1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00

lavfi/dnn_backend_tf: Separate function for Completion Callback

This commit rearranges the existing code to create a separate function
for the completion callback in execute_model_tf.

Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
This commit is contained in:
Shubhanshu Saxena 2021-07-05 16:00:57 +05:30 committed by Guo Yejun
parent b849228ae0
commit 84e4e60fdc

View File

@ -915,6 +915,65 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *reque
return DNN_SUCCESS;
}
static void infer_completion_callback(void *args) {
TFRequestItem *request = args;
InferenceItem *inference = request->inference;
TaskItem *task = inference->task;
DNNData *outputs;
TFInferRequest *infer_request = request->infer_request;
TFModel *tf_model = task->model;
TFContext *ctx = &tf_model->ctx;
outputs = av_malloc_array(task->nb_output, sizeof(*outputs));
if (!outputs) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n");
goto err;
}
for (uint32_t i = 0; i < task->nb_output; ++i) {
outputs[i].height = TF_Dim(infer_request->output_tensors[i], 1);
outputs[i].width = TF_Dim(infer_request->output_tensors[i], 2);
outputs[i].channels = TF_Dim(infer_request->output_tensors[i], 3);
outputs[i].data = TF_TensorData(infer_request->output_tensors[i]);
outputs[i].dt = TF_TensorType(infer_request->output_tensors[i]);
}
switch (tf_model->model->func_type) {
case DFT_PROCESS_FRAME:
//it only support 1 output if it's frame in & frame out
if (task->do_ioproc) {
if (tf_model->model->frame_post_proc != NULL) {
tf_model->model->frame_post_proc(task->out_frame, outputs, tf_model->model->filter_ctx);
} else {
ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx);
}
} else {
task->out_frame->width = outputs[0].width;
task->out_frame->height = outputs[0].height;
}
break;
case DFT_ANALYTICS_DETECT:
if (!tf_model->model->detect_post_proc) {
av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n");
return;
}
tf_model->model->detect_post_proc(task->out_frame, outputs, task->nb_output, tf_model->model->filter_ctx);
break;
default:
av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n");
goto err;
}
task->inference_done++;
err:
tf_free_request(infer_request);
av_freep(&outputs);
if (ff_safe_queue_push_back(tf_model->request_queue, request) < 0) {
av_freep(&request->infer_request);
av_freep(&request);
av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n");
}
}
static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_queue)
{
TFModel *tf_model;
@ -922,7 +981,6 @@ static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_q
TFInferRequest *infer_request;
InferenceItem *inference;
TaskItem *task;
DNNData *outputs;
inference = ff_queue_peek_front(inference_queue);
task = inference->task;
@ -944,56 +1002,11 @@ static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_q
task->nb_output, NULL, 0, NULL,
tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK) {
tf_free_request(infer_request);
av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n");
return DNN_ERROR;
}
outputs = av_malloc_array(task->nb_output, sizeof(*outputs));
if (!outputs) {
tf_free_request(infer_request);
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n");
av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n");
return DNN_ERROR;
}
for (uint32_t i = 0; i < task->nb_output; ++i) {
outputs[i].height = TF_Dim(infer_request->output_tensors[i], 1);
outputs[i].width = TF_Dim(infer_request->output_tensors[i], 2);
outputs[i].channels = TF_Dim(infer_request->output_tensors[i], 3);
outputs[i].data = TF_TensorData(infer_request->output_tensors[i]);
outputs[i].dt = TF_TensorType(infer_request->output_tensors[i]);
}
switch (tf_model->model->func_type) {
case DFT_PROCESS_FRAME:
//it only support 1 output if it's frame in & frame out
if (task->do_ioproc) {
if (tf_model->model->frame_post_proc != NULL) {
tf_model->model->frame_post_proc(task->out_frame, outputs, tf_model->model->filter_ctx);
} else {
ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx);
}
} else {
task->out_frame->width = outputs[0].width;
task->out_frame->height = outputs[0].height;
}
break;
case DFT_ANALYTICS_DETECT:
if (!tf_model->model->detect_post_proc) {
av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n");
return DNN_ERROR;
}
tf_model->model->detect_post_proc(task->out_frame, outputs, task->nb_output, tf_model->model->filter_ctx);
break;
default:
tf_free_request(infer_request);
av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n");
return DNN_ERROR;
}
task->inference_done++;
tf_free_request(infer_request);
av_freep(&outputs);
ff_safe_queue_push_back(tf_model->request_queue, request);
infer_completion_callback(request);
return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_ERROR;
}
}