1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00

avfilter/vf_fftdnoiz: refactor code and improve 3d filtering

This commit is contained in:
Paul B Mahol 2022-05-05 13:19:55 +02:00
parent 003f9a9b41
commit a6f136aef1

View File

@ -41,7 +41,7 @@ typedef struct PlaneContext {
int o;
float n;
float *buffer[BSIZE];
float *buffer[MAX_THREADS][BSIZE];
AVComplexFloat *hdata[MAX_THREADS], *vdata[MAX_THREADS];
AVComplexFloat *hdata_out[MAX_THREADS], *vdata_out[MAX_THREADS];
int data_linesize;
@ -68,7 +68,10 @@ typedef struct FFTdnoizContext {
PlaneContext planes[4];
AVTXContext *fft[MAX_THREADS], *ifft[MAX_THREADS];
AVTXContext *fft_r[MAX_THREADS], *ifft_r[MAX_THREADS];
av_tx_fn tx_fn, itx_fn;
av_tx_fn tx_r_fn, itx_r_fn;
void (*import_row)(AVComplexFloat *dst, uint8_t *src, int rw, float scale);
void (*export_row)(AVComplexFloat *src, uint8_t *dst, int rw, int depth);
@ -203,7 +206,9 @@ static int config_input(AVFilterLink *inlink)
av_tx_init(&s->fft[i], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->block_size, &scale, 0);
av_tx_init(&s->ifft[i], &s->itx_fn, AV_TX_FLOAT_FFT, 1, s->block_size, &iscale, 0);
if (!s->fft[i] || !s->ifft[i])
av_tx_init(&s->fft_r[i], &s->tx_r_fn, AV_TX_FLOAT_FFT, 0, 1 + s->nb_prev + s->nb_next, &scale, 0);
av_tx_init(&s->ifft_r[i], &s->itx_r_fn, AV_TX_FLOAT_FFT, 1, 1 + s->nb_prev + s->nb_next, &iscale, 0);
if (!s->fft[i] || !s->ifft[i] || !s->fft_r[i] || !s->ifft_r[i])
return AVERROR(ENOMEM);
}
@ -220,26 +225,26 @@ static int config_input(AVFilterLink *inlink)
av_log(ctx, AV_LOG_DEBUG, "nox:%d noy:%d size:%d\n", p->nox, p->noy, size);
p->buffer_linesize = p->b * p->nox * sizeof(AVComplexFloat);
p->buffer[CURRENT] = av_calloc(p->b * p->noy, p->buffer_linesize);
if (!p->buffer[CURRENT])
return AVERROR(ENOMEM);
if (s->nb_prev > 0) {
p->buffer[PREV] = av_calloc(p->b * p->noy, p->buffer_linesize);
if (!p->buffer[PREV])
return AVERROR(ENOMEM);
}
if (s->nb_next > 0) {
p->buffer[NEXT] = av_calloc(p->b * p->noy, p->buffer_linesize);
if (!p->buffer[NEXT])
return AVERROR(ENOMEM);
}
p->buffer_linesize = p->b * sizeof(AVComplexFloat);
p->data_linesize = 2 * p->b * sizeof(float);
for (int j = 0; j < s->nb_threads; j++) {
p->hdata[j] = av_calloc(p->b, p->data_linesize);
p->hdata_out[j] = av_calloc(p->b, p->data_linesize);
p->vdata[j] = av_calloc(p->b, p->data_linesize);
p->vdata_out[j] = av_calloc(p->b, p->data_linesize);
p->buffer[j][CURRENT] = av_calloc(p->b, p->buffer_linesize);
if (!p->buffer[j][CURRENT])
return AVERROR(ENOMEM);
if (s->nb_prev > 0) {
p->buffer[j][PREV] = av_calloc(p->b, p->buffer_linesize);
if (!p->buffer[j][PREV])
return AVERROR(ENOMEM);
}
if (s->nb_next > 0) {
p->buffer[j][NEXT] = av_calloc(p->b, p->buffer_linesize);
if (!p->buffer[j][NEXT])
return AVERROR(ENOMEM);
}
if (!p->hdata[j] || !p->vdata[j] ||
!p->hdata_out[j] || !p->vdata_out[j])
return AVERROR(ENOMEM);
@ -249,10 +254,10 @@ static int config_input(AVFilterLink *inlink)
return 0;
}
static void import_plane(FFTdnoizContext *s,
static void import_block(FFTdnoizContext *s,
uint8_t *srcp, int src_linesize,
float *buffer, int buffer_linesize, int plane,
int jobnr, int nb_jobs)
int jobnr, int y, int x)
{
PlaneContext *p = &s->planes[plane];
const int width = p->planewidth;
@ -260,68 +265,60 @@ static void import_plane(FFTdnoizContext *s,
const int block = p->b;
const int overlap = p->o;
const int size = block - overlap;
const int nox = p->nox;
const int noy = p->noy;
const int bpp = (s->depth + 7) / 8;
const int data_linesize = p->data_linesize / sizeof(AVComplexFloat);
const int slice_start = (noy * jobnr) / nb_jobs;
const int slice_end = (noy * (jobnr+1)) / nb_jobs;
const float scale = 1.f / (s->block_size * s->block_size);
const float scale = 1.f / ((1.f + s->nb_prev + s->nb_next) * s->block_size * s->block_size);
AVComplexFloat *hdata = p->hdata[jobnr];
AVComplexFloat *hdata_out = p->hdata_out[jobnr];
AVComplexFloat *vdata_out = p->vdata_out[jobnr];
int x, y, i, j;
const int rh = FFMIN(block, height - y * size);
const int rw = FFMIN(block, width - x * size);
uint8_t *src = srcp + src_linesize * y * size + x * size * bpp;
AVComplexFloat *ssrc, *ddst, *dst = hdata, *dst_out = hdata_out;
float *bdst = buffer;
buffer_linesize /= sizeof(float);
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < nox; x++) {
const int rh = FFMIN(block, height - y * size);
const int rw = FFMIN(block, width - x * size);
uint8_t *src = srcp + src_linesize * y * size + x * size * bpp;
float *bdst = buffer + buffer_linesize * y * block + x * block * 2;
AVComplexFloat *ssrc, *ddst, *dst = hdata, *dst_out = hdata_out;
for (i = 0; i < rh; i++) {
s->import_row(dst, src, rw, scale);
for (j = rw; j < block; j++) {
dst[j].re = dst[rw - 1].re;
dst[j].im = 0.f;
}
s->tx_fn(s->fft[jobnr], dst_out, dst, sizeof(float));
ddst = dst_out;
src += src_linesize;
dst += data_linesize;
dst_out += data_linesize;
}
for (i = rh; i < block; i++) {
for (j = 0; j < block; j++) {
dst[j].re = ddst[j].re;
dst[j].im = ddst[j].im;
}
dst += data_linesize;
}
ssrc = hdata_out;
dst = vdata_out;
for (i = 0; i < block; i++) {
for (j = 0; j < block; j++)
dst[j] = ssrc[j * data_linesize + i];
s->tx_fn(s->fft[jobnr], bdst, dst, sizeof(float));
dst += data_linesize;
bdst += buffer_linesize;
}
for (int i = 0; i < rh; i++) {
s->import_row(dst, src, rw, scale);
for (int j = rw; j < block; j++) {
dst[j].re = dst[rw - 1].re;
dst[j].im = 0.f;
}
s->tx_fn(s->fft[jobnr], dst_out, dst, sizeof(float));
ddst = dst_out;
src += src_linesize;
dst += data_linesize;
dst_out += data_linesize;
}
for (int i = rh; i < block; i++) {
for (int j = 0; j < block; j++) {
dst[j].re = ddst[j].re;
dst[j].im = ddst[j].im;
}
dst += data_linesize;
}
ssrc = hdata_out;
dst = vdata_out;
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++)
dst[j] = ssrc[j * data_linesize + i];
s->tx_fn(s->fft[jobnr], bdst, dst, sizeof(float));
dst += data_linesize;
bdst += buffer_linesize;
}
}
static void export_plane(FFTdnoizContext *s,
static void export_block(FFTdnoizContext *s,
uint8_t *dstp, int dst_linesize,
float *buffer, int buffer_linesize, int plane,
int jobnr, int nb_jobs)
int jobnr, int y, int x)
{
PlaneContext *p = &s->planes[plane];
const int depth = s->depth;
@ -332,286 +329,245 @@ static void export_plane(FFTdnoizContext *s,
const int overlap = p->o;
const int hoverlap = overlap / 2;
const int size = block - overlap;
const int nox = p->nox;
const int noy = p->noy;
const int data_linesize = p->data_linesize / sizeof(AVComplexFloat);
const int slice_start = (noy * jobnr) / nb_jobs;
const int slice_end = (noy * (jobnr+1)) / nb_jobs;
AVComplexFloat *hdata = p->hdata[jobnr];
AVComplexFloat *hdata_out = p->hdata_out[jobnr];
AVComplexFloat *vdata_out = p->vdata_out[jobnr];
int x, y, i, j;
const int woff = x == 0 ? 0 : hoverlap;
const int hoff = y == 0 ? 0 : hoverlap;
const int rw = x == 0 ? FFMIN(block, width) : FFMIN(size, width - x * size - woff);
const int rh = y == 0 ? FFMIN(block, height) : FFMIN(size, height - y * size - hoff);
uint8_t *dst = dstp + dst_linesize * (y * size + hoff) + (x * size + woff) * bpp;
AVComplexFloat *hdst, *vdst = vdata_out, *hdst_out = hdata_out;
float *bsrc = buffer;
hdst = hdata;
buffer_linesize /= sizeof(float);
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < nox; x++) {
const int woff = x == 0 ? 0 : hoverlap;
const int hoff = y == 0 ? 0 : hoverlap;
const int rw = x == 0 ? FFMIN(block, width) : FFMIN(size, width - x * size - woff);
const int rh = y == 0 ? FFMIN(block, height) : FFMIN(size, height - y * size - hoff);
float *bsrc = buffer + buffer_linesize * y * block + x * block * 2;
uint8_t *dst = dstp + dst_linesize * (y * size + hoff) + (x * size + woff) * bpp;
AVComplexFloat *hdst, *vdst = vdata_out, *hdst_out = hdata_out;
hdst = hdata;
for (i = 0; i < block; i++) {
s->itx_fn(s->ifft[jobnr], vdst, bsrc, sizeof(float));
for (j = 0; j < block; j++)
hdst[j * data_linesize + i] = vdst[j];
for (int i = 0; i < block; i++) {
s->itx_fn(s->ifft[jobnr], vdst, bsrc, sizeof(float));
for (int j = 0; j < block; j++)
hdst[j * data_linesize + i] = vdst[j];
vdst += data_linesize;
bsrc += buffer_linesize;
}
vdst += data_linesize;
bsrc += buffer_linesize;
}
hdst = hdata + hoff * data_linesize;
for (i = 0; i < rh; i++) {
s->itx_fn(s->ifft[jobnr], hdst_out, hdst, sizeof(float));
s->export_row(hdst_out + woff, dst, rw, depth);
hdst = hdata + hoff * data_linesize;
for (int i = 0; i < rh; i++) {
s->itx_fn(s->ifft[jobnr], hdst_out, hdst, sizeof(float));
s->export_row(hdst_out + woff, dst, rw, depth);
hdst += data_linesize;
hdst_out += data_linesize;
dst += dst_linesize;
}
}
hdst += data_linesize;
hdst_out += data_linesize;
dst += dst_linesize;
}
}
static void filter_plane3d2(FFTdnoizContext *s, int plane, float *pbuffer, float *nbuffer,
int jobnr, int nb_jobs)
static void filter_block3d2(FFTdnoizContext *s, int plane, float *pbuffer, float *nbuffer,
int jobnr)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int nox = p->nox;
const int noy = p->noy;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
const float sigma = s->sigma * depthx / (s->block_size * s->block_size);
const int slice_start = (noy * jobnr) / nb_jobs;
const int slice_end = (noy * (jobnr+1)) / nb_jobs;
const float sigma = s->sigma * depthx / (3.f * s->block_size * s->block_size);
const float limit = 1.f - s->amount;
float *cbuffer = p->buffer[CURRENT];
const float cfactor = sqrtf(3.f) * 0.5f;
const float scale = 1.f / 3.f;
int y, x, i, j;
float *cbuffer = p->buffer[jobnr][CURRENT];
const int method = s->method;
float *cbuff = cbuffer;
float *pbuff = pbuffer;
float *nbuff = nbuffer;
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < nox; x++) {
float *cbuff = cbuffer + buffer_linesize * y * block + x * block * 2;
float *pbuff = pbuffer + buffer_linesize * y * block + x * block * 2;
float *nbuff = nbuffer + buffer_linesize * y * block + x * block * 2;
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++) {
AVComplexFloat buffer[BSIZE];
AVComplexFloat outbuffer[BSIZE];
for (i = 0; i < block; i++) {
for (j = 0; j < block; j++) {
float sumr, sumi, difr, difi, mpr, mpi, mnr, mni;
float factor, power, sumpnr, sumpni;
buffer[0].re = pbuff[2 * j ];
buffer[0].im = pbuff[2 * j + 1];
sumpnr = pbuff[2 * j ] + nbuff[2 * j ];
sumpni = pbuff[2 * j + 1] + nbuff[2 * j + 1];
sumr = cbuff[2 * j ] + sumpnr;
sumi = cbuff[2 * j + 1] + sumpni;
difr = cfactor * (nbuff[2 * j ] - pbuff[2 * j ]);
difi = cfactor * (pbuff[2 * j + 1] - nbuff[2 * j + 1]);
mpr = cbuff[2 * j ] - 0.5f * sumpnr + difi;
mnr = mpr - difi - difi;
mpi = cbuff[2 * j + 1] - 0.5f * sumpni + difr;
mni = mpi - difr - difr;
power = sumr * sumr + sumi * sumi;
factor = fmaxf((power - sigma) / (power + 1e-15f), limit);
sumr *= factor;
sumi *= factor;
power = mpr * mpr + mpi * mpi;
factor = fmaxf((power - sigma) / (power + 1e-15f), limit);
mpr *= factor;
mpi *= factor;
power = mnr * mnr + mni * mni;
factor = fmaxf((power - sigma) / (power + 1e-15f), limit);
mnr *= factor;
mni *= factor;
cbuff[2 * j ] = (sumr + mpr + mnr) * scale;
cbuff[2 * j + 1] = (sumi + mpi + mni) * scale;
buffer[1].re = cbuff[2 * j ];
buffer[1].im = cbuff[2 * j + 1];
buffer[2].re = nbuff[2 * j ];
buffer[2].im = nbuff[2 * j + 1];
s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(float));
for (int z = 0; z < 3; z++) {
const float re = outbuffer[z].re;
const float im = outbuffer[z].im;
const float power = re * re + im * im;;
float factor;
switch (method) {
case 0:
factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
break;
case 1:
factor = power < sigma ? limit : 1.f;
break;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
nbuff += buffer_linesize;
outbuffer[z].re *= factor;
outbuffer[z].im *= factor;
}
s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(float));
cbuff[2 * j + 0] = buffer[1].re;
cbuff[2 * j + 1] = buffer[1].im;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
nbuff += buffer_linesize;
}
}
static void filter_plane3d1(FFTdnoizContext *s, int plane, float *pbuffer,
int jobnr, int nb_jobs)
static void filter_block3d1(FFTdnoizContext *s, int plane, float *pbuffer,
int jobnr)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int nox = p->nox;
const int noy = p->noy;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
const float sigma = s->sigma * depthx / (s->block_size * s->block_size);
const int slice_start = (noy * jobnr) / nb_jobs;
const int slice_end = (noy * (jobnr+1)) / nb_jobs;
const float sigma = s->sigma * depthx / (2.f * s->block_size * s->block_size);
const float limit = 1.f - s->amount;
float *cbuffer = p->buffer[CURRENT];
int y, x, i, j;
float *cbuffer = p->buffer[jobnr][CURRENT];
const int method = s->method;
float *cbuff = cbuffer;
float *pbuff = pbuffer;
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < nox; x++) {
float *cbuff = cbuffer + buffer_linesize * y * block + x * block * 2;
float *pbuff = pbuffer + buffer_linesize * y * block + x * block * 2;
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++) {
AVComplexFloat buffer[BSIZE];
AVComplexFloat outbuffer[BSIZE];
for (i = 0; i < block; i++) {
for (j = 0; j < block; j++) {
float factor, power, re, im, pre, pim;
float sumr, sumi, difr, difi;
buffer[0].re = pbuff[2 * j ];
buffer[0].im = pbuff[2 * j + 1];
re = cbuff[j * 2 ];
pre = pbuff[j * 2 ];
im = cbuff[j * 2 + 1];
pim = pbuff[j * 2 + 1];
buffer[1].re = cbuff[2 * j ];
buffer[1].im = cbuff[2 * j + 1];
sumr = re + pre;
sumi = im + pim;
difr = re - pre;
difi = im - pim;
s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(float));
power = sumr * sumr + sumi * sumi;
for (int z = 0; z < 2; z++) {
const float re = outbuffer[z].re;
const float im = outbuffer[z].im;
const float power = re * re + im * im;;
float factor;
switch (method) {
case 0:
factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
sumr *= factor;
sumi *= factor;
power = difr * difr + difi * difi;
factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
difr *= factor;
difi *= factor;
cbuff[j * 2 ] = (sumr + difr) * 0.5f;
cbuff[j * 2 + 1] = (sumi + difi) * 0.5f;
break;
case 1:
factor = power < sigma ? limit : 1.f;
break;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
outbuffer[z].re *= factor;
outbuffer[z].im *= factor;
}
s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(float));
cbuff[2 * j + 0] = buffer[1].re;
cbuff[2 * j + 1] = buffer[1].im;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
}
}
static void filter_plane2d(FFTdnoizContext *s, int plane,
int jobnr, int nb_jobs)
static void filter_block2d(FFTdnoizContext *s, int plane,
int jobnr)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int nox = p->nox;
const int noy = p->noy;
const int method = s->method;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
const float sigma = s->sigma * depthx / (s->block_size * s->block_size);
const float limit = 1.f - s->amount;
const int slice_start = (noy * jobnr) / nb_jobs;
const int slice_end = (noy * (jobnr+1)) / nb_jobs;
float *buffer = p->buffer[CURRENT];
float *buff = p->buffer[jobnr][CURRENT];
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < nox; x++) {
float *buff = buffer + buffer_linesize * y * block + x * block * 2;
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++) {
float factor, power, re, im;
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++) {
float factor, power, re, im;
re = buff[j * 2 ];
im = buff[j * 2 + 1];
power = re * re + im * im;
switch (method) {
case 0:
factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
break;
case 1:
factor = power < sigma ? limit : 1.f;
break;
}
buff[j * 2 ] *= factor;
buff[j * 2 + 1] *= factor;
}
buff += buffer_linesize;
re = buff[j * 2 ];
im = buff[j * 2 + 1];
power = re * re + im * im;
switch (method) {
case 0:
factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
break;
case 1:
factor = power < sigma ? limit : 1.f;
break;
}
buff[j * 2 ] *= factor;
buff[j * 2 + 1] *= factor;
}
buff += buffer_linesize;
}
}
static int import_pass(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
FFTdnoizContext *s = ctx->priv;
for (int plane = 0; plane < s->nb_planes; plane++) {
PlaneContext *p = &s->planes[plane];
if (!((1 << plane) & s->planesf) || ctx->is_disabled)
continue;
if (s->next) {
import_plane(s, s->next->data[plane], s->next->linesize[plane],
p->buffer[NEXT], p->buffer_linesize, plane,
jobnr, nb_jobs);
}
if (s->prev) {
import_plane(s, s->prev->data[plane], s->prev->linesize[plane],
p->buffer[PREV], p->buffer_linesize, plane,
jobnr, nb_jobs);
}
import_plane(s, s->cur->data[plane], s->cur->linesize[plane],
p->buffer[CURRENT], p->buffer_linesize, plane,
jobnr, nb_jobs);
}
return 0;
}
static int filter_pass(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
FFTdnoizContext *s = ctx->priv;
for (int plane = 0; plane < s->nb_planes; plane++) {
PlaneContext *p = &s->planes[plane];
if (!((1 << plane) & s->planesf) || ctx->is_disabled)
continue;
if (s->next && s->prev) {
filter_plane3d2(s, plane, p->buffer[PREV], p->buffer[NEXT], jobnr, nb_jobs);
} else if (s->next) {
filter_plane3d1(s, plane, p->buffer[NEXT], jobnr, nb_jobs);
} else if (s->prev) {
filter_plane3d1(s, plane, p->buffer[PREV], jobnr, nb_jobs);
} else {
filter_plane2d(s, plane, jobnr, nb_jobs);
}
}
return 0;
}
static int export_pass(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
static int denoise(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
FFTdnoizContext *s = ctx->priv;
AVFrame *out = arg;
for (int plane = 0; plane < s->nb_planes; plane++) {
PlaneContext *p = &s->planes[plane];
const int nox = p->nox;
const int noy = p->noy;
const int slice_start = (noy * jobnr) / nb_jobs;
const int slice_end = (noy * (jobnr+1)) / nb_jobs;
if (!((1 << plane) & s->planesf) || ctx->is_disabled)
continue;
export_plane(s, out->data[plane], out->linesize[plane],
p->buffer[CURRENT], p->buffer_linesize, plane,
jobnr, nb_jobs);
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < nox; x++) {
if (s->next) {
import_block(s, s->next->data[plane], s->next->linesize[plane],
p->buffer[jobnr][NEXT], p->buffer_linesize, plane,
jobnr, y, x);
}
if (s->prev) {
import_block(s, s->prev->data[plane], s->prev->linesize[plane],
p->buffer[jobnr][PREV], p->buffer_linesize, plane,
jobnr, y, x);
}
import_block(s, s->cur->data[plane], s->cur->linesize[plane],
p->buffer[jobnr][CURRENT], p->buffer_linesize, plane,
jobnr, y, x);
if (s->next && s->prev) {
filter_block3d2(s, plane, p->buffer[jobnr][PREV], p->buffer[jobnr][NEXT], jobnr);
} else if (s->next) {
filter_block3d1(s, plane, p->buffer[jobnr][NEXT], jobnr);
} else if (s->prev) {
filter_block3d1(s, plane, p->buffer[jobnr][PREV], jobnr);
} else {
filter_block2d(s, plane, jobnr);
}
export_block(s, out->data[plane], out->linesize[plane],
p->buffer[jobnr][CURRENT], p->buffer_linesize, plane,
jobnr, y, x);
}
}
}
return 0;
@ -669,13 +625,7 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in)
av_frame_copy_props(out, s->cur);
}
ff_filter_execute(ctx, import_pass, NULL, NULL,
FFMIN(s->planes[0].noy, s->nb_threads));
ff_filter_execute(ctx, filter_pass, NULL, NULL,
FFMIN(s->planes[0].noy, s->nb_threads));
ff_filter_execute(ctx, export_pass, out, NULL,
ff_filter_execute(ctx, denoise, out, NULL,
FFMIN(s->planes[0].noy, s->nb_threads));
for (plane = 0; plane < s->nb_planes; plane++) {
@ -742,16 +692,17 @@ static av_cold void uninit(AVFilterContext *ctx)
av_freep(&p->vdata[j]);
av_freep(&p->hdata_out[j]);
av_freep(&p->vdata_out[j]);
av_freep(&p->buffer[j][PREV]);
av_freep(&p->buffer[j][CURRENT]);
av_freep(&p->buffer[j][NEXT]);
}
av_freep(&p->buffer[PREV]);
av_freep(&p->buffer[CURRENT]);
av_freep(&p->buffer[NEXT]);
}
for (i = 0; i < s->nb_threads; i++) {
av_tx_uninit(&s->fft[i]);
av_tx_uninit(&s->ifft[i]);
av_tx_uninit(&s->fft_r[i]);
av_tx_uninit(&s->ifft_r[i]);
}
av_frame_free(&s->prev);