, g12; | ||||
|  | ||||
|     float x0, x1, x2, x3, x4; | ||||
|  | ||||
|     int i; | ||||
|  | ||||
|     if (block->pf_gains[0]     == 0.0 && | ||||
|         block->pf_gains_old[0] == 0.0) | ||||
|         return; | ||||
|  | ||||
|     g00 = block->pf_gains_old[0]; | ||||
|     g01 = block->pf_gains_old[1]; | ||||
|     g02 = block->pf_gains_old[2]; | ||||
|     g10 = block->pf_gains[0]; | ||||
|     g11 = block->pf_gains[1]; | ||||
|     g12 = block->pf_gains[2]; | ||||
|  | ||||
|     x1 = data[-T1 + 1]; | ||||
|     x2 = data[-T1]; | ||||
|     x3 = data[-T1 - 1]; | ||||
|     x4 = data[-T1 - 2]; | ||||
|  | ||||
|     for (i = 0; i < CELT_OVERLAP; i++) { | ||||
|         float w = ff_celt_window2[i]; | ||||
|         x0 = data[i - T1 + 2]; | ||||
|  | ||||
|         data[i] +=  (1.0 - w) * g00 * data[i - T0]                          + | ||||
|                     (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) + | ||||
|                     (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) + | ||||
|                     w         * g10 * x2                                    + | ||||
|                     w         * g11 * (x1 + x3)                             + | ||||
|                     w         * g12 * (x0 + x4); | ||||
|         x4 = x3; | ||||
|         x3 = x2; | ||||
|         x2 = x1; | ||||
|         x1 = x0; | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void celt_postfilter(CeltFrame *f, CeltBlock *block) | ||||
| { | ||||
|     int len = f->blocksize * f->blocks; | ||||
|     const int filter_len = len - 2 * CELT_OVERLAP; | ||||
|  | ||||
|     celt_postfilter_apply_transition(block, block->buf + 1024); | ||||
|  | ||||
|     block->pf_period_old = block->pf_period; | ||||
|     memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains)); | ||||
|  | ||||
|     block->pf_period = block->pf_period_new; | ||||
|     memcpy(block->pf_gains, block->pf_gains_new, sizeof(block->pf_gains)); | ||||
|  | ||||
|     if (len > CELT_OVERLAP) { | ||||
|         celt_postfilter_apply_transition(block, block->buf + 1024 + CELT_OVERLAP); | ||||
|  | ||||
|         if (block->pf_gains[0] > FLT_EPSILON && filter_len > 0) | ||||
|             f->opusdsp.postfilter(block->buf + 1024 + 2 * CELT_OVERLAP, | ||||
|                                   block->pf_period, block->pf_gains, | ||||
|                                   filter_len); | ||||
|  | ||||
|         block->pf_period_old = block->pf_period; | ||||
|         memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains)); | ||||
|     } | ||||
|  | ||||
|     memmove(block->buf, block->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float)); | ||||
| } | ||||
|  | ||||
| static int parse_postfilter(CeltFrame *f, OpusRangeCoder *rc, int consumed) | ||||
| { | ||||
|     int i; | ||||
|  | ||||
|     memset(f->block[0].pf_gains_new, 0, sizeof(f->block[0].pf_gains_new)); | ||||
|     memset(f->block[1].pf_gains_new, 0, sizeof(f->block[1].pf_gains_new)); | ||||
|  | ||||
|     if (f->start_band == 0 && consumed + 16 <= f->framebits) { | ||||
|         int has_postfilter = ff_opus_rc_dec_log(rc, 1); | ||||
|         if (has_postfilter) { | ||||
|             float gain; | ||||
|             int tapset, octave, period; | ||||
|  | ||||
|             octave = ff_opus_rc_dec_uint(rc, 6); | ||||
|             period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1; | ||||
|             gain   = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1); | ||||
|             tapset = (opus_rc_tell(rc) + 2 <= f->framebits) ? | ||||
|                      ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0; | ||||
|  | ||||
|             for (i = 0; i < 2; i++) { | ||||
|                 CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|                 block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD); | ||||
|                 block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0]; | ||||
|                 block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1]; | ||||
|                 block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2]; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         consumed = opus_rc_tell(rc); | ||||
|     } | ||||
|  | ||||
|     return consumed; | ||||
| } | ||||
|  | ||||
| static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X) | ||||
| { | ||||
|     int i, j, k; | ||||
|  | ||||
|     for (i = f->start_band; i < f->end_band; i++) { | ||||
|         int renormalize = 0; | ||||
|         float *xptr; | ||||
|         float prev[2]; | ||||
|         float Ediff, r; | ||||
|         float thresh, sqrt_1; | ||||
|         int depth; | ||||
|  | ||||
|         /* depth in 1/8 bits */ | ||||
|         depth = (1 + f->pulses[i]) / (ff_celt_freq_range[i] << f->size); | ||||
|         thresh = exp2f(-1.0 - 0.125f * depth); | ||||
|         sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << f->size); | ||||
|  | ||||
|         xptr = X + (ff_celt_freq_bands[i] << f->size); | ||||
|  | ||||
|         prev[0] = block->prev_energy[0][i]; | ||||
|         prev[1] = block->prev_energy[1][i]; | ||||
|         if (f->channels == 1) { | ||||
|             CeltBlock *block1 = &f->block[1]; | ||||
|  | ||||
|             prev[0] = FFMAX(prev[0], block1->prev_energy[0][i]); | ||||
|             prev[1] = FFMAX(prev[1], block1->prev_energy[1][i]); | ||||
|         } | ||||
|         Ediff = block->energy[i] - FFMIN(prev[0], prev[1]); | ||||
|         Ediff = FFMAX(0, Ediff); | ||||
|  | ||||
|         /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because | ||||
|         short blocks don't have the same energy as long */ | ||||
|         r = exp2f(1 - Ediff); | ||||
|         if (f->size == 3) | ||||
|             r *= M_SQRT2; | ||||
|         r = FFMIN(thresh, r) * sqrt_1; | ||||
|         for (k = 0; k < 1 << f->size; k++) { | ||||
|             /* Detect collapse */ | ||||
|             if (!(block->collapse_masks[i] & 1 << k)) { | ||||
|                 /* Fill with noise */ | ||||
|                 for (j = 0; j < ff_celt_freq_range[i]; j++) | ||||
|                     xptr[(j << f->size) + k] = (celt_rng(f) & 0x8000) ? r : -r; | ||||
|                 renormalize = 1; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         /* We just added some energy, so we need to renormalize */ | ||||
|         if (renormalize) | ||||
|             celt_renormalize_vector(xptr, ff_celt_freq_range[i] << f->size, 1.0f); | ||||
|     } | ||||
| } | ||||
|  | ||||
| int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc, | ||||
|                          float **output, int channels, int frame_size, | ||||
|                          int start_band,  int end_band) | ||||
| { | ||||
|     int i, j, downmix = 0; | ||||
|     int consumed;           // bits of entropy consumed thus far for this frame | ||||
|     AVTXContext *imdct; | ||||
|     av_tx_fn imdct_fn; | ||||
|  | ||||
|     if (channels != 1 && channels != 2) { | ||||
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n", | ||||
|                channels); | ||||
|         return AVERROR_INVALIDDATA; | ||||
|     } | ||||
|     if (start_band < 0 || start_band > end_band || end_band > CELT_MAX_BANDS) { | ||||
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n", | ||||
|                start_band, end_band); | ||||
|         return AVERROR_INVALIDDATA; | ||||
|     } | ||||
|  | ||||
|     f->silence        = 0; | ||||
|     f->transient      = 0; | ||||
|     f->anticollapse   = 0; | ||||
|     f->flushed        = 0; | ||||
|     f->channels       = channels; | ||||
|     f->start_band     = start_band; | ||||
|     f->end_band       = end_band; | ||||
|     f->framebits      = rc->rb.bytes * 8; | ||||
|  | ||||
|     f->size = av_log2(frame_size / CELT_SHORT_BLOCKSIZE); | ||||
|     if (f->size > CELT_MAX_LOG_BLOCKS || | ||||
|         frame_size != CELT_SHORT_BLOCKSIZE * (1 << f->size)) { | ||||
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n", | ||||
|                frame_size); | ||||
|         return AVERROR_INVALIDDATA; | ||||
|     } | ||||
|  | ||||
|     if (!f->output_channels) | ||||
|         f->output_channels = channels; | ||||
|  | ||||
|     for (i = 0; i < f->channels; i++) { | ||||
|         memset(f->block[i].coeffs,         0, sizeof(f->block[i].coeffs)); | ||||
|         memset(f->block[i].collapse_masks, 0, sizeof(f->block[i].collapse_masks)); | ||||
|     } | ||||
|  | ||||
|     consumed = opus_rc_tell(rc); | ||||
|  | ||||
|     /* obtain silence flag */ | ||||
|     if (consumed >= f->framebits) | ||||
|         f->silence = 1; | ||||
|     else if (consumed == 1) | ||||
|         f->silence = ff_opus_rc_dec_log(rc, 15); | ||||
|  | ||||
|  | ||||
|     if (f->silence) { | ||||
|         consumed = f->framebits; | ||||
|         rc->total_bits += f->framebits - opus_rc_tell(rc); | ||||
|     } | ||||
|  | ||||
|     /* obtain post-filter options */ | ||||
|     consumed = parse_postfilter(f, rc, consumed); | ||||
|  | ||||
|     /* obtain transient flag */ | ||||
|     if (f->size != 0 && consumed+3 <= f->framebits) | ||||
|         f->transient = ff_opus_rc_dec_log(rc, 3); | ||||
|  | ||||
|     f->blocks    = f->transient ? 1 << f->size : 1; | ||||
|     f->blocksize = frame_size / f->blocks; | ||||
|  | ||||
|     imdct = f->tx[f->transient ? 0 : f->size]; | ||||
|     imdct_fn = f->tx_fn[f->transient ? 0 : f->size]; | ||||
|  | ||||
|     if (channels == 1) { | ||||
|         for (i = 0; i < CELT_MAX_BANDS; i++) | ||||
|             f->block[0].energy[i] = FFMAX(f->block[0].energy[i], f->block[1].energy[i]); | ||||
|     } | ||||
|  | ||||
|     celt_decode_coarse_energy(f, rc); | ||||
|     celt_decode_tf_changes   (f, rc); | ||||
|     ff_celt_bitalloc         (f, rc, 0); | ||||
|     celt_decode_fine_energy  (f, rc); | ||||
|     ff_celt_quant_bands      (f, rc); | ||||
|  | ||||
|     if (f->anticollapse_needed) | ||||
|         f->anticollapse = ff_opus_rc_get_raw(rc, 1); | ||||
|  | ||||
|     celt_decode_final_energy(f, rc); | ||||
|  | ||||
|     /* apply anti-collapse processing and denormalization to | ||||
|      * each coded channel */ | ||||
|     for (i = 0; i < f->channels; i++) { | ||||
|         CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|         if (f->anticollapse) | ||||
|             process_anticollapse(f, block, f->block[i].coeffs); | ||||
|  | ||||
|         celt_denormalize(f, block, f->block[i].coeffs); | ||||
|     } | ||||
|  | ||||
|     /* stereo -> mono downmix */ | ||||
|     if (f->output_channels < f->channels) { | ||||
|         f->dsp->vector_fmac_scalar(f->block[0].coeffs, f->block[1].coeffs, 1.0, FFALIGN(frame_size, 16)); | ||||
|         downmix = 1; | ||||
|     } else if (f->output_channels > f->channels) | ||||
|         memcpy(f->block[1].coeffs, f->block[0].coeffs, frame_size * sizeof(float)); | ||||
|  | ||||
|     if (f->silence) { | ||||
|         for (i = 0; i < 2; i++) { | ||||
|             CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|             for (j = 0; j < FF_ARRAY_ELEMS(block->energy); j++) | ||||
|                 block->energy[j] = CELT_ENERGY_SILENCE; | ||||
|         } | ||||
|         memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs)); | ||||
|         memset(f->block[1].coeffs, 0, sizeof(f->block[1].coeffs)); | ||||
|     } | ||||
|  | ||||
|     /* transform and output for each output channel */ | ||||
|     for (i = 0; i < f->output_channels; i++) { | ||||
|         CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|         /* iMDCT and overlap-add */ | ||||
|         for (j = 0; j < f->blocks; j++) { | ||||
|             float *dst  = block->buf + 1024 + j * f->blocksize; | ||||
|  | ||||
|             imdct_fn(imdct, dst + CELT_OVERLAP / 2, f->block[i].coeffs + j, | ||||
|                      sizeof(float)*f->blocks); | ||||
|             f->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2, | ||||
|                                        ff_celt_window, CELT_OVERLAP / 2); | ||||
|         } | ||||
|  | ||||
|         if (downmix) | ||||
|             f->dsp->vector_fmul_scalar(&block->buf[1024], &block->buf[1024], 0.5f, frame_size); | ||||
|  | ||||
|         /* postfilter */ | ||||
|         celt_postfilter(f, block); | ||||
|  | ||||
|         /* deemphasis */ | ||||
|         block->emph_coeff = f->opusdsp.deemphasis(output[i], | ||||
|                                                   &block->buf[1024 - frame_size], | ||||
|                                                   block->emph_coeff, frame_size); | ||||
|     } | ||||
|  | ||||
|     if (channels == 1) | ||||
|         memcpy(f->block[1].energy, f->block[0].energy, sizeof(f->block[0].energy)); | ||||
|  | ||||
|     for (i = 0; i < 2; i++ ) { | ||||
|         CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|         if (!f->transient) { | ||||
|             memcpy(block->prev_energy[1], block->prev_energy[0], sizeof(block->prev_energy[0])); | ||||
|             memcpy(block->prev_energy[0], block->energy,         sizeof(block->prev_energy[0])); | ||||
|         } else { | ||||
|             for (j = 0; j < CELT_MAX_BANDS; j++) | ||||
|                 block->prev_energy[0][j] = FFMIN(block->prev_energy[0][j], block->energy[j]); | ||||
|         } | ||||
|  | ||||
|         for (j = 0; j < f->start_band; j++) { | ||||
|             block->prev_energy[0][j] = CELT_ENERGY_SILENCE; | ||||
|             block->energy[j]         = 0.0; | ||||
|         } | ||||
|         for (j = f->end_band; j < CELT_MAX_BANDS; j++) { | ||||
|             block->prev_energy[0][j] = CELT_ENERGY_SILENCE; | ||||
|             block->energy[j]         = 0.0; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     f->seed = rc->range; | ||||
|  | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
| void ff_celt_flush(CeltFrame *f) | ||||
| { | ||||
|     int i, j; | ||||
|  | ||||
|     if (f->flushed) | ||||
|         return; | ||||
|  | ||||
|     for (i = 0; i < 2; i++) { | ||||
|         CeltBlock *block = &f->block[i]; | ||||
|  | ||||
|         for (j = 0; j < CELT_MAX_BANDS; j++) | ||||
|             block->prev_energy[0][j] = block->prev_energy[1][j] = CELT_ENERGY_SILENCE; | ||||
|  | ||||
|         memset(block->energy, 0, sizeof(block->energy)); | ||||
|         memset(block->buf,    0, sizeof(block->buf)); | ||||
|  | ||||
|         memset(block->pf_gains,     0, sizeof(block->pf_gains)); | ||||
|         memset(block->pf_gains_old, 0, sizeof(block->pf_gains_old)); | ||||
|         memset(block->pf_gains_new, 0, sizeof(block->pf_gains_new)); | ||||
|  | ||||
|         /* libopus uses CELT_EMPH_COEFF on init, but 0 is better since there's | ||||
|          * a lesser discontinuity when seeking. | ||||
|          * The deemphasis functions differ from libopus in that they require | ||||
|          * an initial state divided by the coefficient. */ | ||||
|         block->emph_coeff = 0.0f / CELT_EMPH_COEFF; | ||||
|     } | ||||
|     f->seed = 0; | ||||
|  | ||||
|     f->flushed = 1; | ||||
| } | ||||
|  | ||||
| void ff_celt_free(CeltFrame **f) | ||||
| { | ||||
|     CeltFrame *frm = *f; | ||||
|     int i; | ||||
|  | ||||
|     if (!frm) | ||||
|         return; | ||||
|  | ||||
|     for (i = 0; i < FF_ARRAY_ELEMS(frm->tx); i++) | ||||
|         av_tx_uninit(&frm->tx[i]); | ||||
|  | ||||
|     ff_celt_pvq_uninit(&frm->pvq); | ||||
|  | ||||
|     av_freep(&frm->dsp); | ||||
|     av_freep(f); | ||||
| } | ||||
|  | ||||
| int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels, | ||||
|                  int apply_phase_inv) | ||||
| { | ||||
|     CeltFrame *frm; | ||||
|     int i, ret; | ||||
|  | ||||
|     if (output_channels != 1 && output_channels != 2) { | ||||
|         av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n", | ||||
|                output_channels); | ||||
|         return AVERROR(EINVAL); | ||||
|     } | ||||
|  | ||||
|     frm = av_mallocz(sizeof(*frm)); | ||||
|     if (!frm) | ||||
|         return AVERROR(ENOMEM); | ||||
|  | ||||
|     frm->avctx           = avctx; | ||||
|     frm->output_channels = output_channels; | ||||
|     frm->apply_phase_inv = apply_phase_inv; | ||||
|  | ||||
|     for (i = 0; i < FF_ARRAY_ELEMS(frm->tx); i++) { | ||||
|         const float scale = -1.0f/32768; | ||||
|         if ((ret = av_tx_init(&frm->tx[i], &frm->tx_fn[i], AV_TX_FLOAT_MDCT, 1, 15 << (i + 3), &scale, 0)) < 0) | ||||
|             goto fail; | ||||
|     } | ||||
|  | ||||
|     if ((ret = ff_celt_pvq_init(&frm->pvq, 0)) < 0) | ||||
|         goto fail; | ||||
|  | ||||
|     frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); | ||||
|     if (!frm->dsp) { | ||||
|         ret = AVERROR(ENOMEM); | ||||
|         goto fail; | ||||
|     } | ||||
|  | ||||
|     ff_opus_dsp_init(&frm->opusdsp); | ||||
|     ff_celt_flush(frm); | ||||
|  | ||||
|     *f = frm; | ||||
|  | ||||
|     return 0; | ||||
| fail: | ||||
|     ff_celt_free(&frm); | ||||
|     return ret; | ||||
| } | ||||
		Reference in New Issue
	
	Block a user