1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00

libavfilter: Code style fixes for pointers in DNN module and sr filter.

Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
Sergey Lavrushkin 2018-07-27 19:34:02 +03:00 committed by Pedro Arthur
parent 4eb63efbda
commit 9d87897ba8
9 changed files with 150 additions and 150 deletions

View File

@ -34,15 +34,15 @@ typedef enum {RELU, TANH, SIGMOID} ActivationFunc;
typedef struct Layer{
LayerType type;
float* output;
void* params;
float *output;
void *params;
} Layer;
typedef struct ConvolutionalParams{
int32_t input_num, output_num, kernel_size;
ActivationFunc activation;
float* kernel;
float* biases;
float *kernel;
float *biases;
} ConvolutionalParams;
typedef struct InputParams{
@ -55,16 +55,16 @@ typedef struct DepthToSpaceParams{
// Represents simple feed-forward convolutional network.
typedef struct ConvolutionalNetwork{
Layer* layers;
Layer *layers;
int32_t layers_num;
} ConvolutionalNetwork;
static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNData* output)
static DNNReturnType set_input_output_native(void *model, DNNData *input, DNNData *output)
{
ConvolutionalNetwork* network = (ConvolutionalNetwork*)model;
InputParams* input_params;
ConvolutionalParams* conv_params;
DepthToSpaceParams* depth_to_space_params;
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
InputParams *input_params;
ConvolutionalParams *conv_params;
DepthToSpaceParams *depth_to_space_params;
int cur_width, cur_height, cur_channels;
int32_t layer;
@ -72,7 +72,7 @@ static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNDat
return DNN_ERROR;
}
else{
input_params = (InputParams*)network->layers[0].params;
input_params = (InputParams *)network->layers[0].params;
input_params->width = cur_width = input->width;
input_params->height = cur_height = input->height;
input_params->channels = cur_channels = input->channels;
@ -88,14 +88,14 @@ static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNDat
for (layer = 1; layer < network->layers_num; ++layer){
switch (network->layers[layer].type){
case CONV:
conv_params = (ConvolutionalParams*)network->layers[layer].params;
conv_params = (ConvolutionalParams *)network->layers[layer].params;
if (conv_params->input_num != cur_channels){
return DNN_ERROR;
}
cur_channels = conv_params->output_num;
break;
case DEPTH_TO_SPACE:
depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params;
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
if (cur_channels % (depth_to_space_params->block_size * depth_to_space_params->block_size) != 0){
return DNN_ERROR;
}
@ -127,16 +127,16 @@ static DNNReturnType set_input_output_native(void* model, DNNData* input, DNNDat
// layers_num,layer_type,layer_parameterss,layer_type,layer_parameters...
// For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases
// For DEPTH_TO_SPACE layer: block_size
DNNModel* ff_dnn_load_model_native(const char* model_filename)
DNNModel *ff_dnn_load_model_native(const char *model_filename)
{
DNNModel* model = NULL;
ConvolutionalNetwork* network = NULL;
AVIOContext* model_file_context;
DNNModel *model = NULL;
ConvolutionalNetwork *network = NULL;
AVIOContext *model_file_context;
int file_size, dnn_size, kernel_size, i;
int32_t layer;
LayerType layer_type;
ConvolutionalParams* conv_params;
DepthToSpaceParams* depth_to_space_params;
ConvolutionalParams *conv_params;
DepthToSpaceParams *depth_to_space_params;
model = av_malloc(sizeof(DNNModel));
if (!model){
@ -155,7 +155,7 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename)
av_freep(&model);
return NULL;
}
model->model = (void*)network;
model->model = (void *)network;
network->layers_num = 1 + (int32_t)avio_rl32(model_file_context);
dnn_size = 4;
@ -251,10 +251,10 @@ DNNModel* ff_dnn_load_model_native(const char* model_filename)
return model;
}
static int set_up_conv_layer(Layer* layer, const float* kernel, const float* biases, ActivationFunc activation,
static int set_up_conv_layer(Layer *layer, const float *kernel, const float *biases, ActivationFunc activation,
int32_t input_num, int32_t output_num, int32_t size)
{
ConvolutionalParams* conv_params;
ConvolutionalParams *conv_params;
int kernel_size;
conv_params = av_malloc(sizeof(ConvolutionalParams));
@ -282,11 +282,11 @@ static int set_up_conv_layer(Layer* layer, const float* kernel, const float* bia
return DNN_SUCCESS;
}
DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type)
DNNModel *ff_dnn_load_default_model_native(DNNDefaultModel model_type)
{
DNNModel* model = NULL;
ConvolutionalNetwork* network = NULL;
DepthToSpaceParams* depth_to_space_params;
DNNModel *model = NULL;
ConvolutionalNetwork *network = NULL;
DepthToSpaceParams *depth_to_space_params;
int32_t layer;
model = av_malloc(sizeof(DNNModel));
@ -299,7 +299,7 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type)
av_freep(&model);
return NULL;
}
model->model = (void*)network;
model->model = (void *)network;
switch (model_type){
case DNN_SRCNN:
@ -365,7 +365,7 @@ DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type)
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
static void convolve(const float* input, float* output, const ConvolutionalParams* conv_params, int width, int height)
static void convolve(const float *input, float *output, const ConvolutionalParams *conv_params, int width, int height)
{
int y, x, n_filter, ch, kernel_y, kernel_x;
int radius = conv_params->kernel_size >> 1;
@ -403,7 +403,7 @@ static void convolve(const float* input, float* output, const ConvolutionalParam
}
}
static void depth_to_space(const float* input, float* output, int block_size, int width, int height, int channels)
static void depth_to_space(const float *input, float *output, int block_size, int width, int height, int channels)
{
int y, x, by, bx, ch;
int new_channels = channels / (block_size * block_size);
@ -426,20 +426,20 @@ static void depth_to_space(const float* input, float* output, int block_size, in
}
}
DNNReturnType ff_dnn_execute_model_native(const DNNModel* model)
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model)
{
ConvolutionalNetwork* network = (ConvolutionalNetwork*)model->model;
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model;
int cur_width, cur_height, cur_channels;
int32_t layer;
InputParams* input_params;
ConvolutionalParams* conv_params;
DepthToSpaceParams* depth_to_space_params;
InputParams *input_params;
ConvolutionalParams *conv_params;
DepthToSpaceParams *depth_to_space_params;
if (network->layers_num <= 0 || network->layers[0].type != INPUT || !network->layers[0].output){
return DNN_ERROR;
}
else{
input_params = (InputParams*)network->layers[0].params;
input_params = (InputParams *)network->layers[0].params;
cur_width = input_params->width;
cur_height = input_params->height;
cur_channels = input_params->channels;
@ -451,12 +451,12 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model)
}
switch (network->layers[layer].type){
case CONV:
conv_params = (ConvolutionalParams*)network->layers[layer].params;
conv_params = (ConvolutionalParams *)network->layers[layer].params;
convolve(network->layers[layer - 1].output, network->layers[layer].output, conv_params, cur_width, cur_height);
cur_channels = conv_params->output_num;
break;
case DEPTH_TO_SPACE:
depth_to_space_params = (DepthToSpaceParams*)network->layers[layer].params;
depth_to_space_params = (DepthToSpaceParams *)network->layers[layer].params;
depth_to_space(network->layers[layer - 1].output, network->layers[layer].output,
depth_to_space_params->block_size, cur_width, cur_height, cur_channels);
cur_height *= depth_to_space_params->block_size;
@ -471,19 +471,19 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel* model)
return DNN_SUCCESS;
}
void ff_dnn_free_model_native(DNNModel** model)
void ff_dnn_free_model_native(DNNModel **model)
{
ConvolutionalNetwork* network;
ConvolutionalParams* conv_params;
ConvolutionalNetwork *network;
ConvolutionalParams *conv_params;
int32_t layer;
if (*model)
{
network = (ConvolutionalNetwork*)(*model)->model;
network = (ConvolutionalNetwork *)(*model)->model;
for (layer = 0; layer < network->layers_num; ++layer){
av_freep(&network->layers[layer].output);
if (network->layers[layer].type == CONV){
conv_params = (ConvolutionalParams*)network->layers[layer].params;
conv_params = (ConvolutionalParams *)network->layers[layer].params;
av_freep(&conv_params->kernel);
av_freep(&conv_params->biases);
}

View File

@ -29,12 +29,12 @@
#include "dnn_interface.h"
DNNModel* ff_dnn_load_model_native(const char* model_filename);
DNNModel *ff_dnn_load_model_native(const char *model_filename);
DNNModel* ff_dnn_load_default_model_native(DNNDefaultModel model_type);
DNNModel *ff_dnn_load_default_model_native(DNNDefaultModel model_type);
DNNReturnType ff_dnn_execute_model_native(const DNNModel* model);
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model);
void ff_dnn_free_model_native(DNNModel** model);
void ff_dnn_free_model_native(DNNModel **model);
#endif

View File

@ -31,24 +31,24 @@
#include <tensorflow/c/c_api.h>
typedef struct TFModel{
TF_Graph* graph;
TF_Session* session;
TF_Status* status;
TF_Graph *graph;
TF_Session *session;
TF_Status *status;
TF_Output input, output;
TF_Tensor* input_tensor;
DNNData* output_data;
TF_Tensor *input_tensor;
DNNData *output_data;
} TFModel;
static void free_buffer(void* data, size_t length)
static void free_buffer(void *data, size_t length)
{
av_freep(&data);
}
static TF_Buffer* read_graph(const char* model_filename)
static TF_Buffer *read_graph(const char *model_filename)
{
TF_Buffer* graph_buf;
unsigned char* graph_data = NULL;
AVIOContext* model_file_context;
TF_Buffer *graph_buf;
unsigned char *graph_data = NULL;
AVIOContext *model_file_context;
long size, bytes_read;
if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
@ -70,20 +70,20 @@ static TF_Buffer* read_graph(const char* model_filename)
}
graph_buf = TF_NewBuffer();
graph_buf->data = (void*)graph_data;
graph_buf->data = (void *)graph_data;
graph_buf->length = size;
graph_buf->data_deallocator = free_buffer;
return graph_buf;
}
static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* output)
static DNNReturnType set_input_output_tf(void *model, DNNData *input, DNNData *output)
{
TFModel* tf_model = (TFModel*)model;
TFModel *tf_model = (TFModel *)model;
int64_t input_dims[] = {1, input->height, input->width, input->channels};
TF_SessionOptions* sess_opts;
const TF_Operation* init_op = TF_GraphOperationByName(tf_model->graph, "init");
TF_Tensor* output_tensor;
TF_SessionOptions *sess_opts;
const TF_Operation *init_op = TF_GraphOperationByName(tf_model->graph, "init");
TF_Tensor *output_tensor;
// Input operation should be named 'x'
tf_model->input.oper = TF_GraphOperationByName(tf_model->graph, "x");
@ -99,7 +99,7 @@ static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* o
if (!tf_model->input_tensor){
return DNN_ERROR;
}
input->data = (float*)TF_TensorData(tf_model->input_tensor);
input->data = (float *)TF_TensorData(tf_model->input_tensor);
// Output operation should be named 'y'
tf_model->output.oper = TF_GraphOperationByName(tf_model->graph, "y");
@ -156,12 +156,12 @@ static DNNReturnType set_input_output_tf(void* model, DNNData* input, DNNData* o
return DNN_SUCCESS;
}
DNNModel* ff_dnn_load_model_tf(const char* model_filename)
DNNModel *ff_dnn_load_model_tf(const char *model_filename)
{
DNNModel* model = NULL;
TFModel* tf_model = NULL;
TF_Buffer* graph_def;
TF_ImportGraphDefOptions* graph_opts;
DNNModel *model = NULL;
TFModel *tf_model = NULL;
TF_Buffer *graph_def;
TF_ImportGraphDefOptions *graph_opts;
model = av_malloc(sizeof(DNNModel));
if (!model){
@ -197,25 +197,25 @@ DNNModel* ff_dnn_load_model_tf(const char* model_filename)
return NULL;
}
model->model = (void*)tf_model;
model->model = (void *)tf_model;
model->set_input_output = &set_input_output_tf;
return model;
}
static TF_Operation* add_pad_op(TFModel* tf_model, TF_Operation* input_op, int32_t pad)
static TF_Operation *add_pad_op(TFModel *tf_model, TF_Operation *input_op, int32_t pad)
{
TF_OperationDescription* op_desc;
TF_Operation* op;
TF_Tensor* tensor;
TF_OperationDescription *op_desc;
TF_Operation *op;
TF_Tensor *tensor;
TF_Output input;
int32_t* pads;
int32_t *pads;
int64_t pads_shape[] = {4, 2};
op_desc = TF_NewOperation(tf_model->graph, "Const", "pads");
TF_SetAttrType(op_desc, "dtype", TF_INT32);
tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t));
pads = (int32_t*)TF_TensorData(tensor);
pads = (int32_t *)TF_TensorData(tensor);
pads[0] = 0; pads[1] = 0;
pads[2] = pad; pads[3] = pad;
pads[4] = pad; pads[5] = pad;
@ -246,11 +246,11 @@ static TF_Operation* add_pad_op(TFModel* tf_model, TF_Operation* input_op, int32
return op;
}
static TF_Operation* add_const_op(TFModel* tf_model, const float* values, const int64_t* dims, int dims_len, const char* name)
static TF_Operation *add_const_op(TFModel *tf_model, const float *values, const int64_t *dims, int dims_len, const char *name)
{
int dim;
TF_OperationDescription* op_desc;
TF_Tensor* tensor;
TF_OperationDescription *op_desc;
TF_Tensor *tensor;
size_t len;
op_desc = TF_NewOperation(tf_model->graph, "Const", name);
@ -269,18 +269,18 @@ static TF_Operation* add_const_op(TFModel* tf_model, const float* values, const
return TF_FinishOperation(op_desc, tf_model->status);
}
static TF_Operation* add_conv_layers(TFModel* tf_model, const float** consts, const int64_t** consts_dims,
const int* consts_dims_len, const char** activations,
TF_Operation* input_op, int layers_num)
static TF_Operation* add_conv_layers(TFModel *tf_model, const float **consts, const int64_t **consts_dims,
const int *consts_dims_len, const char **activations,
TF_Operation *input_op, int layers_num)
{
int i;
TF_OperationDescription* op_desc;
TF_Operation* op;
TF_Operation* transpose_op;
TF_OperationDescription *op_desc;
TF_Operation *op;
TF_Operation *transpose_op;
TF_Output input;
int64_t strides[] = {1, 1, 1, 1};
int32_t* transpose_perm;
TF_Tensor* tensor;
int32_t *transpose_perm;
TF_Tensor *tensor;
int64_t transpose_perm_shape[] = {4};
#define NAME_BUFF_SIZE 256
char name_buffer[NAME_BUFF_SIZE];
@ -288,7 +288,7 @@ static TF_Operation* add_conv_layers(TFModel* tf_model, const float** consts, co
op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm");
TF_SetAttrType(op_desc, "dtype", TF_INT32);
tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t));
transpose_perm = (int32_t*)TF_TensorData(tensor);
transpose_perm = (int32_t *)TF_TensorData(tensor);
transpose_perm[0] = 1;
transpose_perm[1] = 2;
transpose_perm[2] = 3;
@ -369,13 +369,13 @@ static TF_Operation* add_conv_layers(TFModel* tf_model, const float** consts, co
return input_op;
}
DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type)
DNNModel *ff_dnn_load_default_model_tf(DNNDefaultModel model_type)
{
DNNModel* model = NULL;
TFModel* tf_model = NULL;
TF_OperationDescription* op_desc;
TF_Operation* op;
TF_Operation* const_ops_buffer[6];
DNNModel *model = NULL;
TFModel *tf_model = NULL;
TF_OperationDescription *op_desc;
TF_Operation *op;
TF_Operation *const_ops_buffer[6];
TF_Output input;
int64_t input_shape[] = {1, -1, -1, 1};
@ -461,16 +461,16 @@ DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type)
CLEANUP_ON_ERROR(tf_model, model);
}
model->model = (void*)tf_model;
model->model = (void *)tf_model;
model->set_input_output = &set_input_output_tf;
return model;
}
DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model)
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model)
{
TFModel* tf_model = (TFModel*)model->model;
TF_Tensor* output_tensor;
TFModel *tf_model = (TFModel *)model->model;
TF_Tensor *output_tensor;
TF_SessionRun(tf_model->session, NULL,
&tf_model->input, &tf_model->input_tensor, 1,
@ -490,12 +490,12 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model)
}
}
void ff_dnn_free_model_tf(DNNModel** model)
void ff_dnn_free_model_tf(DNNModel **model)
{
TFModel* tf_model;
TFModel *tf_model;
if (*model){
tf_model = (TFModel*)(*model)->model;
tf_model = (TFModel *)(*model)->model;
if (tf_model->graph){
TF_DeleteGraph(tf_model->graph);
}

View File

@ -29,12 +29,12 @@
#include "dnn_interface.h"
DNNModel* ff_dnn_load_model_tf(const char* model_filename);
DNNModel *ff_dnn_load_model_tf(const char *model_filename);
DNNModel* ff_dnn_load_default_model_tf(DNNDefaultModel model_type);
DNNModel *ff_dnn_load_default_model_tf(DNNDefaultModel model_type);
DNNReturnType ff_dnn_execute_model_tf(const DNNModel* model);
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model);
void ff_dnn_free_model_tf(DNNModel** model);
void ff_dnn_free_model_tf(DNNModel **model);
#endif

View File

@ -5398,7 +5398,7 @@ static const long int espcn_conv3_bias_dims[] = {
4
};
static const float* espcn_consts[] = {
static const float *espcn_consts[] = {
espcn_conv1_kernel,
espcn_conv1_bias,
espcn_conv2_kernel,
@ -5407,7 +5407,7 @@ static const float* espcn_consts[] = {
espcn_conv3_bias
};
static const long int* espcn_consts_dims[] = {
static const long int *espcn_consts_dims[] = {
espcn_conv1_kernel_dims,
espcn_conv1_bias_dims,
espcn_conv2_kernel_dims,
@ -5429,7 +5429,7 @@ static const char espcn_tanh[] = "Tanh";
static const char espcn_sigmoid[] = "Sigmoid";
static const char* espcn_activations[] = {
static const char *espcn_activations[] = {
espcn_tanh,
espcn_tanh,
espcn_sigmoid

View File

@ -28,9 +28,9 @@
#include "dnn_backend_tf.h"
#include "libavutil/mem.h"
DNNModule* ff_get_dnn_module(DNNBackendType backend_type)
DNNModule *ff_get_dnn_module(DNNBackendType backend_type)
{
DNNModule* dnn_module;
DNNModule *dnn_module;
dnn_module = av_malloc(sizeof(DNNModule));
if(!dnn_module){

View File

@ -33,31 +33,31 @@ typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType;
typedef enum {DNN_SRCNN, DNN_ESPCN} DNNDefaultModel;
typedef struct DNNData{
float* data;
float *data;
int width, height, channels;
} DNNData;
typedef struct DNNModel{
// Stores model that can be different for different backends.
void* model;
void *model;
// Sets model input and output, while allocating additional memory for intermediate calculations.
// Should be called at least once before model execution.
DNNReturnType (*set_input_output)(void* model, DNNData* input, DNNData* output);
DNNReturnType (*set_input_output)(void *model, DNNData *input, DNNData *output);
} DNNModel;
// Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
typedef struct DNNModule{
// Loads model and parameters from given file. Returns NULL if it is not possible.
DNNModel* (*load_model)(const char* model_filename);
DNNModel *(*load_model)(const char *model_filename);
// Loads one of the default models
DNNModel* (*load_default_model)(DNNDefaultModel model_type);
DNNModel *(*load_default_model)(DNNDefaultModel model_type);
// Executes model with specified input and output. Returns DNN_ERROR otherwise.
DNNReturnType (*execute_model)(const DNNModel* model);
DNNReturnType (*execute_model)(const DNNModel *model);
// Frees memory allocated for model.
void (*free_model)(DNNModel** model);
void (*free_model)(DNNModel **model);
} DNNModule;
// Initializes DNNModule depending on chosen backend.
DNNModule* ff_get_dnn_module(DNNBackendType backend_type);
DNNModule *ff_get_dnn_module(DNNBackendType backend_type);
#endif

View File

@ -2110,7 +2110,7 @@ static const long int srcnn_conv3_bias_dims[] = {
1
};
static const float* srcnn_consts[] = {
static const float *srcnn_consts[] = {
srcnn_conv1_kernel,
srcnn_conv1_bias,
srcnn_conv2_kernel,
@ -2119,7 +2119,7 @@ static const float* srcnn_consts[] = {
srcnn_conv3_bias
};
static const long int* srcnn_consts_dims[] = {
static const long int *srcnn_consts_dims[] = {
srcnn_conv1_kernel_dims,
srcnn_conv1_bias_dims,
srcnn_conv2_kernel_dims,
@ -2139,7 +2139,7 @@ static const int srcnn_consts_dims_len[] = {
static const char srcnn_relu[] = "Relu";
static const char* srcnn_activations[] = {
static const char *srcnn_activations[] = {
srcnn_relu,
srcnn_relu,
srcnn_relu

View File

@ -39,13 +39,13 @@ typedef struct SRContext {
const AVClass *class;
SRModel model_type;
char* model_filename;
char *model_filename;
DNNBackendType backend_type;
DNNModule* dnn_module;
DNNModel* model;
DNNModule *dnn_module;
DNNModel *model;
DNNData input, output;
int scale_factor;
struct SwsContext* sws_context;
struct SwsContext *sws_context;
int sws_slice_h;
} SRContext;
@ -67,9 +67,9 @@ static const AVOption sr_options[] = {
AVFILTER_DEFINE_CLASS(sr);
static av_cold int init(AVFilterContext* context)
static av_cold int init(AVFilterContext *context)
{
SRContext* sr_context = context->priv;
SRContext *sr_context = context->priv;
sr_context->dnn_module = ff_get_dnn_module(sr_context->backend_type);
if (!sr_context->dnn_module){
@ -98,12 +98,12 @@ static av_cold int init(AVFilterContext* context)
return 0;
}
static int query_formats(AVFilterContext* context)
static int query_formats(AVFilterContext *context)
{
const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE};
AVFilterFormats* formats_list;
AVFilterFormats *formats_list;
formats_list = ff_make_format_list(pixel_formats);
if (!formats_list){
@ -113,11 +113,11 @@ static int query_formats(AVFilterContext* context)
return ff_set_common_formats(context, formats_list);
}
static int config_props(AVFilterLink* inlink)
static int config_props(AVFilterLink *inlink)
{
AVFilterContext* context = inlink->dst;
SRContext* sr_context = context->priv;
AVFilterLink* outlink = context->outputs[0];
AVFilterContext *context = inlink->dst;
SRContext *sr_context = context->priv;
AVFilterLink *outlink = context->outputs[0];
DNNReturnType result;
int sws_src_h, sws_src_w, sws_dst_h, sws_dst_w;
@ -202,18 +202,18 @@ static int config_props(AVFilterLink* inlink)
}
typedef struct ThreadData{
uint8_t* data;
uint8_t *data;
int data_linesize, height, width;
} ThreadData;
static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
static int uint8_to_float(AVFilterContext *context, void *arg, int jobnr, int nb_jobs)
{
SRContext* sr_context = context->priv;
const ThreadData* td = arg;
SRContext *sr_context = context->priv;
const ThreadData *td = arg;
const int slice_start = (td->height * jobnr ) / nb_jobs;
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
const uint8_t* src = td->data + slice_start * td->data_linesize;
float* dst = sr_context->input.data + slice_start * td->width;
const uint8_t *src = td->data + slice_start * td->data_linesize;
float *dst = sr_context->input.data + slice_start * td->width;
int y, x;
for (y = slice_start; y < slice_end; ++y){
@ -227,14 +227,14 @@ static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb
return 0;
}
static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
static int float_to_uint8(AVFilterContext *context, void *arg, int jobnr, int nb_jobs)
{
SRContext* sr_context = context->priv;
const ThreadData* td = arg;
SRContext *sr_context = context->priv;
const ThreadData *td = arg;
const int slice_start = (td->height * jobnr ) / nb_jobs;
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
const float* src = sr_context->output.data + slice_start * td->width;
uint8_t* dst = td->data + slice_start * td->data_linesize;
const float *src = sr_context->output.data + slice_start * td->width;
uint8_t *dst = td->data + slice_start * td->data_linesize;
int y, x;
for (y = slice_start; y < slice_end; ++y){
@ -248,12 +248,12 @@ static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb
return 0;
}
static int filter_frame(AVFilterLink* inlink, AVFrame* in)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext* context = inlink->dst;
SRContext* sr_context = context->priv;
AVFilterLink* outlink = context->outputs[0];
AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
AVFilterContext *context = inlink->dst;
SRContext *sr_context = context->priv;
AVFilterLink *outlink = context->outputs[0];
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
ThreadData td;
int nb_threads;
DNNReturnType dnn_result;
@ -307,9 +307,9 @@ static int filter_frame(AVFilterLink* inlink, AVFrame* in)
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext* context)
static av_cold void uninit(AVFilterContext *context)
{
SRContext* sr_context = context->priv;
SRContext *sr_context = context->priv;
if (sr_context->dnn_module){
(sr_context->dnn_module->free_model)(&sr_context->model);